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Abstract

In this paper, we analyze the stochastic properties of some large size (area) poly-
ominoes’ perimeter such that the directed column-convex polyomino, the column-convex
polyomino, the directed diagonally-convex polyomino, the staircase (or parallelogram)
polyomino, the escalier polyomino, the wall (or bargraph) polyomino. All polyominoes
considered here are made of contiguous, not-empty columns, without holes, such that each
column must be adjacent to some cell of the previous column. We compute the asymp-
totic (for large size n) Gaussian distribution of the perimeter, including the corresponding
Markov property of the chain of columns, and the convergence to classical Brownian mo-
tions of the perimeter seen as a trajectory according to the successive columns. All
polyominoes of size n are considered as equiprobable.

Keywords: polyominoes’ perimeter, asymptotic Gaussian distribution, Markov property,
convergence to classical Brownian motions
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1 Introduction

In this paper, a polyomino is a set of cells on a square lattice such that every cell of the
polyomino can be reached from any other cell by a sequence of cells of the polyomino. The
perimeter ( the length of the border) has been the subject of a large literature. We will not
provide all references, we refer to the rather complete bibliography given in Bousquet-Mélou
[4],[5], Bousquet-Mélou and Brak [6]. Let us also add Feretić and Svrtan [9], Feretić [8],
Delest and Fédou [7], Blecher et al. [3], Louchard [19].

In this paper, we analyze the stochastic properties of some large size (area) polyominoes’
perimeter such that (precise definitions are given in the text) the directed column-convex
polyomino (dcc), the column-convex polyomino (cc), the directed diagonally-convex poly-
omino (dc), the staircase (or parallelogram) polyomino (st), the escalier polyomino (es), the
wall (or bargraph) polyomino (wa). All polyominoes considered here are made of contiguous,
not-empty columns, without holes, such that each column (of size j) must be adjacent to
some cell of the previous column (of size k). We will denote by U(k, j) (characterizing each
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polyomino) the possibility function giving the number of ways of gluing the two columns to-
gether. We compute the asymptotic (for large size n) Gaussian distribution of the perimeter,
including the corresponding Markov property of the chain of columns, and the convergence to
classical Brownian motions of the perimeter seen as a trajectory according to the successive
columns. This confirms the “filament silhouette” of the structures, that had been observed by
previous simulations. As said in Flajolet and Sedgewick [10, p.662] ,“a random parallelogram
is most likely to resemble a slanted stack of fairly short segments”. This is proved here for
all our polyominoes. All polyominoes of size n are considered as equiprobable. The first five
ones are treated with similar methods, the bargraph is analyzed with a different technique.

2 The dcc perimeter

A directed column convex polyomino (dcc) is made of contiguous columns such that the
base cell of each column must be adjacent to some cell of the previous column. We have
partially considered this polyomino in [16]. In this section, besides the perimeter’s analysis,
we refine the polyomino stochastic description with another technique, that we will use in all
other polyominoes. So we explain it in great detail in this section and provide all necessary
notations and computations we use in the sequel.

For dcc, the gluing function is given by U(k, j) = k. Note that it depends only on k, this
will not be the case for our following polyominoes. In this paper, we denote by φ(w, θ, z) the
three-dimension generating function (GF) where z marks the polyomino’s size n (area), w
marks the number m of columns (width) and θ marks the size j of the last column. All other
interesting parameters and stochastic distributions are related to φ(w, θ, z). In the following
subsections, we will first consider φ(w, θ, z) and its derived properties, then the Markov chain
corresponding to the dcc, next the perimeter conditioned on the number of columns m and
finally the perimeter conditioned on the size n. Asymptotic relations always means when
n→∞.

2.1 The generating functions

To compute the generating functions we will use the “adding of a slice” technique, initiated
by Temperley [21], popularized by many combinatorists (see for instance Bousquet-Mélou
[5]) and summarized in Flajolet and Sedgewick [10, p.366]. The analysis we apply here to
dcc has already been initialized in [17] for cc, but for the sake of completeness, we present it
again here, with some complements.

We denote by T (m,n, j, `) the total number of dcc with area n, width m, last column size
j and first column size ` (similar notations for partially parametrized T ().

For any function g(θ, ..), set:

g′(θ, ..)
.
= ∂θg(θ, ..).

When we use the symbol
.
= (and similarly for

.∼), this corresponds to a relation valid for
all polyominoes, otherwize, the usual := corresponds to the particular polyomino under
consideration. Denote by ϕ(m, j, z) the GF corresponding to polyominoes with m columns,
last column of size j and any first column’s size. We have

ϕ(m, j, z) =
∞∑
k=1

kϕ(m− 1, k, z).
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Now we mark j by θ. This leads to

Γ(m, θ, z)
.
=
∞∑
j=1

θjϕ(m, j, z) =
∞∑
j=1

θjzj
∞∑
k=1

kϕ(m− 1, k, z) = f̃2(θ, z)Γ
′(m− 1, 1, z), f̃2(θ, z) = θz/(1− θz),

Γ(1, θ, z)
.
= f̃0(θ, z), f̃0(θ, z) = f̃2(θ, z).

Set

Γ(m, θ, z)
.
= zmθ∆(m, θ, z),Γ′(m, θ, z)

.
= zm∆(m, θ, z) + zmθ∆′(m, θ, z), hence

∆(m, θ, z)
.
= f1(θ, z)∆(m− 1, 1, z) + f2(θ, z)∆

′(m− 1, 1, z),m ≥ 2, f2(θ, z) = 1/(1− θz), f1(θ, z) = f2(θ, z),

∆(1, θ, z)
.
= f0(θ, z), f0(θ, z) = f2(θ, z).

Define

ψ(ξ, θ, z)
.
=
∞∑
m=1

ξm∆(m, θ, z).

We obtain

ψ(ξ, θ, z)
.
= ξ[f0(θ, z) + f1(θ, z)D1(ξ, z) + f2(θ, z)D2(ξ, z)], with

D1(ξ, z)
.
= ψ(ξ, 1, z), D2(ξ, z)

.
= ψ′(ξ, 1, z), and

φ(w, θ, z)
.
=
∞∑
w=1

wmΓ(m, θ, z)
.
= θψ(wz, θ, z).

To obtain D1, D2, we compute

ψ′(ξ, θ, z)
.
= ξ[f ′0(θ, z) + f ′1(θ, z)D1(ξ, z) + f ′2(θ, z)D2(ξ, z)],

D1(ξ, z)
.
= ξ[f0(1, z) + f1(1, z)D1(ξ, z) + f2(1, z)D2(ξ, z)], (1)

D2(ξ, z)
.
= ξ[f ′0(1, z) + f ′1(1, z)D1(ξ, z) + f ′2(1, z)D2(ξ, z)]. (2)

Solving, we get

D1(ξ, z)
.
=
N1(ξ, z)

h(ξ, z)
, D2(ξ, z)

.
=
N2(ξ, z)

h(ξ, z)
,

N1(ξ, z) = ξ(z − 1), N2(ξ, z) = −ξz, h(ξ, z) = −z2 + 2z + ξ − 1, and setting ξ = zw, this gives

N1(w, z) = zw(z − 1), N2(w, z)− z2w, h(w, z)− z2 + 2z + zw − 1.

The root of smallest module of h(1, ρ) = 0 is given by ρ =
3−
√

5

2
=

1

φ2
, (φ is the golden ratio ).

φ(w, θ, z)
.
= θψ(wz, θ, z)

.
= wθz[f0(θ, z) + f1(θ, z)D1(w, z) + f2(θ, z)D2(w, z)],

f0(θ, z) corresponds of course to the first column. In order not to burden the notations,
we use indifferently F (ξ), F (w), where ξ = zw, clearly depending on the context. Note that
we recover ρ, already computed in [16], in a simple way.
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If we set θ = 1 in φ, we have D1(w, z). When w = 1, this gives the GF of the total
number T (., n) of size n dcc. By classical singularity singularity analysis, this leads to

T (., n)
.∼ C1

ρn
, n→∞, C1

.
= − N1(1, ρ)

ρhz(1, ρ)
=

1

2
−
√

5

10
.

But we get more. By Bender’s theorems 1 and 3 in [1] 1, (see also Flajolet and Sedgewick,
[10, Thm.IX.9]) we derive the asymptotic distribution of the width M , given area n. Let Fz
mean differentiation of F w.r.t. z, and similarly for other notations. Set

r1
.
= −hw/hz = − z

−2z + 2 + w
,

r2
.
= −(r21hzz + 2r1hzw + hw + hww)/hz = −z(−6z + 2w + 4z2 − 4zw + w2)/(−2z + 2 + w)3,

µ1
.
= −r1/ρ =

√
5

5
, σ21

.
= µ21 − r2/ρ = 2

√
5

25
.

Then Bender’s theorems lead to

Theorem 2.1 The width M of a dcc of large given area n is asymptotically Gaussian: 2

M − nµ1√
nσ1

D∼ N (0, 1) = τ0, say , n→∞, (3)

also a local limit theorem holds:

T (m,n)
.∼ C1

ρn
e−(m−nµ1)

2/(2nσ2
1)

√
2πnσ1

, n→∞,m− nµ1 = O(
√
n).

The verification of condition (V) of Bender’s Theorem 3 (which is essential to go from a
central limit theorem to a local limit theorem) is easy: the function h(w, z) has the following
property: h(es, z) is analytic and bounded for

|z| ≤ |r(<(s))|(1 + δ) and ε ≤ |=(s)| ≤ π

for some ε > 0, δ > 0, where r(s) is the suitable solution of the equation h(es, r(s)) = 0 (i.e.
with r(0) = ρ). This will be valid for all functions h(w, z) used in the following sections.

Now if we fix m and consider n as a variable (there are, of course, an infinite number of dcc
for a given m), we can obtain another asymptotic expression for T (m,n). The conditioned
distribution is given by

[wmzn]D1(w, z)
.
=

1

ρn
[wmzn]D1(w, ρz).

For z = 1, the dominant singularity of D1(w, ρ) is w = 1. With

C2
.
= −N1(1, ρ)

hw(1, ρ)
=

√
5− 1

2
, C2

.
= C1/µ1, µ2

.
= 1/µ1 =

√
5, σ22

.
= σ21/µ

3
1 = 2.

We derive the following theorem

1See Appendix A.4
2D∼ means convergence in distribution
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Theorem 2.2 For a large given width m, T (m,n) is asymptotically given by

T (m,n)
.∼ C2

ρn
e−(n−mµ2)

2/(2mσ2
2)

√
2πmσ2

,m→∞, n− nµ2 = O(
√
m).

