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PRESSURE, POINCARE SERIES AND BOX DIMENSION OF
THE BOUNDARY

GODOFREDO IOMMI AND ANIBAL VELOZO

ABSTRACT. In this note we prove two related results. First, we show that for
certain Markov interval maps with infinitely many branches the upper box
dimension of the boundary can be read from the pressure of the geometric
potential. Secondly, we prove that the box dimension of the set of iterates
of a point in dH™ with respect to a parabolic subgroup of isometries equals
the critical exponent of the Poincaré series of the associated group. This
establishes a relationship between the entropy at infinity and dimension theory.

1. INTRODUCTION

The application of thermodynamic formalism to the dimension theory of dynam-
ical systems dates to the work of Bowen [B], who related the Hausdorf{f dimension of
a dynamically defined set to the root of a certain pressure function. More precisely,
he proved that the Hausdorff dimension of the limit set of a quasi-Fuchsian group
can be recovered from the pressure of a suitably chosen potential (see [B, Lemma
10]). Bowen’s beautiful result highlights the relation between thermodynamic for-
malism and the dimension theory of limit sets. In the present article we prove, for
two classes of dynamical systems defined on non-compact spaces, a new relation
between these two theories.

We first consider a class of Markov interval maps with countably many branches
called Expanding-Markov-Renyi interval maps (EMR). These are maps of the form
T: ", I, — [0,1], where I,, = [an,by], and (I,)%_; is a collection of closed
intervals contained in [0,1] with disjoint interiors. Mauldin and Urbariski [MU]
proved that the Hausdorff dimension of the non-compact repeller A of an EMR
map T is essentially the root of an equation involving the pressure of the geometric
potential (see Proposition 2.9). They proved that

dimgy(A) =inf{teR: P(t) <0},

where dimgy denotes the Hausdorff dimension and P(t) the pressure function (for
precise definitions see Section 2). This generalizes Bowen’s result to non-compact
settings (see [Fa2, Chapter 5] for the result in the setting of expanding Markov
maps with finitely many branches).

In this context, the pressure function P(t) has a critical value sq, € (0,00) such
that if ¢ < sy then P(t) = oo and if ¢ > s4 then the pressure is finite. The
relation between the critical value so, and the multifractal analysis theory has been
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studied in [ , 1J]. For example, in [ , Section 7] it is proved that the
value sy, is a lower bound for the Hausdorff dimension of sets of numbers having a
prescribed frequency of digits in their continued fraction expansion. It was shown
in [I.J, Theorem 5.1] that the behaviour of the pressure at so, determines regularity
properties of the multifractal spectrum of Lyapunov exponents. Moreover, in [[J,
Theorem 7.1] it is proved that the Hausdorff dimension of the set of points having
infinite Lyapunov exponent is precisely sq.

In this article we prove a new relation between sy, and the dimension theory of T
A novelty being that instead of Hausdorff, we consider box dimension. We denote
by dimp and dimpg the upper box dimension and the box dimension, respectively.
One of the main results in this paper is the following (see Theorem 2.10).

Theorem 1.1. Let T be an EMR map. Then

Sop < dimp (U {an,bn}> .

n=1

If the box dimension of | J;_, {an,bn} exists, then
[e¢]
S0 = dimp U {an,bn}.
n=1

Depending on the properties of the pressure function at the critical value we are
able to derive certain stability results. For example, we prove existence of measures
of maximal dimension for perturbations of the original map (see Corollary 2.15).

Bowen’s work on the dimension theory of limit sets has been further developed by
Sullivan. In a landmark paper [Sul] Sullivan proved that the Hausdorff dimension of
the limit set of a geometrically finite Kleinian group I < Iso(H™) coincides with the
critical exponent of I', which is denoted by dr (see [Sul, Theorem 25]). For precise
definitions we refer the reader to Section 3. A major generalization of Sullivan’s
result was obtained by Bishop and Jones in [B.J], where they proved that the critical
exponent or is equal to the Hausdorff dimension of the radial limit set of I" for an
arbitrary Kleinian group (see [BJ, Theorem 2.1]). The critical exponent of I' has
yet another dynamical interpretation: it is equal to the topological entropy of the
geodesic flow on T (H"/T') (see [OF, Theorem 1]). In other words we have that
or = sup, hy, (91), where the supremum runs over the space of invariant probability
measures of the geodesic flow and ¢; is the time-one map of the geodesic flow.

