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SCHUR ALGEBRAS AND QUANTUM SYMMETRIC PAIRS WITH UNEQUAL
PARAMETERS

CHUN-JU LAI AND LI LUO

ABSTRACT. We study the (quantum) Schur algebras of type B/C corresponding to the Hecke algebras
with unequal parameters. We prove that the Schur algebras afford a stabilization construction in the sense
of Beilinson-Lusztig-MacPherson that constructs a multiparameter upgrade of the quantum symmetric
pair coideal subalgebras of type AIII/AIV with no black nodes. We further obtain the canonical basis
of the Schur/coideal subalgebras, at the specialization associated to any weight function. These bases
are the counterparts of Lusztig’s bar-invariant basis for Hecke algebras with unequal parameters. In the
appendix we provide an algebraic version of a type D Beilinson-Lusztig-MacPherson construction which is
first introduced by Fan-Li from a geometric viewpoint.
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1. INTRODUCTION

1.1. Background. The quantum groups introduced by Drinfeld and Jimbo have played a central role in
representation theory and many other branches of mathematics. Equally important are Lusztig’s modified
(or idempotented) quantum groups (cf. [Lu93]) that admit the canonical bases, which are analogs of the
Kazhdan-Lusztig bases for the Hecke algebras. In [BLM90], a geometric construction of the modified
quantum group U(g[ ) is given by Beilinson-Lusztig-MacPherson. Their construction is now referred as
the BLM or stabilization construction after a stabilization property of the family of the (quantum) Schur
algebras of type A. In this paper, by a (equal—parameter)ﬂ stabilization construction of type X we mean
a construction of an algebra KX over Z[v,v~1] such that

(1) There is a family of quantum Schur algebras Si 4» Which are the centralizing algebras to the action
of the Hecke algebra H of type Xy, for all n, d;
(2) The family {SX | d € N} admits a stabilization property, namely, the algebra KX = Stab sX,

00<«—d n,d
is well-defined. As a consequence, there is a basis of Kf that is compatible with the Kazhdan-
Lusztig bases for HY, and the canonical bases of Sf g for all d.

The stabilization constructions have been developed for classical type and for certain affine type (see
Table [I] for the references) — there are geometric approaches using partial flags and counting over finite
fields developed; while there also are algebraic approaches in the framework of the Hecke algebras using
combinatorics on Coxeter groups.

1our goal
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TABLE 1. Known BLM /stabilization constructions

type | finite A finite B/C finite D affine A affine C
geometric | [BLM90] [BKLWI1S] [FL15] [Lu99] [FL°Wa]
algebraic | [DDPWOS] ? ? [DF15] [FL3Wh]

We remark that the algebraic approach for finite type B/C is more or less a special case for affine type
C; while the algebraic approach for type D will be given in the appendix of this present paper.

The stabilization construction in general produces not the Drinfeld-Jimbo’s quantum groups but
Letzter-Kolb’s quantum symmetric pairs (cf. [Le02, [Kol4]). For example, the stabilization construc-
tions of type A and B/C lead to the quantum symmetric pairs of type AIII/IV with no black nodes.

1.2. A new direction. A recent work by Bao-Wang-Watanabe brings to the author’s attention that a
multiparameter Schur duality (cf. [BWWIS]) plays a governing role among the Schur dualities of classical
type. They also introduce a multiparameter upgrade of quantum symmetric pairs of type AIII/AIV with
no black nodes.

While it is unclear how to proceed a geometric approach with unequal parameters since dimension
counting does not make sense in an obvious way, an algebraic/combinatorial approach seems viable.
The goal of this article is to provide a stabilization construction with respect to the Schur duality with
unequal parameters in loc. cit. We show that the multiparameter stabilization algebras constructed are
the coideal subalgebras appearing in the quantum symmetric pairs of type AIII/AIV with no black nodes.
As an application, we construct, for the first time, the canonical bases for the type B/C Schur algebras
with unequal parameters associated to any weight function, using Lusztig’s bar-invariant basis [Lu03]
with unequal parameters.

The following diagram explains briefly the connection between the stabilization construction of type
B/C for equal and unequal parameters (here ¢ = ged(L(sg), L(s1)), and there are two distinct cases where
e can be replaced by ¢ or y):

TABLE 2. Relation between Schur duality of type B/C at various specializations

S~ VO~ Hy over Z[u*! v¥l]
| specialization at u = VL(SO), v = vl

S;’;’ —~ V%d —~ HY over Z[vEe]

| specialization at u =v = v (i.e., L = /)

Sy 4~ VO~ Hy over Z[vtl]

)

At the specialization u = 1, the Hecke algebra contains the type D Hecke algebra over Z(v*!) as a
proper subalgebra. Hence the multiparameter Schur duality yields a weak Schur duality of type D which
is used in [Baol7| to formulate the Kazhdan-Lusztig theory for classical and super type D. The very
duality also appears in [ES18] as a piece of a larger skew Howe duality of the quantum symmetric pair
coideal subalgebra with itself.

1.3. Unequal parameters. While the organization of this paper follows closely to the (equal-parameter)
affine type C construction [FL®Wh], the technical lemmas therein do not generalize naively. Below we
mention some notable difficulties working with unequal parameters.

The first difficulty comes to dealing with the combinatorics of (type B/C) quantum numbers with two
parameters. The key observation here is that the (equal-parameter) quantum numbers/factorials used in
the BLM-type constructions arise from the (equal-parameter) Poincare polynomials corresponding to the
Weyl groups. Hence, we compute the multiparameter upgrade for the type B/C Poincare polynomials
(cf. Lemma 2:370]), and then extract from it a type B/C quantum factorial (Z.3.3]) with two parameters.
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The second difficulty arises in constructing a standard basis of Sﬁl’ 4 For the equal-parameter case
such a basis element [A] is obtained by multiplying a v-power to the evident basis e 4; while for unequal
parameters, it is not obvious how to define a multiplier u*v*® that specializes to the original v-power. We
solve this problem by reducing it to getting an explicit formula (cf. Lemmal.T.2]) for the leading coefficient
under the bar map. For the equal-parameter case the formula is obtained using certain identities on the
dual Kazhdan-Lusztig basis due to Curtis. However, there are no multiparameter Kazhdan-Lusztig basis
known to us (yet). Hence, we take a detour via Lusztig’s bar-invariant basis ¢,, with unequal parameters
and have successfully define a standard basis that affords the entire stabilization process.

Finally, we remark that there is an unexpected behavior for our multiparameter monomial bases —
the basis elements are not bar-invariant, unlike the (equal-parameter) monomial basis elements. As a
result, we can only show the existence of canonical bases for Schur algebras at certain specialization (see

Section [£.4)).

1.4. Organization and main results. Throughout the article the algebras are over the ground ring
A = Z[uFt, vt

(u,v are independent indeterminants) and its specializations.

We first start with the case e = 3. In Section 2] we recall combinatorial properties of Weyl groups of
type B/C in terms of permutation matrices. We characterize a matrix set =, 4 (see (2.2.2)) associated
to certain double coset representatives. We also introduce the multiparameter quantum numbers of type
B/C corresponding to the Poincare polynomials. In Section Bl we introduce the Schur algebra Sﬁl’ 4 (see
(BI4)) with an evident basis {e4 | A € E,, q}. In Section [l we introduce a standard basis {[A] | A € =, 4}
(see ([£23), and we show that, using Lusztig’s basis ¢, for the Hecke algebras with unequal parameters,
it satisfies a unitriangular condition under the bar involution. The first main result is the following
multiparameter upgrade of the multiplication formulas in [BKLWTIS]:

Theorem A (Theorem E23). Let A,B € =, 4 and B —b(Ep p41 + E_p _p—1) is diagonal. Let ’yg’A €A
be such that [B][A] = > ¢ 7](3;714[0] €S! ;. The explicit formula and the vanishing criterion for Vg,A are
computed.

The multiplication formula plays an essential step towards constructing a monomial basis in the sense
that a stabilization property (£3.3]) holds.

Theorem B (Proposition 3.1l Theorem [L.4.1]). There exists a monomial basis {ma} for the Schur
algebra Sﬁl g over A, Consequently, at a specialization associated to a weight function L, there exists a

: . L
canonical basis {{A}“} for Sﬁhd.

In Section [B] we show that the stabilization procedure along the line of Beilinson-Lusztig-MacPherson
applies to the family of Schur algebras {S’ , | d > 1} with a fixed n, which leads to the construction of

stabilization algebra K% (cf. Corollary [5.1.3)) together with its canonical basis.

Theorem C (Theorem [5.2.2). There exists a monomial basis {m4} for the stabilization algebra K. As

a corollary, there exists a canonical basis {{AY¥} for KJ, at a specialization associated to a weight function
L.

Section [0l is dedicated to the counterparts of Theorems B and C for the case e = 1 (see Theorems
and [6.3.8]). In Section [7] we show that the stabilization algebras coincide with the gl-variants U7, U
of the multiparameter quantum symmetric pair coideal subalgebras studied by Bao-Wang-Watanabe in
[BWW18] (referred as U7, U* therein). The argument is made bypassing the idempotented (or modified)
quantum algebras.

Theorem D (Theorems [[.2.1] and [[.3.2]). There are algebra isomorphisms Kj, ~ U7, K, ~ U".

In the appendix we provide an algebraic version of a type D Beilinson-Lusztig-MacPherson construction
which is first introduced by Fan-Li from a geometric viewpoint.
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2. COMBINATORICS ON WEYL GROUPS
2.1. Weyl groups as permutation groups. Let N = {0,1,2,...}. Fix N,n,D,d € N such that
N=2n+1,D =2d+ 1. (2.1.1)

Let Perm(X) be the group of permutations on a set X. Let (W, S) be the Coxeter system of type B/C
by

— {ge Perm([~d,d]) | g(—i) = —g(@)}, S = {50,- 541}, (2.1.2)
where
so=(-1,1), s;=(,i4+1)(=i,—i—1) (1<i<d). (2.1.3)
In particular, g(0) = 0 for any g € W. The corresponding Coxeter diagram is as below:
0O=——0 e o
0 1 d—1

Since that any g € W is uniquely determined by (g(1),...,g(d)), we use the two-line/one-line notations
(referred as the window notation in [BB05])

1 d
’ ’ = g(1),- -, g(d)].. 2.1.4
g1, ... g . lg(1) g(d)|c ( )
Let £ : W — N be the length function on W. We introduce a truncated length function ¢, : W — N such

that £.(g) equals to the total number of sy’s in a reduced expression of g. The function /. is well-defined
since it is the weight function (cf. [Lu03]) determined by #.(sg) = 1,4.(s;) = 0 fori = 1. We set £, = {—/,.

g =

Lemma 2.1.1. For g e W, we have

le(g) = %ﬁ {( j) € [1,d] (=3() OF g(iiié(j)}, (2.1.5)
talg) = 5 {(6.5) € 1] % (1=, d) = 10Dy 5y o7 o0} (2.1.6)
t) = %ﬂ {6.) € [1d] % [~ )|y S5 or gy 200 | - (2.1.7)

Proof. Tt follows by an easy induction that ¢.(¢g) = #{i € [1,d] | g(i) < 0}, which yields to ZL5) by a
direct calculation. The formula (217 for ¢(g) is equivalent to the formula [BB05) (8.2)]. Then there
comes the formula ([Z.1.6]) by ¢4(g) = ¢(g) — £c(g). O

Remark 2.1.2. The expressions in Lemma 2. 1.7] are not the most straight-forward. There are simpler
ones, for example, {; = inv 4+ neg and ¢, = neg following the convention in [BB05]. We will see in
Lemma the advantage of choosing such symmetrized expressions. See also [FL>Wh| Appendix A]
for similar symmetrized length formulas for finite and affine classical types.