Let us now turn to the asymptotic GF G(θ) of the last column size. We first compute

[zn]φ(1, θ, z)
.∼ θρ[f1(θ, ρ)N1(1, ρ) + f2(θ, ρ)N2(1, ρ)]

−ρnρhz(1, ρ)
, n→∞

uniformly for θ in some complex neighbourhood of the origin. This may be checked by the
method of singularity analysis of Flajolet and Odlyzko, as used in Flajolet and Soria [11].

Normalizing by T (., n), this leads to the following theorem

Theorem 2.3

G(θ)
.
= θρ

[
f1(θ, ρ) + f2(θ, ρ)

N2(1, ρ)

N1(1, ρ)

]
,

π(j)
.
= [θj ]G(θ) = ρj

(
1 +

N2(1, ρ)

N1(1, ρ)

)
= ρj

√
5 + 1

2
.

But multiplying (1),(2) by h(w, z) and letting w → 1, z → ρ, we have

N1(1, ρ)
.
= ρ[f1(1, ρ)N1(1, ρ) + f2(1, ρ)N2(1, ρ)], (4)

N2(1, ρ)
.
= ρ[f ′1(1, ρ)N1(1, ρ) + f ′2(1, ρ)N2(1, ρ)].

Hence

G(1)
.
= 1, G′(1)

.
= 1 +

N2(1, ρ)

N1(1, ρ)
=

√
5 + 1

2
.

Let us analyze the asymptotic distribution of the last column size in a dcc of large area n
and width m. Again Bender’s theorems lead to the following GF (the notation is clear here)

T (m,n, θ)
.∼ e−(m−nµ1)

2/(2nσ2
1)

√
2πnσ1

1

−ρnρhz(1, ρ)
θρ[f1(θ, ρ)N1(1, ρ) + f2(θ, ρ)N2(1, ρ)], or

T (m,n, θ)
.∼ C1

ρn
e−(m−nµ1)

2/(2nσ2
1)

√
2πnσ1

G(θ)
.
=
C2

ρn
e−(n−mµ2)

2/(2mσ2
2)

√
2πmσ2

G(θ),

n→∞,m− nµ1 = O(
√
n),m→∞, n− nµ2 = O(

√
m).

We now turn to the case where the first column possesses i cells. This leads to (note that
h(w, z) remains the same, independently of i)

Γ(1, θ, z)
.
= θizi, f0(θ, z, i)

.
= θi−1zi−1, f ′0(θ, z, i)

.
= (i− 1)θi−2zi−1,

N1(w, z, i) = (−z2 + z2wi+ 2z − zwi− 1 + zw)zwzi−1, D1(w, z, i)
.
=
N1(w, z, i)

h(w, z)

N2(w, z, i) = −zi−1zw(iz2 − 2iz + 2z + i− 1− z2 + z2wi− zwi+ zw), D2(w, z, i)
.
=
N2(w, z, i)

h(w, z)
,
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C2(j)
.
= −N1(1, ρ, j)

hw(1, ρ)
= j(−2 +

√
5)ρj−1,

∑
j

C2(j) = C2.

Note that C2(j) is exponentially decreasing with j. This will be the case for all following polyominoes.

φ(w, θ, z, i)
.
= wθz

[
f0(θ, z, i) + f1(θ, z)

N1(w, z, i)

h(w, z)
+ f2(θ, z)

N2(w, z, i)

h(w, z)

]
.

But we also check that G(θ) is independent of i (which is probabilistically obvious):

equ.(4) is still valid and shows that N2(1,ρ,i)
N1(1,ρ,i)

is independent of i.

2.2 The Markov chain (MC)

We consider two successive columns m1,m1+1, of size k, j, such that their distances from the
first and the last column are of order O(n). Let Ξ(m,n,m1, k, j) denote the total number of
dcc with area n, width m, column m1 of size k, column m1+1 of size j and set m2 := m−m1.
Theorem 2.2 leads to

Ξ(m,n,m1, k, j)
.
=
∑
n1

T (m1, n1, k, .)U(k, j)T (m2, n− n1, ., j),

Ξ(m,n,m1, k, j)

T (m,n)

.∼
∑
n1

[
C2

ρn1

e−(n1−m1µ2)2/(2m1σ2
2)

√
2πm1σ2

π(k)U(k, j)
C2(j)

ρn−n1

e−(n−n1−m2µ2)2/(2m2σ2
2)

√
2πm2σ2

]
/[

C2

ρn
e−(n−mµ2)

2/(2mσ2
2)

√
2πmσ2

]
.

Hence the asymptotic stationary distribution of two intermediate successive columns is given
by

P (k, j)
.
= π(k)U(k, j)C2(j) = π(k)kC2(j).

This leads to the asymptotic stationary distribution π2(k) and to the MC transition matrix
Π(k, j):

Theorem 2.4

π2(k)
.
=
∑
j

P (k, j)
.
=
∑
j

π(k)U(k, j)C2(j), or

π2(j)
.
=
∑
k

P (k, j)
.
=
∑
k

π(k)U(k, j)C2(j),

Π(k, j)
.
=

P (k, j)∑
j P (k, j)

.
=

U(k, j)C2(j)∑
j U(k, j)C2(j)

=
C2(j)∑
j C2(j)

=
C2(j)

C2
= jρj ,

∑
k

π2(k)Π(k, j)
.
=
∑
k

∑
u

P (k, u)
P (k, j)∑
j P (k, j)

.
= π2(j), (5)

π2(k) = π(k)kC2 = kρk.

Eq. (5) confirms that π2(k) is the stationary distribution of Π(k, j). This shows that the
thickness of the polyomino is O(1). This will be the case for all following polyominoes.
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A question we could ask is: is the chain reversible, i.e. is the following relation true?

π2(k)Π(k, j)
.
= π2(j)Π(j, k) ≡ P (k, j)

.
= P (j, k).

This is satisfied here.
The chain is irreducible and ergodic. Moreover, it is clear that the successive columns are

independent and identically distributed (iid). Mean and variance of the stationary distribu-
tion π2(k) are given by

µ2
.
=
∑
j

π2(j)j =
√

5, σ2x
.
=
∑
j

π2(j)j
2−µ22 = 2 ≡ σ22, by independence of successive columns.

We recover Sec.2.1 results. Several other interesting relations can be derived. We have

C2(k)

ρn
e−(n−mµ2)

2/(2mσ2
2)

√
2πmσ2

.∼
∑
j

U(k, j)
C2(j)

ρn−k
e−(n−k−(m−1)µ2)

2/(2(m−1)σ2
2)√

2π(m− 1)σ2
, hence

C2(k)
.
=
∑
j

U(k, j)C2(j)ρ
k,

π2(k)

π(k)

.
=
∑
j

U(k, j)C2(j)
.
=
C2(k)

ρk
,

Π(k, j)
.
=
π(k)U(k, j)C2(j)

π2(k)

.
=

ρk

C2(k)
U(k, j)C2(j)

.
=

π(k)

π2(k)
U(k, j)ρj

π2(j)

π(j)
.

Π(k, j) decreases exponentially with j as well as π2(k) and [Π]`(k, j) converges exponentially
fast to π2(j). The process is ϕ-mixing (see Billingsley [2, p.168ff] and Appendix A.1). We
will have the same properties for the following polyominoes. Also

π(j)

ρj
.
=
π2(j)

C2(j)

.
=
∑
k

π(k)U(k, j),

C2
.
=
∑

C2(k) if starting with any first column’s size.

2.3 The perimeter conditioned on the width m

In the sequel, polyominoes of width m can be seen as a sequence of id RV (columns) xi, i =
1, 2, . . . , xm by the MC Π(k, j). In this section, we fixm and analyze the asymptotic properties
of the perimeter Pm. For dcc, we have the following notations and probabilistic relations: see
Fig.1,

wd := ( upper cell position of column d)− ( upper cell position of column d− 1),

zd := ( lower cell position of column d+ 1)− ( lower cell position of column d),

zd ≥ 0 depends only on xd and is uniformly distributed (0, xd − 1),

ud ≥ 1 depends only on xd and is uniformly distributed (1, xd),

wd = xd − ud−1, zd = xd − ud, Td := |wd|+ zd.

7



x2

1

x1

1

w2

u1

z1

col 1 col 2

Figure 1: Two columns of a dcc polyomino and their related parameters.
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the total perimeter Pm the asymptotic vertical perimeter Qm the asymptotic total perimeter
Rm are given by

Pm
.
= Qm + x0 + xm + 2m,Qm

.
=

m∑
1

Td, Rm
.
= Qm + 2m,Xm

.
=

m∑
1

xd,

V(Xm)
.∼ mσ22, (V(.) denoting the variance),

E(Pm)
.∼ E(Qm) + 2m,V(Pm)

.∼ V(Qm),E(Xm)
.∼ mµ2, Cov(Pm, Xm)

.∼ Cov(Qm, Xm).

We compute now the first probability densities

Pu(i) := P(u1 = i) =
∞∑
k=i

P(x1 = k)
1

k
=
∞∑
k=i

π2(k)

k
= ρi
√

5 + 1

2
,

f(t) := P(|w|) = t) =
∞∑
r=1

Pu(r)π2(r + t) +
∞∑

r=t+1

Pu(r)π2(r − t), t > 0,

f(0) =

∞∑
r=1

Pu(r)π2(r) =

√
5 + 1

10
.

The successive moments we need are computed as follows. The mean and variance of Td
will be denoted by µ3, σ

2
3,

Ew := E(|w|) =

∞∑
1

f(t)t =
7
√

5− 3

10
,

Ez =

∞∑
j=1

π2(j)

j−1∑
s=0

s

j
=

√
5− 1

2
,

µ3
.
= E(Td) = Ew + Ez =

6
√

5− 4

5
,E(Qm)

.∼ mµ3.

Let

S1 = E(w2
2) =

∞∑
1

f(t)t2,

S2 = E(|w2|z2) =
∞∑
r=1

Pu(r)

 ∞∑
j=r

π2(j)(j − r)
1

j

j−1∑
s=0

s+
r−1∑
j=1

π2(j)(r − j)
1

j

j−1∑
s=0

s

 ,
S3 = E(z22) =

∞∑
j=1

π2(j)
1

j

j−1∑
s=0

s2, then

E(T 2
2 ) = E([|w2|+ z2]

2) = E([|x2 − u1|+ z2]
2) = S1 + 2S2 + S3 = −52

√
5

25
+

62

5
,

σ23
.
= E(T 2

2 )− µ23 =
−4
√

5 + 114

25
.

