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PRESSURE, POINCARÉ SERIES AND BOX DIMENSION OF

THE BOUNDARY

GODOFREDO IOMMI AND ANIBAL VELOZO

Abstract. In this note we prove two related results. First, we show that for
certain Markov interval maps with infinitely many branches the upper box
dimension of the boundary can be read from the pressure of the geometric
potential. Secondly, we prove that the box dimension of the set of iterates
of a point in BHn with respect to a parabolic subgroup of isometries equals
the critical exponent of the Poincaré series of the associated group. This
establishes a relationship between the entropy at infinity and dimension theory.

1. Introduction

The application of thermodynamic formalism to the dimension theory of dynam-
ical systems dates to the work of Bowen [B], who related the Hausdorff dimension of
a dynamically defined set to the root of a certain pressure function. More precisely,
he proved that the Hausdorff dimension of the limit set of a quasi-Fuchsian group
can be recovered from the pressure of a suitably chosen potential (see [B, Lemma
10]). Bowen’s beautiful result highlights the relation between thermodynamic for-
malism and the dimension theory of limit sets. In the present article we prove, for
two classes of dynamical systems defined on non-compact spaces, a new relation
between these two theories.

We first consider a class of Markov interval maps with countably many branches
called Expanding-Markov-Renyi interval maps (EMR). These are maps of the form
T :

Ť8
n“1 In Ñ r0, 1s, where In “ ran, bns, and pInq8

n“1 is a collection of closed
intervals contained in r0, 1s with disjoint interiors. Mauldin and Urbański [MU]
proved that the Hausdorff dimension of the non-compact repeller Λ of an EMR
map T is essentially the root of an equation involving the pressure of the geometric
potential (see Proposition 2.9). They proved that

dimHpΛq “ inf tt P R : P ptq ď 0u ,

where dimH denotes the Hausdorff dimension and P ptq the pressure function (for
precise definitions see Section 2). This generalizes Bowen’s result to non-compact
settings (see [Fa2, Chapter 5] for the result in the setting of expanding Markov
maps with finitely many branches).

In this context, the pressure function P ptq has a critical value s8 P p0,8q such
that if t ă s8 then P ptq “ 8 and if t ą s8 then the pressure is finite. The
relation between the critical value s8 and the multifractal analysis theory has been
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2 G. IOMMI AND A. VELOZO

studied in [FJLR, IJ]. For example, in [FJLR, Section 7] it is proved that the
value s8 is a lower bound for the Hausdorff dimension of sets of numbers having a
prescribed frequency of digits in their continued fraction expansion. It was shown
in [IJ, Theorem 5.1] that the behaviour of the pressure at s8 determines regularity
properties of the multifractal spectrum of Lyapunov exponents. Moreover, in [IJ,
Theorem 7.1] it is proved that the Hausdorff dimension of the set of points having
infinite Lyapunov exponent is precisely s8.

In this article we prove a new relation between s8 and the dimension theory of T .
A novelty being that instead of Hausdorff, we consider box dimension. We denote
by dimB and dimB the upper box dimension and the box dimension, respectively.
One of the main results in this paper is the following (see Theorem 2.10).

Theorem 1.1. Let T be an EMR map. Then

s8 ď dimB

˜

8
ď

n“1

tan, bnu

¸

.

If the box dimension of
Ť8

n“1 tan, bnu exists, then

s8 “ dimB

8
ď

n“1

tan, bnu .

Depending on the properties of the pressure function at the critical value we are
able to derive certain stability results. For example, we prove existence of measures
of maximal dimension for perturbations of the original map (see Corollary 2.15).

Bowen’s work on the dimension theory of limit sets has been further developed by
Sullivan. In a landmark paper [Sul] Sullivan proved that the Hausdorff dimension of
the limit set of a geometrically finite Kleinian group Γ ď IsopHnq coincides with the
critical exponent of Γ, which is denoted by δΓ (see [Sul, Theorem 25]). For precise
definitions we refer the reader to Section 3. A major generalization of Sullivan’s
result was obtained by Bishop and Jones in [BJ], where they proved that the critical
exponent δΓ is equal to the Hausdorff dimension of the radial limit set of Γ for an
arbitrary Kleinian group (see [BJ, Theorem 2.1]). The critical exponent of Γ has
yet another dynamical interpretation: it is equal to the topological entropy of the
geodesic flow on T 1pHn{Γq (see [OP, Theorem 1]). In other words we have that
δΓ “ supµ hµpg1q, where the supremum runs over the space of invariant probability
measures of the geodesic flow and g1 is the time-one map of the geodesic flow.

In recent works a new dynamical invariant has been studied, the entropy at
infinity of the geodesic flow (see [IRV], [RV], [V2]). For completeness we recall its
definition here. We say that a sequence of measures pµnqn converges in the vague
topology to µ if limnÑ8

ş

fdµn “
ş

fdµ, for every continuous function of compact
support f . The entropy at infinity of the geodesic flow on H

n{Γ is defined by

h8pΓq :“ sup
pµnqnÑ0

lim sup
nÑ8

hµn
pg1q,

where the supremum runs over sequences of invariant probability measures pµnqn
that converge in the vague topology to the zero measure. The entropy at infinity
of the geodesic flow is strongly related to the upper-semicontinuity of the entropy
map and it is an important tool in the study of the thermodynamic formalism of
the geodesic flow (see [IRV], [RV], [V1], [V2]).
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From now on assume that Γ ď IsopHnq is geometrically finite. In this case the
topological entropy of the geodesic flow onH

n{Γ is equal to the Hausdorff dimension
of the limit set of Γ. Because of this relation it is natural to ask if there is also a
relation between the entropy at infinity and dimension theory of the boundary. One
of the main goals of this paper is to prove that for geometrically finite manifolds
this is indeed the case. It is important to mention that under the geometrically
finite assumption we have that h8pΓq “ supP δP , where the supremum runs over
the parabolic subgroups of Γ (see [RV, Theorem 1.3]). In other words, the entropy
at infinity is determined by the critical exponent of the parabolic subgroups of Γ.
In Section 3 we prove the following result.