Denote the set of weak compositions of d of n + 1 parts by
Ana={A=Nnsee o, AL 200 + LA, ) e N2VFL S N = d). (2.1.8)
For any A € A,, 4 and integer ¢ € [—n, n], we define integer intervals R? by
Mo+ 2 N+LX+ X Al ifo<i<n
N 1<<i 1<j<i
Ri = [_)\07 )\0] le — 0 (219)
—Rfi if —n<i<O.
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For any subset X < [—d, d], let Stab(X) be the stabilizer of X in W. A parabolic subgroup of W must
be of the form

Wy = ﬂ Stab(Ry), for some A € A,, 4. (2.1.10)
i=0

Precisely, W) is the parabolic subgroup of W generated by S — {sx,, Sxg+Ass--->Sd—), }- Denote the set
of shortest right coset representatives for W)\W by

Dy ={weW | lwg) =L(w) + £(g) for all we Wy} (2.1.11)
= {we W | w! is order-preserving on all R}}. (2.1.12)

Denote the set of minimal length double coset representatives for W\\W /W, by
Do =D D, (2.1.13)

In the following we collect some standard results for Coxeter groups from [DDPWO0S| Proposition 4.16,
Lemma 4.17 and Theorem 4.18].

Lemma 2.1.3. Let \,u € Ay, g and g € Dy,.

(a) There exists § € Ay 4 for some n' such that W5 = g Wyg N W,.
(b) The map Wy x (Z5 n W,,) — WxgW,, sending (x,y) to xgy is a bijection; moreover, we have

l(zgy) = L(z) + L(g) + L(y).
(¢) The map W5 x(ZsnW,) — W, sending (x,y) to xy is a bijection; moreover, we have {(x)+L(y) =

U(xy).

An essential step in deriving the multiplication formula is to understand the set %5 n W,,, which we
will see in Section

2.2. Set-valued matrices. Let

On,p = {(aij)nsi,jsn € Mat yn (N)

De2N+1

Zaij = D} s @N = U ®N,D' (2.2.1)
ij

Note that the columns/rows of such a matrix are indexed by [—n,n] instead of [1, N]. Let

aogo € 27 + 1,

*:*md = {(aw) € ®N,D ’ a’ij — a—i7—j for all 17] } ) SEn = dLEIJ\]‘:‘n,d‘ (222)

For A = (a;;) € E,,4 we define a matrix A = (Az;) to be the unique set-valued matrix satisfying:
(P0O) The sets (AZ;)ZJ partition [—d,d];
(P1) |AZ| = a;; for all ¢, j;
(P2) Every element in AZ is smaller than any element in Afy if (i,7) < (x,y) in the lexicographical
order (i.e., (i,7) < (z,y) ifand only if i <z or (i = x,j < y)).
In words, the set-valued matrix A% is obtained by filling integers from —d to d into the entries AZ-; rOwW-

by-row, top-to-bottom. For T € Oy, we define its row sum vector row(T") = (row(T))}__,, and column
sum vector col(T) = (col(T'))} by

k=—n

row(T)y = Z tr; and col(T), = Z tik- (2.2.3)

—n<y<n —n<i<n

Lemma 2.2.1. The following map is bijective:

ke L] X Dx (i} = Znae K g, 1) = (IR} A gRY )iy (2.2.4)
Av/»‘eAn,d

Moreover, the inverse is given by k~1(A) = (row(A), ga, col(A)), where ga is the permutation sending k
to the k-th number in the column-reading of A¥ (see Example [Z.2.3 below).
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Proof. The surjectivity follows from x(row(A), ga,col(A)) = A (VA€ =, 4) by a direct calculation.

For injectivity, we assume k(X\, g,p) = A = k(N, ¢, 1'). Then A = X =row(A) and p = p/ = col(A)
and hence g, ¢’ € 2. It follows from |R} N gRY| = IR} N 9'RY| (Vi,j € [-n,n]) that g = w(xyg'w,) for
some w(y) € Wy, w(,) € W,. Therefore g = ¢’ since they are both minimal double coset representatives

in W\\W/W,. O
Thanks to Lemma 221 we define length functions ¢, ¢, ¢, on =, 4 by
((A) = Ug), L(A) =Lc(g), (la(A)=Lalg) (for A= r(A g,p)) (2.2.5)
We define index subsets of type A/C by the following:
I, = ({0} x [1,n]) u ([1,n] x [-n,n]), I.=I,u{(0,0)}. (2.2.6)

For (i,7) € I, we set

_ (2.2.7)
ajj otherwise.

{%(aij —1) i (i,5) = (0,0);

There is an alternative length formula in terms of products of matrix entries as below.

Lemma 2.2.2. Recall an from 2.27). The (truncated) length functions of A are given by

((A) = %( M(EeY )a;.-jamy>, A = 3 (3 + 3 ey, (2.25)

(i,j)ele =<t x>i O<z 0>z
y>j  y<j 0>y O<y

la(A) = %( > (X+X )a;']”-axy>, (2.2.9)

(igele w<i  z>i
y>J y<J

where aguo = ago — 1= %(ago — 3) and aEE = a;j if (i,7) € I,.
Proof. These three formulas are paraphrases of those in Lemma 2111 O

Let A = k(X, g, 1) € E,, g We define a signed weak composition as below:
5(14) = (army R R 7aE]07a107 <oy n0y G—n 1,041,153+ -5Qnly-eeyeeey Gnn, Gd—ntln,--- 7ann)-
A direct computation shows that §(A) is indeed a weak composition ¢ in Lemma 2.1.3](a).

Example 2.2.3. Let A = H z H We have

P {—6} {—5,—4,-3} {-2}
row(A) = (5,3,5), col(A)=(3,7,3), A" =|{-1} {0} {1y |.
{2y {345} {6}
Column-reading of A% gives us a sequence —6, —1,2, —5, —4,—3,0,3,4,5,—2,1,6, and hence g4 is the
permutation
ga = |3,4,5,-2,1,6[; = 5150525153525453.

Indeed, we have

1
E(A) = 5((1%0(1 + 1) + CL()l(O + 4) + CL17_1(6 + O) + a10(2 + O) + CL11(O + 0))
1
= §(O+4+6+6+0) =8,
1
ec(A) = 5(&17_1 + a_171) =1,
1

fa(A) = 5 (i (2) + a01(4) + a1.-1(6) + ar0(2) + a1 (0)) = 7.
Furthermore, §(4) = (1,1,1,3,0,3,1,1,1).
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2.3. Quantum combinatorics. We denote the quantum v-number by

v —1

o] = —5— (acD). (2.3.1)

We denote the type-A quantum v-factorials by, for t e N, A = (a;5) € Oy,

t
= H[k‘], [A]l = H [ai;]!. (2.3.2)
k=1 —n<i,j<n
The type-B/C analogues are defined by, for t € N, A = (a;5), B = (bi;) € 2,
t
[2t] = [t](u*** Y + = [T12k)e,  [ALL = [ado)t [ [as]! (2.3.3)
k=1 (i,5)€lq

In particular, the specialization of [2t]. at u = v is [t](1 + v*) = [2t]. Furthermore, we set, for any a € Z
and b e N,

b 2(a—it+l) _q
a v
[ b ] B H vi—1
Lemma 2.3.1. Let A = k(p, g,v), and let § = 6(A). Then Y w?c(Wy2law) — 4],

wEW(s

Proof. Let W7 be the Weyl group of type Cg.
Recall § in 2.210). We have Ws ~ W*, x[]; er, Sa,;- For each w € &,,; we have lc(w) = 0, la(w) =
Qg0 R

¢(w), and hence

Z u2le(w)yy2ta(w) Z p2w) = [aij]!. (2.3.4)
U)EGaij U)EGaij
Thus
Z u2€c(w)v2€u(w):< Z 2w m(w) H [as;]!
weWs weW*, (4,9)€la
%00

It suffices to show that

Z w2t (w) 2la(w) _ [d]!c' (2.3.5)
weW;

Let A = (0,...,0,1,2d — 1,1,0,...,0) € Ay, g. We have Wy ~ WJ_,, and hence

Z 2 2be(w) 2l (w :< Z 02l (w) g 20a(w) >< Z u2le(w 2£a(w) (2.3.6)

weWy weW;g_, SN
By @III), g € 2, if and only if g~ ! is order-preserving on [—d + 1,d — 1]. Hence,
[1,d] = {5} u {i1,.. . ig-1}, } (2.3.7)

Dy =i, via_1, £ . .
A |17 7dl7—]|c i< ...<ig_q

Consequently, we have
DT whelye) — [d](1 + w7 = [2d].. (2.3.8)

U)E@A

Therefore, (2.3.5]) follows from a downward iteration. The Lemma is proved. O
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3. SCHUR ALGEBRAS

3.1. Schur algebras. The Hecke algebra H = H(W) over A is an algebra with a basis {T, | g € W}
satisfying

TwTy = Ty if L(ww) = £(w) + (W), (3.1.1)
(Tso + 1)(Tso — u?) =0, (3.1.2)
(Ts + 1)(Ts —v*) =0 for se .S — {sp}. (3.1.3)
For any subset X < W and for A € A,, ¢ (2.1.8), set
Tx = ) To, T, = Tavygw.: @ =Tan = Tw,, (3.1.4)
weX

where 1 is the identity element of W.
Lemma 3.1.1. If we Wy, then Tyz) = w2be)g2la(w) g — 2 T
Proof. This reduces to the case when w = s € S. It then follows from the Hecke relation (B.1.1]). O

For \,pn € Ay, g and g € 2, we consider a right H-linear map (biﬂ € Homp(z,H,H), sending x, to
Tfﬂ. Thanks to Lemma 21.3(b), we have Tfu = 2\TyT9;~w, for some 6 € A, 4, and hence we have
constructed a right H-linear map

{, € Homp (z,H, 2\H), Ty, — T, (3.1.5)

The Schur algebra Sf% 4 is defined as the following A-algebra
Sh.a= EndH< @ xAH) = @ Homg(z,H,z)\H). (3.1.6)

)\eAn,d )‘7/1/€An,d

Thanks to Lemma 2.2.1], for A = k(\, g, u) we define
eq = *;7\”. (3.1.7)
A formal argument as in [Du92, [G97] is applicable to our setting and gives us the following:
Lemma 3.1.2. The set {ea | A€, q} forms an A-basis of Siz,d'
For T' = (t;;) € On, let diag(T") = (d;5tij) € On and denote its centro-symmetrizer by
T = (t;), where 10, =t;+1t_;_j. (3.1.8)
We remark that 7% ¢ =,, since tgo is even. A matrix B € 5, 4 is called a Chevalley matriz if
B — diag(B) = bE} .1, (beN,—n<h<n). (3.1.9)

An easy consequence of Lemma is that gg = 1 if B is Chevalley. We assume from now on that B
is a Chevalley matrix, and we fix B = x(\, 1, 1), A = s(u, g,v). Recall [A]. from ([23.3). We have the
following identity.