Let

S4 = E(|w2||w3|) = E(|x2 − u1||x3 − u2|)

9



=

∞∑
r=1

Pu(r)

 ∞∑
j=r

π2(j)(j − r)
1

j

j∑
v=1

[ ∞∑
`=v

π2(`)(`− v) +

v−1∑
`=1

π2(`)(v − `)

]

+

r−1∑
j=1

π2(j)(r − j)
1

j

j∑
v=1

[ ∞∑
`=v

π2(`)(`− v) +

v−1∑
`=1

π2(`)(v − `)

] ,
S5 = E(|w2|z3) = E(|x2 − u1|z3) = EwEz,

S6 = E(z2z3) = E2
z ,

S7 = E(z2|w3|) =
∞∑
j=1

π2(j)
1

j

j∑
v=1

(j − v)

[ ∞∑
`=v

π2(`)(`− v) +
v−1∑
`=1

π2(`)(v − `)

]
, then

E(T2T3) = S4 + S5 + S6 + S7 =
157

20
− 91

√
5

50
.

Finally, we obtain

V(Qm)
.∼ mσ2Q, with

σ2Q = σ23 + 2(E(T2T3)− µ23) =
229

50
+

√
5

25
.

The covariance and correlation coefficient are computed as follows. Let

S8 = E[x2(|w2|+ z2)] =

∞∑
r=1

Pu(r)

 ∞∑
j=r

π2(j)(j − r)j +
r−1∑
j=1

π2(j)(r − j)j

+
∞∑
j=1

π2(j)
1

j

j−1∑
s=0

js,

S9 = E[x2(|w3|+ z3)]

=
∞∑
j=1

π2(j)j
1

j

j∑
v=1

[ ∞∑
`=v

π2(`)(`− v) +
v−1∑
`=1

π2(`)(v − `)

]
+ µ2Ez, then

Cov(XmQm)
.∼ mCX,Q, CX,Q = S8 + S9 − 2µ2µ3 =

13

5
+

√
5

25
,

ρ(Xm, Xm)
.∼ ρX,Q, ρX,Q

.
=
CX,Q
σ2σQ

=
(65 +

√
5)
√

2

5(458 + 4
√

5)1/2
.

2.4 The perimeter conditioned on the area n

In this subsection, we obtain convergence to Brownian motions of X(bνtc), Q(bνtc), and we
compute asymptotic mean and variance of R conditioned on n, denoted by R(n). First of all
we fix the width to m. By the function central limit theorem for dependent random variables
(RV) and by the mixing property (see, for instance, Billingsley [2, p.168ff]), we obtain the
following conditioned on m convergences (where B.(t) are standard Brownian motions), and
these convergences will be valid for the following polyminoes,

Theorem 2.5

X(bνtc)− µ2νt√
νσ2

D∼ B1(t), ν →∞, t ∈ [0, 1],
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Q(bνtc)− µ3νt√
νσQ

D∼ B2(t), ν →∞, t ∈ [0, 1],

The convergence of Q is due to the fact that Td depends only on xd, xd−1 and the mixing
property still holds. Therefore

X(m)
.∼ mµ2 +

√
mσ2τ1, τ1

.
= N (0, 1),

Q(m)
.∼ mµ3 +

√
mσQτ2, τ2

.
= N (0, 1), τ2

.
= ρX,Qτ1 +

√
1− ρ2X,Qτ3, τ3

.
= N (0, 1),

R(m)
.
= Q(m) + 2m, hence

R(m)−m(µ3 + 2)√
mσQ

.∼ ρX,Q
n−mµ2√

mσ2
+
√

1− ρ2X,Qτ3,

E(R(m))
.∼ nα+mβ,α

.
=
σQρX,Q
σ2

, β
.
= µ3 + 2− ρX,Qµ2

σQ
σ2
,

V(R(m))
.∼ mγ, γ .

= σ2Q(1− ρ2X,Q).

By equ.(3), we derive

E
(
eiθR(n)

)
.∼ E

[
eiθ[αn+βm]− θ

2

2
γm

]
.∼ E

[
eiθ[αn+β(nµ1+

√
nσ1τ0)]− θ

2

2
γ(nµ1+

√
nσ1τ0)

]
.∼ eiθ[αn+βnµ1]−

θ2

2
γnµ1− 1

2

[
θβ
√
nσ1+i θ

2

2
γ
√
nσ1

]2
,

and setting θ
.
= θ/

√
n, we finally obtain the following result

Theorem 2.6

R(bntc)− µ4nt√
nσ4

D∼ B4(t), n→∞, t ∈ [0, 1],

R(n)− nµ4√
nσ4

.∼ τ4, τ4
.
= N (0, 1),

µ4
.
= α+ βµ1

.
= µ1(µ3 + 2) =

6

5
+

6
√

5

25
= 1.736656315 . . . ,

σ24
.
= γµ1 + σ21β

2 =
17
√

5

50
− 19

125
= .6082631123 . . .

Note that, in some cases (here and in the wall polyomino case) our technique leads to exact
values for µ4, σ

2
4. We have made extensive simulations to check our results. We first construct

Ts = 400 times a MC X(d), d = 1..m based on Π(k, j) with m = 400 steps. This allows to
check the values µ2, σ

2
2. The fit is excellent. Next we extend ( or contract) each MC such

that X(m∗) = n, with n = bm/µ1c. Based on each MC, we build on each column d a
vertical perimeter Td following the distribution of Sec. 2.3. We then compare the observed
distribution of the vertical perimeter Q(m∗) with the theoretical parameters µ∗4, σ

∗2
4 , where

µ∗4
.
= µ1µ3, σ

∗2
4

.
= γµ1 + σ21β

∗2, β∗
.
= µ3 − ρX,Qµ2

σQ
σ2
.

11



Indeed, we don’t take the 2m horizontal perimeter into account. The fit is quite good.
Let us finally make four remarks

• Actually, we can use Bender’s theorems in another way: it is possible to derive large de-
viations results for all our convergence to Gaussian variables theorems: see for instance
Louchard [17]. We will not detail these applications here.

• If we compare exact distributions with the Gaussian limits, we observe a bias, for
instance for n = 30. This can be corrected with Hwang [14, Thm.2], Hwang [15]. (See
also Flajolet and Sedgewick [10, Lemma IX.1]). See an example in Louchard [17].

• The maximum thickness of the polyomino can also be analyzed. See for instance
Louchard [18].

• The trajectories of the polyomino (upper and lower trajectories) lead themselves to
Brownian motions: see [16] for dcc and [18] for cc, dc. The polyomino can be seen as
a Brownian motion with some thickness. A more detailed analysis will be the object of
a future report.

2.5 A comparison with known GF

In some cases, we know the joint GF of n and Rn. For instance, for dcc, this is given in
Bousquet-Mélou [5, (10)] 3. If we set q = z, y = 1, x = v in the denominator of (10), we we
recover of course h(w, z), leading to the root ρ. If we set q = z, y = x = v, we obtain 4

F (v, z) = L0(1) = 1−
∞∑
j=1

vj(v − 1)j−1zj(j+1)/2

(z; z)j(vz; z)j−1(vz; z)j
.

This corresponds to the half-perimeter Rn/2. Using again Bender’s theorems, we obtain

Rn/2− µ4n
σ4
√
n

.∼ N (0, 1), and 2µ4 = 1.736656315 . . . , 4σ24 = 0.6082631120 . . . ,

which fits with µ4, σ
2
4.

3 The cc perimeter

3.1 The generating functions

A column-convex polyomino (cc), is made of contiguous columns such that at least one cell
of each column must be adjacent to some cell of the previous column. We first recall from
[17] the main expressions we need: starting with any first column’s size, and with the same
notations as in the previous section,

U(k, j) = k + j − 1, f̃1(θ, z) = θ2z2/(1− θz)2, f̃2(θ, z) = θz/(1− θz), f̃0(θ, z) = f̃2(θ, z),

f1(θ, z) = 1/(1− θz)2, f2(θ, z) = 1/(1− θz), f0(θ, z) = f2(θ, z),

3 see Appendix A.2
4We use the Pochhammer symbol: (a; z)j := (1 − a)(1 − az) . . . (1 − azj−1)
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N1(w, z) = wz(z − 1)3, N2(w, z) = −z2w(z2 − 2z + 1 + zw),

h(w, z) = z4(w − 1) + z3(w2 − w + 4)− z2(w + 6) + z(w + 4)− 1,

see also Flajolet and Sedgewick [10, p.366] .

Solving 4ρ3 − 7ρ2 + 5ρ− 1 = 0, this gives

ρ = −C1/3
3 +

11

144C
1/3
3

+
7

12
, C3 =

71

1728
+

√
177

288
,

G′(1) =
1− 2ρ

ρ(1− ρ)
, π(j) = ρj

(
1− 3ρ+ ρ2

ρ(1− ρ)
+ j

)
,

µ1 =
11ρ2 − 9ρ+ 5

4(12ρ2− 14ρ+ 5)
, µ2 = 1/µ1, σ

2
1 =
−1478891 + 6578899ρ− 5346249ρ2

256(−26895 + 104919ρ− 44437ρ2)
,

C2 =
5− 13ρ+ 7ρ2

11− 35ρ+ 41ρ2
,

σ22
.
=
σ21
µ31

= −16
4579ρ2 − 9681ρ+ 1753

28283ρ2 − 57561ρ+ 24097
.

Starting with a column of size i,

N1(w, z, i) = wzi(z − 1)2(z2wi− z2 + zw − zwi+ 2z − 1),

N2(w, z, i) =

(z − 1)(−iz3 + z3 − 3z2 + z2w + 3iz2 + z2wi− zwi− 3iz + 3z + zw + i− 1)zwzi,

C2(j) = (aj + b)ρj , a :=
5− 13ρ+ 7ρ2

11− 35ρ+ 41ρ2
, b :=

3− 11ρ+ 17ρ2

11− 35ρ+ 41ρ2
,
∞∑
1

C2(j) = C2.

We have two relations:

b

a
= (1− 3ρ+ ρ2)/(ρ(1− ρ)),

∞∑
j=1

(k + j − 1)ρj(aj + b) = ak + b.

,

3.2 The Markov chain

We have here

π(j) = ρj(aj + b)/a = C2(j)/a, U(k, j) = k + j − 1,

P (k, j)
.
= π(k)U(k, j)C2(j) = ρk(ak + b)(k + j − 1)(aj + b)ρj/a.

