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Abstract

We give a general technique for constructing a functorial choice of

very good paths objects, which can be used to implement identity types

in models of type theories in direct manner with little reliance on general

coherence results. We give a simple proof that applies in algebraic model

structures that possess a notion of structured weak equivalence, in a sense

that we define here. We then give a more direct proof that applies both to

the original BCH cubical set model and more recent variants. We give an

explanation how this construction relates to the one used in the CCHM

cubical set model of type theory.

1 Introduction

In the original Bezem-Coquand-Huber cubical set model of type theory in [2],
Bezem, Coquand and Huber only showed the J-computation rule for identity
types held only up to propositional equality rather than the more usual defini-
tional equality. In [20] the author gave both an explanation for why this was
the case and a solution. The explanation was a Brouwerian counterexample
based on the nerve of a complete metric space, demonstrating that there is
no constructive proof that the necessary strict equality in the J-computation
rule holds. The solution was to consider a second more elaborate definition of
identity type.

The motivation for the work here is to give a more conceptually clear proof
of this construction, by viewing it in terms of the cofibration-trivial fibration
factorisation of an algebraic model structure. From this point of view the basis
of the construction is a functorial version of the following simple and well known
trick. Suppose we are given a fibration f : X → Y in a model structure. A path
object on f is a factorisation of the diagonal map ∆f : X → X ×Y X as a weak
equivalence r : X → Pf followed by a fibration p : Pf → X ×Y X . A very good
path object is the same, but where r is required to be a trivial cofibration, not
just a weak equivalence. If we are given a path object, then we can use it to
produce a very good path object, by factorising the weak equivalence r as a
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cofibration Cr followed by a trivial fibration F tr, as in the diagram below.

X
∆ //

r
!!❈

❈❈
❈❈

❈❈
❈

Cr

��

X ×Y X

Mr
F tr

// Pf

p

::✉✉✉✉✉✉✉✉✉

By the 3-for-2 property Cr is a weak equivalence, and so a trivial cofibration,
and p ◦ F tr is fibration, making Mr a very good path object.

We will see a more complete proof (in comparison to [20]) that the resulting
structure can be used to implement identity types. For this we will use a notion
of stable functorial very good path object due to Van den Berg and Garner
[24]. This has the advantage that it can be used to implement identity types
in a relatively direct way with less reliance on general coherence results (the
advantages of this approach will be discussed further in section 3). However
in order to satisfy this definition it is no longer sufficient to work in a model
structure. Instead we build on the notion of algebraic model structure due
to Riehl [16]. We expand on Riehl’s definition by adding a structured notion
of weak equivalence and show how to use such structures to construct stable
functorial choices of very good path object. We then adapt the straightforward
proof above to a functorial version using this definition.

It is however non trivial to satisfy this definition of algebraic model structure
with structured weak equivalence. Because of this, we will also give a more direct
proof that the same construction yields identity types in BCH cubical sets, and
many other categories.

In a separate paper the author will prove that BCH cubical sets do in fact
satisfy this definition of algebraic model structure with structured weak equiv-
alences. This will use a result due to Sattler [18], together with Huber’s proof
that the universe of small types is fibrant [10], combined with an argument us-
ing Grothendieck fibrations and other observations. Moreover, further results
by Sattler (currently unpublished) suggest this extra structure can be found in
a wide variety of categories, including CCHM cubical sets.

An earlier draft of this work was circulated online, and for reference remains
available at [19]. The main change is that the original draft contained some
rather messy arguments based on the concrete definition of the relevant awfs’s
in 01-substitution sets. In contrast, the results here will use an approach devel-
oped by Gambino and Sattler in [7] (and following some suggestions by Peter
Lumsdaine). This yields a much clearer proof and much more general result,
although essentially following the same outline as the original. The definition
of ams with structured weak equivalences has been slightly generalised, but as
we will see it turns out to not be essentially different to the original version.
The earlier draft also contained an unproved claim that 01-substitution sets
are an algebraic model structure with structured weak equivalences, which as
mentioned above will now appear in a separate paper.

The construction of identity types in the Cohen-Coquand-Huber-Mörtberg
(CCHM) cubical set model [6] was inspired by this work via the earlier draft and
correspondence with the author. This included some simplifications discovered
by Cohen, Coquand, Huber and Mörtberg that apply to CCHM cubical sets.
This definition was generalised to a large class of models by Orton and Pitts
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in [14] and by Van den Berg and Frumin in [23]. To be clear however, these
simplifications do not always apply, and for instance do not include the original
BCH cubical set model, which will be covered by the results in this paper. In
section 6 we will give an abstract view of the the CCHM definition and see how
it relates to the definition given here.
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2 Review of Algebraic Weak Factorisation Sys-

tems and Model Structures

Definition 2.1. Let C be a category and let i : U → V and f : X → Y be
morphisms in C. We write i ⋔ f and say i has the left lifting property with
respect to f and f has the right lifting property with respect to i if the following
holds. For every commutative square of the form

U //

i

��

X

f

��
V // Y

there is a diagonal map j as below, making the two triangles commute.

U //

i

��

X

f

��
V //

j

>>

Y

Definition 2.2. Let C be a category and M a class of maps in C. We define

M⋔ = {f | (∀i ∈ M) i ⋔ f} (1)
⋔M = {i | (∀f ∈ M) i ⋔ f} (2)

Definition 2.3. Let C be a category. A weak factorisation system on C consists
of classes of maps C and F such that C = ⋔F and F = C⋔ and every morphism
g in C factors as g = f ◦ i with i ∈ C and f ∈ F .

Definition 2.4 (Quillen). Let C be a category. A model structure on C consists
of two weak factorisation systems (C,F) and (Ct,F), together with a class of
morphisms W such that the following hold.

1. Ct = C ∩W

2. F t = F ∩W
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3. (3-for-2) If f : X → Y , g : Y → Z and h := g ◦ f , and any two maps out
of f , g and h belong to W , then so does the third.

Definition 2.5. Let C be a category. A functorial factorisation on C consists
of a functor C2 → C3 which is a section to the composition functor C3 → C2.
We will usually write out a functorial factorisation as three separate components
L,K,R as follows. E.g., if f is an object of C2 (i.e. a morphism in C) we might
write the factorisation as

X
f

//

Lf !!❇
❇❇

❇❇
❇❇

❇ Y

Kf

Rf

>>⑤⑤⑤⑤⑤⑤⑤⑤

Definition 2.6 (Grandis, Tholen). Let C be a category and (L,R) a functorial
factorisation on C. Note that L is an endofunctor on C2 and can be made
into a copointed endofunctor in a canonical way. Dually, R can be made into
a pointed endofunctor. An algebraic weak factorisation system on C consists
of a functorial factorisation together with a comultiplication map Σ : L → L2

making L into a comonad and a multiplication map Π : R2 → R making R into
a monad. Furthermore, the canonical map LR → RL is a distributive law.

We will write the category of coalgebras over the comonad as L-Map and
the category of algebras over the monad as R-Map. In many cases it is difficult
(or impossible) to show that a map satisfies the comultiplication law required
to be an L-coalgebra. For this reason we will usually work with the category
of coalgebras over the underlying copointed endofunctor of L. We will write
this category as L-map. For example L-map is always closed under retracts
whereas L-Map is not.

The dual issue for R-algebras does not cause problems in practice, because
of the following proposition.

Proposition 2.7. Suppose that (L,R) is a cofibrantly generated awfs on a cat-
egory C. Then given a algebra structure for the underlying pointed endofunctor
for R on a map f in C, we can functorially assign f the structure of an algebra
over the monad R.

Proof. See e.g. [16, Lemma 2.30]

For R, we will only every work over the category of (monad) algebras,
R-Map. The reason is that for cubical sets (as in [2] and [6]) the definition
of Kan fibration is already fixed and used in the interpretation of type theory,
and in practice R-Map corresponds more closely to these definitions.

There is also a special case where we can do the same for left maps, as we’ll
see in proposition 5.10.