Theorem 1.2. Let P ď IsopHnq be a parabolic subgroup and ξ P BHn a point which

is not fixed by P. Then

δP “ dimB

˜

ď

pPP

pξ

¸

,

where dimB is the box dimension computed using the spherical metric on BHn.

In Section 3 we also obtain very similar results to those in Sub-section 2.5 in the
context of Catp´1q surfaces.

It is interesting to note the relation between the ergodic theory of countable
Markov shifts (or related dynamical systems such as the interval maps considered
in this article) and the ergodic theory of geodesic flows on non-compact complete
hyperbolic manifolds. In some cases Markov partitions can be constructed for the
geodesic flow and then the relation is rather explicit (see [DP, IRV]). Unfortunately,
in general it is not known if there exists a symbolic coding for the geodesic flow.
Despite this, in recent years thermodynamic formalism for geodesic flows has been
extensively studied and results have been proved in analogy to those obtained for
countable Markov shifts (see for example [PPS, PS, RV, V1, V2]). On the other
hand, the ergodic theory of countable Markov shifts has been studied mirroring
results obtained for geodesic flows. For example, continuity properties of the en-
tropy map and its relations with escape of mass were obtained in [RV, V2] for the
geodesic flow and later in [ITV1, ITV2] for countable Markov shifts. The results in
this paper are further evidence of the strong relation between these two classes of
dynamical systems.

Acknowledgment. We thank Neil Dobbs and Amitesh Datta for many useful com-
ments on this paper. G.I. was partially supported by CONICYT PIA ACT172001
and by Proyecto Fondecyt 1190194.

2. Pressure and dimension

2.1. Dimension theory. In this sub-section we recall some basic definitions and
results from dimension theory that will be used in what follows. For a complete
account on dimension theory we refer the reader to [Fa1] and [Fa2].

Let pM,dq be a metric space. The diameter of a set B Ă M is denoted by |B|.
A countable collection of subsets tUiuiPN of M , is called a δ-cover of F Ă M if
F Ă

Ť

iPN Ui, and |Ui| is at most δ for every i P N. Letting s ą 0, we define

H
spJq :“ lim

δÑ0
inf

#

8
ÿ

i“1

|Ui|
s : tUiui is a δ-cover of J

+

.
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The Hausdorff dimension of the set J is defined by

dimHpJq :“ inf ts ą 0 : HspJq “ 0u .

The Hausdorff dimension of a Borel measure µ is defined by

dimHpµq :“ inf tdimHpZq : µpZq “ 1u .

For a detailed discussion on the Hausdorff dimension see [Fa1, Chapter 2].
An alternative definition of dimension that will be central to this work is the box

dimension. Let F Ă M and NδpF q be the smallest number of sets of diameter at
most δ needed to cover F . The lower and upper box dimensions are defined by

dimBpF q :“ lim inf
δÑ0

logNδpF q

´ log δ
, dimBpF q :“ lim sup

δÑ0

logNδpF q

´ log δ

If the limits above are equal then we call this common value the box dimension of
the set F ,

dimBpF q :“ lim
δÑ0

logNδpF q

´ log δ
.

Remark 2.1. It is useful to note that in the definition of box dimension it is possible
to replace the number NδpF q by the largest number of disjoint balls of radius δ and
centers in F (see [Fa1, p.41]).

The following result will be of great importance in this paper (see [Fa2, Propo-
sition 3.6 and 3.7]).

Proposition 2.2. Let In “ ran, bns be a sequence of intervals with disjoint interiors

such that r0, 1s “
Ť8

n“1 In and let F “
Ť8

n“1tan, bnu. Assume that pbn ´ anqn is

non-increasing. Then

ˆ

´ lim inf
nÑ8

logpbn ´ anq

logn

˙´1

ď dimBpF q ď dimBpF q ď

ˆ

´ lim sup
nÑ8

logpbn ´ anq

logn

˙´1

.

2.2. Markov shifts and Markov maps. In this Sub-section we explain the sym-
bolic structure we assume for the one dimensional maps we consider.

The full-shift on the countable alphabet N is the pair pΣ, σq where Σ :“ N
N and

σ : Σ Ñ Σ is the shift map defined by σpω1, ω2, ¨ ¨ ¨ q “ pω2, ω3, ¨ ¨ ¨ q. We equip Σ
with the topology generated by the cylinders sets

Ci1¨¨¨in :“ tω P Σ : ωj “ ij,@j P t1, . . . , nuu.

Denote by I “ r0, 1s the unit interval. Let tIiuiPN be a countable collection of
closed intervals where intpIiq X intpIjq “ H, for i, j P N with i ‰ j, and rai, bis :“
Ii Ă I for every i P N. Let T :

Ť8
n“1 In Ñ I be a map. The repeller of such a map

is defined by

Λ :“

#

x P
8
ď

i“1

Ii : T
npxq is well defined for every n P N

+

.

