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The main object of this work is to show how some rather elementary techniques based upon certain
inverse pairs of symbolic operators would lead us easily to several decomposition formulas associated with
confluent hypergeometric functions of two and more variables. Many operator identities involving these
pairs of symbolic operators are first constructed for this purpose. By means of these operator identities
several decomposition formulas are found, which express the aforementioned hypergeometric functions in
terms of such simpler functions as the products of the Gauss hypergeometric functions.

Keywords: decomposition formulas; multiple confluent hypergeometric functions; inverse pairs of
symbolic operators; Gauss hypergeometric function; multiple Lauricella functions; Bessel function of
many variables

1 Introduction

A great interest in the theory of multiple hypergeometric functions is motivated essentially by the fact
that the solutions of many applied problems involving, for example, partial differential equations are
obtainable with the help of such hypergeometric functions (see, for details, [25], p.47 et seq., Section
1.7; see also the works [I8] [19] and the references cited therein). For instance, the energy absorbed by
some nonferromagnetic conductor sphere included in an internal magnetic field can be calculated with
the help of such functions [I5]. Hypergeometric functions in several variables are used in physical and
quantum chemical applications as well (cf. [I7, 23]). Especially, many problems in gas dynamics lead
to solutions of degenerate second-order partial differential equations which are then solvable in terms of
multiple hypergeometric functions.

We note that Riemann’s functions and the fundamental solutions of the degenerate second-order
partial differential equations are expressible by means of hypergeometric functions in several variables
[16], 211 221 24]. In investigation of the boundary-value problems for these partial differential equations, we
need decompositions for hypergeometric functions in several variables in terms of simpler hypergeometric
functions of the Gauss and Appell types.

In addition to the Gaussian functions, which have received the greatest attention in the literature,
confluent functions have been considered. For example, twenty confluent hypergeometric functions of two
variables exist; seven were introduced by Humbert [13], and the remaining ones by Horn [12] and by
Borngisser [2]. Certain confluent functions in three variables were considered by Jain [14] and by Exton
[9], but the entire set has not been given, i.e. confluent functions in all directions of research have been
little studied with respect to other hypergeometric functions. While a brief account of such functions is
presented in [25], we shall include the definition of the important special class of confluent functions and
find the decomposition formulas for these functions.

Burchnall and Chaundy introduced the symbolic operators V and A(see [3,/4]) by means of which they
presented a number of expansion and decomposition formulas for some double hypergeometric functions
(only seven of which are confluent functions) in terms of the classical Gauss hypergeometric function of
one variable. Recently Hasanov and Srivastava [I0] [I1] generalized the Burchnall-Chaundy’s operators
and by making use of some technique based upon certain inverse pairs of symbolic operators, the authors
investigate several decomposition formulas associated with Lauricella’s (but no confluent) hypergeometric
functions of many variables when a number of variables exceeds two.

In this paper we introduce other multivariable analog of Burchnall-Chaundy’s operators and find the
decomposition formulas for some confluent hypergeometric functions of two and more variables.

2 Symbolic operators

Burchnall and Chaundy [3, 4], and Chaundy [5], give a number of expansions of double hypergeometric
functions in series of simpler hypergeometric functions. Their method is based upon the inverse pair of
symbolic operators
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The symbolic operators defined by (ZI) and (22]) are limited only to functions of two variables,
therefore recently Hasanov and Srivastava [10, [[T] generalized these operators in the forms
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With the help of symbolic operators defined by [23) and (24]), decomposition formulas for many
multiple hypergeometric functions have been found. For example [10 [11],
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Here (u), =T (p+ k) /T (p) is a Pochhammer symbol; F' is Gauss hypergeometric function of one

variable [7, Chapter 2]; Flgm) and Fém) are multiple Lauricella hypergeometric functions [I], p.115].

However, the recurrence of this formula did not allow further advancement in the direction of increasing
the number of variables.

Further study of the properties of the Lauricella function defined by (Z7) showed that the formula
[@3) can be reduced to a more convenient form.