Algebraic model structures were developed by Riehl in [16]. Before giving
Riehl’s definition, we first define a weaker version that will play an important
role.

Definition 2.8. A pre algebraic model structure (pre-ams) consists of two awfs’s
(Ct, F ) and (C,F t) together with a morphism of awfs’s ξ : (Ct, F ) → (C,F t).
We refer to the morphism ξ as the comparison map of the pre-ams.
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Definition 2.9 (Riehl). An algebraic model structure consists of a pre algebraic
model structure on a complete and cocomplete category together with a class of
maps W such that if C is the class of maps that admit a (copointed endofunctor)
C-coalgebra structure, F is the class of maps that admit a (pointed endofunctor)
F -algebra structure, then (C,F ,W) is a model structure.

3 Identity Types in an Awfs

In this section we will review a description of the semantics for identity types
due to Van den Berg and Garner [24, Section 3]. We first talk about two related
well known issues with the implementation of identity types that arise in the
description of identity types by Awodey and Warren, and are elegantly resolved
by the Van den Berg-Garner definition.

3.1 Coherence for J-Terms

It is a well known issue in type theory that great care needs to taken to ensure
the interpretation of type theory into categorical semantics is correct, due to so
called coherence issues. This was noticed and then solved by Hofmann in [9]
for the interpretation of extensional type theory into a locally cartesian closed
category. Essentially the issue is as follows.

In most formulations of models of type theory, such as categories with fami-
lies (CwFs), one needs to have a notion of substitution for types and terms, and
furthermore the substitution needs to be strict in the following sense. If we are
given morphisms of contexts σ : Ξ → ∆ and τ : ∆ → Γ, and a type Γ ⊢ X , then
we need to ensure that X [τ ][σ] is strictly equal to X [τ ◦ σ] (as types in context
Ξ). Similarly for terms.

For the interpretation of extensional type theory in a locally cartesian closed
category, this is an issue for interpreting types, but the interpretation of terms
is not a problem.

On the other hand when Awodey and Warren developed the interpretation
of identity types using very good path objects in [1], there is a coherence issue
for terms. Specifically, as Awodey and Warren explain in [1, Section 4.1], they
do not ensure that J terms are preserved by substitution. The reason is that J
terms are interpreted as diagonal fillers of certain lifting problems. In a weak
factorisation system, we are only guaranteed that at least one filler exists for
every lifting problem of a trivial cofibration against a fibration. So there’s no
reason to expect the different choices of fillers to agree with each other under
substitution.

It is possible to fix this issue using general coherence theorems, such as local
universes (developed by Lumsdaine and Warren in [13]) or using a universe of
small types, as used for simplicial sets in [11]. However, the Van den Berg-
Garner interpretation allows us to deal with this problem in a much more direct
way, with less reliance on general coherence results, and which can be used
directly in an existing CwF with less work.
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3.2 The Computational Meaning of Transport

In more computationally minded approaches to homotopy type theory, there is
an emphasise on the computational meaning of transport, which is in turn is
strongly connected with the J terms.

For example, this was noticed early on by Harper and Licata in [12], and by
Bezem, Coquand and Huber in [2], but also plays an important part in more
recent developments.

The issue is as follows. Suppose we are given a type A in context Γ. For
simplicity, say that Γ consists of a single type C. Suppose further we are given
c0, c1 : C and also a term p of type IdC(c0, c1). Then we need to show how we
can take a term a of type A(c0) and then compute a new term of type A(c1).
Using univalence we show that there are non trivial instances of this problem.
We take C to be the universe of small types, A(x) is defined to be the type
El(x), and p is an identity between two types constructed from an equivalence
using univalence. Then in order to compute what the transport should be, we
need to recover the computational information from the equivalence that we put
in.

The solution is that whenever we interpret a type Γ ⊢ A in a model, we
include all the computational information we need about how to compute trans-
port in A for paths in Γ. The Van den Berg-Garner approach allows us to clearly
see the necessary structure in an abstract way which is conceptually very simi-
lar to the Awodey-Warren approach. Namely, we work in a setting where it is
natural to view fibrations not as a class of maps but as algebras over a monad.
The computational information we need to associate with a type is precisely
contained in an algebra structure over the monad.

3.3 The Van den Berg-Garner Interpretation of Identity

Types

The key part of the Van den Berg-Garner interpretation is that instead of a
weak factorisation system, they use an algebraic weak factorisation system1.

With an awfs (L,R), it is natural to view fibrations not as just a class of
maps (as is the case for wfs’s) but instead as a category of algebras over the
monad R. Meanwhile trivial cofibrations are best viewed as coalgebras. Given
a map m together with coalgebra structure and a map f with algebra structure,
f not only has the right lifting property against m, but using the structures, we
have a choice of diagonal filler. Furthermore, given a morphism of coalgebras
and a morphism of algebras, we also get compatible diagonal fillers.

Then, as Van den Berg and Garner show in [24, Section 2], we can use this
to define a type category where types are implemented as R-algebras, and sub-
stitution is implemented as pullbacks that preserve R-algebra structure. Then
the algebra structure contains the computational information that we need to
implement transport.

Finally, Van den Berg and Garner implement identity types in the type cat-
egory using the following definition2. Observe that we require not just that cer-
tain maps are fibrations and trivial cofibrations, but that we are given a choice

1The exact formulation used by Van den Berg and Garner is not quite an awfs, but a

slightly weaker notion.
2We change the terminology to fit better with other ideas in this paper.

6



of algebra and coalgebra structure. This allows one to give an explicit definition
of diagonal fillers and thereby of the interpretation of J-terms. Furthermore,
we require functoriality with respect to trivial cofibrations and fibrations ev-
erywhere. This ensures that the choice of diagonal fillers, and so of J terms is
stable under substitution.

Definition 3.1 (Van den Berg, Garner). 1. A choice of very good path ob-
jects consists of an assignment to every F -map f : X → Y a factorisation

X
rf
→ P (f)

pf

→ X ×Y X (3)

of the diagonal ∆ : X → X×Y X together with an Ct-coalgebra structure
on rf and an F -algebra structure on pf .

2. A choice of very good path objects is functorial if the assignment of (3)
provides the action of objects of a functor F -Map → F -Map×CC

t-map.

3. A choice of very good path objects is stable when every map of F -algebras
whose underlying square is a pullback makes the following square given
by functoriality a pullback

P (f)
P (h,k)

//

pf

��

P (f ′)

pf′

��
X ×Y X // X ′ ×Y ′ X ′

4. The awfs is Frobenius if to every square

f∗X
f̄

//

ī

��

X

i

��
Z

f
// Y

together with an F -algebra structure on f and Ct-coalgebra structure
on i we have assigned an Ct-coalgebra structure on ī. It is functorially
Frobenius if this assignment gives rise to a functor F -Map×CC

t-map →
Ct-map.

5. A homotopy theoretic model of identity types is a finitely complete category
C together with an awfs that is functorially Frobenius and has a stable
functorial choice of very good path objects.

Theorem 3.2 (Van den Berg, Garner). Every homotopy theoretic model of
identity types gives rise to a model of type theory with identity types.

Proof. See [24, Section 3.3].

Remark 3.3. We leave it for future work to check that theorem 3.2 can be
proved constructively.
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4 Identity Types in an Algebraic Model Struc-

ture

In this section we give our first construction of a stable functorial choice of
very good path objects. This is an intuitively clear proof, based on a simple
trick that can be carried out in any model structure. However, showing that
BCH cubical sets satisfy the conditions needed in order to apply the theorem is
difficult, and in fact will appear in a separate paper. We include the theorem
here anyway, since it illustrates the main idea which will be used in section 5,
where the results can be easily applied to cubical sets.

4.1 Structured Weak Equivalences

Definition 4.1. Suppose we are given a pre-ams ξ : (Ct, F ) → (C,F t) on a
category C.