P (k, j) is symmetric, hence the chain is reversible ,

Π(k, j) =
1

ak + b
(k + j − 1)(aj + b)ρj

=
ρk

π(k)
(k + j − 1)π(j) =

ρk

C2(k)
(k + j − 1)C2(j), π2(k)

.
= (ak + b)2ρk/a,

µ2
.
=
∑

π2(k)k =
16(4131− 14923z + 14001z2)

5185− 7673z + 33755z2
≡ 1

µ1
,
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σ2x
.
=
∑

π2(k)k2 − µ22

=
50790154312925840− 247592802999061008z + 268780110914590000z2

−5468815736218009 + 23664229539220113z − 21285767156057123z2
.

3.3 The perimeter conditioned on m and n

For cc, we have the following notations and probabilistic relations: see Fig.2,

wv

k

zv

j

col v-1 col v

Figure 2: Two columns of a cc polyomino and their related parameters.

wv := ( upper cell position of column v − 1)− ( upper cell position of column v),

zv := ( lower cell position of column v − 1)− ( lower cell position of column v),

wv, zv, depend only on k = xv−1 and j = xv,
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zv is uniformly distributed (−(k − 1), j − 1),

wv is uniformly distributed (−(j − 1), k − 1), wv = k − j + zv, Tv = |wv|+ |zv|.
The moments are computed as follows

Ew(k, j) = Ez(k, j) = E( |z|
∣∣∣ k, j) .

=
1

k + j − 1

 0∑
i=−(k−1)

(−i) +

j−1∑
i=1

(+i)

 .
=
k2 + j2 − k − j

2(j + k − 1)
,

Ew2(k, j) = Ez2(k, j) = E(z2
∣∣∣ k, j) .

=
1

k + j − 1

 j−1∑
i=−(k−1)

i2

 .
= 1/3j2 − 1/6j − 1/3jk − 1/6k + 1/3k2,

Ezw(k, j) = E( |z||w|
∣∣∣ k, j).

For the case j > k, we set Ep, A = k − j + i

Epzw(k, j) =
1

k + j − 1

 0∑
i=−(k−1)

(−i)(−A) +

j−1∑
i=j−k

iA+

j−k−1∑
i=1

i(−A)


= 1/6(−j + 3k + j3 − 6jk − 3k3 − 3kj2 + 9jk2)/(j + k − 1).

For the case j ≤ k, we set Em, A = k − j + i,

m is here related to the case j ≤ k, and not to the width

Emzw(k, j) =
1

k + j − 1

 0∑
i=j−k

(−i)A+

j−k−1∑
i=−(k−1)

(−i)(−A) +

j−1∑
i=1

iA


= −1/6(−3j + k + 3j3 + 6jk − k3 − 9kj2 + 3jk2)/(j + k − 1),

note that we have some symmetry here: Em. (k, j) ≡ Ep. (j, k).

For y denoting a random variable depending on k, j with mean Ey(k, j), we set

E(y)
.
=
∑
k

π2(k)
∑
j

Π(k, j)Ey(k, j),

for f(k, j) denoting a function depending on k, j, we set E(f)
.
=
∑
k

π2(k)
∑
j

Π(k, j)f(k, j),

we compute

µ3
.
= E(Td) = 2E(z) = 1.962459470 . . . ,

σ23
.
= σ2(Td) = E

([
|w|+ |z| − 2E(z)

]2)
= E

([
|w|+ |z| − 2Ez + 2Ez − 2E(z)

]2)
= S1 + S2,

S1 = E
(
2Ez2 + 2Ezw − (2Ez)

2
)
,

S2 = 4
(
E(E2

z − E(z)2
)
,

σ23 = E ((2Ez2 + 2Ezw)− µ23 = 2.387549945 . . . ,

E(zw) =

∞∑
k=1

π2(k)

∞∑
j=k+1

Π(k, j)Epzw(k, j) +

∞∑
k=1

π2(k)

k∑
j=1

Π(k, j)Emzw(k, j),

E(z2) =
∑
k

π2(k)
∑
j

Π(k, j)Ez2(k, j),
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σ2Q
.
= σ23 + 2

∞∑
2

C`, C`
.
= E(T1T`)− µ23, Tk − µ3 = [|zk|+ |wk| − µ3].

Generalizing some results from [17], and setting

y1,i
.
= random variable depending only on xi−1 = k, xi = j, with mean E(y1,i)

.
= F1(k, j),

y2,i
.
= random variable depending only on xi−1 = k, xi = j, with mean E(y2,i)

.
= F2(k, j),

µr
.
= E(yr)

.
=
∑
u

π2(u)
∑
j

Π(u, j)Fr(u, j),

we derive

E(y1,1.y2,2)
.
=
∑
u

π2(u)
∑
j

Π(u, j)F1(u, j)
∑
k

Π(j, k)F2(j, k)

.
=
∑
u

π2(u)
∑
j

Π(u, j)F1(u, j)
1

C2(j)
ρj
∑
k

U(j, k)C2(k)F2(j, k),

E(y1,1.y2,3)
.
=
∑
u

π2(u)
∑
j

Π(u, j)F1(u, j)
1

C2(j)

∑
`

[ρj+`U(j, `)]
∑
k

U(`, k)C2(k)F2(`, k).

The Markov property leads to compute
∞∑
`=2

[E(y1,1.y2,`)− µ1µ2]
.
=

lim
w→1

∑
u

∑
j

∑
`

∑
k

π2(u)Π(u, j)F1(u, j)
1

C2(j)

[
[θ`]φ(w, θ, ρ, j)

]
U(`, k)C2(k)F2(`, k)− w

1− w
µ1µ2

 .
Starting with a first column of size i, we set 5

M1(j, `)
.
= [θ`]θjρj = ρj [[j = `]],

Ξ3(F1, F2)
.
=
∑
u

∑
j

∑
`

∑
k

π2(u)Π(u, j)F1(u, j)
1

C2(j)
M1(j, `)U(`, k)C2(k)F2(`, k)

.
=
∑
u

∑
j

∑
k

π2(u)Π(u, j)F1(u, j)
1

C2(j)
ρjU(j, k)C2(k)F2(j, k),

Ξ4(F1, F2)
.
=

lim
w→1

∑
u

∑
j

∑
`

∑
k

π2(u)Π(u, j)F1(u, j)
1

C2(j)

[
[θ`]

ϕ(w, θ, ρ, j)

h(w, ρ)

]
U(`, k)C2(k)F2(`, k)− 1

1− w
µ1µ2


ϕ(w, θ, ρ, j)

.
= θρ[f1(θ, ρ)N1(w, ρ, j) + f2(θ, ρ)N2(w, ρ, j)].

Note that, in order to simplify the limits, we have divided our expressions by w.

Set now w = 1− ε, this leads to

lim
ε→0

∑
u

∑
j

∑
`

∑
k

π2(u)Π(u, j)F1(u, j)
1

C2(j)
×

5We use the Iverson Bracket, as advocated by D.E.Knuth: [[P ]] = 1 if P = true,= 0 otherwize

16



×[θ`]

[
−ϕ(1, θ, ρ, j)

hw(1, ρ)ε
+

[
ϕw(1, θ, ρ, j)

hw(1, ρ)
− ϕ(1, θ, ρ, j)hww(1, ρ

2h2w(1, ρ)

]]
U(`, k)C2(k)F2(`, k)− µ1µ2

ε

 .

We must first dispense from the singularity. But

ϕ(1, θ, ρ, j)

hw(1, ρ)

.
=
N1(1, ρ, j)G(θ

hw(1, ρ)

.
= −C2(j)G(θ), [θ`](−C2(j)G(θ))

.
= −C2(j)π(`), hence∑

u

∑
j

∑
`

∑
k

π2(u)Π(u, j)F1(u, j)
1

C2(j)

[
C2(j)π(`)

ε

]
U(`, k)C2(k)F2(`, k)

.
=

1

ε

∑
u

∑
j

∑
`

∑
k

π2(u)Π(u, j)F1(u, j)π2(`)Π(`, k)F2(`, k)
.
=
µ1µ2
ε

,

and the singularity is removed. Set

M2(j, `)
.
= [θ`]

[
ϕw(1, θ, ρ, j)

hw(1, ρ)
− ϕ(1, θ, ρ, j)hww(1, ρ)

2h2w(1, ρ)

]
,

Ξ4(F1, F2)
.
=
∑
u

∑
j

∑
`

∑
k

π2(u)Π(u, j)F1(u, j)
1

C2(j)
M2(j, `)U(`, k)C2(k)F2(`, k).

Finally

∞∑
`=2

[E(y1,1.y2,`)− µ1µ2]
.
= Ξ5(F1, F2)

.
= Ξ3(F1, F2) + Ξ4(F1, F2).

This relation will also be used in some following polyominoes.
Note that, in our previous expressions, we can use

π2(u)Π(u, j)/C2(j)
.
= π(j)U(u, j).

We now obtain

σ2Q = σ23 + 2Ξ5(2Ez, 2Ez) = 3.8341042755 . . . ,

σ2X = σ2x + 2Ξ5(j, k) ≡ σ22, this has been explicitly checked by direct computation,

Cov(X(m), Q(m)) = E[
m∑
1

(xi − µ2) ·
m∑
1

[|zk|+ |wk| − µ3]] ∼ mCX,Q, CX,Q = S6 + S7,

S6 =
∑
k

π2(k)
∑
j

Π(k, j)j · 2Ez(k, j)− µ2µ3,

S7 = Ξ5(j, 2Ez) + Ξ5(2Ez, k),

ρX,Q
.
=
CX,Q
σ2σQ

= 0.8873927438 . . . , µ4 = 1.7952896266 . . . , σ24 = 0.4588988471 . . .

Again, we have made extensive simulations to check our results. The fit is quite good.
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Let us illustrate our results by a few figures. We have chosen the cc polyomino as it
shows a Markov property (the dcc polyomino is characterized by iid columns). In Fig.3, we

show a simulation of X(v)−µ2v√
1000σ2

, v = 1..1000, In Fig.4, we show a simulation of Q(v)−µ3v√
1000σQ

, v =

1..1000. The trajectories are strongly oscillating, a classical property of Brownian motions.
Fig.5 shows a typical polyomino, with its “filament silhouette”. Fig.6 gives a zoom on this
polyomino: its width is clearly O(1).

–0.5

0

0.5

1

1.5

200 400 600 800 1000

Figure 3: Simulation of X(v)−µ2v√
1000σ2

, v = 1..1000

3.4 A comparison with known GF

Here, we use Bousquet-Mélou [5, (29)]6. If we set q = z, x = w, we obtain

X =
wz

(1− y)(1− yz)
− w2z3(y2z; z)2

(z; z)1(yz; z)21(yz; z)2(y
2z; z)1

+O
(
(1− y)2

)
,

W = − wz(y2z; z)1
(1− y)(z; z)1(yz; z)1

+O(1− y).