In recent works a new dynamical invariant has been studied, the entropy at
infinity of the geodesic flow (see [[RV], [RV], [V2]). For completeness we recall its
definition here. We say that a sequence of measures (p,, ), converges in the vague
topology to fu if limy, o § fdp,, = § fdp, for every continuous function of compact
support f. The entropy at infinity of the geodesic flow on H" /T is defined by

ho(T') :=  sup limsuphy, (91),
(Nn)n_’o n—00
where the supremum runs over sequences of invariant probability measures (i )n
that converge in the vague topology to the zero measure. The entropy at infinity
of the geodesic flow is strongly related to the upper-semicontinuity of the entropy
map and it is an important tool in the study of the thermodynamic formalism of
the geodesic flow (see [IRV], [RV], [V1], [V2]).
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From now on assume that I' < Iso(H") is geometrically finite. In this case the
topological entropy of the geodesic flow on H" /T is equal to the Hausdorf{f dimension
of the limit set of I'. Because of this relation it is natural to ask if there is also a
relation between the entropy at infinity and dimension theory of the boundary. One
of the main goals of this paper is to prove that for geometrically finite manifolds
this is indeed the case. It is important to mention that under the geometrically
finite assumption we have that hy(I') = supp dp, where the supremum runs over
the parabolic subgroups of ' (see [RV, Theorem 1.3]). In other words, the entropy
at infinity is determined by the critical exponent of the parabolic subgroups of I'.
In Section 3 we prove the following result.

Theorem 1.2. Let P < Iso(H™) be a parabolic subgroup and & € OH™ a point which

is not fized by P. Then
dp = dimp (U pf) ;

peP
where dimp is the box dimension computed using the spherical metric on 0H™.

In Section 3 we also obtain very similar results to those in Sub-section 2.5 in the
context of Cat(—1) surfaces.

It is interesting to note the relation between the ergodic theory of countable
Markov shifts (or related dynamical systems such as the interval maps considered
in this article) and the ergodic theory of geodesic flows on non-compact complete
hyperbolic manifolds. In some cases Markov partitions can be constructed for the
geodesic flow and then the relation is rather explicit (see [DP, ]). Unfortunately,
in general it is not known if there exists a symbolic coding for the geodesic flow.
Despite this, in recent years thermodynamic formalism for geodesic flows has been
extensively studied and results have been proved in analogy to those obtained for
countable Markov shifts (see for example [PPS, PS, RV, V1, V2]). On the other
hand, the ergodic theory of countable Markov shifts has been studied mirroring
results obtained for geodesic flows. For example, continuity properties of the en-
tropy map and its relations with escape of mass were obtained in [RV, V2] for the
geodesic flow and later in | , ] for countable Markov shifts. The results in
this paper are further evidence of the strong relation between these two classes of
dynamical systems.

Acknowledgment. We thank Neil Dobbs and Amitesh Datta for many useful com-
ments on this paper. G.I. was partially supported by CONICYT PTA ACT172001
and by Proyecto Fondecyt 1190194.

2. PRESSURE AND DIMENSION

2.1. Dimension theory. In this sub-section we recall some basic definitions and
results from dimension theory that will be used in what follows. For a complete
account on dimension theory we refer the reader to [Fal] and [Fa2].

Let (M, d) be a metric space. The diameter of a set B < M is denoted by |B|.
A countable collection of subsets {U;}ieny of M, is called a d-cover of F < M if
F < U;en Ui, and |U;] is at most 6 for every i € N. Letting s > 0, we define

o0
H(JT) = %i_r)r(l)inf {Z |U;|° : {U;}; is a 0-cover of J} .

i=1
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The Hausdorff dimension of the set J is defined by
dimg (J) :=inf {s > 0: H*(J) = 0}.
The Hausdorff dimension of a Borel measure p is defined by
dimp () = inf {dimp (Z) : pu(Z) = 1.

For a detailed discussion on the Hausdorff dimension see [Fal, Chapter 2].

An alternative definition of dimension that will be central to this work is the box
dimension. Let FF < M and Ns(F) be the smallest number of sets of diameter at
most ¢ needed to cover F'. The lower and upper box dimensions are defined by

) .. o log N5 (F) 1 log Ns(F)
dimp(F) := hgn_)lglf “Togs dimp(F) := hr;lj(t)lp ~Togd
If the limits above are equal then we call this common value the box dimension of
the set F,
. .. log Ns(F)

Remark 2.1. Tt is useful to note that in the definition of box dimension it is possible
to replace the number Ns(F') by the largest number of disjoint balls of radius ¢ and
centers in F (see [Fal, p.41]).

The following result will be of great importance in this paper (see [Fa2, Propo-
sition 3.6 and 3.7]).