Lemma 3.1.3. z,T,7, = [A].ea(x,).
Proof. Let 6 = §(A). By Lemma 2.1.3|(c), we have x, = 25T, ~w,, and hence
2, Tyxy = 2, TyxsTosew, = . 2 TyTwTonw,. (3.1.10)
w€W5

By Lemma 21.3(a), w € g~ 'W,9 n W, € W, and hence T,T,, = Ty, since g € Z,,, = Z,7'. Moreover,
we have gw = w'g for some w' € W,,. Since g € Z,,, € Z,,, we have

t(g) + L(w) = L(gw) = L(w'g) = L(w') + £(g) (3.1.11)

w). Moreover, note that £ is a well-defined weight function (cf. [Lu03]) deter-

and therefore £(w') = ¢(w).
=1 and ¢(s;) = 0 (¢ = 1). Counting the number of sy appeared in a reduced form of

mined by #(sp)
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gw = w'g, we have £ (qw) = £(g) + £(w) and £, (w'g) = L (w') + £(g) by BIII). Thus ¢ (w) = £(w')
(and hence ¢4(w) = £y(w’)). Finally, we have

Do Tgw = Y wyTuTy = ) w7 — [A]la, T, (3.1.12)

weWs weWs weWs
where the second equality follows from Lemma [3.1.1] while the third equality follows from Lemma 2.3.11
The rest follows by the definition e4(z,) = ,T4T9,~w, - O

3.2. Multiplication formulas %5 n W,,.

Lemma 3.2.1. Fiz B =x(\, 1,u), A= r(u,g,v) and let 6 = 6(B). Let y* be the shortest double coset
representative for WyxwgW,,, and set A* = k(\,y*,v). Then

epes = Z [[A]}c(u2)£c(w)+€c(g)—fc(y )(,U2)£a(w)+€a(g)—€a(y )EAw. (3.2.1)
wE@(gﬁWM ¢
Proof. By Lemma [B.1.3 and (B.I5]) (which implies ep(z,) = 2AT;~w,) we see that

egea(r,) = eB(ﬁZEMTQ‘/EV) = ﬁ

C [

1
ep(xy)Tyx, = W$)\T_@6mWHTg$V. (3.2.2)
c

Since g € Dy, © Dy, so Ty, Ty = Tyy for all w € 5 n W, < W,. For w € s n W, there exists
wy € Wy, w, € W, such that wg = wyy“w,. Moreover, we have
Lwg) = L(w) + £(g) = L(wy) + L(y") + £(wy). (3.2.3)
Thus, we have
ATy = \Tw, Tyw T, ) = (u2)£‘(wk)+g‘(“’”)(vz)ZC‘(w*)H“(w”):E)\Tyw:17,,. (3.2.4)

Combining the (3.2.2]), (3224]) and applying Lemma B.1.3l on x)Tywx,, we have

1 Av]. w w

epea(Ty) = =a7 E 2 Twgr, = E [ }c(uQ)Z‘(wg)_g‘(y ) (12l =W ) e (2,).  (3.2.5)
[A]: [A]:

wE@(gﬁWM we%;qu

The lemma follows from (3.2.3)). O

Proposition 3.2.2. Suppose that A,B,C € =, 4 and h € [1,n].
(1) If B — bthhfl is diagonal, col(B) = row(A), then

n
epeg = qu22k<ltlah»k 1_[ [ ah’lt;l_ b ] egth, (326)
t I=—n ’
. i < ap— 1,6 if h > 1;
where t = (t;)—p<i<n € NV with 37 t; = b such that { " " and
(fi)—nsi<n 2ien i {t +t<ap1; ifh=1,
- n n
A=A+ Y uBp, — >, tE
l=—n l=—n
(2) Suppose C — cEY_, 1 18 diagonal and col(C) =row(A). If h # 1, then
n
ap—11+1
ecea :;U2Zk>ltlahl’kln { h lti ! ]egt’h, (3.2.7)
=—n

where t = (;)—n<i<n € NN with 31 t; = ¢ such that t; < an;, and

i=—n

n
At,h =A- Z tlEz,l + Z tlEszl.

l=—n l=—n
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If h =1, then

eces = Z u? Zi<o g2 Ls1 00kt +2 2 poc gttt Xy <o tu(ti— o (3.2.8)

aoz—l—tl-l—t ]
7 [aoo ol' 121 [ao, ]!

]l ez‘im’

where t = (t;)_p<i<n € NV with D ti = c such that t; < ay;

Proof. For Part (1), we only present the proof for the most complicated case h = 1. Let § = §(B) and
take any t = (t;)—n<i<n € N? as in the assumptions. Among those w € %5 N W, such that AY = A; 1,
there is a unique shortest element w; with

Cwr) = Y (aok —te)li = tltk——ztz (tr —1). (3.2.9)
k>l I<k<—l <0
In particular, we have
Z tr, wt Z(ao k= tk t; — Z tity — = Z tl t + 1 (3.2.10)
<0 k>l I<k<-—I l<0
By a combinatorial argument, we calculate that

i i n
Z y20e(w) 20a(w) _  2e(we), 20a(w) < Z [ago] {aooy— x] u2x<v2)“(”’21>+x(a€0—to)> 1—[ ﬁot] {%; — tl]'
Lt 1

wePs Wy, Tz+y=to
A=A, 4
Note that
] ] _
5[] ot
T+y=tg x Y

a“(u) 0 - to z(z—1 al o —toy2z () a“g 0 g 2 2 2 o [aE] 0]!
= ’ Z v ( )(U’U 0,0 O) e ’ H(1+U ( ) ( 0,0 O)) =
=1

to | ;L to [ag o — tolt [to]!

where () is due to the quantum binomial theorem » " [T;]vx(x_l)zx =11 Y(1 + v?'2). Therefore

!

] n
Z L 2be(w) 200 (w) _ o 26 (we),20a(we) u lagole H [ao’l} [ao’l B tl]. (3.2.11)
wE@(SF\WI’“Aw:A/t’l [ao 0o t(]] [to]' tl t—l

Furthermore, it follows from Lemma [2 that

Ce(A) = (A1) = =Dty (3.2.12)
<0
la(A) — £ Atl Z tiay g, — Z ao k—te)t + Z tity + = Z ti(t; +1). (3.2.13)
k<l k>1 I<k<-l l<0

Part (1) then follows from combining (3.2.1), (B.2.10)-@B.2.13). For Part (2), we only present a proof
for the most complicated case that h = 1. Let § = §(C) and take any t = (¢;) _n<i<n € NV as in the

assumptions. Among those w € Zs n W), such that AY = /Alt .1, there is a shortest element w; with
le(wy) =0 and 4 Ztl a1k —tg). (3.2.14)
k<l
Direct computation yields to the following identities:

S ylw)yHae) g 2helwn)y2alwn) T [al,l] _ Sttt T] {au]’ (3.2.15)
we_@(;mAWM, l=—n t I=_n t
Av=4,,
le(A) = Le(Ary) = D, (3.2.16)

<0
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Ca(A) — Ca(Ar1) = Dlaorti — D tilark —t) + D, ity + % Dt —3). (3.2.17)

k>l k<l I<k<-—I 1<0

Part (2) then follows from combining (B:2.1)), (32.14)-B.217). O

Remark 3.2.3. These explicit formulas match the ones in [BKLW18] (resp. the unsigned ones in [FL15])
if we specialize u = v (resp. u = 1).

4. CANONICAL BASES
4.1. The bar involution. There is an A-algebra involution ~: H — H, which sends u — u~!,v —

v, Ty — Tu;ll, for all w e W. In particular, we have, for s € S — {so},
To=v Ty +v2—-1, Ty =uTy+u?—1. (4.1.1)

For A\, € Ay, 4 (see (ZIH)), let g;\ru be the longest element in the double coset WygW, for g € Z,,,

and let wh = ]l;ju be the longest element in the parabolic subgroup W, = W,1W,. The lemma below is
standard (cf. [DDPWOS8|, Corollary 4.19]).

Lemma 4.1.1. Let A = k(\, g, 1), § = §(A). Then:
(@) g5, = whgudut, and ((g},) = ((wd) + £(g) — L(ws) + C(ut)
(b) WagW, ={weW | g<w<g,}
Following [KL79], denote by {C/,} the Kazhdan-Lusztig Z[v, v !]-basis of the Hecke algebra H]|,—,
characterized by Conditions (C1)—(C2) below:
(C1) Cj, is bar-invariant;
(C2) Oy = v Y,y Ppu(v)Ty.

Here < is the (strong) Bruhat order, and Py, is the Kazhdan-Lusztig polynomial satisfying that P, = 1
and Py, € Z[v?] with deg, Py, < f(w) — £(y) — 1 for y < w. Recall Tfu from (BI.4]) and denote

CRu=Cpr (g€ Py e Ang). (4.1.2)

Following [Cur8F], let H,, be the Z[v,v!]-submodule of HJ,_, with basis {T/{]u}ge%u‘ It is shown in
loc. cit. that {Cﬁu }gea,,, also forms a bar-invariant basis of Hy,.

It is shown in [Lu03l §5] that, for any weight function L : W — N, there exists a bar-invariant basis
{CL} (referred as ¢, therein) at the specialization u = v(50) v = vI(51)  given by

CL = w5y () N p (V) Tyly_yiteo) oyiton) (4.1.3)

ysw

where p, .,(v) is an analogue of Kazhdan-Lusztig polynomial. For X, u € A,, 4, let H), be the Z[u*?, v+?)-
submodule of H with basis {T% 9, 1t follows from [CIK72, Lemma 2.10] and Lemma B.I.1] that Hy,
can be characterized as below:

T,h = u2fc(w)v2£a(w)h7 (vw e W)\)7
H)\/J - {h € H‘ hTw/ _ u2éc(w/)v2éa(w/)h’ (vw/ c Wu) . (414)
Below we show that the bar involution is closed on Hy, although lacking of bar-invariant basis.
Lemma 4.1.2. Let A = k(X g,u). Then Tgu € Hy,. In particular,
Tgﬂ € uizz‘(g;r#)vfya(giu)TfM + Z Z[u*?, Uﬂ]T)Z\/M. (4.1.5)
yE@A‘L
y<g

_ K _ K . . .
Moreover, uwt(ws)y é“(“’o):nu 1s bar-invariant.
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Proof. First, we show that T, € Ax, for all v € A, q via bar-invariant basis CQE‘. Let H}\‘M be the

specialization of Hy, at u = vE(0) v = v, From @I, a direct calculation shows that ng‘g e HL,
and hence
L —Le yEL(s0) (*L
C v = U (wg) Z Dy,wv T, ‘u vL(0) p—yL(s1) € Z (s0) v (31)) ngy‘u=vL(SO),v=vL(51) .
y<wy gejuu
(4.1.6)
Upon comparing coefficients, we obtain
L —te(w?), —Lla(w) ol
O,wg =U (w )'U (U) ) TI/V|u:VL(SO),v:VL(Sl) . (417)
Note that x,, = T},. Hence, for any weight function L, we have
T gy 2e(w?)  —2a(wh) _
(T —u Ty) L 50) ey LCe1) 0. (4.1.8)

Therefore T, = u 20w y=2la(wd) .~ We now show that fgu € H),. By Lemma [3.1.3] we have Tfp €

Z[u*? v Ty, and hence
T—)‘\’M e Zu2 v TN T, T, = Z Zu? v ) Toay,. (4.1.9)

Z2<g

Similar to 23], we have z)T,z, € Z[u*?, v*?]x Tz, for some y € Z,, such that y < z. Finally, we
have Tfu € Zye%M Z[u*? v*?)2)Tyx, < H,,. The leading coefficient is obtained by a lengthy calculation
which we omit. O
The bar involution~on S/, . 18 defined as follows: for each f € Homy(z,H, 2 H), let f € Homp (2, H, x\H)

be the H-linear map which sends x, to f(Z,).

4.2. A standard basis in Sﬁl 4+ We define, for A € 2, 4, the (truncated) generalized length functions of
A by

(Z (X~ Z)awaxy> i (Z > )aws, (4.2.1)

(t,5)ele  z<t x=1 0<z 0>z
y>j  y<j 0>y O<y

ulA) = 04) ~ () - 2((2 (2~ Z)a,]azy) (122

Jele  @<i @>i
y=J  y<J

where aguo = 1(agp — 3) and a;.-]u- = ajj if (¢, j) € I,. We shall see in Proposition .2.2] that 1a(A), 2(A) € N.

Remark 4.2.1. The function £ counts the dimension of the generalized Schubert variety associated to
the matrix A (cf. [FL>Wh| Appendix A]), and is equal to the length of A when A is a permutation matrix
(that is when the associated variety is a genuine Schubert variety).

Set ~ ~
[4] = u AW y=he (4.2.3)
The set {[A] | A€ E, 4} forms an A-basis of S}, ;, which we call the standard basis. For A € =y, we let
gi(A) = D gy (4.2.4)
r<i,y=j
Now we define a partial order <, on =Z,, by letting, for A, B € &,
A <u4 B & row(A) = row(B), col(A) = col(B), and 04;(A) < 045(B),Vi < j. (4.2.5)
We denote A <n, B if A <, B and A # B.