Let O :“
Ť8

k“0 T
´kp

Ť8
i“0tai, biuq. We say that T is Markov and it can be coded by

a full-shift on a countable alphabet if there exists a homemorphism π : Σ Ñ ΛrO

such that T ˝ π “ π ˝ σ. Denote by Ii1...in Ă I the projection of the symbolic
cylinder Ci1...in by π.
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2.3. The class of maps. The class of EMR (expanding-Markov-Renyi) interval
maps was considered by Pollicott and Weiss in [PW] in their study of multifractal
analysis.

Definition 2.3. Let tIiuiPN be a countable collection of closed intervals where
intpIiq X intpIjq “ H for i, j P N with i ‰ j and rai, bis :“ Ii Ă I for every i P N. A
map T :

Ť8
n“1 In Ñ I is an EMR map, if the following properties are satisfied

(a) The only accumulation point for the end points of the intervals rai, bis is
x “ 0.

(b) The map is C2 on
Ť8

i“1 int Ii.

(c) There exists ξ ą 1 and N P N such that for every x P
Ť8

i“1 Ii and n ě N

we have |pT nq1pxq| ą ξn.
(d) The map T is Markov and it can be coded by a full-shift on a countable

alphabet.
(e) The map satisfies the Renyi condition, that is, there exists a positive number

K ą 0 such that

sup
nPN

sup
x,y,zPIn

|T 2pxq|

|T 1pyq||T 1pzq|
ď K.

Example 2.4. The Gauss map G : p0, 1s Ñ p0, 1s defined by

Gpxq “
1

x
´

”1

x

ı

,

where r¨s is the integer part, satisfies our assumptions. The Gauss map with re-
stricted digits (that is the Gauss map with branches erased so that there are still
infinitely many branches left) is also a EMR map.

The following is a fundamental property of EMR maps, see [CFS, Chapter 7
Section 4] or [PW, p.149].

Lemma 2.5. There exists a positive constant C ą 0 such that for every x P ΛrO

with x P Ii1...in we have

1

C
ď sup

ně0

sup
yPIi1...in

ˇ

ˇ

ˇ

ˇ

pT nq1pxq

pT nq1pyq

ˇ

ˇ

ˇ

ˇ

ď C.

2.4. Thermodynamic formalism and Hausdorff dimension. Thermodynamic
formalism is a set of tools brought to ergodic theory from statistical mechanics in
the 1960s that allows for the choice of relevant invariant probability measures.
It has surprising and interesting applications to the dimension theory of dynam-
ical systems. The thermodynamic formalism of EMR maps and regular poten-
tials has been extensively studied and it is fairly well understood (see for example
[IJ, MU, PW, Sar]). We now summarize some known results.

Definition 2.6. The pressure of T at the point t P R is defined by

P ptq “ lim
nÑ8

1

n
log

ÿ

Tnx“x

˜

n´1
ź

i“0

|T 1pT ixq|´t

¸

.

It worth emphasizing that the pressure is usually defined over a large class of
functions (which in analogy to statistical mechanics are called potentials). Adopting
that point of view, the function P ptq is equal to to the pressure of the potential
tf , where fpxq “ ´ log |T 1pxq| is the geometric potential. However, since the only
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potential used in this paper is the geometric potential it is convenient to simply
call this function the pressure of T at t P R.

We denote by MT the space of T´invariant probability measures on I. The
entropy of the measure µ P MT is denoted by hpµq (see [Wa, Chapter 4] for a
precise definition). The pressure satisfies the following variational principle and
approximation property (see [IJ, Sub-section 2.1]).

Proposition 2.7. For every t P R we have

P ptq “ sup

"

hpνq ´ t

ż

log |T 1| dν : ν P MT and

ż

log |T 1| dν ă 8

*

“ suptPKptq : K P Ku,

where K :“ tK Ă r0, 1s : K ‰ H compact and T -invariantu.

There is a precise description of the regularity properties of the pressure (see [IJ,
Sub-sections 2.1 and 2.2]).

Proposition 2.8. There exists s8 P p0,8s such that pressure function t Ñ P ptq
has the following properties

P ptq “

#

8 if t ă s8

real analytic, strictly decreasing and strictly convex if t ą s8.

Moreover, if t ą s8 then there exists a unique measure µt P MT , that we call

equilibrium measure for t, such that P ptq “ hpµtq ´ t
ş

log |T 1| dµt.

It was noted by Bowen [B] in the finitely many branches setting (the compact
case) that the pressure P ptq captures a great deal of geometric information about Λ.
This observation was first generalized to the EMR setting by Mauldin and Urbański
in [MU, Theorems 3.15, 3.21, 3.24] (see also [I, Theorem 3.1 and Proposition 3.1]).

Proposition 2.9. If T is an EMR map then

dimHpΛq “ inf tt P R : P ptq ď 0u .

Moreover, if s8 ă dimHpΛq there exists a unique ergodic measure ν P MT such

that dimH ν “ dimH Λ. This measure is called measure of maximal dimension.

2.5. Pressure and box dimension. In this Sub-section we prove that the number
s8 has a dimension interpretation. It is a lower bound for the upper box dimension
of the boundary points of the Markov partition. Moreover, if the box dimension of
such set exists then it coincides with s8.

Theorem 2.10. Let T be an EMR map then

s8 ď dimB

˜

8
ď

n“1

tan, bnu

¸

.

If the box dimension of
Ť8

n“1 tan, bnu exists, then

s8 “ dimB

8
ď

n“1

tan, bnu .
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Proof. Assume first that the map T is piecewise linear. In this case the slope of
T restricted to the sub-interval In “ ran, bns satisfies |T 1| “ pbn ´ anq´1. In this
situation the pressure function can be computed explicitly (see for example [BI,
equation 9]). We have that

P ptq “ log
8
ÿ

n“1

pbn ´ anqt. (2.1)

Define

L “ lim inf
nÑ8

logn

´ logpbn ´ anq
and L “ lim sup

nÑ8

log n

´ logpbn ´ anq
.