Proposition 2.2. Let I,, = [ay, b,] be a sequence of intervals with disjoint interiors
such that [0,1] = U, I, and let F = | J_ {an,bn}. Assume that (b, — an)n is
non-increasing. Then

( lim inf 710g(bn — an)

n—co logn

o S o log(bn —an)\

> < dimp(F) < dimp(F) < <hmsup7> .
E— 00 logn
2.2. Markov shifts and Markov maps. In this Sub-section we explain the sym-
bolic structure we assume for the one dimensional maps we consider.
The full-shift on the countable alphabet N is the pair (3, c) where ¥ := NY and

o : X — X is the shift map defined by o(w1,ws, ) = (w2, ws, -+). We equip X
with the topology generated by the cylinders sets

Ciyoviyy = {weX:w; =14;,Vje{l,...,n}}.
Denote by I = [0,1] the unit interval. Let {I;};en be a countable collection of
closed intervals where int([;) nint(l;) = &, for 4,j € N with ¢ # j, and [a;, b;] :=

I, c I for every i € N. Let T : U;O:l I, — I be a map. The repeller of such a map
is defined by

o0
A= {:1: € U I; : T"(z) is well defined for every n € N} .
i=1

Let O 1= Uj_o T *(U;Z{ai, bi}). We say that T is Markov and it can be coded by
a full-shift on a countable alphabet if there exists a homemorphism 7 : ¥ - AN O
such that T om = mo 0. Denote by I;;. ;, < I the projection of the symbolic
cylinder Cy, . ;, by 7.
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2.3. The class of maps. The class of EMR (expanding-Markov-Renyi) interval
maps was considered by Pollicott and Weiss in [PW] in their study of multifractal
analysis.

Definition 2.3. Let {I;};,en be a countable collection of closed intervals where
int(I;) nint(l;) = & for 4,5 € N with ¢ # j and [a;,b;] := I; < I for every i e N. A
map T : Ule I, — I is an EMR map, if the following properties are satisfied
(a) The only accumulation point for the end points of the intervals [a;, b;] is
z = 0.
(b) The map is C? on | J;2, int I;.
(c) There exists £ > 1 and N € N such that for every x € | J;—, [; and n > N
we have |(T")'(x)| > &£".
(d) The map T is Markov and it can be coded by a full-shift on a countable
alphabet.
(e) The map satisfies the Renyi condition, that is, there exists a positive number
K > 0 such that

7" ()|
sup SUp T~
neN ay.zet,, | T (Y)|[T"(2)]

Ezample 2.4. The Gauss map G : (0,1] — (0, 1] defined by

=1 [1]

X

S

where [-] is the integer part, satisfies our assumptions. The Gauss map with re-
stricted digits (that is the Gauss map with branches erased so that there are still
infinitely many branches left) is also a EMR map.

The following is a fundamental property of EMR maps, see | , Chapter 7
Section 4] or [PW, p.149].

Lemma 2.5. There exists a positive constant C' > 0 such that for every x € A\ O
with x € I, _;, we have

n

1
Iel < sup Sup
n=0 yelil,_,in

(1) (a)
(1) (y)
2.4. Thermodynamic formalism and Hausdorff dimension. Thermodynamic
formalism is a set of tools brought to ergodic theory from statistical mechanics in
the 1960s that allows for the choice of relevant invariant probability measures.
It has surprising and interesting applications to the dimension theory of dynam-
ical systems. The thermodynamic formalism of EMR maps and regular poten-
tials has been extensively studied and it is fairly well understood (see for example
[17, , , Sar]). We now summarize some known results.

< C.

Definition 2.6. The pressure of T' at the point ¢t € R is defined by

1 n—1 .
P(t) = lim — log T (T'x t) .
(0= Jim oz 3 <H| (')

It worth emphasizing that the pressure is usually defined over a large class of
functions (which in analogy to statistical mechanics are called potentials). Adopting
that point of view, the function P(¢) is equal to to the pressure of the potential
tf, where f(z) = —log|T’(x)| is the geometric potential. However, since the only
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potential used in this paper is the geometric potential it is convenient to simply
call this function the pressure of T at t € R.
We denote by M the space of T—invariant probability measures on I. The

entropy of the measure p € My is denoted by h(u) (see [Wa, Chapter 4] for a
precise definition). The pressure satisfies the following variational principle and
approximation property (see [LJ, Sub-section 2.1]).

Proposition 2.7. For every t € R we have

P(t) sup {h(l/) - tJ10g|T/| dv:ve Mr and flog |T'| dv < oo}

sup{ Pk (t) : K € K},

where K := {K < [0,1] : K # & compact and T-invariant}.

There is a precise description of the regularity properties of the pressure (see [I.J,
Sub-sections 2.1 and 2.2]).

Proposition 2.8. There exists so € (0,00] such that pressure function t — P(t)
has the following properties

Plt) - o0 ift < s
real analytic, strictly decreasing and strictly convex — if t > Sq.

Moreover, if t > so then there exists a unique measure py € My, that we call
equilibrium measure for ¢, such that P(t) = h(p,) — t §log |T"| du,.

It was noted by Bowen [B] in the finitely many branches setting (the compact
case) that the pressure P(t) captures a great deal of geometric information about A.
This observation was first generalized to the EMR setting by Mauldin and Urbanski
in [MU, Theorems 3.15, 3.21, 3.24] (see also [I, Theorem 3.1 and Proposition 3.1]).