Proposition 4.2.2. Let A = (X, g, 1) € Ep.q. Then we have [A] € [A] + ZB<algA A[B].
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Proof. By the finite type analogue of [FL>Wh| Proposition 5.3], we have

@\c(A) = ec(g;:u) - €c<Wg)a Za(A) = ea(g;:u) - ea(wg)’ (4'2'6)
Hence,
+ +
[A](u—éc(wg)v—ﬁa(wg)xu) _ u_ZC(gAH)'L)_E“(g/\M)T)?“. (4‘2‘7)
Thus, by Lemma [£T.2] the map m is determined by
AT (@ =talw)y y — uec(giu)vea(giu)ﬁ c u—zc(giu)v—ea(giu)Tfu n Z AT}, (4.2.8)
y<g
We note that [x(\,y, x,) € ATY . An induction on ¢(g) shows that
H K AL
e+ Y Alk(yw) (4.2.9)

YED2uY<yg
A finite type analogue of [FL>Wb| Corollary 5.5] shows that r(\,y, p) <ag A if y < g. We conclude the
statement. g

Let us reformulate the multiplication formula for S’ , (Proposition B:2:2]) in terms of the standard
basis.
Theorem 4.2.3. Suppose that A, B,C € =, 4 and h € [1,n].
(1) If B—bEY, | is diagonal, col(B) = row(A), then

apt+ 1t |y
[B][A Z“ Sh,1 2isotiy B()ln { 7tz ][At,h]y (4.2.10)
=—Nn
where t is summed over as in Propsition[3.2.2 (1), and
tl t; + 3)
Z tiapk — Z ti(an—1k — tr) + ona( Z tity + Z 5 —). (4.2.11)
k<l k<l —l<k<l >0
(2) Suppose C — cEY_, , is diagonal and col(C) = row(A). If h # 1 then
ap—1, +t n
Zv 11 [ e ][At,h], (4.2.12)
l=—n
where t is summed over as in Propsition[3.2.2 (2), and
! t) = Z tiap—1,k — Z tl(ath — tk). (4.2.13)
k>l k>l
If h =1 then
v ( Lado + tolt i+t A
[C)[A] = S uSieotty"® (1200 ol 1_[ [ao, + l + ]' [A1]. (4.2.14)
t [ao olilto]! iy Laoa]!ta]![t—1]!
where ( 3)
ti(t —
= Y tiaop — . tilars — tr) + tite + ) - (4.2.15)
k=l k>1 I<k<—l1 <0

Proof. For Part (1), by Proposition 3.2.2] we have

~ ~ ~ ~ ~ ~ ~ ~ n T . 1 1

[BI[A] = Y et~ EeB) fo(Au) 0ol ) -Ea B 2 By cptian s 2 Kyt T [ an + t ][ ol
t I=—n

Part (1) concludes by combining the following identities via direct computation:

0(B) =0, [4(B)= bby p, = thah,k, Zc(fzit,h) — 0 (A) = —0n,1 Z t,
Lk 1~0
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E(Ath Ztlahk_ztlah 1k — tr) + 0na( Z tt + thtl;-?)))

k>l k<l —l<k<l >0

For Part (2), we only present the most complicated case that h = 1. A direct computation shows that

i !
[ag, + tol: ﬁ laog +ti+14]" 20 2 (2a0 1ttt _1)=3to [af,0 + to 'c 1—[ [ao, + tl + tq]! (4.2.16)
[ag ol lto]! 17 [a0a]' L] [E-]! [ag o]t [to]! 1y (a0l [t][t-]!

Part (2) follows from combining (A2.16]) and the calculation below:

~ -~ _3 7 A /
C)=c=Y ea<c>—2tlao,k+6(62 ), ec<At,1>—€c<A>:Ztn
1 NG

>0

la(Ary) = M tiaor — Y tilark —te) + (Y titi+ ), o il tl

k<l <k 7l<k<l >0

0

4.3. A monomial basis in S? ;. Thanks to Remark B:2:3] we can use results in [BKLW18] freely when
we specialize v = v. For A € 5, 4, we can use the algorithm in [BKLWI8, Theorem 3.10] with the

fixed order therein to produce a unique family of Chevalley matrices {A(M, ... A@} in Ep,q for some
x = x(A) € N. At the specialization u = v, a unitriangular relation is satisfied:
[AD] - (A = [A] + S 4 ALB, (131)

Denote the product of the corresponding elements in Sﬁh 4 by

ma = [AD]...[A®]es! . (4.3.2)
Let I be the identity matrix. Since the algorithm in [BKLW18, Theorem 3.10] produces matrices
AWM A®) according to mainly the off-diagonal matrices of A and then determine the diagonal entries

of these A® by the row and column sums, we have that z(A) = (A + pI) and (A + pI)® = A®) 4 pI
for all p € 2N, i.e.,

marpr = [AY + pI]-- - [A@ 4 pI]. (4.3.3)
Proposition 4.3.1. For A€ E, 4 the element ma € S! , has the following property:
ma=[A]+ ) A[B] (4.3.4)
B<algA

Moreover, {ma}aez, , form a basis of SﬁL 4 Which we call the monomial basis.

Proof. A direct proof can be pursued using the multiplication formulas (Proposition 4.2.3]), similar to
the proofs of [BKLWIS8 Theorem 3.10] and [FL15, Theorem 4.6.3]. Here we offer a simpler proof by
combining [BKLW18, Theorem 3.10] and [FL15 Theorem 4.6.3] as below: now

my = u*APA)| Z A[B], for some «(A),B(A)eN
B<a1gA

It follows from [BKLWIS, Theorem 3.10] (resp. [FLI5, Theorem 4.6.3]) that v*Wf(A) = 1 (resp.
124984 — 1), which forces that u*“)vA(4) = 1 and hence @34) holds. Hence the transition matrix
from {m4 | A € 5, 4} to the standard basis {[A] | A € E,, 4} is unital triangular. Therefore {m4 | A € =, 4}
form a basis of Sﬁl’d. O

Remark 4.3.2. The monomial basis acts as an intermediate step toward constructing canonical basis in
the one-parameter case. Moreover, the two-parameter stabilization procedure is made possible thanks to
the property ([£.3.3)) of monomial basis.
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4.4. The canonical basis at the specialization. For any weight function L, let ¢ = ged(L(sg), L(s1)).
We show that the specialization of Sﬁh gatu= vE(s0) = vL(s1) admits canonical basis with respect to
ve. For A € Z, 4, let [A]¥ (and mY, resp.) be the standard basis (and monomial basis, resp.) of the
specialization of Sﬁl’d at u = vl y = vLG) | Tt follows from [@23) and @34) that the following
unitriangular relations hold:

[A]F e [A]"+ > Z[ve,v°][B]", (4.4.1)
B<a1gA

mi =mhe[At+ Y z[ve,v B~ (4.4.2)
B<algA

If A is diagonal, set {A} = [A]Y. Arguing inductively on the partial order <,j, and using a standard
argument (cf. [Lu93, 24.2.1]) there exists a unique element {A}* € S’ , such that

{AE = e (A" + > vezZ[v °|[B]~. (4.4.3)
B<agA

Let Sﬁl’i‘i be the specialization of Sﬁhd at u = vE0) 4 = yLs1),
Theorem 4.4.1. There ezists a canonical basis {{A}L | A€ E, 4} for Sﬁl’z, which is characterized by the

property (EA3).

5. STABILIZATION ALGEBRA K3,

In this section, we shall establish a stabilization property for the family of Schur algebras Sﬁl gasd

varies, which leads to a quantum algebra K.

5.1. A BLM-type stabilization. Let

[1]e

ai i = a;i(Vi, ),
n = {(aij)néi,jén € MatNXN(Z) Uy € N(Z\'é/xj?é y)l,j((zoo é)ZZ + 1} . (5'1'1)

Extending the partial ordering <., for =,, we define a partial ordering <,z on én using the same recipe
(#2E). For each A € =, and p € 2N, we write

JA=A+ples,. (5.1.2)

Then ,A € =, for even p » 0. Let m be an indeterminate (independent of u,v), and R; be the subring of
Q(u, v)[r, 7] generated by, for a € Z, k € Z~y,

Té}l)w 7](3/17 v®, and u%, (5.1.3)

where
ko p—2@=i,2 _q

111(U,’U,7T) = Hw, (514)

k -2, —2(a—1—1) —2(a—i), _
(2) (u™*v T+ 1)(v m—1)
= - . 5.1.5
(w0, =] T (515
Let R2 be the subring of Q(u,v)[r, 7~!] generated by, for a € Z, k € Z~,

o s Fsl)ﬁ, rf,l, ?1(511, v?, and u® (5.1.6)

We extend the bar-involution to Ry by requiring 7@ = 7~ 1.
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Proposition 5.1.1. Let Ay,... Ay € én be such that col(A4;) = row(A;;1) for all i. Then there exists
matrices Zi, ..., Zm € Z, and (j(u,v,m) € Ry such that for even integer p » 0,

[PAl][pA2] e [pAf] = Z CZ(“? v, Uﬁp)[pZi]‘ (517)

Proof. We assume first that f = 2 and A; is such that A; — bEz’hf1 is diagonal for some h € [1,n] and
some b > 0. Let Ay = A = (a;;). For each t = (t;) _n<i<n € NV we define

T o =4 18 p—2@nn+tn—i+1) 2 _ 1
R A S TN I() anp + 14 v : T =
R | B A e e
h#le[—n,n] =1

where f((t) is defined in ([@.2.11). Though 5(t) depends on A, it is invariant if A is replaced by ,A.
Therefore we have the following formula for large enough even p by (£2.10]):

[pAL[pA] = > Glu,v,07P) [ Ars].

The statement holds in this case.
We next assume that f = 2 and A; is such that 4; — CEZ_L ;, 1s diagonal for some h € [1,n] and some

c¢>0. Let Ay = A = (a;;). Recall §'(t) and g"(t) in (E213]) and [@2T5]), respectively. If h # 1, for each
t = (t;)_n<i<n € NV, we define

v 20@h—1,h—1 o1 —i+1) 22 g

th
’ 1+t —
Glu,v,m) = 0P ) | | { @h lti ! ] | | T € Ri;

h—1#le[—n,n] =1

If h =1, we define

n

" t t_ |
Ci(u, v, ) =ua<otiyf’ () (H lao + ti "i‘ 1] )

=1 [ao, ] ![t] [E—1]!
to (u*21)*2(ago+to*1—i)ﬂ_ " 1)(U*2(ago+t07i)ﬂ_ B 1)

H -2 1 GRl.

i=1

It is clear that both 8’(t) and $”(t) are invariant if A is replaced by ,A. Therefore the following formula
holds for large enough even p by :

[ A[pA] =D Glu,v,07P) [ Ay )

Hence the proposition is verified in the present case.

Using induction on f, we know that the proposition holds for general f in the case where A;,..., Ay
are Chevalley matrices (i.e. of one of the two types considered above). It follows from (A3.2]) and (4.3.4])
that for any A € =, 4, there exists Chevalley matrices By, B, ..., By such that

[B1][B2] - - - [Bum] = [A] + lower terms.

Then we can prove the proposition by using induction on W(A4) =, _, 0i;(A). We omit the subsequent

argument here since it is totally as the same as those for [BLM90, Proposition 4.2]. O

By an argument identical with [BLM90, Proposition 4.3], we obtain below the stabilization of bar
involution by allowing extra coefficients as seen in (5.1.0]).

Proposition 5.1.2. For any A € En, there exist matrices Ty, ...,Ts € én and 7;(u,v,m) € Ro such that,
for even integer p > 0,

[A] = Z 7i(u, v, v P) [, T;]. (5.1.8)
i=1
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Let K}, be the free A-module with an A-basis given by the symbols [A] for A € = (which will be called
a standard basis of K7,). By Propositions and applying a specialization at 7 = 1 (note that
Ci(u,v,1) € A), we have the following corollary.

Corollary 5.1.3. There is a unique associative A-algebra structure on K, with multiplication given by

Dt Gilu,v,1)[Z;] i col(A;) = row(A;41) for all 4,
0 otherwise.

[A1][A2] -~ [Af] = {

Moreover, the map~: K, — K, given by [A] = 25_, 7i(u, v, 1)[T;] is an A-linear involution.