Given ε ą 0, there exists N P N such that if n ě N we have that

pbn ´ anqL`ε ă
1

n
ă pbn ´ anqL´ε.

In particular, for r ą 0, we get that

8
ÿ

n“N

pbn ´ anqrpL`εq ď
8
ÿ

n“N

1

nr
ď

8
ÿ

n“N

pbn ´ anqrpL´εq (2.2)

Combining equation (2.1) and inequality (2.2) we obtain that

P prpL`εqq “ log
8
ÿ

n“1

pbn ´anqrpL`εq ď log

ˆ N´1
ÿ

n“1

pbn ´anqrpL`εq `
8
ÿ

n“N

1

nr

˙

. (2.3)

If r ą 1, then the right hand side of (2.3) converges. It follows from the definition
of s8 (see Proposition 2.8) that rpL ` εq ě s8. Since r is an arbitrary number
larger than 1, it follows that L ` ε ě s8. Since ε is an arbitrary positive number,
we conclude that L ě s8. A similar argument using equation (2.1) and the right
hand side of inequality (2.2) give us that L ď s8. We obtained that

L ď s8 ď L. (2.4)

Inequality (2.4) also holds in the general case; we can reduce it to the linear case.
Indeed, by the Mean Value Theorem for every n P N there exists x P ran, bns such
that |T 1pxq| “ pbn ´ anq´1. By the Jacobian estimate (see Lemma 2.5) we have
that if y P ran, bns then

pbn ´ anq´1

C
ď |T 1pyq| ď Cpbn ´ anq´1.

Therefore

´t logC ` log
8
ÿ

n“1

pbn ´ anqt ď P ptq ď t logC ` log
8
ÿ

n“1

pbn ´ anqt.

Set S :“
Ť8

n“1 tan, bnu . Observe that by [Fa2, Proposition 3.6] and [Fa2, Proposi-
tion 3.7] we know that

L ď dimBpSq ď dimBpSq ď L,

and that
dimBpSqp1 ´ dimBpSqq

p1 ´ dimBpSqq
ď L ď L ď dimBpSq.
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In particular we have that dimBpSq “ L. As mentioned in [Fa2, Corollary 3.8], the
box dimension of S exists if and only if L “ L. It follows from this and inequality
(2.4) that if L “ L, then

s8 “ dimBpSq.

In general we only have the inequality

s8 ď L “ dimBpSq.

�

Example 2.11. If G is the Gauss map (see Example 2.4) then the set of boundary
points is t1{n : n P Nu. The box dimension of this set is equal to 1{2 (see [Fa1,
Example 3.5]) and s8 “ 1{2 (see [PW, p.150]).

Remark 2.12. Note that if T is and EMR map then, for any k ě 1, the map T k

satisfies all assumptions of an EMR map except for condition paq. If we denote by
PTkp¨q the pressure associated to the dynamical system T k then a classical result
relates it to the pressure of T (see [Wa, Theorem 9.8 (i)]). Indeed, if f : Λ Ñ R is
a locally Hölder potential (see [IRV, p.616] for precise definition) then

PTkpSkfq “ kPT pfq,

where Skf is the Birkhoff sum of f . In particular, if f “ log |T 1| then

PTkp´t log |pT kq1|q “ kPT p´t log |T 1|q.

Therefore the number s8pT q corresponding to T coincides with s8pT kq correspond-
ing to T k. Since condition paq in the definition of EMR map is not used in the proof
of Theorem 2.10 we have s8 is a lower bound for the upper box dimension of the
boundary points of the Markov partition of T k, for any k ě 1.

2.6. Compact perturbations and measures of maximal dimension. The
following is a consequence of Theorem 2.10 and Proposition 2.9.

Corollary 2.13. Let T be an EMR map. If dimB

`
Ť8

n“1 tan, bnu
˘

ă dimHpΛq then
there exists a measure of maximal dimension.

We now define compact perturbations of the map T .

Definition 2.14. Let T be an EMR map defined on the sequence of closed intervals
pInqn. We say that T̃ is a compact perturbation of T if the following two conditions
are satisfied:

(a) There exists a compact subset K Ă p0, 1s with the property that if int In X

K ‰ H then In Ă K and T pxq “ T̃ pxq for every x P
`
Ť8

i“1 Ii
˘

rK.

(b) The map T̃ is an EMR map.

The following result shows that the behaviour of the pressure at s8 not only
determines the existence of measures of maximal dimension for the map T , but
also for compact perturbations of it.

Corollary 2.15. Let T be an EMR map such that P ps8q “ 8. Then any compact

perturbation T̃ of T has a measure of maximal dimension.

Proof. Note that for any compact perturbation T̃ the number s8 corresponding to
T̃ is equal to that of T . Moreover, the pressure evaluated at that point is infinity
in both cases. Therefore T̃ has a measure of maximal dimension. �
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Remark 2.16. If T is an EMR map with s8 ă dimHpΛq and P ps8q ă 8 then there
exists compact perturbations without measures of maximal dimension. An example
can be constructed considering the partition of r0, 1s given by the sequence defined
by an “ 1{pnplognq2q, see [I, Example 3.1].

2.7. Extremes of the multifractal spectrum. The following result is a con-
sequence of Theorem 2.10 and results obtained by Fan, Jordan, Liao and Rams
[FJLR].