The denominator of

lim
y=1

y(1− y)X

1 +W + yX

6see Appendix A.3
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Figure 4: Simulation of Q(v)−µ3v√
1000σQ

, v = 1..1000
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Figure 5: A typical polyomino
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Figure 6: Zoom on our typical polyomino

is given by
z4(w − 1) + z3(w2 − w + 4)− z2(w + 6) + z(w + 4)− 1

which is exactly h(w, z).
If we set q = z, y = x = v, we obtain

X =
vz

(1− v)(1− vz)
+
∞∑
j=2

(−1)j+1vj(1− v)2j−4zj(j+1)/2(v2z; z)2j−2
(z; z)j−1(vz; z)j−2(vz; z)2j−1(vz; z)j(v

2z; z)j−1
,

W =
∞∑
j=1

(−1)jvj(1− v)2j−3zj(j+1)/2(v2; z)2j−1
(z; z)j(vz; z)3j−1(vz; z)j(v

2; z)j−1
.

The denominator of
y(1− y)X

1 +W + yX

gives a function F (v, z) which leads exactly, by Bender’s theorems to µ4, σ
2
4.

4 The dc perimeter

4.1 The generating functions

A directed diagonally-convex polyomino (dc) is made of diagonals such that all cells on a
diagonal are contiguous and each cell is adjacent to one cell of the previous diagonal. By a

20



rotation of 45◦, this leads to a lattice where the dc is made of contiguous columns such that
each cell of each column must be diagonally adjacent to some cell of the previous column.
Note carefully that we don’t have here an horizontal perimeter contribution. Note also that
this polyomino is different from the directed and convex polyomino described in Bousquet-
Mélou [5]: this last one may have holes in a diagonal. Let us finally remark that our results
offer a quite different form from Feretić and Svrtan [9, Thm.5] and Feretić [8, Thm.2].

We extract from [17] some relations we had already obtained, starting from 1 cell:

U(k, j) = (k − j + 2)[[j ≤ k + 1]],

Γ(m, θ, z)
.
=
∞∑
j=1

θjϕ(m, j, z) =
∞∑
j=1

θjzj
∞∑

k=j−1
(k − j + 2)ϕ(m− 1, k, z),

∆(m, θ, z)
.
= f1(θ, z)∆(m− 1, 1, z) + f2(θ, z)∆

′(m− 1, 1, z) + f3(θz)∆(m− 1, θz, z),m ≥ 2,

f1(θ, z) = (−3θz + 2)/(1− θz)2, f2(θ, z) = 1/(1− θz), f3(θ, z) = (θz)3/(1− θz)2,∆(1, θ, z) = 1,

φ(w, θ, z) = θ[A1(ξ, θ, z) +B1,1(ξ, θ, z)D1(w, z) +B1,2(ξ, θ, z)(θ, z)D2(w, z)], with

D1 = Ã1(ξ, z) + B̃1,1(ξ, z)D1 + B̃1,2(ξ, z)D2,

D2 = Ã2(ξ, z) + B̃2,1(ξ, z)D1 + B̃2,2(ξ, z)D2, with the following q-analog Bessel functions

A1(ξ, θ, z) = ξ

∞∑
j=0

ξjθ3jz3j(j+1)/2

(θz; z)2j
,

B1,1(ξ, θ, z) = ξ
∞∑
j=0

ξjθ3jz3j(j+1)/2

(θz; z)2j
· −3θzj+1 + 2

(1− θzj+1)2
,

B1,2(ξ, θ, z) = ξ
∞∑
j=0

ξjθ3jz3j(j+1)/2

(θz; z)2j
· 1

(1− θzj+1)
,

Ã1(ξ, z) = ξ
∞∑
j=0

ξjz3j(j+1)/2

(z; z)2j
,

B̃1,1(ξ, z) = ξ

∞∑
j=0

ξjz3j(j+1)/2

(z; z)2j
· −3zj+1 + 2

(1− zj+1)2
,

B̃1,2(ξ, z) = ξ

∞∑
j=0

ξjz3j(j+1)/2

(z; z)2j
· 1

(1− zj+1)
,

Ã2(ξ, z) = ξ
∞∑
j=0

ξjzjz3j(j+1)/2,

(z; z)2j
[f ′3(z

j , z)A1(ξ, z
j+1, z)],

B̃2,1(ξ, z) = ξ
∞∑
j=0

ξjzjz3j(j+1)/2

(z; z)2j
[f ′1(z

j , z) + f ′3(z
j , z)B1,1(ξ, z

j+1, z)],

B̃2,2(ξ, z) = ξ

∞∑
j=0

ξjzjz3j(j+1)/2

(z; z)2j
[f ′2(z

j , z) + f ′3(z
j , z)B1,2(ξ, z

j+1, z)].

This leads to the following expressions
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N1(w, z) = −B̃1,2(w, z)Ã2(w, z)− Ã1(w, z) + B̃2,2(w, z)Ã1(w, z),

N2(w, z) = B̃1,1(w, z)Ã2(w, z)− Ã2(w, z)− B̃2,1(w, z)Ã1(w, z),

h(w, z) = B̃1,2(w, z)B̃2,1(w, z)− B̃2,2(w, z)B̃1,1(w, z) + B̃2,2(w, z) + B̃1,1(w, z)− 1.

C2 = C2(1) = 0.3283408377 . . . , µ1 = 0.7660601183 . . . , µ2 = 1.305380578 . . . ,

σ21 = 0.1686482431 . . . , σ22 = .3751399028 . . . , ρ = .3756774483 . . .

We can check that D1, D1 are meromorphic functions for |w| < 1, |z| < 1. The convergence
in the j summations is quite fast. Usually 6 or 7 terms are sufficient. To be sure that ρ
is the dominant singularity, we can use the principle of the argument of Henrici [12]: the
number of solutions of an equation f(z) = 0 that lie inside a simple closed curve Γ, with f(z)
analytic inside and on Γ, is equal to the variation of the argument of f(z) along Γ, a quantity
also equal to the winding number of the transformed curve f(Γ) around the origin. See the
application in [17].

Let us now start with the case a first column of i cells, (this was not developed in [17])

∆(1, θ, z, i) = f0(θ, z, i) = θi−1zi−1,

ψ(ξ, θ, z, i) = ξ[f0(θ, z, i) + f1(θ, z)D1(ξ, z, i) + f2(θ, z)D2(ξ, z), i] + ξf3(θ, z)ψ(ξ, θz, z, i),

ψ′(ξ, θ, z, i) = ξ[f ′0(θ, z, i) + f ′1(θ, z)D1(ξ, z, i) + f ′2(θ, z)D2(ξ, z), i]

+ ξf ′3(θ, z)ψ(ξ, θz, z, i) + ξf3z(θ, z)ψ
′(ξ, θz, z, i),

we write this as

ψ(ξ, θ, z, i) = λ1(θ, z, i) + µ1,1(θ, z)ψ(ξ, θz, z, i) + µ1,2(θ, z)ψ
′(ξ, θz, z, i),

ψ′(ξ, θ, z, i) = λ2(θ, z, i) + µ2,1(θ, z)ψ(ξ, θz, z, i) + µ2,2(θ, z)ψ
′(ξ, θz, z, i), with

λ1(θ, z, i) = ξ[f0(θ, z, i) + f1(θ, z)D1(w, z, i) + f2(θ, z)D2(w, z), i], µ1,1(θ, z) = ξf3(θ, z), µ1,2(θ, z) = 0,

λ2(θ, z, i) = ξ[f ′0(θ, z, i) + f ′1(θ, z)D1(w, z, i) + f ′2(θ, z)D2(w, z), i],

µ2,1(θ, z) = ξf ′3(θ, z), µ2,2(θ, z) = ξf3(θ, z)z.

Iterating and setting θ = 1 leads to

ψ(ξ, θ, z, i) =

λ1(θ, z, i) + µ1,1(θ, z)
[
λ1(σ

(1)(θ), z, i) + µ1,1(σ
(1)(θ), z)

[
λ1(σ

(2)(θ), z, i) + µ1,1(σ
(2)(θ), z)ψ(ξ, σ(3)(θ), z, i)

]]
,

σ(1)(θ) = θz, σ(2)(θ) = (θz)z = θz2, σ(k)(θ) = θzk,

D1(w, z, i) = λ1(1, z, i) + µ1,1(1, z)λ1(z, z, i) + µ1,1(1, z)µ1,1(z, z)λ1(z
2, z, i) + . . .

= Ã1(ξ, z, i) + B̃1,1(ξ, z)D1(w, z, i) + B̃1,2(ξ, z)D2(w, z, i), with

A1(ξ, θ, z, i) = ξ

∞∑
j=0

ξjθ3jz3j(j+1)/2θi−1z(i−1)(j+1)

(θz; z)2j
,

Ã1(ξ, z, i) = ξ

∞∑
j=0

ξjz3j(j+1)/2z(i−1)(j+1)

(z; z)2j
,

we derive

ψ(ξ, θ, z, i) = A1(ξ, θ, z, i) +B1,1(ξ, θ, z)D1(w, z, i) +B1,2(ξ, θ, z)D2(w, z, i),
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φ(w, θ, z, i) = θψ(wz, θ, z, i), note that we have no ξ factor here in front of ψ

ψ′(ξ, θ, z, i) =

λ2(θ, z, i) + µ2,1(θ, z) [A1(ξ, θz, z, i) +B1,1(ξ, θz, z)D1(w, z, i) +B1,2(ξ, θz, z)D2(w, z, i)]

+ µ2,2(θ, z)ψ
′(ξ, θz, z, i).