Proposition 2.9. If T is an EMR map then
dimg(A) =inf{teR: P(t) < 0}.

Moreover, if sq < dimp(A) there exists a unique ergodic measure v € My such
that dimg v = dimg A. This measure is called measure of maximal dimension.

2.5. Pressure and box dimension. In this Sub-section we prove that the number
Soo has a dimension interpretation. It is a lower bound for the upper box dimension
of the boundary points of the Markov partition. Moreover, if the box dimension of
such set exists then it coincides with sq,.

Theorem 2.10. Let T be an EMR map then
_ o0
S0 < dimp <U {an,bn}> .
n=1
If the box dimension of | J;_, {an,bn} exists, then

[ee]
S0 = dimp U {an,bn}.

n=1
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Proof. Assume first that the map T is piecewise linear. In this case the slope of
T restricted to the sub-interval I,, = [a,,b,] satisfies |T'| = (b, — a,)~ L. In this
situation the pressure function can be computed explicitly (see for example [BI,
equation 9]). We have that

P(t) =1log > (bn — an)". (2.1)

Define

logn logn

L =liminf ——— d L=l _
= 17?110% —log(b, — an) an 151_,Sc}olp —log(b, — an)

Given ¢ > 0, there exists NV € N such that if n = N we have that
- 1
(b, — an)L“ < =< (bp— an)éfs
n

In particular, for r > 0, we get that

0 0 1 0
Z b —a, r(L+€) Z n_ Z b —a, r(L—a) (22)
= n=N n=N

Combining equation (2.1) and inequality (2.2) we obtain that

w0 N-1
P(r(L+¢)) = log Z (bn —an)"TH9) < log( Z (bn — an)"FF9) + Z ! ) (2.3)

n=1 n= N
If r > 1, then the right hand side of (2.3) converges. It follows from the definition
of sy (see Proposition 2.8) that r(L +€) > so. Since r is an arbitrary number
larger than 1, it follows that L + € > sq. Since € is an arbitrary positive number,

we conclude that L > s,. A similar argument using equation (2.1) and the right
hand side of inequality (2.2) give us that L < so,. We obtained that

L<sy<L. (2.4)

Inequality (2.4) also holds in the general case; we can reduce it to the linear case.
Indeed, by the Mean Value Theorem for every n € N there exists z € [ay, b,] such

that |T"(z)| = (b, — an)~!. By the Jacobian estimate (see Lemma 2.5) we have
that if y € [an, by] then
bn - Un -1
O )~ < 11(y)] < COon — )
Therefore
0 [ee)
—tlog C + log Z (b, — an)' < P(t) < tlogC + log Z (b —an)'.
n=1 n=1
Set S :=J"_; {an,bn}. Observe that by [I'.2, Proposition 3.6] and [I'22, Proposi-

tion 3.7] we know that

L <dimg(9) < dimp(S) <L,
and that

dimz(9)(1 — dimp(9)) o
N am ) <L <D<dms(s).
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In particular we have that dimp(S) = L. As mentioned in [I'22, Corollary 3.8], the
box dimension of S exists if and only if L = L. It follows from this and inequality
(2.4) that if L = L, then
S = dimp(S).
In general we only have the inequality
Sop & T = HB(S)

O

Ezample 2.11. If G is the Gauss map (see Example 2.4) then the set of boundary
points is {1/n : n € N}. The box dimension of this set is equal to 1/2 (see [Fal,
Example 3.5]) and so, = 1/2 (see [PW, p.150]).

Remark 2.12. Note that if T is and EMR map then, for any k > 1, the map T*
satisfies all assumptions of an EMR map except for condition (a). If we denote by
Prx () the pressure associated to the dynamical system T* then a classical result
relates it to the pressure of T' (see [Wa, Theorem 9.8 (i)]). Indeed, if f: A - R is
a locally Holder potential (see [IRV, p.616] for precise definition) then

Pre(Skf) = kPr(f),
where St f is the Birkhoff sum of f. In particular, if f = log|T”| then
Pri(—tlog|(T*)|) = kPr(—tlog|T")).

Therefore the number s, (7T") corresponding to T coincides with sq, (T*) correspond-
ing to T*. Since condition (a) in the definition of EMR map is not used in the proof
of Theorem 2.10 we have sy, is a lower bound for the upper box dimension of the
boundary points of the Markov partition of T%, for any k > 1.

2.6. Compact perturbations and measures of maximal dimension. The
following is a consequence of Theorem 2.10 and Proposition 2.9.

Corollary 2.13. Let T be an EMR map. If dimp (U,_, {an,bn}) < dimpg(A) then

there exists a measure of mazximal dimension.
We now define compact perturbations of the map T

Definition 2.14. Let T be an EMR map defined on the sequence of closed intervals
(I.)n. We say that T is a compact perturbation of T if the following two conditions
are satisfied:
(a) There exists a compact subset K < (0, 1] with the property that if int I,, n
K # & then I, K and T(z) = T(x) for every x € (U;2, ;) \ K.
(b) The map T is an EMR map.