The following multiplication formula in K, follows directly from Theorem [A.2.3] by the stabilization
construction.

Proposition 5.1.4. Let A,B,C € =, and h e [1,7n].
(1) If B — bthhfl is diagonal and col(B) = row(A), then

[B Zu_éh 121>0 t B( ) H |: ah,lt—’_ tl :|[A/t’h], (519)
l

l=—n

where t = (t;)—n<i<n € NN with 37 t; = b such that

ti < ap—1; ifi+1#h>1;
ti+t7i<a0,i th: 17Z 3&07

(2) Suppose C — cEfoLh is diagonal and col(C) = row(A).

If h # 1 then
ap_11+1 ~
Zv ll_[ { h 1}; : }[At,h], (5.1.10)
where t = (t;)_n<i<n € NV with D ti =c such that t; < ap; if i # h.
If h =1 then

Ha(h)OthO [k] (w2021 + 1)

[C][A] = 3 uZico i) k=ago+1 aol+tl+t] R

Aiql, 5.1.11
P L o1 laog]! t]! A1) ( )

where t = (t;) _n<icn € NV with Y7 t; = ¢ such that t; < a1 g if1# 1.

i=—n

5.2. Monomial and canonical bases for K?. The proposition below follows from Proposition [£.3.1]
by the stabilization construction.

Proposition 5.2.1. For any A € én there exist Chevalley matrices AV, ... A® in Z, satisfying
row(AM) = row(A), col(A®)) = col(A), col(AD) = rovv(A(“rl ) for I<i<z-—1
[AV[AP] . [AP] e [A] + )] A[B] eKj,. (5.2.1)
B<algA

By abuse of notation, we denote the product in K, by
ma = [AD][AP] ... [A®] e K. (5.2.2)

Hence {m | A € Z,,} forms a basis for KJ, (called a monomial basis). Similar to Section &4, we define, by

abuse of notation, elements [A]Y, m%, {A}¥ to be the according basis elements of K, at the specialization

u = vilo) ¢ = yL(s1),

Theorem 5.2.2. There exists a canonical basis B = {{A}Y¥ | A € 2,4} for K, at the specialization
u = vP00) oy = vEEY which is characterized by the property [EA3).
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6. A DIFFERENT STABILIZATION ALGEBRA K

In this section we formulate a variant of Schur algebras and their corresponding stabilization algebras.
We construct the distinguished bases of these algebras. Recall N = 2n + 1.

6.1. +-Schur algebras. Recall 5, 4 from (2Z2.2). Let

= ={Ae&,q|row(A)y = 1= col(A)o}. (6.1.1)
Recall A, 4 (Z18). Let

md = AA= Qs AL L AL A) € Ay gl
The lemma below is the ¢-analog of Lemma 2.2.1] which follows by a similar argument.
Lemma 6.1.1. The map k" : LlA7MEA:L,d{)\} X Doy x {u} — Z sending (A, g,p) to (|R} N gRé-L|) is a
bijection.

Now we define the 2-Schur algebra as
Spa=Endu( @ x:H). (6.1.2)

By definition the algebra §] ; is naturally a subalgebra of Sﬁu 4~ Moreover, both {e4 | A € E'} and
{[A] | A €E} are bases of S, ; as a free A-module.

6.2. Monomial and canonical bases for S; a

Proposition 6.2.1. For each A € E', we have ma € S}, ;. Hence the set {ma | A€ E'} forms an A-basis
of S}, 4- Furthermore, we have ma € [A] + ZBeEZ7B<aIgA A[B].
Proof. Tt follows from [BKLW1S8| Proposition 5.6] thanks to Remark B.2:31 O

Theorem 6.2.2. At the specialization u = v¥(sq),v = v¥U(s1), there is a canonical basis B, =
({AY | A e B of Sy.q such that {A}L = {AYY and {A} e [A]Y + ZBEQ,B%@AV*CZ[V*C][B]L.
Moreover, we have B, 4= %iz,d N Sf%d.

Proof. The first half statement on the canonical basis follows by Proposition [6.2.1] and a standard argu-
ment (cf. [Lu93 24.2.1]). The second half statement follows from the uniqueness characterization of the
canonical basis B, ;. O

6.3. Stabilization algebra of type . We define two subsets of =, (5.1.1) as follows:
S5 = {A=(ay) €2, | apo <0}, = ={A=(ai)€Z, | ap >0} (6.3.1)
For any matrix A € én and p € 2N, we define
A =A+p(I—E"). (6.3.2)

Lemma 6.3.1. For Ay, Ay,..., A€ E>, there exists Z; € =7 and ¢} (u,v,m) € Ry such that for all even
integers p » 0, we have an identity in S, of the form:

[sA[pA2] - [;A5] = D G, 0,07 ) [Z].
i=1

Proof. The proof is similar to the proof of Proposition B.I.Ilwhere ,A = A +pI is used instead of 3A. [

Consequently, the vector space ]Kfl over A spanned by the symbols [A], for A € é; , is a stabilization
algebra whose multiplicative structure is given by (with f = 2; associativity follows from f = 3):

(A J[As] - [Ay] = 4 2 S v DIZ A col(di) = row(Ai) Vi,

0 otherwise.

(6.3.3)

Precisely, we have the following multiplication formulas for Chevalley generators in Kﬁ .
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Proposition 6.3.2. Let A,B,C € éfl and h € [1,n].

(1) If B — bE;‘;h_l is diagonal and col(B) = row(A), then

(B[] = un 2aentto ) [l { i }[Et,h], (6.3.4)

l=—n

where t = (t;)_n<i<n € NV with 37 t; = b such that

i=—n
t; < ap—1; ifi+1#h>1;
ti+t_i<aop; ifh=1,Vi,

(2) Suppose C — CEz—Lh is diagonal and col(C) = row(A).
If h # 1 then

Zv 1] [ oL }[ﬁt,h], (6.3.5)
l=—n

where t = (t;)_n<i<n € NV with D ti = c such that t; < ap,; if i # h.
If h =1 then

ado+to
00 2,,2(k—1) .
= Y o iy ) I P L (G +1)
_ \ 1]
k=1 -

t+1— ~
o AL es0)
1 aoz tq]!

where t = (t;)—n<i<n € NN with Y1 t; = ¢ such that t; < a1; if i # 1.

i=—n

By arguments entirely analogous to those for Corollary 5.1.3 and Theorem 5.2.2] K> admits a (stabi-
lizing) bar involution, K> admits a monomial basis {m 4| A€ >}, and a canonical basis B> Let K
be the A-submodule of K> generated by {[A] | A € =}, where

Et = {AeZ> | col(A)g = row(A)y = 1}. (6.3.7)

The goal of this subsection is to realize Kﬁl as a subquotient of K, with compatible bases by following
[BKLW18, Appendix A]. It follows from (6.3.7) that K} is a subalgebra of K, . Since the bar-involution
on K restricts to an involution on K, we reach the following conclusion.

Lemma 6.3.3. The set K, n B> forms a canonical basis of K2,

The submodule of K, spanned by [A] for A € Z¢ is not a subalgebra. This is why we need a somewhat
different stabilization above to construct the canonical basis for Kj,. We shall see below the stabilization
above is related to the stabilization used earlier. Define J to be the A-submodule of K7, spanned by [A4]
for all A e =7

Lemma 6.3.4. The submodule J is a two-sided ideal of KY,.
Proof. We note that J is clearly invariant under the anti-involution for K, below:
[A] — u— LA+ A) | —La(A)+La(t A) [tA]. (6.3.8)

Hence the claim that J is a left ideal of K% is equivalent to that J is a right ideal of K% We shall show
that J is a left ideal of K. To that end, it suffices to show that [B][A] € J for arbitrary A € Z5 and
B e =, such that B — bEh p—1 or B — bE),_1 ), is diagonal for some h € [1,n] and b > 0. Thanks to the
multiplication formulas in Proposition [5.1.4] unless the case of B — bEgJ being diagonal, the (0,0)-entry

of the terms arising in [B][A] never exceeds ag . Thus [B][A] € J in these cases.
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Consider the case that B — bE&l is diagonal. Recall the formula (63.6). If the (0,0)-entry ago + 2t

of the term [ﬁm] is positive, then the coefficient of this term must be zero since

b
H“ooHO [k‘](u%}z(k*l) +1)

k:a(h)0+1
t
k11

because of ago +1<0< ago + tg. Therefore, we always have [B][A] € J. O

=0,

Lemma 6.3.5. If Ae =< then my € J.
Proof. The proof is as the same as the one of [BKLW18, Lemma A.6 (1)]. O
Recall ]K% admits a canonical basis of B at the specialization u = vL(s0) ,U = vLG1) from Theorem [5.2.2)

Theorem 6.3.6. The ideal J admits a monomial basis {ma | A € %fl} Moreover, its specialization at
u = V) oy = vEG1) (denoted by J¥) has a canonical basis B n J¥ = {{A}V | Ae 25},

Proof. The first statement follows from the above lemma directly. Since my = [A] + lower terms, we
know that J¥ is bar invariant. Thus J¥ does admit a canonical bases parameterized by A € ==, which

should be B n J¥ = {{A}¥ | A€ =<} by the uniqueness of canonical basis. O

Proposition 6.3.7. The following statements hold:

(a) The quotient algebra K2 /I admits a monomial basis {ma +J | A€ Z>}.

(b) The specialization at u = vE(0) y = VL) of the quotient algebra K%/J admits a canonical basis
(A + IV | AcE2).

(¢) The map ¢ : K}/J — K> sending [A] + J — [A] is an isomorphism of A-algebras, which matches
the corresponding monomial bases. It also matches the corresponding canonical bases at the spe-
cialization u = vI(0) ¢ = yL(s1),

Proof. Parts (a) and (b) follow directly from Theorem Below we prove the Part (c). Knowing that
the map f is a linear isomorphism, we need to verify it is an algebraic homomorphism. Comparing the
multiplication formulas for K, in Proposition B.1.4] with the ones for K; in Proposition [6.3.2] we can see
that the structure constants with respect to the Chevalley generators for K, /J are as the same as those
for Kfz . Therefore § is an algebraic homomorphism.

Since f matches the Chevalley generators, it matches the corresponding monomial bases. We also
obtain that § commutes with the bar involution. Notice that the partial orders <, are compatible,
hence f also matches the corresponding canonical bases at the specialization u = vi(o) o = yLs1) O

We summarize Lemma [6.3.3] and Proposition [6.3.7] above as follows.

Theorem 6.3.8. As an A-algebra, K; is isomorphic to a subquotient of ]K%, with compatible standard,
monomial basis. They have compatible canonical bases at the specialization u = vE(s0) 4 = yL(s1),

Let K%' be the A-submodule of K, spanned by [A] where A € Z,, with row(A4)y = col(A)y = 1. It is
clear that K%l is a subalgebra of K% Let J' = J n Kn’l, i.e.
J' = span, {[A] | A€ Z,,row(A) = col(A)y = 1, agy < 0}.
Imitating the argument in [BKLW1S| §A.3|, we have the following.
Proposition 6.3.9.

(a) The monomial basis of K?, restricts to the monomial basis of Kﬁ{l; the monomial basis of KZ%!
restricts to the monomial basis of J'. So does the canonical basis at the specialization u =
vh(s0) o = yL(s1),

(b) The quotient A-subalgebra K2 /I' admits a monomial basis {m + J' | A € E}. It also admits
a canonical basis {{AY" + JVE | A € 2} at the specialization u = vH0) o = vE(1) | where
JLL = Jl‘u:vL(so)m:VL(sl)-
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(¢) There is an A-algebra isomorphism Kigl/ﬂl ~ K;, which matches the corresponding monomial

bases. It also matches the corresponding canonical basis at the specialization u = vlso) 4 =
L(s1)
v .