We set θ = 1 and rewrite ψ′(ξ, θ, z, i)

D2(w, z, i) = H(1, z, i) +H(z, z, i)[ξzf3(1, z)] +H(z2, z, i)[ξzf3(1, z)][ξzf3(z, z)] + . . . ,

ψ′(ξ, θ, z, i) = H(θ, z, i) + µ2,2(θ, z)ψ
′(ξ, θz, z, i), with

H(θ, z, i) = ξ
[
f ′0(θ, z, i) + f ′1(θ, z)D1(w, z, i) + f ′2(θ, z)D2(w, z, i) + f ′3(θ, z)A1(ξ, θz, z, i)

+f ′3(θ, z)B1,1(ξ, θz, z)D1(w, z, i) + f ′3(θ, z)B1,2(ξ, θz, z)D2(w, z, i)
]
,

iterating again

D2(w, z, i) = Ã2(ξ, z, i) + B̃2,1(ξ, z)D1(w, z, i) + B̃2,2(ξ, z)D2(w, z, i), with

A2(ξ, θ, z, i) = ξ
∞∑
j=0

ξjzjz3j(j+1)/2θ3j [f ′3(θz
j , z)A1(ξ, θz

j+1, z, i)]

(θz; z)2j
+ ξ

∞∑
j=0

ξjzjθ3jz3j(j+1)/2(i− 1)θi−2z(i−2)jzi−1

(θz; z)2j
,

Ã2(ξ, z, i) = ξ
∞∑
j=0

ξjzjz3j(j+1)/2[f ′3(z
j , z)A1(ξ, z

j+1, z, i)]

(z; z)2j
+ ξ

∞∑
j=0

ξjzjz3j(j+1)/2(i− 1)z(i−2)jzi−1

(z; z)2j
,

this gives

G(θ) = θ

[
B1,1(ρ, θ, ρ)N1(1, ρ) +B1,2(ρ, θ, ρ)

N2(1, ρ)

N1(1, ρ)

]
, independent of i.

4.2 The perimeter conditioned on n

For dc, we have the following possibilities: see Fig.7,

The possibility function is given by U(k, j) = (k − j + 2)[[j ≤ k + 1]],

we note that, if we add a cell at the upper or lower previous cell position of column d− 1,

we increase the perimeter by 2, otherwize, the perimeter doesn’t change.

Hence the first moments are computed as

Ew(k, j) =
1

k − j + 2
(1 · 2 + 1 · 2) =

4

k − j + 2
,

if k = j + 1, Ew2(k, j) = 16,

if k ≤ j, Ew2(k, j) =
1

k − j + 2
(1 · 4 + 1 · 4) =

8

k − j + 2
.

Finally, we apply the results from previous sections,

we make the following substitutions (note that we divide again by w)

in Ξ3(F1, F2) : M1(i, `) := subs [ξ = zw,w = 1, z = ρ], in [θ`]θA1(ξ, θ, z, i)/w,

in Ξ4(F1, F2) : ϕ(w, θ, ρ, i) := subs [ξ = ρw] in θ[B1,1(ξ, θ, ρ)N1(w, ρ, i) +B1,2(ξ, θ, ρ)N2(w, ρ, i)]/w,

and we obtain
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j < k j = k + 1 j = k

Figure 7: Three possibilities of a dc polyomino .

µ3 = 2.2705856475 . . . , ρX,Q = 0.5713021769 . . . , µ4 = 1.7394051099 . . . , σ23 = .9808725500 . . .

σ24 = 0.38150889574 . . . , σ2Q = 0.362055589 . . . , again σ2X ≡ σ22.

Again, we have made extensive simulations to check our results. The fit is quite good.

5 The staircase perimeter

A staircase (or parallelogram) polyomino (st), is made of contiguous columns such that the
base cell of each column must be adjacent to some cell of the previous column and the top
cell of each column must be adjacent to some cell of the next column.

5.1 The generating functions

We proceed as in the previous sections. Starting with a first column of size i, we have

U(k, j) = j if j ≤ k, U(k, j) = k if j > k.

The preliminary relations are

Γ(m, θ, z) =

∞∑
j=1

θjϕ(m, j, z)
.
=

∞∑
j=1

θjzj

j−1∑
k=1

kϕ(m− 1, k, z) +
∞∑
k=j

jϕ(m− 1, k, z)

 ,
∆(m, θ, z) = f1(θ, z)∆(m− 1, 1, z) + f2(θ, z)∆(m− 1, θz, z),

f1(θ, z) =
1

(1− θz)2
, f2(θ, z) = − θz

(1− θz)2
,∆(1, θ, z) = f0(θ, z) = θi−1zi−1,

φ(w, θ, z, i) = θψ(wz, θ, z, i) = θ[A1(w, θ, z, i) +B1(w, θ, z)D1(w, z, i)], with
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A1(ξ, θ, z, i) = ξ

∞∑
j=0

ξjθjz3j(j+1)/2(−1)j

(θz; z)2j
θi−1z(i−1)(j+1),

Ã1(ξ, z, i) = ξ

∞∑
j=0

ξjz3j(j+1)/2(−1)j

(z; z)2j
z(i−1)(j+1),

B1(ξ, θ, z) = ξ
∞∑
j=0

ξjθjz3j(j+1)/2(−1)j

(θz; z)2j

1

(1− θzj+1)2
,

B̃1(ξ, z) = ξ
∞∑
j=0

ξjz3j(j+1)/2(−1)j

(z; z)2j

1

(1− zj+1)2
,

D1(ξ, z, i) =
Ã1(ξ, z, i)

1− B̃1(ξ, z)
=
N1(w, z, i)

h(w, z)
, C2(j) = −N1(1, ρ, j)

hw(1, ρ)
.

We obtain

G(θ) =
θB1(1, θ, ρ)

B̃1(1, ρ)
, but B̃1(1, ρ) = 1 by h(1, ρ) = 0,

µ1 = 0.4208810078 . . . , σ21 = 0.2080626954 . . . , C2 = 0.3060622477 . . . = C2(1), ρ = .4330619231 . . . ,

µ2 = 2.3759684098 . . . , σ22 = 2.7907198037 . . .

5.2 The Markov chain

if j ≤ k, we denote any function F (k, j) by Fm(k, j) and by F p(k, j) otherwise, this gives ,

Πm(k, j)
.
= π(k)jC2(j)/π2(k), j ≤ k,

Πp(k, j)
.
= π(k)kC2(j)/π2(k), j > k,

π2(k) = π(k)

 k∑
j=1

jC2(j) +

∞∑
j=k+1

kC2(j)

 ,
π2(j) = C2(j)

 ∞∑
k=j

π(k)j +

j−1∑
k=1

π(k)k

 .

5.3 The perimeter conditioned on n

For st, we have the following notations and probabilistic relations: see Fig.8,

wd := upper cell position of column d− upper cell position of column d− 1,

zd := lower cell position of column d− lower cell position of column d− 1,

if j ≤ k,wd ≥ 0 takes uniformly values on (0, j − 1), zd ≥ 0 takes uniformly values on (k − j, k − 1),

if j > k,wd ≥ 0 takes uniformly values on (j − k, j − 1), zd ≥ 0 takes uniformly values on (0, k − 1)

Td := wd + zd, w = j − k + z.

The necessary moments are computed as follows
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w

z

Figure 8: Two columns of a st polyomino and their related parameters.

Emz (k, j) = 1/j

j∑
u=1

(k − u) = k − 1/2j − 1/2, Epz (k, j) = 1/k
k−1∑
u=0

u = 1/2k − 1/2,

Emw (k, j) = 1/j

j−1∑
u=0

u = 1/2j − 1/2, Epw(k, j) = 1/k
k∑

u=1

(j − u) = j − 1/2k − 1/2,

Emz2(k, j) = 1/j

j∑
u=1

(k − u)2 = k2 − kj − k + 1/3j2 + 1/2j + 1/6,

Emw2(k, j) = 1/j

j−1∑
u=0

u2 = 1/3j2 − 1/2j + 1/6,

Ep
z2

(k, j) = 1/k

k−1∑
u=0

u2 = 1/3k2 − 1/2k + 1/6,

Ep
w2(k, j) = 1/k

k∑
u=1

(j − u)2 = j2 − kj − j + 1/3k2 + 1/2k + 1/6,

Emzw(k, j) = 1/j

j∑
u=1

(k − u)(j − u) = 1/2kj − 1/2k − 1/6j2 + 1/6,

Epzw(k, j) = 1/k
k−1∑
u=0

u(j − k + u) = 1/2kj − 1/2j − 1/6k2 + 1/6,
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Emzaw(k, j) = Emz (k, j) + Emw (k, j) = k − 1, Epzaw(k, j) = Epz (k, j) + Epw(k, j) = j − 1,

Emz2aw2(k, j) = Emz2(k, j) + Emw2(k, j) = k2 − kj − k + 2/3j2 + 1/3,

Ep
z2aw2(k, j) = Ep

z2
(k, j) + Ep

w2(k, j) = 2/3k2 + 1/3 + j2 − kj − j,
again we have some symmetry here: Em. (k, j) ≡ Ep. (j, k),

for ym a random variable depending on k, j, with mean Emy (k, j),

we set Em(y)
.
=
∞∑
u=1

u∑
j=1

π(u)jC2(j)E
m
y (k, j),

for yp a random variable depending on k, j, with mean Epy(k, j),

we set Ep(y)
.
=

∞∑
u=1

u∑
j=u+1

π(u)uC2(j)E
m
y (k, j),

E(y) = Em(y) + Ep(y), and similarly for functions Fm(k, j), F p(k, j),

σ23 = E
(
z2 + w2 + 2zw

)
− µ23 = 3.3102701914 . . . , µ3 = E(z + w) = 2.

We use the previous relations as follows: we make the following substitutions

in Ξ3(F1, F2) : M1(i, `) := subs [ξ = zw,w = 1, z = ρ], in [θ`]θA1(ξ, θ, z, i)/w,

in Ξ4(F1, F2) : ϕ(w, θ, ρ, i) := subs [ξ = ρw] in θ[B1(ξ, θ, ρ)N1(w, ρ, i)]/w,

Ξ5(F1, F2) =


∞∑
u=1

π(u)

u∑
j=1

jFm1 (u, j) +

∞∑
u=1

π(u)

∞∑
j=u+1

uF p1 (u, j)

 ·
·

{ ∞∑
`=1

[M1(j, `) +M2(j, `)]
∑̀
k=1

kC2(k)Fm2 (`, k) +
∞∑
`=1

[M1(j, `) +M2(j, `)]
∞∑

k=`+1

`C2(k)F p2 (`, k)

}
,

σ2Q = σ23 + 2Ξ5(Ezaw, Ezaw) = 6.199368675211 . . . ,

σ2X = σ2x + 2Ξ5(j, k) ≡ σ22,
CX,Q = E(j · Ezaw)− µ2µ3 + [Ξ5(j, Ezaw) + Ξ5(Ezaw, k)] , µ4 = 1.683524031 . . . ,

σ24 = 0.7198047885 . . . , ρX,Q = 0.8853121502 . . . , σ23 = 3.3102701914 . . .

As previously, we have made extensive simulations to check our results. The fit is quite good.

5.4 A comparison with known GF

Now we use Bousquet-Mélou [5, Thm. 3.2]. If we set q = z, y = 1, x = w in the denominator
J0(1), we obtain a function

∞∑
n=0

(−1)nwnzn(n+1)/2

(z; z)2n

which is another form of
h(w, z) = 1− B̃1(ξ, z).