The following result shows that the behaviour of the pressure at s, not only
determines the existence of measures of maximal dimension for the map T, but
also for compact perturbations of it.

Corollary 2.15. Let T be an EMR map such that P(sy) = 0. Then any compact
perturbation T of T has a measure of mazimal dimension.

Proof. Note that for any compact perturbation T the number s corresponding to
T is equal to that of T". Moreover, the pressure evaluated at that point is infinity
in both cases. Therefore T" has a measure of maximal dimension. O
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Remark 2.16. If T is an EMR map with so, < dimpy(A) and P(se) < oo then there
exists compact perturbations without measures of maximal dimension. An example
can be constructed considering the partition of [0, 1] given by the sequence defined
by a, = 1/(n(logn)?), see [I, Example 3.1].

2.7. Extremes of the multifractal spectrum. The following result is a con-
sequence of Theorem 2.10 and results obtained by Fan, Jordan, Liao and Rams

[FJLR].

Corollary 2.17. Let T be an EMR map for which the sequence (%)n

converges. Let o : A — R a bounded Holder potential. Then for every

o€ [inf{f(pdu S pE MT} ,sup{J<pdu D E MT}]
we have that

n—1 0
dim g <{x eA: nlgI%O% Z o(T'z) = a}) > dimp (U {an,bn}> .

=0 n=1

The next result is a consequence of Theorem 2.10 and [I.J, Theorem 7.1].

Corollary 2.18. Let T be an EMR map for which the sequence (%)n

converges. Then

. ) 1n—1 ; ) 0
dim g ({:17 eA: nlgxgoﬁ Z log|T" x| = oo}) = dimp (U {an,bn}) .

=0 n=1
3. GEODESIC FLOW ON A NEGATIVELY CURVED MANIFOLD

In this section we will relate the box dimension of points at the Gromov boundary
of Hadamard manifolds with the critical exponent of parabolic subgroups. As
explained in the introduction the critical exponent of a parabolic subgroup is related
to the entropy at infinity of the geodesic flow on a geometrically finite manifold;
our results relate the entropy at infinity with dimension theory of points at the
Gromov boundary. A good reference for the facts used in this section is [BH].

Let (X, g) be a pinched negatively curved Hadamard manifold. We will moreover
assume that the sectional curvature of X is bounded above by —1, in other words,
that X is a Cat(—1) space. The main example of a Cat(—1) space is hyperbolic
space H", where the sectional curvature is constant equal to —1.

The Gromov boundary of X is denoted by ¢X. The Gromov product of £ € 0X
and & € 0X with respect to the point x € X is defined as

(ele). = Peln2) 2 Bel@2)
where Be(p, ¢) is the Busemann function and z is a point in the geodesic connecting
¢ and £'. The Gromov product is independent of the choice of the point z. From

now on we fix a reference point o € X and we use the notation (§|¢') := (£]€),.
Define dpx : 0X x 0X — Ry, by the formula

e €Y e ¢
0 if¢&=¢.

dox (57 51) = {

Proposition 3.1. [Bou] The function dpx : 0X x X — R is a metric on 0X.
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The metric dpx was introduced by Bourdon in [Bou] and defines a canonical
conformal structure on 0X (which is independent of the reference point o).

The isometry group of (X, g) is denoted by Iso(X). It is well known that the
action of every element g € Iso(X) on X, extends to a homeomorphism of the
Gromov boundary éX. An element g € Iso(X) is called hyperbolic if its action on
0X has two fixed points. An element g € Iso(X) is called parabolic if its action on
0X has a unique fixed point. We say that a group G < Iso(X) is parabolic if there
exists a unique point w € X that is fixed by the action of every element in G. We
say that G < Iso(G) is elementary if it is a parabolic subgroup or generated by a
single hyperbolic element. We say that G is non-elementary if it is not elementary.

To a group of isometries G < Iso(X) we can associate a non-negative number, the
so-called critical exponent of G. A fundamental property of the critical exponent
is the following: if G acts free and properly discontinuous on X and G is non-
elementary, then the topological entropy of the geodesic flow on X /G is equal to
the critical exponent of G (see [OP, Theorem 1]).

Definition 3.2. Let G < Iso(X) be a group of isometries. The Poincaré series of

G is defined by
P(s) = >, e 200,
geG

The critical exponent d¢ is defined by
dc :=inf{seR:P(s) <w}.