Suppose further we are given a category W -Map together with a faithful
functor W -Map → C2. We refer to objects in W -Map as structured weak
equivalences. Given f in C

2, we say a weak equivalence structure on f is an
object in the preimage of f . Given objects f and g of C2 together with weak
equivalence structures on f and g, we say a morphism in C2 (i.e. a commutative
square) is a morphism of weak equivalences if it is the image of a morphism in
W -Map between structured weak equivalences.

Definition 4.2. Suppose we are given a pre-ams ξ : (Ct, F ) → (C,F t) on a
category C together with a faithful functor W -Map → C2. A functorial 3-for-2
operator is the following. Given morphisms f1, f2, f3 such that f3 = f2 ◦ f1 and
suppose for i 6= j ∈ {1, 2, 3} we are given weak equivalence structures on fi and
fj , then writing k for the remaining element of {1, 2, 3} we have assigned a weak
equivalence structure on fk. Furthermore, these assignments are functorial, in
the following sense. Suppose we are given a commutative diagram as below.

U
f1 //

��

V
f2 //

��

W

��
X

g1 // Y
g2 // Z

Let f3 := f2 ◦ f1 and g3 := g2 ◦ g1 and write α1 for the left hand square α2 for
the right hand square and α3 for the big rectangle. If i 6= j ∈ {1, 2, 3} and we
are given weak equivalence structures on fi, gi, fj and gj such that αi and αj

are morphisms of structured weak equivalences, then αk is a morphism between
the weak equivalence structures we have assigned on fk and gk.

Definition 4.3. An ams with structured weak equivalences is a pre-ams on a
finitely complete and cocomplete category C together with a category W -Map,
a faithful functor W -Map → C and the following:

1. A functorial 3-for-2 operator.

2. Given a weak equivalence structure and a C-coalgebra structure on each
map f a choice of Ct-coalgebra structure on f which is the action on
objects of a functor C-map×C2 W -Map → Ct-map.
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3. Given a weak equivalence structure and a F -algebra structure on a map f

a choice of F t-algebra structure which is the action on objects of a functor
F -Map×C2 W -Map → F t-Map.

4. Given a Ct-coalgebra structure on each map f , a choice of weak equiva-
lence structure on f which is the action on objects of a functor Ct-map →
W -Map.

5. Given an F t-algebra structure on each map f , a choice of weak equivalence
structure on f which is the action on objects of a functor F t-Map →
W -Map.

Remark 4.4. We don’t assume the existence of any additional structure on
W -Map. Recently Bourke has shown in [4] that in some natural situations
weak equivalences can be viewed as algebras over a monad. However, he also
showed that this is not the case e.g. for simplicial sets with the Kan model
structure.

4.2 Some Remarks on Ams’s with StructuredWeak Equiv-

alences

4.2.1 Pointwise Ams’s with Structured Weak Equivalences

Given an ordinary model structure on a category C there are three main ways to
define a model structure on a functor category CA, under suitable conditions.
These are the projective model structure, injective model structure and the
Reedy model structure.

We will see however (following a suggestion by Emily Riehl) that there is an-
other option inherent in the definition of ams with structured weak equivalence,
that is different to the standard constructions for ordinary model structures.
This construction does not require any additional assumptions on the underly-
ing ams with structured weak equivalences, or on A or C.

Suppose that we are given an ams with structured weak equivalences on a
category C, and another category A. We will define a new ams with structured
weak equivalences on the functor category CA.

First recall that given an awfs on C we can define the pointwise awfs on CA.

Definition 4.5. Suppose we are given an awfs (L,R) on a category C. The
pointwise awfs on CA is the awfs (LA, RA) defined as follows. Note that we need
to define functors (CA)2 → (CA)2, however it suffices to instead define functors
A × (C2)A → C2. We define LA by composition of L with the evaluation
map A × (C2)A → C2, and define RA by composition of R with evaluation.
We similarly define multiplication and comultiplication pointwise. Namely, µ
needs to be a natural transformation R2

A → RA. Hence for each f ∈ (C2)A,
we need µf to be a natural transformation from R2

A(f) → RA(f). Hence, for
each A ∈ A, we need a map µf,A : R2(f(A)) → R(f(A)). We take µf,A to be
µf(A). Comultiplication is defined similarly. Naturality and the other required
equalities follow from the corresponding conditions on (L,R).

Proposition 4.6. Let (L,R) be an awfs on a category C, and A a small cat-
egory. Suppose we are given a morphism f in the functor category CA. Note
that we can view f as a functor f : A → C2. Then RA-algebra structures on f
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naturally correspond to functors α : A → R-Map in the following commutative
diagram.

R-Map

��
A

α

;;✇✇✇✇✇✇✇✇✇

f
// C2

Dually for LA-coalgebra structures.

Proof. This is straightforward to check.

Definition 4.7. Given an ams ξ : (C,F t) → (Ct, F ) with structured weak
equivalences W -Map and a small category A, we define the pointwise ams with
structured weak equivalences as follows. We define (CA, F

t
A) and (Ct

A, FA) to
be be the pointwise awfs’s. The comparison map is also defined pointwise.

We define the category W -MapA to be the functor category W -MapA.
To define the functor W -MapA → (CA)2, we can instead define a functor
A × W -MapA → C2. We take this to be evaluation followed by the map
W -Map → C2.

Proposition 4.8. We can define the necessary functors to make definition 4.7
an ams with structured weak equivalences.

Proof. These are once again defined pointwise. For illustration, we just consider
the functor C-mapA×CA×2 W -MapA → F t-MapA. Note that this amounts to
constructing a functor A×C-mapA×CA×2W -MapA → F t-Map. However, the
evaluation maps give us a functor A×C-mapA×CA×2W -MapA → C-map×C2

W -Map. We can then compose this with the map we are given from C-map×C2

W -Map to F t-Map to get the required structure.

4.2.2 An Explicit Definition for W -Map

We now show that without loss of generality we can assume W -Map is given
by the following explicit definition3.

Proposition 4.9. If we are given an ams with structured weak equivalences
on a category C, then there is another ams with structured weak equivalences,
with the same underlying model structure, such that W -Map is defined as the
pullback below.

W -Map //

��

❴
✤ F t-Map

��
C2

F
// C2

(4)

Proof. Assume that we are given an ams with structured weak equivalences
given by W -Map. Write W -Map′ for the category defined as in (4). Note that
to show W -Map′ also gives structured weak equivalences, it suffices to show
that we can construct functors from W -Map′ to W -Map and from W -Map to
W -Map′ over C2.

3In an earlier draft of this paper this was taken as the definition of W -Map.
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We first construct the functor W -Map′ → W -Map. Suppose we are given
a map f and an F t-algebra structure on Ff . We can use this to assign Ff the
structure of a W -Map-weak equivalence. Since Ctf is given the structure of a
Ct-coalgebra using the comultiplication map, we can also assign it a W -Map-
weak equivalence structure. Finally, we use the functorial 3-for-2 operator to
assign a W -Map-weak equivalence structure to f , the composition of Ctf and
Ff .

We now construct the functor W -Map → W -Map′. Suppose we are given
a map f with W -Map-weak equivalence structure. We factor f as Ctf followed
by Ff , using the awfs (Ct, F ). We then also have a W -Map-weak equivalence
structure on Ctf . Hence we can use the functorial 3-for-2 operator to assign
Ff a W -Map-weak equivalence structure. We then have both a F -algebra
structure and a W -Map-weak equivalence structure on Ff , which gives us
an F t-algebra structure on Ff . But we have now given f the structure of a
W -Map′-structured weak equivalence.

Note that dually, we could also chooseW -Map to be defined by the pullback
below.

W -Map //

��

❴
✤ Ct-map

��
C2

C
// C2

Finally, we note that in this case we can drop one of the required functions
from the definition of ams with structured weak equivalences.

Proposition 4.10. Suppose we are given a pre-ams ξ : (Ct, F ) → (C,F t),
that W -Map is the category defined as in proposition 4.9 and (C,F t) is cofi-
brantly generated. Then we have in any case a functor F -Map×C2 W -Map →
F t-Map.