Corollary 2.17. Let T be an EMR map for which the sequence
`

logn
´ logpbn´anq

˘

n

converges. Let ϕ : Λ Ñ R a bounded Hölder potential. Then for every

α P

„

inf

"
ż

ϕdµ : µ P MT

*

, sup

"
ż

ϕdµ : µ P MT

*

we have that

dimH

˜#

x P Λ : lim
nÑ8

1

n

n´1
ÿ

i“0

ϕpT ixq “ α

+¸

ě dimB

˜

8
ď

n“1

tan, bnu

¸

.

The next result is a consequence of Theorem 2.10 and [IJ, Theorem 7.1].

Corollary 2.18. Let T be an EMR map for which the sequence
`

logn
´ logpbn´anq

˘

n

converges. Then

dimH

˜#

x P Λ : lim
nÑ8

1

n

n´1
ÿ

i“0

log |T ix| “ 8

+¸

“ dimB

˜

8
ď

n“1

tan, bnu

¸

.

3. Geodesic flow on a negatively curved manifold

In this section we will relate the box dimension of points at the Gromov boundary
of Hadamard manifolds with the critical exponent of parabolic subgroups. As
explained in the introduction the critical exponent of a parabolic subgroup is related
to the entropy at infinity of the geodesic flow on a geometrically finite manifold;
our results relate the entropy at infinity with dimension theory of points at the
Gromov boundary. A good reference for the facts used in this section is [BH].

Let pX, gq be a pinched negatively curved Hadamard manifold. We will moreover
assume that the sectional curvature of X is bounded above by ´1, in other words,
that X is a Catp´1q space. The main example of a Catp´1q space is hyperbolic
space H

n, where the sectional curvature is constant equal to ´1.
The Gromov boundary of X is denoted by BX . The Gromov product of ξ P BX

and ξ1 P BX with respect to the point x P X is defined as

pξ|ξ1qx “
Bξpx, zq ` Bξ1 px, zq

2
,

where Bξpp, qq is the Busemann function and z is a point in the geodesic connecting
ξ and ξ1. The Gromov product is independent of the choice of the point z. From
now on we fix a reference point o P X and we use the notation pξ|ξ1q :“ pξ|ξ1qo.
Define dBX : BX ˆ BX Ñ Rě0, by the formula

dBXpξ, ξ1q “

#

e´pξ|ξ1q if ξ ‰ ξ1,

0 if ξ “ ξ1.

Proposition 3.1. [Bou] The function dBX : BX ˆ BX Ñ Rě0 is a metric on BX.
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The metric dBX was introduced by Bourdon in [Bou] and defines a canonical
conformal structure on BX (which is independent of the reference point o).

The isometry group of pX, gq is denoted by IsopXq. It is well known that the
action of every element g P IsopXq on X , extends to a homeomorphism of the
Gromov boundary BX . An element g P IsopXq is called hyperbolic if its action on
BX has two fixed points. An element g P IsopXq is called parabolic if its action on
BX has a unique fixed point. We say that a group G ď IsopXq is parabolic if there
exists a unique point w P BX that is fixed by the action of every element in G. We
say that G ď IsopGq is elementary if it is a parabolic subgroup or generated by a
single hyperbolic element. We say that G is non-elementary if it is not elementary.

To a group of isometriesG ď IsopXq we can associate a non-negative number, the
so-called critical exponent of G. A fundamental property of the critical exponent
is the following: if G acts free and properly discontinuous on X and G is non-
elementary, then the topological entropy of the geodesic flow on X{G is equal to
the critical exponent of G (see [OP, Theorem 1]).

Definition 3.2. Let G ď IsopXq be a group of isometries. The Poincaré series of
G is defined by

Ppsq “
ÿ

gPG

e´sdpo,goq.

The critical exponent δG is defined by

δG :“ inf ts P R : Ppsq ă 8u .

We remark that the critical exponent of G is independent of the reference point
o P X . Given a geodesic triangle with vertices x, y and z we associate a comparison
hyperbolic triangle with vertices A, B and C in H

2, such that dH2pA,Bq “ dpx, yq,
dH2pB,Cq “ dpy, zq and dH2pC,Aq “ dpz, xq, where d is the Riemannian distance
on X and dH2 the Riemannian distance on H

2. The angle at x of the geodesic
triangle xyz is defined as the angle at A of the hyperbolic triangle ABC and it is
denoted by =xpy, zq. The following lemma follows directly from the hyperbolic law
of cosines.

Lemma 3.3. Given D ą 0, there exists a constant C “ CpDq ą 0, such that for

every geodesic triangle with vertices x, y, z, and angle at z bigger than D, then

dpx, yq ě dpz, xq ` dpz, yq ´ C.

We will now verify that the same box dimension interpretation obtained for EMR
maps in Theorem 2.10 holds for the action of parabolic groups on the Gromov
boundary BX . We will first deal with the case when X is a surface.

Proposition 3.4. Let pX, gq be a Catp´1q surface. Let p P IsopXq be a parabolic

isometry and ξ P BX a point that is not fixed by p. Then

lim inf
kÑ8

log k

´ log dBXppkξ, pk`1ξq
ď δxpy ď lim sup

kÑ8

log k

´ log dBXppkξ, pk`1ξq
.

If the sequence
´

log k
´ log dBXppkξ,pk`1ξq

¯

k
converges as k goes to infinity, then

lim
kÑ8

log k

´ log dBXppkξ, pk`1ξq
“ δxpy.
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Proof. We denote by η the fixed point of p. Choose a point z in the geodesic
connecting ξ and pξ. Observe that pkz belongs to the geodesic connecting pkξ and
pk`1ξ. Note that

ppkξ|pk`1ξq “
1

2

`

Bpkξpo, pkzq ` Bpk`1ξpo, pkzq
˘

“
1

2

`

Bξpp´ko, zq ` Bpξpp´ko, zq
˘

.