7. QUANTUM SYMMETRIC PAIRS

7.1. The quantum symmetric pair (U,U7). We start with the quantum symmetric pairs of type
ATII/AIV without fixed points nor black nodes, associated with the following Satake diagram:

n—1/2 n—3/2 1/2
o o cw ——0
! ! (
o o s —— 0

-n+1/2 —n+3/2 —1/2

Note that we use half integers for the index set following the convention in [BW13]. Set
Iy, = {—n+ %,—n+ %,...,n—%} and I, = %,%,...,n—%}. (7.1.1)

Let U = U(gly,, ;) be the algebra over Q(u,v) generated by E;, F;, (i € Iy,) and D,, (a € [—n,n]) subject
to the following relations, for i, j € Iy, a,b € [—n,n]:

D.,D;'=D;'D,=1, D,Dy= DyD,, (7.1.2)
6 . 106 . R o
DoE;D;' = v'wit Peitb B D Dyt = v teid etk (7.1.3)
K;— Kt
E;F; — F;E; = 5,-7jvl_7v_ll, (7.1.4)
E}E; + EE} = (v+v ) EE;E;, FF;+FF} = (v+v " )EFF, (li—=jl=1), (7.15)
EZEj = E]EZ, FZFJ = F’]FZ, (|Z —j| > 1) (716)
(Here and below K; := Di_;D:l )
2 2
Let U7 = U’(gly,, ;1) be the Q(u, v)-algebra with generators
€, fi, (’L € ]HL)’ d;l_i_l (0 <a< n),
subject to the following relations, for i € I},,a,b € [0,n]:
dodyt =1=d'da, dody = dyd,, (7.1.7)
doeldo_l = 1)261, dofldo_l = 1)_2f;, (718)
2 2 2 2
-1 511 .717511 i1 -1 7511 '71+5a il . 1
duejdyt = v'b Perhes  dyfud;t = v Py ek gy (@) #(©0,3), (719
ki — ki_l - 11
eif; — fiei = 5i,jmy ((,7) # (3, 3)); (7.1.10)
€;ej = eje;, fzf] = fjfi, (‘Z —j‘ > 1), (7.1.11)
ejej +eje; = (v+v eiejer,  fLf+ fiff = 0+ v fiffi, (li—jl = 1), (7.1.12)
A f1+ fied = (v + v_l) <elflel —e1(uvks + u_lv_lkrll)> , (7.1.13)
2 2 2 3 2 2 2 2 2 2
ffel + elf? = (v + vil) <flelfl — (wvk1 + ulvlk‘ll)fl> . (7.1.14)
2 2 2 32 2 2 2 2 b 2

(Here k; = di_%d;rl%, (i=1), and k% = v dod; b))
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It is known in [BWWIS| §4.1] that there is a Q(u,v)-algebra homomorphism U’ — U given by, for
iel, — {3}, and for 1 < a <,
doHv_ng, ei»—>Ei+F,inl e% HE% +u_1F7%KII,
2

2

Remark 7.1.1. The (multiparameter) quantum symmetric pairs (U, U?) in this paper are the gl-variant
of the quantum symmetric pairs in [BWW18].

7.2. Isomorphism U’ ~ K. Following [Lu93] §23.1], it is routine to define the modified quantum alge-

bra U7 from U7, Let 2319 he the set of all diagonal matrices in =,,. Denote by A = diag(A—n, Acpt1y -+ An)
a diagonal matrix in 232, For \, N € 2398 we set

ZU, =17/ (i (dg — v )17 + i W (d, — v%)> : (7.2.1)
a=0

a=0
The modified quantum algebra U7 is defined by
= @ . (7.2.2)

~diag
A NeEd

Let 1) = paa(1), where py » : U7 — A[Uf\ is the canonical projection. Thus the unit of U7 is replaced by a
collection of orthogonal idempotents 1, in U’. It is clear that

0= ) Ui= > LU

AeEdiag AeZdiag

For e 2328 4nd i e I/, we use the following short-hand notations:

_ 6 6 L 0 0
)\+ai_)\+Ei—%,i—%_Ei+%,i+%’ )\_al_)\_Ei—%,i—%+Ei+%7i+%' (723)
We also define, for r € N,
ot — T
— ) 7.2.4
== (72.)

A multiparameter version of [BKLW18| Proposition 4.6] gives a presentation of U’ as a Q(u, v)-algebra
~diag

generated by the symbols, for i € I, A € =8,

Ly, el lyes,  filx, 1n\fi,

subject to the following relations, for 4, j € I, \, i € Z0®8 2 ¢ € {1,ei,e5, fis f}:

xlx1,y = 6xuxlry, (7.2.5)
eilyn = Ly, fila = Lo, fis (7.2.6)
eillxfj = filx+ai+a,€is (i # ), (7.2.7)
(eifi — fie:))1y = [{Ai,% - >\i+%ﬂ Ly, (i # 3), (7.2.8)
eiejly = ejeily,  fifjla = fifila, (Ji =4l >1), (7.2.9)
(efej + ejed) Iy = 2D esejeils,  (fPf;+ fif7)1n = [2] fifi fila, (li=jl=1),  (7.2.10)
([2] e%f%e% - ezéf% - f%eé)l,\ = [2] (wto= + u_lv_)‘OJr)‘l)e%l)\, (7.2.11)
(21 fres fr — fge% — e%fg)l,\ = [2] (w03 4 u*lv*%“”?’)f%h. (7.2.12)

Here and below we always write z11yixaly2 -+ - xplyw = 122 - - - 21k, if the product is not zero; in this
case such AL, A2, ..., .)\kfl are all uniquely determined by A*.
For Vie I}, X e Eglag, write

eil,\:[)\—Eer% +E ek

; 1
505 1t5,0—5

6 ¥ 0
,i+%+Ei—%,i+%]eK¥l and fil)\:[)\_Ei_l
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Set oK/, = Q(u,v) ®a K.

Theorem 7.2.1. There is an isomorphism of Q(u,v)-algebras N : U — Q]K?L such that, for Vi e I}, \ €
=diag
2ne,

eily —ely, fily—fily, 1y~ [A]

Proof. A direct computation using Theorem F.2.3] shows that relations (Z25])-(Z.2.12) also hold if we
replace e;, fi’s by e;,f;’s. Here we only present details for (T.2Z.I]]) regarding e11y and f11) as follows:
2 2

2 —2, —2X0— A1 +4
eifily =u v #0712 (e Ao — 1]ce
111y [21(ex—2m0 , +omg, B8 450, T [P0 = leer o 1mg )
fie2 1, = u 2o 2o~ M+212)(¢ e A —1le
1e1l, [2]( A-2B¢ +EY +EBY | T ex-2B9 12E) ~Ef +E, + A —1] A—E?,1+E6’,1)’
—2, —200—A1+3
eifieily =u v 07N (e 2|e
ifierly ( A-2BY | +ES +E¢_, +[2] A—2E¢ | +2E§ | ~E§ \+EY

+ (W00 + [N — 1]e0® + [MDex—ge,vmg,):

Combining the identities above, we get ([2] e%f%e% - eifé - féei)l)\ = [2] (w0 + u_lv_)‘OJ”\l)e%l)\.
2 2
That is, N is indeed an algebra homomorphism.
We also know that RN is a linear isomorphism. The argument is almost as the same as that for the case
of specialization at v = v, which can be found in the proof of [BKLWI1S8, Theorem 4.7]. Therefore X is
an isomorphism of Q(u, v)-algebras. O

It has been shown in [BWW18| Lemma 4.1] that there exists a unique Q-linear bar involution on U’
such that 7 = v 7 =v"1,d, = d;! (0 <a <n),& =e;,f; = fi (i €}). This bar involution on U’
induces a compatible bar involution on 84 , denoted also by ~, fixing all the generators 1y, e;1x, filx.

Note that e;1y, f;15, [\] are bar invariant elements in K7, which implies that the isomorphism R
intertwines the bar involution on U’ and on Q]K%

Set 407 = R~1(KK}). It is an A-subalgebra of U?. We have the following result.

Proposition 7.2.2. The integral form A7 is a free A-submodule of U7, 1t is stable under the bar
involution.

7.3. The quantum symmetric pair (U, U"). Below we formulate the counterparts of Sections [T.IH7.2
The proofs are very similar and will often be omitted. We now work on quantum symmetric pairs of type
AIII with fixed points associated with the Satake diagram below:

n—1 n—2 1
o o cw —o0
~~
09D
05 05 _IO/O
—n+1 —n+2 -1

Let U = U(gly,,) be the algebra over Q(u,v) generated by F;, F;, (i € [-n + 1,n — 1]) and D,, (a €
[—n 4+ 1,7n]) subject to the following relations, for i,j € [-n + 1,n — 1],a,b€ [-n+ 1,n]:

D.,D;'=D;'D, =1, D,Dy = DyD,, (7.3.1)

D, E;D;t = v0i™0eini By D F;Dyt = v 0ni it (7.3.2)
K, — K;*

EiFj = FjE; = bij—— = (7.3.3)

EfEj + ESE} = (v+ 0 ) EEE;, FFj+ FF} = (v + v )EFF, ([i—jl=1), (7.34)

E;E; = B;E;, FF; = F;F, (li—4>1). (7.3.5)

(Here and below K; := D;D;}|.)
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Let U* = U(gly,,) be the Q(u,v)-algebra with generators

t, e, fi (ie[lin—=1]), dg' (ae[l,n]),
subject to the following relations, for i,5 € [1,n — 1],a,b € [1,n]:

dod;' =1 =d; 'y, dudy = dpd,, (7.3.6)
dotd,' = t,  dgejdyt = 0 0nitre,  d, fidyt = v 0w ot £ (7.3.7)
-1
eifj — fiei = 5@1%7 (7.3.8)
eiej = ejeq,  fifi = fifi, (li — 4| > 1), (7.3.9)
efej +ejei = (v +v Neejen,  fRf+ fiff = (v +v ) fififi, (li = jl = 1), (7.3.10)
eit = te;, fit =tf;, (i # 1), (7.3.11)
tle; +eit? = (v+ v Dtert + e, Xt +ted = (v+v Veste, (7.3.12)
fi4 fit? = v+ v Dtfit + f1,  fit+tf2 = (v +v ) fitfi (7.3.13)

(Here k; = d;id; )
It has been known in [BWW1S8| §2.1] that there is a Q(u, v)-algebra homomorphism U* — U given by,
for i € [1,n — 1], and for a € [1,n],
dy = DoD_,, t =By +oFyKy ! + = KoL
ei=FE +F ,K', fi=E_;+KF,.
Remark 7.3.1. It was observed in [Le99, BWW18] that the parameter w € Q(u,v) in the embedding
t=Fy+vFyK, 1y wKj ! is irrelevant to the presentation of the algebra U*.

(7.3.14)

Let @?jag be the set of all diagonal matrices in Z'. Denote by A = diag(A_pn,..., A1, 1L, A1,..., \n)
a diagonal matrix in =498 We define the modified algebra U similarly to the construction of U7 as

follows:
P @ = Y Uh= Y LW
A, )\/ez:dlag )\el’:dlag )\el:dlag
where U}, = U/ (ZZ:l(dfl — U + 30 UY(dy — v’\:l)> and 1 € ,\Uj is the canonical projection
image of the unit of U”.
For A € =09 and i e [1,n — 1], we use the following short-hand notations:

Atai=A+E,—Fl 1,1, \—ai=A—Ej+Fl (7.3.15)

Vyithus obtain a presentation of U’ as a Q(u, v)-algebra generated by the symbols, for i € [1,n — 1], A €
1Zdiag
Ly, tlx, ity ey, Lye,  filx, 1nfi,
subject to the following relations, for i,j € [1,n — 1], \, p € '= Zdiag sz y € {1, e, €5, fi, fi t}:
r1x1uy = 0xpxlyy, ( )
eily = Iapas€in  fily = Iaoq, fi,  t1h = 1), ( )
eillnfj = filatai+a; € (i # ), ( )
(eifi — fiea)Ia = [N — Aisa] 1y, ( )
eiejly = eje;ly,  fif;ly = fifily, (li — 7] > 1), (7.3.20)
(efej +ejel) Iy = 2D esejeiln,  (F2f; + fif)1n = [2] fififiln, (li = jl = 1), ( )
fitly = tfily,  eitly = te;ly (1 #1), ( )
(1 + fit)) Iy = ([20 thit + f)la, (it + D)1 = [2] futfily, ( )
(t%e1 + e1t?)1y = ([2] tert + e1)ly, (€3t +ted)1y = [2] extesly. ( )



SCHUR ALGEBRAS AND QSPS WITH UNEQUAL PARAMETERS 25

. ~di .
For i € [1,n — 1], \ € '2,'*8, write

eily=[\— Ei0+1,i+1 + Ef,mL fily = [A— Ezez + Ei0+1,i]7
a1
tl)\ = [)\ — Ef,l + Eng] + Ui)\l %[)\] (7325)

Set oKJ = Q(u,v) ®a K.