Lemma 1[8]. The following formula holds true at m € N

oo
(m) ) ) _ (@) No (m,m)
Fu(a,bi, cbmiCly ey Ci 1, ooy ) = D PP TPy Py oo
n;, ;=0 (2<i<j<m)

(2<i<j<m) - (2.8)
7 O)arem) Mo (kim) . _
€Ty, [a’+N2(kam)abk+M2(k7m)7ck+M2(kam>’zk]a

(Ck)zvfz(k m)

k=

where
k+1 m

ank—i— Z Mht1,is Nl(kz,m):ZZni,j,leN

i=k-+1 i=l j=i



It should be noted that the symbolic operators d; and d5 defined by (22)) in the one-dimensional case
take the form 0 := xzd/dx and such an operator is used in solving problems of the operational calculus
[20, p.26].

We now introduce here the other multivariable analogues of the Burchnall-Chaundy symbolic operators
V (k) and A (h) defined by 21I):
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In addition, we consider operators which are equal to the Hasanov-Srivastava’s symbolic operators

V (k) and A (h) defined by (Z3) and (Z3):

0; = x4 i=1,....m, j=1,...,n; m,n € N.

..........

@0—72 (h) = @—yl:—yz,...,—yn (h), A%Z (h) = A—yl:—yz,...,—yn (h) ;n € N.
It is obvious that

Vol () = Ay (h) = V%! (h) = A%] (h) =1.

Lemma 2. Let be [ := f(x,y) function with variables x and y in (2I13). Then following equalities
hold true for any m, n € N:
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where
K :={(i1,,im) 101 > 0,0,y > 0,41 + ... + 0y =k},

L:= {(jl,,]n) Zjl Z 07---7jn Z O,jl =+ ... +]n = l}

The lemma 2 is proved by method of mathematical induction.



3 Decomposition formulas in the two-variable case

In this section we shall give the decomposition formulas for the following hypergeometric functions of two
variables [7, pp.225-226]:
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where a, b, ¢, d, e are complex numbers, d # 0, —1, —2,.... We note that hypergeometric functions defined
by BI)-(B3) are confluent functions (In the literature it is customary to denote the confluent functions
through the capital letters of the Greek alphabet).

In the special case when m = n = 1, the symbolic operators (29)-(2I2)) and equalities (2I4])-([2T5)
take a simpler forms:
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By applying the pair of symbolic operators ([B.6) and (B7), we find the following set of operator
identities:
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is a generalized Gauss hypergeometric function, F' is the famous Gauss function defined by (2.6)).
By using equalities (B.8)) and (B9) from the operator identities (B.I0) to (B2I) we can derive the
following decomposition formulas for double hypergeometric functions Hs , Ho — H5 and Hy; :
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The expansions [322)-([B.33) can be proved without symbolic methods by comparing coefficients of
equal powers of x and y on both sides.

4 Decomposition formulas for the multivariable confluent
hypergeometric function

An interesting unification (and generalization) of multiple Lauricella’s functions FX") and Fém) and
Horn’s functions of two variables Hy was considered by Erdélyi [6](see also [25, p.74]), who defined his
general function in the form:
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where m,n € NU {0}, x and y are variables defined in (ZI3)). In the series defined by @I i1, ..., i, and
J1, vy Jn run from 0 to oco.
Evidently, we have
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From the hypergeometric function (&I]) we shall define the following confluent hypergeometric function
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At the determination of the confluent hypergeometric function Hi‘m’") the equality [I, p.124]
111% (1/€),, - €® =1 (k is a natural number) has been used. The found confluent hypergeometric function
e—

has the following form
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Now we apply the symbolic operators @;"y" (h) and Agly" (h) to the studying of properties of confluent

hypergeometric function HE;"’") defined by ([@2).
Using the formulas (Z9) and (Z.I1]), we obtain
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Now by virtue of formulas (ZI4) and (ZI5) from the formulas (£3]) and (£4]) we have
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where
M = {(i1y ooyt J1y oo Jn) 181 2 0y iy > 0,51 >0,y Jiny > 0,80 + oo + i = Ky J1 4+ oo+ = U}

N :={(j1,-s0n) 181 =0, iyipy 20,51 > 0,51 > 0,00, = 0,41+ .+ =1L, j1 + .. + . = K}

Thus, we have obtained the decomposition formulas for the multiple confluent function defined by
[#2). We recall that the multiple Lauricella function Fjgm) has an expansion formula (Z8).

It is easy to see that in the case when m = n = 1 the decomposition formulas (£6]) and (7)) coincide
with the formulas defined by (3.26) and [B.27]), respectively.
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