Since Bqpx, yq ď dpx, yq, for all q P BX and x, y P X we conclude that

ppkξ|pk`1ξq ď dpp´ko, zq ď dpp´ko, oq ` dpo, zq “ dpo, pkoq ` dpo, zq. (3.1)

Let αptq be a parametrization of the geodesic ray starting at z and converging to ξ.
If |k| is sufficienly large, then p´ko will be in a small neighborhood of η in X Y BX .
In particular if |k| and t are sufficiently large, then the angle at z of the geodesic
triangle with vertices z, p´ko, and αptq is uniformly bounded below (it will be close
to the angle at z between the geodesic rays rz, ξq and rz, ηq). It follows from Lemma
3.3 that for sufficiently large values of t and |k| we have

dpαptq, p´koq ´ dpαptq, zq ě dpp´ko, zq ´ C,

for some positive constant C “ Cpξ, ηq. By definition of the Busemann function we
obtain that

Bξpp´ko, zq “ lim
tÑ8

dpαptq, p´koq ´ dpαptq, zq ě dpp´ko, zq ´ C

ě dpp´ko, oq ´ dpo, zq ´ C

“ dpo, pkoq ´ dpo, zq ´ C.

An analogous argument gives that there exists a constant C 1 ą 0 (independent of
k) such that for |k| sufficiently large we have

Bpξpp´ko, zq ě dpp´ko, zq ´ C 1 ě dpo, pkoq ´ dpo, zq ´ C 1.

We conclude that for |k| sufficiently large we have

ppkξ|pk`1ξq ě dpo, pkoq ´ c, (3.2)

for some constant c ą 0 independent of k. In order to conclude the proof we will
need the following fact.

Lemma 3.5. The following inequality holds

lim inf
kÑ8

log k

dpo, pkoq
ď δxpy ď lim sup

kÑ8

log k

dpo, pkoq
. (3.3)

If the sequence
´

log k
dpo,pkoq

¯

k
converges as k goes to infinity, then

δxpy “ lim
kÑ8

log k

dpo, pkoq
.

Proof. Observe that if lim supnÑ8
log n

log a
´1

n

ă 1, then the series
ř

n an converges.

Applying this fact to an “ e´sdpo,pnoq we obtain that if

lim sup
nÑ8

logn

dpo, pnoq
ă s,
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then Ppsq converges. This immediately implies that δxpy ď lim supnÑ8
logn

dpo,pnoq .

Similarly, if lim infnÑ8
logn

log a
´1

n

ą 1, then the series
ř

an diverges. Applying this to

an “ e´sdpo,pnoq we obtain that

δxpy ě lim inf
nÑ8

logn

dpo, pnoq
.

�

Inequalities (3.1) and (3.2) imply that in inequality (3.3) we can replace dpo, pkoq
by ´ log dBXppkξ, pk`1ξq “ ppkξ|pk`1ξq. �

If pX, gq is the hyperbolic disk, then dBX is related to the angle at o between the
geodesic rays ro, ξq and ro, ξ1q. For now on we assume that o is the origin of the
hyperbolic disk. Bourdon [Bou] proved that

dBHpξ, ξ1q “ sin
1

2
=opξ, ξ1q,

where =opξ, ξ1q is the angle (using radians) between the (straight) rays ro, ξq and
ro, ξ1q. The euclidean metric on R

2 induces a metric on BH. We denote such metric
by d1, and it is given by the formula

d1pξ, ξ1q “ =opξ, ξ1q.

Corollary 3.6. Let ξ P BH and p P IsopH2q a parabolic isometry. Assume that ξ

is not the fixed point of p. Then

δxpy “ dimB

˜

ď

kPZ

pkξ

¸

“
1

2
,

where the box dimension is computed using the spherical metric on BH2.

Proof. Since limxÑ0
sin x
x

“ 1, and limkÑ8 =oppkξ, pk`1ξq “ 0, one can easily check
that in Proposition 3.4 it is possible to replace dBX by d1. In the hyperbolic disk it
is known that the sequence pdpo, pnoq ´ 2 lognqn is bounded (see proof of Lemma

3.11). In particular we know that limkÑ8
log k

dpo,pkoq “ 1
2
. This implies that equality

holds in inequality (3.3). Since the metric d1 is equivalent to the flat metric on R

we conclude the desired result. �

As mentioned in the introduction, one of the main results in this paper is the
generalization of Corollary 3.6 to higher dimensions. From now on we will always
assume that Γ ď IsopHnq is a discrete, torsion free subgroup of isometries. Fix a
reference point o P H

n. We define the limit set of Γ as the set of accumulation
points of Γ.o in H

n Y BHn, and denoted it by ΛpΓq. The limit set of Γ is a subset
of BHn and it is independent of the base point o. If Γ is non-elementary we have
a very nice characterization of ΛpΓq: it is the minimal Γ-invariant closed subset of
BHn (for instance see [BH]).

The non-wandering set of the geodesic flow onH
n{Γ is denoted by Ω Ă T 1pHn{Γq.

We say that Γ ď IsopHnq is geometrically finite if an ε-neighborhood of Ω has fi-
nite Liouville measure. Several equivalent definitions of geometrically finiteness are
given in [Bo2]. We will need the following result of Stratmann and Urbański (see
[SU, Theorem 3]).
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Theorem 3.7. Assume that Γ ď IsopHnq is geometrically finite. Then

δΓ “ dimH ΛpΓq “ dimB ΛpΓq,

where the box and Hausdorff dimension are computed using the spherical metric on

BHn.