Proof. Note that an F -algebra structure on a map f witnesses it as the retract
of Ff . Hence, if we are given an F t-algebra structure on Ff , we can assign f

also the structure of an F t-algebra. Since we defined this using a retract, in
general it might be only a pointed endofunctor algebra. However, since (C,F t)
is cofibrantly generated, we can correct this to obtain an algebra structure over
the monad.

4.3 Constructing Very Good Path Objects from Path Ob-

jects

We now use an ams with structured weak equivalences to define a weaker version
of very good path objects (definition 3.1) where we replace the requirement of
rf being a trivial cofibration to just a weak equivalence. We will then show how
to use this to construct very good path objects.

Definition 4.11. 1. A choice of path objects consists of an assignment to
every F -map f : X → Y a factorisation

X
rf
→ P (f)

pf

→ X ×Y X (5)

of the diagonal ∆ : X → X ×Y X together with a weak equivalence
structure on rf and an F -algebra structure on pf .
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2. A choice of path objects is functorial if the assignment of (5) provides the
action of objects of a functor F -Map → F -Map×C W -Map.

3. A choice of path objects is stable when every map of F -algebras whose
underlying square is a pullback makes the following square given by func-
toriality a pullback

P (f)
P (h,k)

//

pf

��

P (f ′)

pf′

��
X ×Y X // X ′ ×Y ′ X ′

Definition 4.12. We say an awfs (L,R) is pullback stable, if for every pullback
square of the form below,

U
❴
✤

//

f

��

X

g

��
V // Y

the square below given by functoriality is also a pullback.

· //

Rf

��

·

Rg

��
V // Y

Theorem 4.13. Suppose we are given an ams with structured weak equivalences
ξ : (Ct, F ) → (C,F t) where (C,F t) is pullback stable.

Then given a stable functorial choice of path objects we can construct a stable
functorial choice of very good path objects.

Proof. Suppose that we are given a choice of path objects. That is, we are given
for each fibration f a factorisation

X
∆ //

rf
  ❆

❆❆
❆❆

❆❆
❆ X ×Y X

Pf

pf

::✉✉✉✉✉✉✉✉✉

together with weak equivalence on rf and R-algebra structure on p. Then we
apply the (C,F t) factorisation to rf to extend the diagram as follows.

X
∆ //

rf
""❉

❉❉
❉❉

❉❉
❉❉

Crf

��

X ×Y X

Mrf
F trf

// Pf

pf

::✈✈✈✈✈✈✈✈✈

Then we may use the functorial 3-for-2 operator to construct a weak equivalence
structure on Crf from the weak equivalence structures on rf and F trf . Since
Cr is a cofibration, we can construct from this a Ct-coalgebra structure on Cr.
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Furthermore we can produce an R-algebra structure on F tr using the compari-
son map, and then assign an F -algebra structure to pf ◦F

trf by composing the
structures on F trf and pf .

All of the above constructions can be done functorially, so the following is a
functorial choice of very good path objects.

X
∆ //

Crf !!❈
❈❈

❈❈
❈❈

❈ X ×Y X

Mrf

pf◦F
trf

::ttttttttt

Now we just need to check that this construction satisfies stability.
Assume that we are given a pullback square as below.

X
❴
✤

//

f

��

X ′

f ′

��
Y // Y ′

(6)

We first check that the square below is a pullback.

X ×Y X //

��

X ′ ×Y ′ X ′

��
Y // Y ′

(7)

To this end, consider the following commutative cube.

X ×Y X //

��

yytt
tt
tt

X ′ ×Y ′ X ′

xxqqq
qq
qq

��

X //

��

X ′

��

X //

yysss
ss
ss

X ′

xxqqq
qq
qq

Y // Y ′

The front face is a pullback by our assumption and the left and right faces are
pullbacks by definition. Hence the back face is also a pullback. But the bottom
face is a pullback once again by our assumption. Hence the composition of the
back face and bottom face is a pullback, but this is precisely (7), as required.

Now consider the diagram

X //

��

X ′

��
Pf //

��

Pf ′

��
X ×Y X //

��

X ′ ×Y ′ X ′

��
Y // Y ′

(8)
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We have just checked that the lower square is a pullback. The middle square
is also a pullback since we assumed P is stable. The entire rectangle is also a
pullback by assumption (it is precisely (6)). We deduce that the upper square
is also a pullback.

Finally consider the following diagram.

Mrf //

��
Rtrf

��

Mrf ′

Rtrf′

��
Pf //

pf

��

// Pf ′

pf′

��
X ×Y X // X ′ ×Y ′ X ′

(9)

Since the upper square in (8) is a pullback and (C,F t) preserves pullbacks, we
deduce that the upper square in (9) is a pullback. The lower square is also a
pullback by the assumption that P is stable. Hence the entire rectangle is a
pullback. But this is precisely what we need to show that the very good path
objects we defined before are stable.

5 Some Sufficient Conditions for the Existence

of Identity Types

In this section we give a direct proof that identity types can be constructed
in certain categories. We will follow the same construction as in section 4.3.
Instead of an ams, we only work with a pre-ams satisfying certain axioms,
based on those considered by Gambino and Sattler in [7]. These axioms are
much easier to show for the examples we consider than the construction of a
3-for-2 operator.

We note that throughout this section, part of the work lies in adapting argu-
ments based on wfs’s to stronger functorial versions. Under suitable conditions
it is possible to save work by doing this automatically using pointwise awfs’s
or (as the author will show in a future paper) category indexed family fibra-
tions. However, for now we work directly with the functorial versions, to give
a clearer picture of the objects and maps involved in the construction. Since
all the constructions involved are fairly simple, this does not cause too much
difficulty.

We first review some necessary background material.

5.1 The Leibniz Construction

The Leibniz construction is a well known construction in homotopical algebra.
See e.g. [17, Construction 11.1.7] for a standard reference. It was first applied
to the semantics of homotopy type theory, and in particular CCHM cubical sets
by Gambino and Sattler in [7]. The idea is that given a monoidal category,
(C,⊗), we can give C2 also the structure of a monoidal category using pushout
product ⊗̂. Furthermore, if we are given right adjoints to −⊗X for each X in
C, we can produce also right adjoints to −⊗̂f for each f in C2 using pullback
hom.
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Definition 5.1. Let (C,⊗) be a monoidal category with pushouts. The pushout
product is the monoidal product ⊗̂ defined on C2 as follows. Given f : U → V

and g : X → Y , we define f⊗̂g as the map given by the universal property of
the pushout below.

U ⊗X
f⊗X

//

U⊗g

��

V ⊗X

�� V⊗g

��

U ⊗ Y //

f⊗Y ,,

·

❴✤

f⊗̂g

❑❑
❑❑

❑

%%❑
❑❑

V ⊗ Y

Definition 5.2. Let (C,⊗) be a monoidal category with pushouts and pull-
backs. Suppose that for each X , − ⊗X has a right adjoint hom(X,−). Then

for each map f , f⊗̂− has a right adjoint, ˆhom(f,−) referred to as pullback hom,
which is defined explicitly as the map given by the universal property of the
pullback below. Let f : U → V and g : X → Y .

hom(V,X)

ˆhom(f,g)

◆◆◆
◆

''◆◆
◆◆

◆◆

hom(V,g)

))

hom(f,X)

##

·
❴
✤

//

��

hom(V, Y )

hom(f,Y )

��
hom(U,X)

hom(U,g)
// hom(U, Y )

5.2 The Conditions

Definition 5.3. A monoidal product ⊗ is affine if the unit of the monoidal
product is a terminal object.

Remark 5.4. For any affine monoidal product, we can define projection maps
X ⊗ Y → X and X ⊗ Y → Y .

Our basic set up is a monoidal category (C,⊗) satisfying the following con-
ditions.

1. C is finitely complete and finitely cocomplete.

2. ⊗ is an affine and symmetric monoidal product that preserves colimits.