If we set q = z, y = x = v, we obtain

F (v, z) =
∞∑
n=0

(−1)nvnzn(n+1)/2

(z; z)n(vz; z)n
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which leads exactly, by Bender’s theorems to µ4, σ
2
4. This last analysis is also given in Flajolet

and Sedgewick [10, Prop.IX.11]

6 The escalier perimeter

The escalier polyomino (es) is made of contiguous columns with all base cells at the same
level, such that, if the size of a column is k and the size of the next column is j, we must
have j ≥ k − 1. Let us remark that our results offer a quite different form from Feretić [8,
Prop.2].

6.1 The generating functions and Markov chain

For es, we have the following typical example: see Fig.9,

Figure 9: A typical es polyomino.

We have here

U(k, j) = [[j ≥ k − 1]].

Starting with a first column of size i,

ϕ(m, j, z) = zj
j+1∑
k=1

ϕ(m− 1, k, z), ϕ(1, i, z) = zi,

Γ(m, θ, z) = f1(θ, z)Γ(m− 1, θz, z)− ϕ(m− 1, 1, z), with f1(θ, z) =
1

θz(1− θz)
,Γ(1, θ, z) = θizi.

This polyomino is quite different from other polyominoes and our usual techniques do not
work anymore. The presence of θ in the denominator of f1(θ, z) excludes a direct itera-
tion procedure. We must turn to another approach. We are indebted to H.Prodinger and
S.Wagner for providing a new analysis: [20]. First of all, let us change the notations. Starting
with a first column of size 1, we have

f(n, j, z) = ϕ(n+ 1, j + 1, z),
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f(0, 0, z) = z, f(0, k, z) = 0 for k ≥ 1,

ϕ(m, j, z) = zj
∑

1≤k≤j+1

ϕ(m− 1, k, z),

ϕ(m+ 1, j, z) = zj
∑

0≤k≤j
ϕ(m, k + 1, z),

ϕ(m+ 1, j + 1, z) = zj+1
∑

0≤k≤j+1

ϕ(m, k + 1, z),

f(n, j, z) = zj+1
∑

0≤k≤j+1

f(n− 1, k, z).

Now set

F (x, y, z) =
∑
n≥0

∑
j≥0

xnyjf(n, j, z),

φ(w, θ, z) = wθF (w, θ, z),

F (x, y, z) = z +
∑
n≥1

∑
j≥0

xnyjzj+1
∑

0≤k≤j+1

f(n− 1, k, z),

= z + x
∑
n≥0

xn
∑
j≥0

yjzj+1
∑

0≤k≤j+1

f(n, k, z)

= z + x
∑
n≥0

xn
∑
j≥0

yjzj+1f(n, 0, z)

+ x
∑
n≥0

xn
∑
j≥0

yjzj+1
∑

1≤k≤j+1

f(n, k, z)

= z +
zx

1− zy
∑
n≥0

xnf(n, 0, z)

+ x
∑
n≥0

xn
∑
k≥1

f(n, k, z)
∑
j≥k−1

yjzj+1

= z +
zx

1− zy
F (x, 0, z) +

x

y(1− zy)

∑
n≥0

xn
∑
k≥1

f(n, k, z)(zy)k

= z +
zx

1− zy
F (x, 0, z) +

x

y(1− zy)

∑
n≥0

xn
∑
k≥0

f(n, k, z)(zy)k − x

y(1− zy)

∑
n≥0

xnf(n, 0, z)

= z +
zx

1− zy
F (x, 0, z) +

x

y(1− zy)
F (x, zy, z)− x

y(1− zy)
F (x, 0, z)

= z − x

y
F (x, 0, z) +

x

y(1− zy)
F (x, zy, z)

F (x, y, z) = z − x

y
F (x, 0, z) +

x

y(1− zy)
F (x, zy, z).

Let F (x, y, z) be the unique function that is analytic in x and y around (0, 0) and satisfies

F (x, y, z) = z − x

y
F (x, 0, z) +

x

y(1− zy)
F (x, zy, z).
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It turns out that we have

F (x, y, z) = z
(

1 +
∑
n≥0

z−n(n+1)/2x−nyn(QnK − Pn)
)
,

where K is the continued fraction

K =
1

1−
zx

1−
z2x

1−
z3x

. . .

=

∑
j≥0

(−1)jzj2+jxj
(z;z)j∑

j≥0
(−1)jzj2xj

(z;z)j

,

and Pn and Qn are numerators and denominators of the convergents of K:

1

1−
zx

1−
z2x

1−
z3x

. . .

1−
zn−1x

1− znx

=
Pn
Qn

.

The recursions
Pn = Pn−1 − znxPn−2

and
Qn = Qn−1 − znxQn−2

hold with initial values P−1 = 0 and P0 = Q−1 = Q0 = 1, and we have the explicit formulas

Pn =
∑
j≥0

[
n− j
j

]
q

(−1)jzj
2+jxj

as well as

Qn =
∑
j≥0

[
n+ 1− j

j

]
q

(−1)jzj
2
xj .

We also have the recursion

QnK − Pn = (Qn−1K − Pn−1) ·
zn+1x

1−
zn+2x

1−
zn+3x

. . .

,
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which gives us

QnK − Pn = K ·
n+1∏
k=1

zkx

1−
zk+1x

1−
zk+2x

. . .

.

It follows that

z−n(n+1)/2x−n(QnK − Pn) = Kxzn+1 ·
n+1∏
k=1

1

1−
zk+1x

1−
zk+2x

. . .

.

With

P =
∑
j≥0

(−1)jzj
2+jxj

(z; z)j

and

Q(x, z) =
∑
j≥0

(−1)jzj
2
xj

(z; z)j

(so that K = P/Q), we also have

QnP − PnQ =
∑
k≥0

(−1)k

(z; z)k
z(k+1)(k+n+1)+n(n+1)/2xk+n+1,

which ultimately yields

F (x, y, z) = z +
z

Q(x, z)

∑
n≥0

yn
∑
k≥0

(−1)k

(z; z)k
z(k+1)(k+n+1)xk+1.

and
h(w, z) = Q(w, z).

In particular,

[yn]F (x, y, z) =
z
∑

k≥0
(−1)k
(z;z)k

z(k+1)(k+n+1)xk+1∑
k≥0

(−1)kzk2xk
(z;z)k

for n ≥ 1.
It is worthwhile to consider the limit as z → 1. In this case, the original functional

equation becomes

F (x, y, 1) = 1− x

y
F (x, 0, 1) +

x

y(1− y)
F (x, y, 1),

whose solution is

F (x, y, 1) =
1− xF (x,0,1)

y

1− x
y(1−y)

.
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Taking y → 0 only yields the trivial identity F (x, 0, 1) = F (x, 0, 1) here, but we note that

F (x, 0, 1) = lim
z→1

zK = lim
z→1

z

1−
zx

1−
z2x

1−
z3x

. . .

=
1

1−
x

1−
x

1−
x

. . .

=
1−
√

1− 4x

2x

in this case, which yields

F (x, y, 1) =
(1− y)(1− 2y −

√
1− 4x)

2(x− y + y2)
.

The coefficients are given by the generalised Catalan numbers

[xnym]F (x, y, 1) =
(m+ 2)(2n+m− 1)!

(n− 1)!(n+m+ 1)!
.

With the more general initial condition (originally stated as ϕ(1, i, z) = zi), we obtain
the analogous functional equation

F (x, y, z, i) = yrzi − x

y
F (x, 0, z, i) +

x

y(1− zy)
F (x, zy, z, i),

φ(w, θ, z, i) = wθF (w, θ, z, i),

Set r = i− 1. The solution to this equation is now

F (x, y, z, i) = zr+1
(
yr+

r−1∑
n=0

zr(r+1)/2−n(n+1)/2xr−nyn
Qn(x, z)Q(zr+1x, z)

Q(x, z)
+
∞∑
n=r

zn+1xyn
Qr−1(x, z)Q(zn+2x, z)

Q(x, z)

)
.

So we find that

[yn]F (x, y, z, i) =

{
z(r+1)(r+2)/2−n(n+1)/2xr−nQn(x,z)Q(zr+1x,z)

Q(x,z) n < r,

zn+r+2xQr−1(x,z)Q(zn+2x,z)
Q(x,z) + [[n = r]]zr+1 n ≥ r.

for the case i = 1, we have,

φ(w, θ, z) = wθz +
1

Q(w, z)
wθz

∑
n≥0

θnHn(w, z), h(w, z) = Q(w, z)

Hn(w, z) :=
∑
k≥0

(−1)k

(z; z)k
z(k+1)(k+n+1)wk+1,

S(w, z) := wz
∑
n≥0

Hn(w, z) = wz
∑
k≥0

(−1)k

(z; z)k

z(k+1)2

1− zk+1
wk+1, C2 = − S(1, ρ)

hw(1, ρ)

G(θ) =
θρ
∑

n≥0 θ
nHn(1, ρ)

ρ
∑

n≥0Hn(1, ρ)
,
∑
n≥0

Hn(1, ρ) = 1 as h(1, ρ) = 0.
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for the general case i ≥ 1, we have,

φ(w, θ, z, i) = wθizi +
1

Q(w, z)
wθzi

[
i−2∑
n=0

zi(i−1)/2−n(n+1)/2wi−1−nθnQn(w, z)Q(ziw, z)

+

∞∑
n=i−1

zn+1wθnQi−2(w, z)Q(zn+2w, z)

]
,

S(w, z, i) := wzi

[
i−2∑
n=0

zi(i−1)/2−n(n+1)/2wi−1−nQn(w, z)Q(ziw, z)

+

∞∑
n=i−1

zn+1wQi−2(w, z)Q(zn+2w, z)

]
, C2(j) = −S(1, ρ, j)

hw(1, ρ)
,

P (k, j) = π(k)U(k, j)C2(j), U(k, j) = [[k ≤ j + 1]],

π2(k) = π(k)
∞∑

j=k−1
C2(j), k > 1, π2(1) = π(1)

∞∑
j=1

C2(j),

Π(1, j) = π(1)C2(j)/π2(1), j ≥ 1,Π(k, j) = π(k)C2(j)/π2(k), j ≥ 1, k ≥ 2, j ≥ k − 1,

σ21 = 0.2290348188 . . . , µ1 = 0.6149126319 . . . , ρ = 0.5761487691 . . . , µ2 = 1.626247287 . . .

C2 = C2(1) = 0.8600102250 . . . , σ22 = .9850567845 . . . , σ23 = .3631554767 . . .