We remark that for hyperbolic geometrically finite manifolds the equality δΓ “
dimH ΛpΓq, was proved by Sullivan (see [Sul, Theorem 25]). This result was latter
generalized by Bishop and Jones to cover all hyperbolic manifolds (see [BJ, Theorem
2.1]). More precisely, they proved that δΓ “ dimH ΛradpΓq, where ΛradpΓq is the
radial limit set of Γ (for precise definitions we refer the reader to [BJ]). If G is a
group we define G˚ to be Gr tidu. We will need the following definition.

Definition 3.8. Let F1 and F2 be discrete, torsion free subgroups of IsopHnq. We
say that F1 and F2 are in Schottky position if there exist disjoint closed subsets
UF1

and UF2
of BHn such that F˚

1 pBHn
r UF1

q Ă UF1
and F˚

2 pBHn
r UF2

q Ă UF2
.

We now state one of the main results of this section.

Theorem 3.9. Let P ď IsopHnq be a parabolic subgroup and ξ P BHn a point not

fixed by P. Then

δP “ dimB

ˆ

ď

pPP

pξ

˙

,

where the box dimension is computed using the spherical metric on BHn.

Remark 3.10. Theorem 3.9 does not immediately follow from Theorem 3.7 since
the group P is not geometrically finite. Moreover, the group P is elementary and
ΛpPq “ tηu, where η is the point fixed by P . Nevertheless, using box dimension we
can recover the critical exponent from the orbit of ξ under P .

Proof. We first prove the inequality dimBPξ ď δP . There exists a hyperbolic
isometry h which fixes ξ and such that xhy and P are in Schottky position. Indeed,
let VP be a fundamental domain of the action of P on BHn such that ξ P int VP ,
and define UP “ BHn

r VP . Observe that for every p P P r tidu we have that
ppBHn

r UPq Ă UP . Now choose a hyperbolic isometry w such that wpξq “ ξ,
and such that the other fixed point of w, say ξ0, also belongs to int VP . If one
chooses k large enough, then h “ wk will satisfy the properties stated above: if k is
large enough, then we can find a neighborhood Uh of tξ, ξ0u such that Uh Ă VP “
BHn

r UP and hspBHn
r Uhq Ă Uh, for every s ‰ 0. This implies that xhy and P

are in Schottky position.
Define Γk “ P ˚ xhky. We can now use [IRV, Proposition 5.3] to conclude

that limkÑ8 δΓk
“ δP . Moreover, the manifold H

n{Γk is geometrically finite (see
[DP] for a proof when P has rank one, but the same argument applies to Γk). By
construction ξ P ΛpΓkq, therefore Γkξ Ă ΛpΓkq; in particular Γkξ Ă ΛpΓkq. Observe
that Γkξ is a closed Γk-invariant subset of BHn. Since Γk is non-elementary we
conclude that Γkξ “ ΛpΓkq. We obtained that Pξ Ă Γkξ Ă Γkξ “ ΛpΓkq. Using
Theorem 3.7 and this inclusion we conclude that

dimBPξ ď dimBΛpΓkq “ dimB ΛpΓkq “ δΓk
,

for every k P N. Therefore

dimBPξ ď lim
kÑ8

δΓk
“ δP .
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We now prove the inequality dimBPξ ě δP . It will be convenient to consider
the upper half-space model of hyperbolic space. We identify H

n with tpx1, ..., xnq P
R

n : xn ą 0u, and the fixed point of P with the point of BHn whose xn–coordinate
is 8 (the rest of BHn is the plane xn “ 0). Our reference point will be o “
p0, ..., 0, 1q (this point corresponds to the origin in the ball model). Via the action
of P on the horosphere xn “ 1, we can identify P with a subgroup of AffpRn´1q,
where AffpRn´1q is the space of affine transformations of Rn´1. It follows from
Bieberbach’s theorem that there exists a finite index subgroup P0 of P such that
P0 acts on xn “ 1 as a group of translations (for instance see [Bo1, Theorem 1.1]).
In particular P0 – Z

k, for some k P t1, ..., n ´ 1u. The number k is called the rank
of P . It is well known that δP “ δP0

“ k
2
(see for instance [DOP, Section 3]).

There exists a sequence tg1, ..., gmu Ă P such that P “
Ťm

i“1 P0gi, in particular
Pξ “

Ťm
i“1 P0giξ. We will prove that

dimBP0η ě
k

2
, (3.4)

for every η P BHn. Assume that inequality (3.4) holds. As mentioned before δP0
“

k
2
. Combining inequality (3.4) with the inequality dimBP0η ď δP0

, we obtain that

dimB P0η “ k
2

“ δP0
“ δP , for every η P BHn. Since the box dimension is finitely

additive we can conclude that dimB Pξ “ k
2

“ δP (recall that Pξ “
Ťm

i“1 P0giξ).

We now prove inequality (3.4). We will identify the group P0 with Z
k, and

use the notation n.ξ to denote the translate of ξ under n P Z
k. The standard

generators of Zk will be denoted by te1, ..., eku. Denote by ρ the fixed point of
P0. Since limkÑ8 k.η “ ρ, we can conclude that there exists C ą 0 such that the
geodesic connecting η and k.η is at distance at most C from o. We choose zk P H

n

in the geodesic connecting η and k.η such that dpo, zkq ď C. Observe that N.zk
belongs to the geodesic connecting N.η and pN ` kq.η, therefore

ppN ` kq.η|N.ηq “
1

2
pBpN`kq.ηpo,N.zkq ` BN.ηpo,N.zkqq

“
1

2
pBk.ηpp´Nq.o, zkq ` Bηpp´Nq.o, zkqq

ďdpp´Nq.o, zkq

ďdpo,N.oq ` dpo.zkq

ďdpo,N.oq ` C.