3. δi : 1 → I for i = 0, 1 is an interval object.

4. −⊗ I has a right adjoint, which we denote P .

5. (C,F t) is pullback stable.

6. Axioms 5.5, 5.6 and 5.7 below.

Axiom 5.5. If we are given a cofibration m, then we can also give m⊗̂[δ0, δ1]
the structure of a cofibration, and this assignment is functorial in m.

15



Note that pullback hom might not be defined in general, but we do know
that −⊗̂δi has a right adjoint given by ˆhom(δi,−) using P .

Axiom 5.6. Given an F algebra structure on a map f , we can define in a
functorial way, an F t algebra structure on ˆhom(δi, f) for i = 0, 1.

Axiom 5.7. Given an F algebra structure on a map f , we can define in a
functorial way, an F algebra structure on ˆhom([δ0, δ1], f).

5.3 Some Useful Propositions

Before giving some examples, we prove a couple of propositions that will be
useful for verifying the examples do satisfy the axioms, and later for the theorem
itself.

Proposition 5.8. Suppose that a pre-ams ξ : (Ct, F ) → (C,F t) satisfies axiom
5.6. Then given a cofibration m, we can assign m⊗̂δi the structure of a trivial
cofibration.

Proof. This follows from the adjunction between pushout product and pullback
hom.

As remarked in section 1, when working with cofibrations, we usually use
the category C-map of copointed endofunctor coalgebras. However, in order
to construct the comparison map it is useful to instead work over the category
C-Map of comonad coalgebras. Because of this, we will aim towards a lemma
constructing a functor C-map → C-Map over C2 using the assumption that
(C,F t) is pullback stable.

Lemma 5.9. “Every retract of a monomorphism is a pullback.” More formally,
suppose we are given diagram as below, where k ◦ h = 1X and m ◦ l = 1Y , and
that g (and so also f) is a monomorphism.

X��

f

��

h // Z��

g

��

k // X��

f

��
Y

l
// W

m
// Y

(10)

Then the left hand square in (10) is a pullback.

Proof. Suppose we are given a commutative diagram as in the solid lines below.
We need to show there is a unique map t as in the dotted line below, making
the diagram commute.

A
p

##
q

��

t

  
X

h //
��

f

��

Z��

g

��
Y

l
// W

Note however that uniqueness easily follows from the fact that f is monic.
Hence we only have to show existence.
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We take t to be k◦p. It is straightforward to verify that the resulting diagram
commutes.

Proposition 5.10. Suppose that (C,F t) is pullback stable and that every cofi-
bration is a monomorphism. Then there is a functor that takes a copointed
endofunctor coalgebra structure on a map f , and returns a comonad coalgebra
structure on the same map. That is, we construct a functor C-map → C-Map
over C2.

Proof. Suppose that f has the structure of a coalgebra over the underlying
copointed endofunctor of (C,F t). The coalgebra structure witnesses f as a
retract of Cf . Hence by lemma 5.9 the same diagram witnesses f as a pullback
of Cf . Since (C,F t) is pullback stable we can pullback the C-coalgebra structure
on Cf to obtain a C-coalgebra structure on f .

This is clearly functorial.

5.4 Examples

5.4.1 Gambino-Sattler Axioms

As stated above, these axioms are based on those of Gambino and Sattler in [7,
Section 7].

We can recover a similar definition to Gambino and Sattler’s as follows. We
add the requirement that (C,F t) is algebraically cofibrantly generated, by a
diagram M : J → C2 that we refer to as the generating cofibrations. We then
further require that (Ct, F ) is cofibrantly generated by the coproduct of the two
diagrams of the form M⊗̂δi for i = 0, 1. Instead of assuming axioms 5.6 and
5.7. We will keep assuming that axiom 5.5 holds.

In this set up, the awfs (Ct, F ) is by definition cofibrantly generated by
the pushout product of generating cofibrations with the endpoint inclusions δi.
Observe that using the adjunction between pushout product and pullback expo-
nential, this automatically gives us axiom 5.6. Furthermore, we also get axiom
5.7. We again use the adjunction between pushout product and pullback expo-
nential to instead check the dual definition for generating trivial cofibrations.
Any generating trivial cofibration is of the form m⊗̂δi where m is a generating
cofibration. Then by symmetry of the monoidal product, we have the following
isomorphism.

(m⊗̂δi)⊗̂[δ0, δ1] ∼= (m⊗̂[δ0, δ1])⊗̂δi (11)

Combining this with axiom 5.5, for each generating trivial cofibration m⊗̂δi, we
can assign (m⊗̂δi)⊗̂[δ0, δ1] with the structure of a trivial cofibration. Moreover,
noting that (11) is part of a natural isomorphism and using the functorial part
of 5.5, we can ensure that a generating morphism of trivial cofibrations is sent
to a morphism of trivial cofibrations. This then gives us axiom 5.7.

If we follow Gambino and Sattler in assuming that the generating cofibra-
tions are functorially closed under pushout product with endpoint inclusion,
one can construct the comparison map of the pre-ams using Riehl’s observa-
tion in [16, Remark 3.6] that it suffices to show that one can functorially assign
the generating trivial cofibrations with cofibration structures, and also using
proposition 5.10.

There are, however still a few minor differences with the Gambino-Sattler
axioms. We work with symmetric monoidal products and an interval rather than
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functorial cylinders. Axiom 5.5 does not seem to follow from [7, Definition 7.1].
Note however that it does hold in the examples of simplicial sets and (CCHM)
cubical sets appearing in [7, Example 7.2]. More generally, using the axiom
that −⊗̂δi preserves cofibrations, it follows from the additional assumption that
cofibrations are functorially closed under binary union. This assumption was
added, for instance by Sattler in [18, Definition 3.2], and also appears in the
Orton-Pitts axioms [14].

5.4.2 BCH Cubical Sets and 01-Substitution Sets

BCH cubical sets were introduced by Bezem, Coquand and Huber in [2], and
further developed by Huber in [10]. They were later still further developed
by Bezem, Coquand and Huber in [3], where they showed how to interpret the
univalence axiom in the model. In [15] Pitts showed that this category of cubical
sets is equivalent to a category based on nominal sets, denoted 01-substitution
sets. Since this paper is only concerned with structure that is preserved up to
isomorphism by equivalences of categories, we can freely switch back and forth
between the two presentations.

The monoidal product we use is separated product. This is naturally defined
in 01-substitution sets, where it has the same definition as the separated product
in nominal sets. The right adjoint to −⊗I exists and can be explicitly described
in terms of name abstraction. See [10, Section 2.4] for a detailed description by
Huber.

In [21, Section 7.5.3] the author showed that trivial fibrations can be viewed
as cofibrantly generated in two senses. They can be viewed as cofibrantly gen-
erated in Garner’s sense by boundary inclusions together with a uniformity
condition (which in loc. cit. is referred to as cofibrantly generated with respect
to the category indexed families fibration). This is essentially the same as the
definition by Bezem, Coquand and Huber in [3]. Trivial fibrations can also be
viewed as cofibrantly generated with respect to the codomain fibration. The
latter description can be used to show that the awfs (C,F t) of cofibrations and
trivial fibrations is stable under pullback if it exists. In fact, using [21, Corollary
7.5.5] we can show that (C,F t) is strongly fibred with respect to the codomain
fibration. This means that it forms part of a fibred awfs over the codomain
fibration in which the restriction to each fibre category is pullback stable. This
leaves the problem of actually constructing the awfs (C,F t), which can be done
using [22, Theorem 6.14], together with the observation that the generating
cofibrations are locally decidable, or by using Garner’s small object argument
[8]. The awfs can also be constructed directly in a similar manner to [20], fol-
lowed by direct verification of pullback stability. See [3] for such a construction
(or [19]). Note that n-dimensional boundary inclusions can be defined as the
pushout product of n copies of [δ0, δ1]. It follows that the generating cofibra-
tions are closed under pushout product with [δ0, δ1], which then ensures that
axiom 5.5 is satisfied.