6.2 The perimeter conditioned on n

We have here

U(k, j) = [[j ≥ k − 1]], w = j − k (we have no z here), Td = |wd|.
We use the notations:

j = k − 1 : Emw (k, j) = 1, Emw2(k, j) = 1, j ≥ k : Epw(k, j) = j − k,Ep
w2(k, j) = (j − k)2,

Em(y) =
∞∑
k=2

π(k)C2(k − 1)Emy (k, k − 1),

Ep(y) =
∞∑
k=1

π(k)
∞∑
j=k

C2(j)E
p
y(k, j),

E(y) = Em(y) + Ep(y),

µ3 = E(w), σ23 = E(w2)− µ23.
We use previous relations as follows

Ξ3(F1, F2) : M1(i, `) = ρi[[i = `]],

Ξ4(F1, F2) : ϕ(w, θ, ρ, i) = θρi

[
i−2∑
n=0

ρi(i−1)/2−n(n+1)/2wi−1−nθnQn(w, ρ)Q(ρiw, ρ)

+
∞∑

n=i−1
ρn+1wθnQi−2(w, ρ)Q(ρn+2w, ρ)

]
, again, we have divided by w,
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Ξ5(F1, F2) =


∞∑
u=2

π(u)Fm1 (u, u− 1) +

∞∑
u=1

π(u)

∞∑
j=u

F p1 (u, j)

 ·
·

{ ∞∑
`=2

[M1(j, `) +M2(j, `)]C2(l − 1)Fm2 (`, `− 1) +
∞∑
`=1

[M1(j, `) +M2(j, `)]
∞∑
k=`

C2(k)F p2 (`, k)

}
.

This leads to

σ2Q = σ23 + 2Ξ5(Ew, Ew) = 0.4485678619 . . . ,

σ2X = σ2x + 2Ξ5(j, k) ≡ σ22,
CX,Q = E(j · Ew − µ2µ3) + [Ξ5(j, Ew) + Ξ5(Ew, k)] ,

µ3 = 0.6188628379 . . . , ρX,Q = 0.6289527540 . . . , µ4 = 1.6103718403 . . . , σ24 = 1.0188734817 . . .

Again, we have made extensive simulations to check our results. The fit is quite good.

7 The bargraph perimeter

The wall (or bargraph) polyomino (wa) is made of contiguous columns, of any positive size,
with all base cells at the same level.

For wa, we have the following typical example: see Fig.10,

Figure 10: A typical wa polyomino .

This polyomino is obviously equivalent to a composition of an integer n. In [13], it was
proved that it asymptotically corresponds to a sequence of iid Geometric(1/2) RV. We prove
it again here, with a different method, more in the spirit of the present paper.

7.1 The generating functions

We have

φ(w, z) =

∞∑
1

wm
(

z

1− z

)m
=

wz

1− z − wz
,
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h(w, z) = 1− z − wz, ρ =
1

2
,

[wnzn]φ(w, z) =
1

ρn
[wnzn]φ(w, ρz) =

1

ρn
[wnzn]

wzρ

1− ρz − ρwz
. (6)

We turn again to the analysis used by Bender in [1]. It is asymptotically based on the GF

φ1(z) =

(
t(1)

t(z)

)m
,

where t(z) is the root of the denominator of (6), seen as a w equation:

w = t(z) =
1− ρz
ρz

, φ1(z) =

(
z/2

1− z/2

)m
,

This indeed leads to sequence of iid Geometric(1/2) RV.

7.2 The perimeter conditioned on m

with xd = j, xd−1 = k, we have here wd = |j − k|.

In [19], we have analyzed in great detail the perimeter of sequence of iid Geometric(p) RV,
called therein a “geometric word” Using these results, we obtain

µ2 =
1

p
= 2, σ2x ≡ σ2X ≡ σ22 =

1− p
p2

= 2, µ3 =
2(1− p)
p(2− p)

=
4

3
, σ23 =

2(1− p)(p2 − 2p+ 2)

p2(2− p)2
=

20

9
,

σ2Q =
4(1− p)(p4 + 9p2 − 4p3 − 10p+ 5)

p2(2− p)2(p2 + 3− 3p)
=

232

63
,

CX,Q = S1 + S2 − 2µ2µ3,

S1 =
∞∑
i=1

pqi−1

 ∞∑
j=i

pqj−1j(j − i) +
i−1∑
j=1

pqj−1j(i− j)

 ,
S2 =

∞∑
i=1

pqi−1

 ∞∑
j=i

pqj−1i(j − i) +

i−1∑
j=1

pqj−1i(i− j)

 ,
CX,Q =

2(2− 4p+ 3p2 − p3)
p2(2− p)2

=
20

9
,

ρX,Q =
5
√

2
√

406

174
, µ4 = 5/3, σ24 =

173

189
= .9153439162 . . .

Again, we have made extensive simulations to check our results. The fit is quite good.

7.3 A comparison with known GF

Now we use Bousquet-Mélou [6, (12)]. If we set q = z, y = 1, x = w in the denominator
1− I−, we obtain a function

1− z − wz
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which is exactly h(w, z).
If we set q = z, y = x = v, we obtain

F (v, z) = 1−
∞∑
n=1

vn(v − 1)jzj(j+1)/2

(z; z)n(vz; z)n−1

which leads exactly, by Bender’s theorems to µ4, σ
2
4.
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A Complements

A.1 ϕ-mixing property

Let
. . . , ξ−1, ξ0, ξ1, . . .

be a stationary sequence of RV. For a ≤ b, define M b
a as the σ-field generated by ξa, . . . , ξb,

define Ma
−∞ as the σ-field generated by . . . , ξa−1, ξa, and define M∞a as the σ-field generated

by ξa, ξa+1, . . ..
Consider a nonnegative function ϕ on positive integers, ϕ(n) → 0, n → ∞. We shall say

that the sequence ξn is ϕ-mixing if, for each k(−∞ < k < ∞)) and for each n(n ≥ 1), E1 ∈
Mk
−∞, P (E1) > 0, and E2 ∈M∞k+n together imply

|P(E2|E1)− P(E2)| ≤ ϕ(n).

A.2 Equation Bousquet-Mélou [5, (10)]

Let P be a polyomino. Let us mark by s (resp.t) its left height (resp. right height), by x
(resp. y) the half-number of horizontal (resp. vertical) steps in its perimeter, by q its area.
The dcc generating function G(s, t, x, y, q) satisfies ((a)n means here (a : q)n)

G(1, t, x, y, q) = ty
L1(1)

L0(1)
, with

L0(s) = 1−
∞∑
n=1

xnsn(y − 1)n−1q(
n+1
2 )

(sq)n(syq)n−1(syq)n
, and
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L1(s) =
∞∑
n=1

xnsn(y − 1)n−1q(
n+1
2 )

(sq)n−1(syq)2n−1(1− styqn)
,

G(s, t, x, y, q) = ty
L1(s)L0(1)− L1(1)L0(s) + L1(1)

L0(1)
.

A.3 Equation Bousquet-Mélou [5, (29)]

The cc generating function G(s, t, x, y, q) satisfies

G(1, 1, x, y, q) = y
(1− y)X

1 +W + yX
,

X =
xq

(1− y)(1− yq)
+
∞∑
n=2

(−1)n+1xn(1− y)2n−4q(
n+1
2 )(y2q)2n−2

(q)n−1(yq)n−2(yq)2n−1(yq)n(y2q)n−1
,

W =
∞∑
n=1

(−1)nxn(1− y)2n−3q(
n+1
2 )(y2q)2n−1

(q)n(yq)3n−1(yq)n(y2q)n−1
.

A.4 Bender’s theorems 1 and 3

Let an(k) be a sequence of non-negative numbers. Let

pn(k) :=
an(k)∑
j an(j)

.

We say that an(k) is asymptotically Gaussian (convergence in distribution) with mean µn
and variance σ2n if

lim
n→∞

sup
x

∣∣∣∣∣∣
∑

k≤σnx+µn

pn(k)− 1√
2π

∫ x

∞
e−t

2/2dt

∣∣∣∣∣∣ = 0. (7)

We say that an(k) satisfies a local limit theorem on a set S of real numbers if

lim
n→∞

sup
x∈S

∣∣∣∣σnpn(σnx+ µn)− 1√
2π
e−x

2/2

∣∣∣∣ = 0. (8)

Theorem 1: Central limit theorem
Let f(z, w) have a power series expansion

f(z, w) =
∑
n,k≥0

an(k)znwk

with non-negative coefficients. Suppose there exists (i) an A(s) continuous and non-zero near
0, (ii) an r(s) with bounded third derivative near 0, (iii) a non-negative integer m, and (iv)
ε, δ > 0 such that (

1− z

r(s)

)m
f(z, es)− A(s)

1− z/r(s)
is analytic and bounded for

|s| < ε, |z| < |r(0)|+ δ.
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Define

µ := −r
′(0)

r(0)
, σ2 := µ2 − r′′(0)

r(0)
.

If σ 6= 0, then (7) holds with µn = nµ and σ2n = nσ2.

Theorem 3: Local limit theorem
Let f(z, w) have a power series expansion

f(z, w) =
∑
n,k≥0

an(k)znwk

with non-negative coefficients and let a < b be real numbers. Define

R(ε) := {z : a ≤ Re z ≤ b, |Im z| ≤ ε}.

Suppose there exists ε > 0, δ > 0, a non-negative integer m, and functions A(s), r(s) such
that

(i) A(s) is continuous and non-zero for s ∈ R(ε),

(ii) r(s) is non-zero and has a bounded third derivative for s ∈ R(ε),

(ii) for s ∈ R(ε) and |z| < |r(s)|(1 + δ)(
1− z

r(s)

)m
f(z, es)− A(s)

1− z/r(s)
is analytic and bounded ,

(iv)

(
r′(α)

r(α)

)2

− r′′(α)

r(α)
6= 0 for a ≤ α ≤ b,

(v) f(z, es) is analytic and bounded for

|z| ≤ |r(Re s)|(1 + δ) and ε ≤ |Im s| ≤ π.

Then we have

an(k) ∼ nme−αkA(α)

m!r(α)nσα
√

2πn

uniformly for a ≤ α ≤ b, where

k

n
= −r

′(α)

r(α)
,

σ2α =

(
k

n

)2

− r′′(α)

r(α)
.

In the proof of Theorem 3, we find, on [1, p.103]), the following result: let x := (k− µn)/σn,
then

lim
n→∞

∣∣∣∣∣σnpn(k)− e−x
2/2

√
2π

∣∣∣∣∣ = 0

which is exactly the Local limit theorem (8) we need.
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