We remark that the critical exponent of G is independent of the reference point
o€ X. Given a geodesic triangle with vertices z, y and z we associate a comparison
hyperbolic triangle with vertices A, B and C in H?2, such that dy= (A, B) = d(z,y),
dy2(B,C) = d(y, z) and dy2(C, A) = d(z,z), where d is the Riemannian distance
on X and dye the Riemannian distance on H2. The angle at = of the geodesic
triangle xyz is defined as the angle at A of the hyperbolic triangle ABC and it is
denoted by Z,(y, z). The following lemma follows directly from the hyperbolic law
of cosines.

Lemma 3.3. Given D > 0, there exists a constant C = C(D) > 0, such that for
every geodesic triangle with vertices x,y, z, and angle at z bigger than D, then

d(z,y) = d(z,x) + d(z,y) — C.

We will now verify that the same box dimension interpretation obtained for EMR
maps in Theorem 2.10 holds for the action of parabolic groups on the Gromov
boundary 0X. We will first deal with the case when X is a surface.

Proposition 3.4. Let (X, g) be a Cat(—1) surface. Let p € Iso(X) be a parabolic
isometry and & € 0X a point that is not fized by p. Then

L inf log k <5 <li log k

imin < < limsu .
b —logdax (PRE p1E) O T LY Tlog dox (0FE pFTE)
If the sequence (_log da;‘zif&pﬂlg))k converges as k goes to infinity, then

lim log =,
koo —logdox (PRE.pHIE)
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Proof. We denote by n the fixed point of p. Choose a point z in the geodesic
connecting ¢ and p&. Observe that p*z belongs to the geodesic connecting p*¢ and
pFt1€. Note that

1 1 _ _
(€16 = & (Byrelo."2) + Byroselo.*2)) = 5 (Belv0.2) + Byelp™0.2) .
Since By(z,y) < d(z,y), for all g € 0X and z,y € X we conclude that
(PFE[pH1E) < d(p" 0, 2) < d(p~*0,0) + d(0, 2) = d(0,p"0) + d(0,2).  (3.1)

Let «(t) be a parametrization of the geodesic ray starting at z and converging to &.
If |k| is sufficienly large, then p~*0 will be in a small neighborhood of 7 in X U 0X.
In particular if |k| and ¢ are sufficiently large, then the angle at z of the geodesic
triangle with vertices z, p~¥0, and «(t) is uniformly bounded below (it will be close
to the angle at z between the geodesic rays [z,£) and [z,7)). It follows from Lemma
3.3 that for sufficiently large values of ¢ and |k| we have

d(a(t),p_ko) - d(a(t)v Z) = d(p_ko, Z) - C,

for some positive constant C = C(€,n). By definition of the Busemann function we
obtain that

Be(p~"o,z) = lim d(a(t),p~"0) — d(a(t),2) = d(p~"0,2) — C

> d(p~"0,0) —d(o,z) = C
d(o,p o) d(o,z) = C.

An analogous argument gives that there exists a constant C’ > 0 (independent of
k) such that for |k| sufficiently large we have

Bye(p~%0,2) = d(p~"0,2) — C" = d(o,p*0) — d(0,2) — C".
We conclude that for |k| sufficiently large we have
(p"Elp*+1E) = d(o,p*o) — ¢, (32)

for some constant ¢ > 0 independent of k. In order to conclude the proof we will
need the following fact.

Lemma 3.5. The following inequality holds

h}?i iorolf 7 (locjgpko) Opy < hinﬁsogp % (3.3)
If the sequence (d(l(ii,]fo))k converges as k goes to infinity, then
O¢py = lim %
Proof. Observe that if limsup,,_, IIOL”I < 1, then the series )} a, converges.
Applying this fact to a, = e *H°?"°) we obtain that if
lim sup logn <s,

n—ao d(07 pno)
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then P(s) converges. This immediately implies that d.,, < limsup,,_, %.
logn

ogaT = 1, then the series > a,, diverges. Applying this to

an = e 540" we obtain that

Similarly, if liminf,,

L. logn

O

Inequalities (3.1) and (3.2) imply that in inequality (3.3) we can replace d(o, p"0)
by —logdox (p*¢,p"*1€) = (P[P *1€). O

If (X, g) is the hyperbolic disk, then dax is related to the angle at o between the
geodesic rays [0,€) and [o,£’). For now on we assume that o is the origin of the
hyperbolic disk. Bourdon [Bou] proved that

don(6,€) = sin 3 £,(&,€),

where Z,(€,¢£') is the angle (using radians) between the (straight) rays [o,£) and
[0,£'). The euclidean metric on R? induces a metric on dH. We denote such metric
by d1, and it is given by the formula

di(§,€') = Zo(§,€).