We conclude that

dBHnppN ` kq.η,N.ηq ě e´dpo,N.oq´C.

In order to conclude the proof we will need the following result.

Lemma 3.11. Using the notation above we have

lim
tÑ8

# logtN P Z
k : dpo,N.oq ď tu

t
“

k

2
.

Proof. Recall that o “ p0, ..., 0, 1q is the origin of hyperbolic space. Let αi P R
n´1

be the translation vector of ei while acting on the horosphere xn “ 1. If follows
from the definition of the hyperbolic metric on H

n that

dpo,N.oq “ 2arcsinh

ˆ

1

2
|N1α1 ` ... ` Nkαk|

˙

,
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where |.| stands for the euclidean metric on R
n´1. It follows that the set

tdpo,N.oq ´ logp|N1α1 ` ... ` Nkαk|2q : N “ pN1, ..., Nkq P Z
ku,

is bounded. It is enough to prove that

lim
tÑ8

# logtN P Z
k : logp|N1α1 ` ... ` Nkαk|2q ď tu

t
“

k

2
. (3.5)

There exists D “ Dpα1, ..., αnq ą 0 such that the set At :“ tN P R
n : |N1α1 ` ...`

Nkαk| ď et{2u, contains a cube centered at the origin of radius D´1e
t

2 , and it is

contained in a cube centered at the origin of radius De
t

2 . For t large the number
of integral points in At will be of the order etk{2. This immediately implies the
equality (3.5). �

It follows from Lemma 3.11 that given ε ą 0, there exists E “ Epεq such that
for t ě E we have

#tN P Z
k : dpo,N.oq ď tu ě ep k

2
´εqt.

Assume that r is sufficiently small in order to have logpe´C{rq ě E, and define
Ar :“ tN P Z

k : dpo,N.oq ď logpe´C{rqu. We conclude that

|Ar| “ #tN P Z
k : dpo,N.oq ď logpe´C{rqu ě

e´Cp k

2
´εq

r
k

2
´ε

.

Observe that inequality dpo,N.oq ď logpe´C{rq, is equivalent to r ď e´dpo,N.oq´C.
Therefore N P Ar implies that for all k P Z

k we have

r ď e´dpo,N.oq´C ď dBHnppN ` kq.η,N.ηq “ sin
1

2
d1ppN ` kq.η,N.ηq

ď
1

2
d1ppN ` kq.η,N.ηq

where d1 is the spherical metric on BHn (coming from the natural embedding of
the ball model into R

n). In other words, to cover P0.η with d1-balls of radius r we
need at least |Ar| balls (at least one ball for each N.η, where N P Ar). We conclude
that

lim inf
rÑ0

logNprq

logp1
r

q
ě lim inf

tÑ0

log |Ar|

logp1
r

q
ě lim inf

rÑ0

log

ˆ

e
´Cp k

2
´εq

r
k

2
´ε

˙

log
`

1
2r

˘ “
k

2
´ ε.

Since ε was arbitrary we conclude that dimBP0η ě k
2
.

�

Remark 3.12. Roblin proved in [Rob] that if Γ is non-elementary, then

lim
tÑ8

# logtγ P Γ : dpo, γoq ď tu

t
“ δΓ.

Since P0 is elementary we can not use Roblin’s result. The proof of Roblin uses
in an essential way that the group is non-elementary–it uses the Patterson-Sullivan
conformal density at infinity associated to Γ.
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[SU] Stratmann, Bernd Otto; Urbański, Mariusz. The box-counting dimension for geometrically
finite Kleinian groups. Fund. Math. 149 (1996), no. 1, 83–93. (Cited on page 12.)

[Sul] Sullivan, Dennis. The density at infinity of a discrete group of hyperbolic motions. Inst.
Hautes tudes Sci. Publ. Math. No. 50 (1979), 171–202. (Cited on pages 2 and 13.)

[Wa] Walters, Peter. An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79,
Springer, 1981. (Cited on pages 6 and 8.)

[V1] Velozo, Anibal. Phase transitions for geodesic flows and the geometric potential.
arXiv:1704.02562 (Cited on pages 2 and 3.)

[V2] Velozo, Anibal. Thermodynamic formalism and the entropy at infinity of the geodesic flow,
arXiv:1711.06796. (Cited on pages 2 and 3.)

Facultad de Matemáticas, Pontificia Universidad Católica de Chile (PUC), Avenida
Vicuña Mackenna 4860, Santiago, Chile

E-mail address: giommi@mat.puc.cl

URL: http://http://www.mat.uc.cl/~giommi/

Department of Mathematics, Yale University, New Haven, CT 06511, USA.
E-mail address: anibal.velozo@yale.edu

URL: https://gauss.math.yale.edu/~av578/

http://http://www.mat.uc.cl/~giommi/
https://gauss.math.yale.edu/~av578/

	1. Introduction
	2. Pressure and dimension
	2.1. Dimension theory
	2.2. Markov shifts and Markov maps
	2.3. The class of maps
	2.4. Thermodynamic formalism and Hausdorff dimension
	2.5. Pressure and box dimension
	2.6. Compact perturbations and measures of maximal dimension
	2.7. Extremes of the multifractal spectrum

	3. Geodesic flow on a negatively curved manifold
	References