We define the interval object to be the same as in [2, Section 6.1].
We define the awfs (Ct, F ) of trivial cofibrations and fibrations to be cofi-

brantly generated by pushout product of a generating cofibration with an end-
point inclusion δi, following the same construction as in section 5.4.1. Note that
the pushout product of a boundary inclusion with δi gives us the standard open
box in direction i. Hence this gives the same definition of fibration as given
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by Huber in [10, Remark 3.9] or by the author in [20, Section 5]. This defines
the awfs (Ct, F ) uniquely up to isomorphism. In order to show that (Ct, F )
actually exists, one can either apply Garner’s small object argument, or give a
direct description as in [20]. Once again this definition automatically gives us
axioms 5.6 and 5.7.

This time constructing the comparison map is a little trickier. However, it
can be done using the following lemma.

Lemma 5.11. Suppose that we are given a finitely cocomplete affine monoidal
category (C,⊗) together with an awfs (L,R) and an interval object δ0, δ1 : 1 → I.

If we are given an L-coalgebra structure on a map m and an L-coalgebra
structure on [δ0, δ1]⊗̂m, then we can produce an L-coalgebra structure on δi⊗̂m

for i = 0, 1.
Moreover, this assignment is functorial, in the sense that it is the action on

objects of a functor L-Map× L-Map → L-Map.

Proof. We will just do the case i = 0, the other case being similar. Roughly
the idea is that if we are given an n dimensional open box, we can find a filler
by first building the top lid (which is n − 1 dimensional), and then filling the
resulting boundary of the n-cube. We will show how δ0⊗̂m can be built up from
cofibrations.

Say that m : A → B and write D for the domain of δ0⊗̂m. By definition, D
is given by the following pushout diagram.

1⊗A
δ0⊗A

//

1⊗m

��

I⊗A

��
1⊗B // D

❴✤

Now if L is the domain of [δ0, δ1]⊗̂m, then note that we have a canonical
map i : D → C given by the inclusion ι1 : 1 → 2. This gives us a commutative
square of the form below.

1⊗A
ι1 //

1⊗m

��

I⊗A // D

��
1⊗B

ι1⊗B
// 2⊗B // C

One can verify by diagram chase that in fact this square is a pushout. We
think of this as gluing the missing lid to the n-dimensional open box to make it
into the boundary of the n-dimensional cube. Further diagram chasing shows
that in fact δ0⊗̂m factors as the map D → C followed by [δ0, δ1]⊗̂m. Informally,
we visualise this as including the n-dimension open box into the n-cube, by first
including it into the boundary, and then including the boundary into the n-cube.

However, we have now exhibited δ0⊗̂m as a pushout of a generating cofi-
bration, m composed with [δ0, δ1]⊗̂m, which is also a generating cofibration.
Both pushout and composition preserve L-coalgebra structure, so we obtain an
L-coalgebra structure on δ0⊗̂m.

Functoriality is tedious but straightforward to verify.
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Theorem 5.12. Suppose that M : J → 01Sub
2 is the generating diagram of cofi-

brations, defined as above, using boundary inclusions. Then δ0⊗̂M and δ1⊗̂M

factor through the forgetful functor from C-coalgebras to 01Sub
2.

Proof. As explained above, we can show how to functorially assign [δ0, δ1]⊗̂M

with the structure of a C-coalgebra. However, we can now apply lemma 5.11.

In this setting it is also possible to view axioms 5.5, 5.6 and 5.7 in a more
geometric fashion. Axiom 5.5 corresponds to the fact that given a boundary
of an n dimensional cube, we obtain a new boundary of an n + 1 dimensional
cube by taking the product with the interval to get a tube, and then pasting
on both ends of the tube. As stated above, axiom 5.6 follows from the way we
define generating trivial cofibrations, in which a generating trivial cofibration is
an open box, which can be seen as a tube with only one of the ends pasted on.
Finally axiom 5.5 corresponds to the fact that if we are given an open box we
obtain a new open box when we take the product with the interval, and then
paste on both sides of the prism, while leaving the top open.

5.4.3 Van den Berg-Frumin/Orton-Pitts Axioms

In [21, Section 7.5.2] the author gave a definition related to a class of structures
considered by Orton and Pitts in [14] and by Van den Berg and Frumin in
[23]. This presentation is closest to that of Van den Berg and Frumin, which in
turn is based on the Gambino-Sattler definition above. We work over a locally
cartesian closed category C with finite colimits, disjoint coproducts, and an
interval object δ0, δ1 : 1 → I. In order to construct the awfs’s (C,F t) and (Ct, F )
we will assume that C satisfies one of the “codomain fibred” versions of the small
object argument developed by the author in [22]. For example, it suffices that
C is a topos with natural number object and satisfies WISC. Examples of such
structures include CCHM cubical sets, as defined in [6] and simplicial sets. For
now, we don’t assume that the interval object has connections, although we will
see in section 6.1 that in that case we can simplify the argument.

In this setup we start with an awfs (C,F t) which is cofibrantly generated
with respect to the codomain fibration by a family of maps of the form below.

1
⊤ //

⊤
��❃

❃❃
❃❃

❃❃
Σ

⑧⑧
⑧⑧
⑧⑧
⑧⑧

⑧⑧
⑧⑧
⑧⑧
⑧⑧

Σ

In this case we automatically get pullback stability, as for BCH cubical sets.
For now we don’t assume that the generating cofibrations are closed under
composition, although we’ll see later in section 6.2 that in this case the argument
simplifies. We do however, assume that cofibrations are closed under finite union
and that both endpoint inclusions δi are cofibrations. This ensures we get axiom
5.5.

We again define (Ct, F ) as cofibrantly generated by pushout product with a
cofibration and an endpoint inclusion. In contrast to BCH cubical sets, in this
case (Ct, F ) will also be cofibrantly generated with respect to the codomain
fibration on C. For this to work smoothly, instead of working with arbitrary
monoidal products as before, we only consider cartesian product, which easily
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extends to a fibred monoidal product over the codomain fibration, which then
ensures pushout product is also fibred [21, Section 6]. We then define (Ct, F ) to
be the awfs cofibrantly generated by the coproduct of the following two families
of maps.

I+1 Σ
δ0×̂⊤

//

""❋
❋❋

❋❋
❋❋

❋❋
I× Σ

||③③
③③
③③
③③
③

Σ

I+1 Σ
δ1×̂⊤

//

""❋
❋❋

❋❋
❋❋

❋❋
I× Σ

||③③
③③
③③
③③
③

Σ

See [21, Section 7.5.2] for more details. Note that we again easily obtain axioms
5.6 and 5.7 from this definition.

5.5 Proof of Existence of Identity Types

First note that we can define a functorial choice of factorisations of diagonal
maps using the following well known construction, usually referred to asmapping
path space.

Given a map f : X → Y , we define P (f) to be given by the pullback below,
where the bottom map Y → P (Y ) corresponds to the projection Y ⊗ I → Y

under the adjunction.

P (f)
❴
✤

//

��

P (X)

��
Y // P (Y )

When f is clear from the context, we will also write P (f) as PY (X).
Note that we have evident maps r : X → PY (X) and projections p0, p1 : PY (X) →

X over Y .
One can verify by diagram chase that pf := 〈p0, p1〉 : PY (X) → X×Y X can

be viewed as a pullback of ˆhom(f, [δ0, δ1]) (see [11, Proposition 2.3.3] for the
analogous statement in simplicial sets). We can therefore assign it the structure

of a fibration by first applying axiom 5.7 to give ˆhom(f, [δ0, δ1]) the structure of
a fibration, and then assigning pf the unique fibration structure preserved by
the pullback.

We construct the choice of factorisations IdY (X) using (C,F t) in the pre-
ams together with P , exactly like in theorem 4.13. It remains to show that this
does give us a stable functorial choice of very good path objects.

We will use a structured version of the definitions of homotopy and strong
deformation retract defined below. This is based on the non-structured version
used e.g. by Gambino and Sattler in [7, Remark 4.2].