Theorem 7.3.2. There is an isomorphism of Q(u,v)-algebras N : U — @]Kf1 such that, for all i €
[1,n —1],A € 38,
thy = tly, ely—ely,  filyx—fily, 1y [A]

Proof. By a direct computation using Theorem [£.2.3] one can show that the relations (7.3.10)-(7.3.24]) for
t,e;, fi’s also hold for t,e;, f;’s. Hence N is a homomorphism of Q(u, v)-algebras. Here we only present

the details for the first relation in (7.3.24]) as follows. Note that as an element in K,

u oM — oM

tl)\ = f0e01>\ - 1)\, (7326)

v—ov!
where el = [A — E{ | + Ef,] and folyymo —po, = N—E, +E{ ] e K>. Moreover, we have

-1 —1\2
2 —1, —2\+2U U —2X1 42 oy, (u—u"")
t 1)\ = [[2]] u v 1+ 71 eAiEf’1+Egl’1 + <U 1+ [)\1] +v 1 7) (Y

v—v~ (v —ov~1)2
—2, 2\ +2
tu v [2lex—2p0 | yome, -
Hence
-1
29 _ -1, -3\ +2U U
ert”ly = [2]u v o — 0T OA—E{ +E%, | ~E§,+EY
~1y2
—3A\1+2 gy (w—uT) —2, —3A1+2
+ (U [M] +v (0—v 1) ex-EY,+ES, TU TV [2]6)\—2}:7?’1+2Eﬂ1y1—Eg,2+E19'27
and

-1
2 -1, -3\ U U
teily, =2 u v [ (& e
14X [[ ]] v — Ufl( A*E?J*Egl,l*Eg,z*Ef,z + A*Ezg,QJrEﬂl,Q)

—1)2
—3A a2 (U —uT)
+ (U 1[)\1 + 1] +v 1 (U — U1)2> 6A7E292+Ef72

-2 -3\
u v 2 (& 0 0 [ 0 e 0 0 [ 0 .
+ [2](ey 2B | 4+2E°, | ~EY,+E?, T eA-E{ +E°, | E2y2+E71’2)

Finally, using (T.3.26]) again, we compute that

1 —1
B e B
tetly =2 v v oMM T —¢ u vt ——e
1t1y = [2] o — o1 OB +E% B+, T o — o1 A-Ef,+E, ,
—2\ 1 —13\2
+ U_)\l(l—v Dw+v) +U—3,\1—1(U—U ) e e
v—ov1 (v—v=1)2 ) At B,
-2, —3\1+1 -2 —3A1+1
u ‘v e u ‘v 2le .
+ A*Elg,lJrEgl,l*Ezg,Q*Egl,Q + [ ] )‘*2E13,1+2E€1,1*E3,2+Ef,2

Combining the identities above, we see that indeed (t2e; + eit?)1y = ([2] teit + e1)1y.
An argument similar to the proof of [BKLW18, Theorem A.15] also shows X is a linear isomorphism.
Therefore XN is an isomorphism of Q(u,v)-algebras. d

Thanks to [BWWlS,_Lemma 2.1], we know there exists a unique Q-algebra bar involution on U such
that u = w1, v =v"1,d, =d;! (a€[1,n]),& =e;, fi = fi (i € [I,n —1]),f = t. This bar involution on

U" induces a compatible bar involution on U*, denoted also by —, fixing all the generators 1y, e; 1y, fila,t.
Set ,U* = R71(KY). It is an A-subalgebra of U*.
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Proposition 7.3.3. The integral form AU s a free A-submodule of Ut. It is stable under the bar
involution.

Remark 7.3.4. Theorem [5.2.2] (resp. Theorem [6.3.6]) provides a canonical basis for the modified form
of U7 (resp. U") at the specialization u = vE(s0) y = vL(s1) A general theory of canonical bases for
quantum symmetric pairs with parameters of arbitrary finite type was developed in [BW16].
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APPENDIX A. AN ALGEBRAIC APPROACH TO SCHUR ALGEBRAS OF TYPE D

As we mentioned in Section [[.2] at the specialization u = 1 the multiparameter Schur duality yields a
weak Schur duality of type D that is used in [Baol7] to formulate the Kazhdan-Lusztig theory for classical
and super type D. These algebras S’:L,d|u=l (e =1 or j), however, are not the Schur algebras introduced
in [FL15]. While bases of Schur algebras of finite type A/B/C and affine type A/C can be parametrized
by a matrix set (cf. =, 4 in Z2.2), for finite type D Fan and Li showed that a matrix set is not enough
— a notion of signed matrices that indexes a larger algebra is needed. From a geometric point of view,
this reflects the fact that there are two connected components for the maximal isotropic Grassmannian
associated to SO(2d). In this appendix, we provide an algebraic approach to Fan-Li’s construction parallel
to our multiparameter results. The arguments are very similar to the multiparameter counterpart, so we
will omit the easy proofs in this appendix.

A.1. Weyl groups of type D. Fix d € N, and we set set
Jg=1{—d,...,—1,1,...,d}. (A.1.1)

Let Wp be the Weyl group of type Dy. It is known (c.f. [BB05]) that Wp can be identified as a
permutation subgroup of J; which consists of those permutations g satisfying that

#lieJg|i>0,g(i) <0}e2N, g(—i)=—g(i) (1<i<d).
Let Sp = {<0,$1,---,54—1}, where ¢ € Wp are given by the following products of transpositions:
=1001,-2)(2,—-1) and ¢ =(i,i+1)(—i—1,—i) fori=1,...,d.

It is also known (see [BB05, (8.18),(8.19)]) that (Wp, Sp) is a Coxeter group associated with the length
function as below:

Lemma A.1.1. The length of g € Wp is given by
Ug) = "{(i. ) € Ji | lil < 3.9(i) > g(4)}-

A.2. Signed compositions. Fix n € N. Recall that (2.1.8) first A,, 4 is the set of weak compositions of
d into n + 1 parts. Set

AP ={NeAa| >0t x{0}, A={NeA,q|o=0}x{e}, (e=+or—). (A.2.1)
In below we abbreviate (A, ) € A% by A* where « € {0, +, —}. We further set
Ap =A° LAY LA, (A.2.2)

Elements in Ap will be called signed compositions. Recall that Ag; = Mo+ A1 +---+ A; for i e [0,n], X €
A, q. We define positive integer intervals associated to A* by

2 _ | [=A0, A\MO} if i =0;
= { [Moi—1+ 1, X, ifie(l,n], (A.2.3)

- %] %fZIZO; N %) %fz::();
R} =< [1,M\] ifi =1; R} =< {-1,2,...,\} ifi=1,; (A.2.4)
[)\1 + 1, )\072'] ifie [2,n], [)\1 + 1, )\077;] ifie [2,77,].

For —n <i < 1, we set R = {—x|z € R"]}. We remark that the sets {R}" }ie[—n,n] Partition the set Jg.
For any A* € Ap, let Wya be the parabolic subgroup of Wp generated by

Sp\{Sx; Sho,1s - ’Qo,nq} if a =0,
SD\{§(), Sho1sr--e ,§)\0,n71} if a = +, (A25)
SD\S1: 0015+ 3Shomr ) i @ =—.

Denote by Stab(X) the stabilizer of J; in Wp, for any X < J;.
Lemma A.2.1. For any \* € Ap, we have Wya = [I_, Stab(R}").
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Denote the set of minimal length right coset representatives of Wya in Wp by
Dre = {g€ Wp | L(wg) = L(w) + £(g), Vw € Wya}. (A.2.6)
Hence, the set Zya,s = Dra N .@;ﬁl is the set of minimal length double coset representatives for
W)\Q\WD/W“B .
Lemma A.2.2. Let g € Wp and A\* € Ap.
(a) If a = +, then g € Dya if and only if g~ is order-preserving on Rf‘a, for allie [1,n];
(b) If a =0, then g € Dra if and only if g~' is order-preserving on R} for all i € [1,n] and
9H(=2)<g ') <g7H2) < < g (M)
By a similar argument for [DDPWO8, Proposition 4.16, Lemma 4.17 and Theorem 4.18|, we have the
following facts.
Proposition A.2.3. Let \*, ;% € Ap and g € Dops -

(a) There is a weak composition § = §(\*, g, iP) € Ay g for somen' such that Wgs = g_lWAang“B.
(b) The map Wya x (Zs "W ,5) — WxagW s sending (z,y) to xgy is a bijection; moreover, we have

Uzgy) = £(z) + £(g) + E(y)-
(c) The map (%5 N W,5) x Ws — W s sending (x,y) to zy is a bijection; moreover, we have {(x) +

Uy) = L(zy).

A.3. Schur algebras. The Hecke algebra H = H(Wp) over A = Z[v,v"!] is an A-algebra with basis
{T, | g € Wp} satisfying that

TwTw = Tyuw if l(ww") = l(w) + L(w'),
(Ts + 1)(Ts —v?) =0, for se Sp.

For any finite subset X < Wp and for A* € Ap , set

TX = Z Tw and THrae = Tw/\a. (A.3.1)
weX

For \*, i € Ap and g € Doy
to TWWQWMB‘ Thanks to Proposition [A.2.3] (b), we have Ty, g, = 2\TyTy5~w, for some § € Ay 4, and

we consider a right H-linear map ¢? app € Homy (7,sH, H), sending s

hence we have constructed a right H-linear map
‘[)]\awg € HOI’HH(IITWBH,$)\QH), T, TW,\agWWB = :L')\aTgT%quB. (A.3.2)
We define the Schur algebra S, 4 of type D as

Sna= EndH< &) x)\aH> = @ Hompy (7,5 H, z)« H). (A.3.3)
)\QEAD )\a,uﬁEAD
Introduce the following subset of Ap x Wp x Ap:
Dna= || O x Draps x {1}, (A.3.4)
)\a,/J/BGAD

Lemma A.3.1. The set {qﬁg\ (XY, g, 11P) € Dp.a} forms an A-basis of Sp.q.

s |
A.4. Signed matrices. From now on, we fix

N =2n+1, D = 2d.
Notice that D is even and is different from the convention (ZI.T]). Set

= = {4 = (@) -neijen € Matn oy (N) | @iy = aig, Vi j € [-n,n]i 37,5 =D} (A41)
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Recall row(T") and col(T) in ([22.3]), we set

Y= {AeZ|row(A)y >0 and col(A)y > 0} x {0},
tT={AeZ|row(A)y =0 orcol(A) =0} x {+}, (A.4.2)
“={A€Z | row(A)y =0 or col(A)y =0} x {—}.

In below we abbreviate (A, ) € 2% by A* where a € {0, +,—}. We further set
tuET, (A.4.3)

(1] [1] [1]

0

—_ —_ —_
Sp=Z2uZ

whose elements are called signed matrices. Define a sign map sgn : {0, +, —}2 — {0, 4+, —} by

0, if (o, ) =(0,0);

Sgn<a75) = +, if (Oéyﬂ) = (07+)7(+70)7(+7+)7(+7_)§ (A44)
) if (Oé,ﬁ) = (07_)7(_70)7(_’_)’(_’_‘_)'
Define a map & : %4 — Zp by k(A% g, 1) = <|R?a N QR;BDSgn(aﬁ) .

Lemma A.4.1. The map k: Yy q — Ep is a bijection.