Corollary 3.6. Let £ € 0H and p € Iso(H?) a parabolic isometry. Assume that &
is mot the fized point of p. Then

. 1
ot (99) -2

keZ

where the box dimension is computed using the spherical metric on JH?2.

sin x

Proof. Since lim, o 2% = 1, and limj o Z,(p*&, p" 1) = 0, one can easily check
that in Proposition 3.4 it is possible to replace dox by di. In the hyperbolic disk it
is known that the sequence (d(o,p™0) — 2logn), is bounded (see proof of Lemma

3.11). In particular we know that limy_,q % = 3. This implies that equality
holds in inequality (3.3). Since the metric d; is equivalent to the flat metric on R

we conclude the desired result. O

As mentioned in the introduction, one of the main results in this paper is the
generalization of Corollary 3.6 to higher dimensions. From now on we will always
assume that T' < Iso(H") is a discrete, torsion free subgroup of isometries. Fix a
reference point o € H". We define the limit set of T' as the set of accumulation
points of T'.o in H" u dH", and denoted it by A(T"). The limit set of I' is a subset
of JH" and it is independent of the base point o. If I' is non-elementary we have
a very nice characterization of A(T"): it is the minimal I'-invariant closed subset of
JH™ (for instance see [B11]).

The non-wandering set of the geodesic flow on H" /T is denoted by < T*(H"/T").
We say that T' < Iso(H") is geometrically finite if an e-neighborhood of € has fi-
nite Liouville measure. Several equivalent definitions of geometrically finiteness are
given in [Bo2]. We will need the following result of Stratmann and Urbariski (see
[SU, Theorem 3]).



PRESSURE, POINCARE SERIES AND BOX DIMENSION OF THE BOUNDARY 13

Theorem 3.7. Assume that T' < Iso(H™) is geometrically finite. Then
5{‘ = dimH A(F) = dimB A(F),

where the box and Hausdorff dimension are computed using the spherical metric on

oH™.

We remark that for hyperbolic geometrically finite manifolds the equality dp =
dimg A(T"), was proved by Sullivan (see [Sul, Theorem 25]). This result was latter
generalized by Bishop and Jones to cover all hyperbolic manifolds (see [BJ, Theorem
2.1]). More precisely, they proved that or = dimpg Ayqq(T), where A, qq(T) is the
radial limit set of T' (for precise definitions we refer the reader to [BJ]). If G is a
group we define G* to be G \ {id}. We will need the following definition.

Definition 3.8. Let F} and F; be discrete, torsion free subgroups of Iso(H™). We
say that F} and F5 are in Schottky position if there exist disjoint closed subsets
Ur, and Up, of 0H" such that Ff¥(0H" \ Up,) € Up, and Ff(0H" \ Ug,) < Up,.

‘We now state one of the main results of this section.

Theorem 3.9. Let P < Iso(H") be a parabolic subgroup and & € JH™ a point not

fized by P. Then
dp = dimp < U p§>7

peP
where the box dimension is computed using the spherical metric on JH™.

Remark 3.10. Theorem 3.9 does not immediately follow from Theorem 3.7 since
the group P is not geometrically finite. Moreover, the group P is elementary and
A(P) = {n}, where 7 is the point fixed by P. Nevertheless, using box dimension we
can recover the critical exponent from the orbit of £ under P.

Proof. We first prove the inequality dimpP¢ < dp. There exists a hyperbolic
isometry h which fixes £ and such that (h) and P are in Schottky position. Indeed,
let Vp be a fundamental domain of the action of P on dH™ such that £ € int Vp,
and define Up = JH™ \ Vp. Observe that for every p € P \ {id} we have that
p(0H™ \ Up) < Up. Now choose a hyperbolic isometry w such that w(§) = &,
and such that the other fixed point of w, say &y, also belongs to int Vp. If one
chooses k large enough, then h = w® will satisfy the properties stated above: if k is
large enough, then we can find a neighborhood Uj, of {£,&p} such that U, < Vp =
OH" \ Up and h®(0H™ \ Up) < Uy, for every s # 0. This implies that (h) and P
are in Schottky position.

Define Ty = P * (h*¥). We can now use [IRV, Proposition 5.3] to conclude
that limg_, dr, = 0p. Moreover, the manifold H" /T is geometrically finite (see
[DP] for a proof when P has rank one, but the same argument applies to I'y). By
construction & € A(T'y), therefore I'y¢é < A(T'y); in particular Tx€ = A(T:). Observe
that T'€ is a closed I'y-invariant subset of JH"™. Since I'; is non-elementary we
conclude that '€ = A(T}). We obtained that P¢ < I'yé < T'pé = A(Tx). Using
Theorem 3.7 and this inclusion we conclude that

ﬁgP{ < MBA(F]C) = dimp A(Fk) = 6Fk7
for every k € N. Therefore

MBPé' < lim 5Fk = ip.
k—00
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We now prove the inequality dimpP¢ > dp. It will be convenient to consider
the upper half-space model of hyperbolic space. We identify H" with {(z1,...,z,) €
R™ : x, > 0}, and the fixed point of P with the point of 0H™ whose x,,—coordinate
is oo (the rest of JH" is the plane z, = 0). Our reference point will be o =
(0,...,0,1) (this point corresponds to the origin in the ball model). Via the action
of P on the horosphere x,, = 1, we can identify P with a subgroup of Aff(R"~1),
where Aff(R"™!) is the space of affine transformations of R*~1. Tt follows from
Bieberbach’s theorem that there exists a finite index subgroup Py of P such that

Py acts on z, = 1 as a group of translations (for instance see [Bol, Theorem 1.1]).
In particular Py =~ ZF, for some k € {1,...,n — 1}. The number k is called the rank
of P. It is well known that dp = 6p, = & (see for instance [ , Section 3]).