Definition 5.13. Suppose we are given morphisms f, g : X → Y . A struc-
tured homotopy from f to g is a map h : X ⊗ I → Y fitting into the following
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commutative diagram.

X

X⊗δ0

❋❋
❋❋

""❋
❋❋

f

%%
X ⊗ I

h // Y

X

X⊗δ1①①①①

<<①①①①

g

99

Suppose we are given maps f, g : X → Y , f ′, g′ : X ′ → Y ′, together with a
structured homotopy h from f to g and a structured homotopy h′ from f ′ to g′,
and maps k : X → X ′ and l : Y → Y ′. We say k and l preserve the structured
homotopies if the following equations hold.

1. l ◦ f = f ′ ◦ k

2. l ◦ g = g′ ◦ k

3. h′ ◦ (k ⊗ I) = l ◦ h

Definition 5.14. A (structured) strong deformation retract from X to Y con-
sists of the following.

1. A morphism f : X → Y .

2. A morphism s : Y → X .

3. A structured homotopy h from s ◦ f to 1X .

The maps are required to satisfy the following equalities.

1. f ◦ s = 1Y

2. h ◦ (s⊗ I) = s ◦ π0 (where π0 is the projection X ⊗ I → X)

Suppose we are given strong deformation retracts (f, s, h) and (f ′, s′, h′),
together with a map k : X → X ′ and l : Y → Y ′. We say k and l preserve the
structured strong deformation retracts if they satisfy the following equalities.

1. l ◦ f = f ′ ◦ k

2. k ◦ s = s′ ◦ l

3. k and l preserve the structured homotopies h and h′

Lemma 5.15. Suppose we are given a fibration f : X → Y . Then we can given
each projection ei : PY X → X the structure of a trivial fibration. Moreover this
is functorial, in the sense that given a morphism of fibrations, the commutative
square derived from the functoriality of PY X is a morphism of trivial fibrations.

Proof. It is straightforward to exhibit ei as a pullback of ˆhom(δi, f), which has
the structure of a trivial fibration by axiom 5.6. We assign ei the unique trivial
fibration structure that makes the pullback a morphism of trivial fibrations.
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Lemma 5.16. Suppose we are given maps r : A → B and i : B → A such that
i ◦ r = 1A, together with the structure of a cofibration on r and the structure
of a trivial fibration on i. Then we can extend r and i to a structured strong
deformation retract.

Also, this is functorial in the sense that every commutative square that pre-
serves the cofibration and trivial fibration structures leads to a commutative
square preserving the strong deformation retract structures.

Proof. We will define a lifting problem of r⊗̂[δ0, δ1] against i. By axiom 5.5, we
will be able to find a diagonal filler.

The domain of r⊗̂[δ0, δ1] is by definition the pushout below.

A⊗ 2
A⊗[δ0,δ1] //

r⊗I

��

A⊗ I

��
B ⊗ 2 // A⊗ I+A⊗2 B ⊗ 2

❴✤

To define a map A⊗ I+A⊗2 B⊗ 2 → B is therefore to define a map B⊗ 2 → B

and a map A⊗ I → B ensuring that the two maps A⊗ 2 → B agree.
Note that since ⊗ is affine and preserves colimits, we have B ⊗ 2 ∼= B + B.

We can therefore define a map B ⊗ 2 → B as [r ◦ i, 1B].
We define the map A⊗ I → B to be r ◦ π0.
This then gives us the following lifting problem, where the top morphism is

defined as above.
A⊗ I+B ⊗ 2

r⊗̂[δ0,δ1]

��

// B

i

��
B ⊗ I

i◦π0

// A

We take h : B⊗I → B to be the diagonal filler given by the cofibration structure
on r⊗̂[δ0, δ1] (which in turn is given by the cofibration structure on r via axiom
5.5) together with the trivial fibration structure on i.

We need to check that h : B ⊗ I → B does witness that r is a strong defor-
mation retract. The upper triangle identity ensures that h ◦ B⊗ δ0 = r ◦ i, that
h ◦ B⊗ δ1 = 1B, and that h ◦ r⊗ I = r ◦π0. Hence, h does indeed witness that
r is a strong deformation retract.

Functoriality follows from axiom 5.5 together with diagram chasing.

Lemma 5.17. The map Cr : X → IdY (X) has the structure of a strong defor-
mation retract.

Furthermore, this is functorial in the following sense. If we are given a
morphism of fibrations from f : X → Y to f ′ : X ′ → Y ′, then the commutative
square given by the functoriality of Id preserves the strong deformation retract
structure.

Proof. Note that Cr has a retract given by i := e0 ◦ F
tr. Note that e0 is given

the structure of a trivial fibration by lemma 5.15, and F t also has the structure
of a trivial fibration. By composing these, we give i also the structure of a trivial
fibration.

We now apply lemma 5.16.
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Lemma 5.18. Suppose that we are given a cofibration t : A → B with the
structure of a strong deformation retract. Then we can assign t the structure of
a trivial cofibration, and moreover this can be done functorially.

Proof. This is essentially a functorial version of a special case of [7, Lemma 4.3],
but for completeness we write out the details below.

We write out the structure of a strong deformation retract as a map i such
that i ◦ t = 1A and the map h : B ⊗ I → B in the diagram below.

B

B⊗δ0

❊❊
❊❊

""❊
❊❊

t◦i

$$
B ⊗ I

h // B

B

B⊗δ1②②②②

<<②②②

1B

:: (12)

We also have that i ◦ h = i ◦ π0 and h ◦ t⊗ I = t ◦ π0.
We can now exhibit t as a retract of t⊗̂δ0 in the diagram below. Note that we

can show that the right hand square really does commute using the upper part of
(12) together with the identity h◦t⊗I = t◦π0. The upper horizontal composition
is trivially the identity. We show that the lower horizontal composition is the
identity on B by using the lower half of (12).

A

t

��

A⊗δ1// B +A A⊗ I

t⊗̂δ0

��

[i,π0] // A

t

��
B

B⊗δ1

// B ⊗ I
h

// B

However, this allows us to assign t the structure of a trivial cofibration from
that of t⊗̂δ0, which we construct using proposition 5.8 together with axiom
5.6.

Theorem 5.19. The objects IdY (X) can be given the structure of a stable
functorial choice of very good path objects.

Proof. We need to show how to give the map Cr : X → IdY (X) the structure of
a trivial cofibration. We showed in lemma 5.17 how to give it the structure of
a strong deformation retract. In any case it has the structure of a cofibration,
and so by lemma 5.18 we can assign it the structure of a trivial cofibration.

We next show how to assign a fibration structure to the map IdY (X) →
X ×Y X defined as the composition of F tr : IdY (X) → PY X with the original
map pf : PY X → X ×Y X . We know that F tr has the structure of a trivial
fibration, so using the comparison map ξ : (Ct, F ) → (C,F t) we can assign it
also the structure of a fibration. In general in an awfs fibrations can be composed
functorially, giving us a fibration structure on pf ◦ F tr, as required.

Finally, the proof of stability is exactly the same as in theorem 4.13, using
the assumptions that P is stable and that (C,F t) is pullback stable.
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6 Two Simplifications in CCHM Cubical Sets

The first version of this work was largely specific to 01-substitution sets, al-
though it was fairly clear that the main ideas should generalise to other situa-
tions. At this time Cohen, Coquand, Huber and Mörtberg were already using
the newer definition of cubical sets, which now appears in [6]. There was some
discussion between Thierry Coquand, Simon Huber and the author on how to
translate the ideas into the new definition of cubical sets. During this discussion,
Coquand noticed that in fact in this specific situation, a simplified definition of
identity type can be used, where it is easier to give explicit definitions of the
objects and maps involved. This simplified version was the one used for the
definition of identity types in [6]. The same construction was applied to a wide
class of models by Orton and Pitts in [14]. Another variant of that construction
was used by Van den Berg and Frumin in [23] and in fact the presentation here
will be much closer to the Van den Berg-Frumin version.

6.1 Using Connections for the Strong Deformation Re-

tract Structure

The first observation was that for constructing the strong deformation retract
structure one can exploit the fact that CCHM cubical sets include connections to
get a more explicit definition that does not require the map f to be a fibration.

We will give an explanation of this in the lemmas below. Following Gambino
and Sattler [7], we note that in fact all we need is that the interval object I has
connections, in the form of two maps ci : I ⊗ I → I for i = 0, 1 satisfying
appropriate equalities.

Lemma 6.1. Suppose that we are given maps I⊗ I → I giving connections on
I satisfy the conditions given by Sattler in [18, Section 3.2]. Then X → PY X

always has the structure of a strong deformation retract (even if f is not a
fibration).

Proof. As Gambino and Sattler point out in [7, Section 2], the connections on I

give P the structure of a functorial cylinder in the opposite category. It follows
that the maps X → PY (X) are strong deformation retracts by [7, Remark 4.2]
noting that the extra conditions added in [18, Section 3.2] imply that this holds
for PY for all Y rather than just P .

To give the map X → IdY (X) the structure of a strong deformation retract,
we use the lemma below to “lift” the strong deformation retract structure on
the map X → PY (X).

Lemma 6.2. Suppose we are given a diagram as below.

B′

f

��
A

r //

r′
>>⑥⑥⑥⑥⑥⑥⑥⑥
B

Suppose further that r is given the structure of a strong deformation retract of
the form i : B → A and h : B ⊗ I → B, that f is given the structure of a trivial
fibration, and that r′ is also given the structure of a cofibration. Then we can
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assign r′ the structure of a strong deformation retract of the form i′ : B′ → A

and h′ : B′ ⊗ I → I, satisfying the following commutative diagrams.

B′

i′

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

f

��
A B

i
oo

B′ ⊗ I
h′

//

f⊗I

��

B′

f

��
B ⊗ I

h
// B

(13)

Furthermore this assignment is functorial.

Proof. First note that the first diagram in (13) tells us that we have to have
i′ = i ◦ f , so we take this for the definition of i′. Then we already see that
i′ ◦ r′ = 1A.

Next, following the same outline as in the proof of lemma 5.16, we will define
a lifting problem of r′⊗̂[δ0, δ1] against f .

We again note that to define a map A⊗ I+A⊗2 B
′ ⊗ 2 → B′ is therefore to

define a map B′ ⊗ 2 → B′ and a map A⊗ I → B′ ensuring that the two maps
A⊗ 2 → B′ agree.

In fact we define both of these exactly the same as in lemma 5.16. Namely,
we define the map B′ ⊗ 2 → B′ to be given by [δ0, δ1] via the isomorphism
B′ ⊗ 2 ∼= B′ +B′, and we define the map A⊗ I → B′ to be r′ ◦ π0.

We define the lower map B′ ⊗ I → A to be h ◦ f ⊗ I. We then take h′ to be
the diagonal filler given by the cofibration structure on r⊗̂[δ0, δ1], as below.

A⊗ I+B′ ⊗ 2

r⊗̂[δ0,δ1]

��

// B′

f

��
B′ ⊗ I

f⊗I

//

h′

44

B ⊗ I
h

// A

Exactly the same as for lemma 5.16, the upper triangle ensures that h′ is a
homotopy from r′ ◦ i′ to 1B′ , and that h′ ◦ r′ ⊗ I = r′ ◦ π0. Hence, this does
give a strong deformation retract.

The lower triangle tells us that the square in (13) commutes.
Functoriality is again the same as for lemma 5.16.

Remark 6.3. We can in fact recover lemma 5.16 as a special case of lemma
6.2, by taking A = B and r to be 1A, which trivially has the structure of a strong
deformation retract.

We can now give an alternative proof of lemma 5.17. We split it into two
steps. First show that the reflexivity map X → PY (X) is a strong deformation
retract using lemma 6.1, and then lift this structure to the map X → IdY (X)
using lemma 6.2.

This version of the proof makes essential use of the connections on I, but
now applies to any map f , without needing any fibration structure on f .

6.2 Avoiding a Transfinite Construction

Note that the definition of the cofibrantly generated awfs (C,F t) according
to Garner’s small object argument [8] involves a transfinite construction. The
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second observation, by Coquand, was that in fact a transfinite construction
is not necessary, and one can give a much simpler definition that suffices for
constructing identity types.

The key point is that there is a much simpler awfs (C1, F
t
1) such that (C,F t)

is algebraically free on the underlying lawfs of (C1, F
t
1). One way of understand-

ing (C1, F
t
1) is as an internal version of step-one of Garner’s small object argu-

ment. See [21, Section 7.5.2] for more precise explanation of this. As observed
by Gambino and Sattler it can also be viewed as a partial map classifier. See [7,
Remark 9.5] for that description. See also the description by Van den Berg and
Frumin in [23]. In any case this construction gives an lawfs, and as Bourke and
Garner show in [5], extending an lawfs to an awfs corresponds precisely to giving
a natural way of composing C1-coalgebras

4. So, the reason that we can do this
is that in CCHM cubical sets the generating cofibrations can be composed (see
[21, Section 7.5.2] for more detail). As noticed by Sattler (and as explained in
[7, Remark 9.5]), although (C,F t) is algebraically free on the underlying lawfs
of (C1, F

t
1), these are definitely different awfs’s.

We will now show that in general in this situation we can instead use (C1, F
t
1)

to construct the identity types.
For convenience, we will continue to assume that we are given a pre-ams

(Ct, F ) → (C,F t). However, we observe that now neither awfs is being used
to construct objects, but only to define the categories of (trivial) cofibrations
and fibrations. It is possible to use this idea to rephrase the results to work
without those awfs’s at all. Indeed the proofs in [6], [14] and [23] do not use
any transfinite construction.

Lemma 6.4. Suppose that (C1, F
t
1) is an lawfs and ζ : (C1, F

t
1) → (C,F t) is

a morphism of lawfs’s witnessing that (C,F t) is algebraically free on (C1, F
t
1).

Suppose further that µ : (F t
1)

2 → F t is a natural transformation making F t
1 into

a monad. Then for each f we can assign C1f the structure of a cofibration and
F t
1f the structure of a trivial fibration.
Moreover, this assignment is functorial in f .

Proof. First note that the morphism ζ gives us a canonical map from C1-
coalgebras to C-coalgebras commuting with the forgetful functors.

We apply this functor to the canonical C1-coalgebra structure on C1f given
by comultiplication to give it the structure of a C-coalgebra.

Similarly, ζ gives a morphism from F t-algebras to F t
1-algebras commuting

with the forgetful functor. By the definition of algebraic freeness this functor is
an isomorphism, and so its inverse is a functor from F t

1-algebras (in the pointed
endofuntor sense) to F t-algebras (in the monad sense).

Next, note that we can assign F t
1f the structure of an F1-algebra using the

multiplication µ. We then forget that the algebra respects the multiplication
to get an algebra over F t

1 as a pointed endofunctor, and then apply the functor
above to give it the structure of an F t-algebra.

Theorem 6.5. Suppose that ξ : (Ct, F ) → (C,F t) is a pre-ams satisfying the
conditions in section 5, that (C,F t) is algebraically free on an lawfs (C1, F

t
1)

and that we are given a multiplication map µ making F t
1 a monad.

4Here we mean coalgebras over the comonad C1.
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For each f : X → Y , define IdY (X) to be given by the (C1, F
t
1) factorisation

of the map X → PY (X) as in the diagram below.

IdY (X)

F t
1
r

%%❏
❏❏

❏❏
❏❏

❏❏

X

C1r
<<①①①①①①①①①

r
// PY (X)

Then IdY (X) can be equipped with structure of functorial choice of very good
path objects.

Proof. We apply lemma 6.4 to give C1r the structure of a C-coalgebra and F t
1r

the structure of a F t-algebra. We then continue with exactly the same proof as
in section 5.5
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