There exists a sequence {g1,...,gm} < P such that P = (J;"; Pogi, in particular
P¢ =", Pogi&. We will prove that

| F

for every n € JH". Assume that inequality (3.4) holds. As mentioned before dp, =
g. Combining inequality (3.4) with the inequality dimpPyn < ép,, we obtain that
dimp Pon = % = 0p, = Op, for every n € JH". Since the box dimension is finitely
additive we can conclude that dimpg P& = % = 0p (recall that P& = (| Pogif).

We now prove inequality (3.4). We will identify the group Py with Z*, and
use the notation n.¢ to denote the translate of & under n € ZF. The standard
generators of Z* will be denoted by {ey,...,ex}. Denote by p the fixed point of
Po. Since limy_,o k.7 = p, we can conclude that there exists C' > 0 such that the
geodesic connecting 1 and k.n is at distance at most C from o. We choose zj, € H"
in the geodesic connecting n and k.n such that d(o, z;) < C. Observe that N.z
belongs to the geodesic connecting N.n and (N + k).n, therefore

(N + k)| N.y) =%(B<N+k),,7(o, N.z) + Bu(o, N.zi)

L Bin((=N).0.22) + By((—N).0, )

<d((—=N).o, zi)
<d(o,N.o) + d(o.zx)
<d(o, N.o) + C.

[\]

N

/

We conclude that
dogn (N + k).p, Nop) = e—d(0.N.o)=C

In order to conclude the proof we will need the following result.

Lemma 3.11. Using the notation above we have

#log{N € Z* : d(o,N.o) <t} k
m -

li .
t—00 t 2
Proof. Recall that o = (0, ...,0,1) is the origin of hyperbolic space. Let a; € R"~!
be the translation vector of e; while acting on the horosphere z,, = 1. If follows
from the definition of the hyperbolic metric on H™ that

1
d(o, N.o) = 2arcsinh <§|N1041 +..+ Nkak|),
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where |.| stands for the euclidean metric on R"~*. Tt follows that the set
{d(0, N.0o) —log(IN1a1 + ... + Nyag|?) : N = (Ny, ..., Ny,) € Z*},
is bounded. It is enough to prove that

. #log{N € ZF : log(|N1ay + ... + Nyar?) <t} &
tli,% ; =3 (3.5)

There exists D = D(ayq, ..., ap) > 0 such that the set A; := {N € R" : [Nyag + ... +
Nyo| < €'/?}, contains a cube centered at the origin of radius D~'ez, and it is
contained in a cube centered at the origin of radius Dez. For t large the number

of integral points in A, will be of the order e**/2. This immediately implies the
equality (3.5). O

It follows from Lemma 3.11 that given ¢ > 0, there exists E = F(e) such that
for t > FE we have

#{N e ZF : d(o,N.o) < t} > e(z79)",

Assume that r is sufficiently small in order to have log(e=“/r) > E, and define
A, :={N e ZF : d(o, N.o) <log(e~/r)}. We conclude that

|A.| = #{N € Z* : d(0, N.o) <log(e /r)} = oy
rzo
Observe that inequality d(o, N.o) < log(e=C/r), is equivalent to r < e~4@N-0)=C,
Therefore N € A, implies that for all k € Z* we have

1
r < e HUoN-0=C < o (N + k)., N.p) = sin §d1((N +k).n, N.n)
1
< 5 (N + k)n, N
where d; is the spherical metric on 0H" (coming from the natural embedding of

the ball model into R™). In other words, to cover Py.n with dy-balls of radius r we
need at least |A,| balls (at least one ball for each N.n, where N € A,.). We conclude

that
lo e O5 0
.. dogN(r) .. dog|A.] o 8\ = k
liminf ——=-= > lim inf = liminf —————*+ =~ —=¢.
r—0 log(3) =0 log(y) r—0 log (5-) 2
Since € was arbitrary we conclude that dim zPon > %
O
Remark 3.12. Roblin proved in [Rob] that if T' is non-elementary, then
1 I:d <t
lim #logly € (0,70) } = or.
t—00 t

Since Py is elementary we can not use Roblin’s result. The proof of Roblin uses
in an essential way that the group is non-elementary—-it uses the Patterson-Sullivan
conformal density at infinity associated to I'.
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