For each A = k(\%, g, ") € Ep, we write eq = QSf\'auﬁ, and hence {e4 | A € E} forms a basis of S,, 4.
For any A = (a;j) € =, we set
o { %GOO if (17]) = (070)7

and al. =

a; .
@ otherwise, R

v]

ago — 1 if (4,7) = (0,0);
{ ajj otherwise. (A.4.5)

Let It = ({0} x [0,n]) u ([1,n] x [-n,n]) be the index set corresponding to the “positive half part” of
matrices in =.

Lemma A.4.2. [f A5 = k() g, 1) € Ep where A = (a;;) € 2, then the length of g€ Wp is

K(g):% Z ( Z + Z )a;jagy . (A.4.6)

(i)t \oe>iy<j xz<i,y>j

In particular, the length is independent of the sign sgn(a,3). Thus we write, for A = Asen(@f) —
k(X% g, uP) € Ep,
L(A) =1l(g) or L(A)=/L(g) (A.4.7)

For each signed matrix A = A8 = x(\* g, 1f) € Ep with A = (a;;) € Z, we introduce the
following notations:

SgH(.A) = Sgn(a75)v Sl(A) = q, ST(A) =B,

+ otherwise,

row(A) = row(A), col(A) = col(4), p(A) = {_ i 2i<o>0 a1y 15 0dd; (A.4.8)

A+ B=A+ B, forany N x N matrix B.

Note that A + B is a matrix instead of a signed matrix. The following lemmas follows immediately from
definition.

Lemma A.4.3. Let A = k()% g, %) € Ep, then p(A) = + (resp. —) if and only if g(1) > 0 (resp. <0).

Lemma A.4.4. For a signed matriz A € ZEp, we have

) 0 if col(A)p > 0;
0 f 0;
si(A) = ' row(A)o > 0; 5p(A) = { —sgn(A) if col(A)g = row(A)g = 0,p(A) = —;
sgn(A) - if row(A)o =0, sgn(A)  otherwise.

(A.4.9)
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Let A = k(\?, g, ") € Zp. We define a signed weak composition as below:

apo
5<A) = (77 ai0, .-, ano, a—n,la a—n+1,17 B ¢ P 7a—n,n7 a—n-i—l,na L 7ann)6' (A410)

A direct computation shows that §(.A) is indeed a weak composition ¢ in Proposition [A.2.3((a).
Proposition A.4.5. Let A = k(\*, g,1%) € Ep. Then Wsca) = g Wyeg N Wz
We define type D quantum factorials by
[0 =2, =1, [2k]; = [K][2][4]- - [2(k = 1)], (k=>2).
We further define, for A = (a;;) € E,
(AL = [aoo)s ] [agl" (A.4.11)
(1.5)el\{(0,0)}

We write [A]} = [A]} if A = A%#"4. The type D quantum factorials are defined in the sense that the
following identity on the Poincare polynomial for W4y holds:

Lemma A.4.6. For any A= A% € Ep with A = (a;j), we have Zwewé(A) v2w) = [A]L.

A.5. Multiplication formulas. The proofs of Lemmal[A.5.THA.5.3| are very similar to their counterparts
(Lemma [B.1.3] (32.2) and Lemma B2T)) so we omit.

Lemma A.5.1. Let A = s()\%, g,u?) for \* 1 € Ap, g € Drays- Then zraTyx,s = [A]} ealz,s).

Lemma A.5.2. Let B = x(\*, g1, %) and A = k(uP, g2, "), where X\, 1P, 17 € Ap, g1 € Dyoyp, and
€ Dypyr- Write § = 6(A). Then we have eges () = ﬁ‘r)\“Tng(%ﬁWMB)HﬂW‘

Lemma A.5.3. Let B = k(\*,1,1%), A = k(P g, 7). Let y™) be the shortest double coset representative
for WaxwgW,,, and let AW = g(\*, y@) v7). Then

T -t ) [A™T;

€BCA = [A]' € Ag(w)
0

’wE@gﬂW‘lﬂ
In the multiplication formulas below, we regard e4 = 0 if A ¢ =p.

Proposition A.5.4. Suppose that A = A% B.C € Zp and h € [1,n]. Let Ty = {t = (t;)—n<i<n €
NY STt =

(1) If h #1, B— TEfl’h_l is diagonal, col(B) = row(.A) and sy (B) = s;(A), then
epes = Z 02 Zk<p tphk [ Clhp +tp ] € i (A.5.1)
tel’y p=—n ’

where Ay = (A + t,E]  — t,E_, ., sgn(si(B),5:(A))), si(Aun) = si(B) and s,(Ayp) = s,(A).
(2) If B — rEfO is diagonal, col(B) = row(A), and s,(B) = s;(A), then

ai g = ayp+t
epeA = Z v? Zheply PR+ (1 57’ 1r0W(A)0)< 6“6070)6%,07150) H [ 17ptp ' ] €A (A.5.2)

tel'y. p=—n

3) Ifh#1,C— is diagonal, col(C) = row(A), and s,(C) = s;(A), then
Ep_, h

n
_ t
cceq = Z 02 Zksp tran—1, H { ap lip +1p ]eﬁth’ (A.5.3)
» ,

tel'y p=—n

where ﬁt,h =(A- tpEz,p + tpEzfl’p,sgn(sl(C), sr(A))), sl(jt,h) = ;(C) and sr(.,zl\mh) = s,(A).
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(4) If C — rEal is diagonal, col(C) = row(A), and s,(C) = sl(.A), then

_ 2 ot ottt Yo to(to—1) [00,0 + 2t0]s 1 [a0,p + tp "‘ t*p]
eces = v P p<k<—p P ez . (A.5.4)
t;'r [ao,0]5[ 1:[1 lao,p]! [t_p]! Aet

Proof. Here we only prove Parts (2) and (4) while omitting the easier parts (1) and (3). For Part (2),
let A = k(1P g2,v7), and let § = §(B). Take any ¢ € I',, we consider two cases: r < irow(A)y or
r = 2row(A)o.
Case 1: r < row(A)o: Let w; be the minimal length element in the set {w € Z5 N W | AW) = .Zt,l}. A
direct computation shows that its length is give by

fh) = % tylook = 1)+ Dyegeoptplook =t = 1) = Do URabil
k:é’r;O (A5.5)
Z—p

= Zk>p(a07k o tk)tp - Zp<k<—p tptk - %Zp<0 tp(tp + 1)

By a combinatorial argument, we calculate that

e oY b1 [ [ o

WEYs quB, z+y=to p=1 t*P
AW =4, 4
Note that
/ ! / to
Z |:a0,0:| [GO,O - $:| (1)2)@"'1’(“6,0_"’0) _ [a0,0:| Z |:t0:| ,U:E(xfl) (,Ua{)’o—to)2m
z+y=to x Yy to z=0 x
, t
© {ao 0} T+ 26120y (A5.7)
to 1=1
lao 0]!0
=1+ 1=05, )y : ,
( ( aO’O,O) aO,()’to) [(1,0’0 _ 2t0:|lb[t0:|!
where () is due to the quantum binomial theorem > [* ]’L)T(T Dgr = ";1(1 + v?*2). Hence

26(w) _  20(w;) [a00] . aop —tp
> p20w) — g26(we T 11—[{ H L ] (A.5.8)

n Q
we@émW‘L57A(U’)=At71 [ 0,0 — p=1

Moreover, using ([A.4.6]), we obtain

(A) — f(./zt\ml) = — Z (a07k Bty + = Z ty + Z tpar g + = Z tpty

k>p p<0 k<p k< —p
= tparg — D (aok —t)tp+ Y, tpte+ 5 Z tyty +1). (A.5.9)
k<p k>p p<k<—p p<0

Combining Lemma [A53, (AFF), (A5R) and (A5.3), we obtain that, if r < frow(.A)o,

n
2 ¢ alp + t
eges = Z v Lr<p @ik (1 4 (1 — 5%,0,0)5[16'0,:&0) H [ ptp g ] CApq

tel'y p=—n

Case 2: r = frow(A)o: In this case, each term ez, =0 unless agp = t, +t_, for all p € [-n,n]. (Partic-
ularly, ag o = to.) For the non-vanishing terms, we have

3 p2Uw) _ 20(we) <Z [a; 0} )25 1>> ﬁ [ao p]

-1 T
WEYs qug JAW = Ay 4
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where x runs over all integers such that 0 <z < apg and  + 3, _(t, € 2N. Note that

!
ago—1

Z a6,0 vx(:c—l) _ Z a6,0 ,U:c(x—l) _ 7 (1 +U2i)
x x p ’

afy o =ze2N afy o =ze2N+1 i=1

Hence

/
ao,()*l

Z p2tw) _ 26(we) (1+ 2 H [ ] (A.5.10)

we%;quﬁ7A(w):ﬁt)1 i=1 p=1

Combining Lemma [A5.3] (A5.5), (A5.9) and (AE.I0), we obtain, if r = 1row(.A)o,

n
_ 2Zk tpal,k a17p + tp ~
epes = Z Ve &k<p H [ ty €A

tel'y p=—n

Part (2) concludes.
For Part (4), Let A = s(1?, 92, vY), 6 = 0(C) and take any t € I',. Let w; be the shortest element in
the set {we Z5s 0 W | AW) = At,l} Its length is given by

Z ,U2f(w) _ U2f(wt) 1_[ |:(11,p:| _ U2Zk<ptp(a1vk_tk) H |:at17p:|‘ (A511)
p=-nt P

n t
we%;quB hA(w):‘At’l p=—n »

Moreover, using (AZ6]), we obtain

U(A) = £(Ap1) = > ao sty — Z tp— Y tplare —t) + = Z tpti

k 0 k k
v s = 1 (A.5.12)
= Y aokty— D tplare —te) + D tpti + 5 Z tp(t, —1).
k>p k<p p<k<—p p<0
Combining Lemma [A5.3] (A.5.17)) and (A.5.12]), we finally get that
n
ccea = Y 0 Dep it 2T et Syatr(t-) (T |1 L1y = ]!
el I la1,p]!
tEF',« p=—n p Y
a00+2t0 “ laop + tp +t_
) H 0,p P] e_A
ao 0 : aO p t,1
n
_ Z 02 Tk @0kt +2 5 e ot + Xz to(tp—1) [ao,o + 2’50 H [ao,p + tp + tpl! eq .
tel', [(100 p=1 aO,p _P]' &1
]
Take r = 1 in Proposition [A.5.4] we have the following corollary.
Corollary A.5.5. Suppose that A = A%*(A) B.C e Zp and h e [1,7n].
(1) If h # 1, B— Ez,hq is diagonal, col(B) = row(A), and s,(B) = s;(A), then
n
eBe.A — Z U2Zk<p Qh,k [ah7p —+ 1]6Ap7 (A513)
p=—n
where Ay = (A + Eﬁ,p - Ez_Lp, sgn(s;(B), sr(A))).
(2) If B — Ef,o is diagonal, col(B) = row(A), and s,(B) = s;(A), then
eses = Z 02 Dk<p 1k la1p + 1]eq, + v 2k<0 01,k (2 = b2 row(a) ) [a1,0 + 1]ea,- (A.5.14)

p#0
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(3) Ifh #1, C— Ez—l,h is diagonal, col(C) = row(A), and s,(C) = s;(A), then

n
ecea= Y, vPEr I anyp + ey, (A-5.15)
p=-n

where A(h,p) = (A — Ez’p + Ezfl’p, sgn(s;(C), sr(A))).
(4) If C — E&l is diagonal, col(C) = row(A), and s,(C) = s;(A), then

eceq = Z 02 Zk>p W0k [aop + 1]eA(17p) + 2 Zk=090,k ([ao,o + 1]+ (1 - 50@0,0)21“070) € A(1,0)- (A.5.16)
p#0

Remark A.5.6. The multiplication formulas with e 4 (Proposition[A.5.4land Corollary[A.5.5]) match Fan-
Li’s multiplication formulas ([FLI15, Proposition 4.3.2 and Corollary 4.3.4].) with ¢%°, via the following
correspondence:

g€o

s — 2e5°, if ag =0, row(A)y # 0 and col(A)g # 0;
€ otherwise.

(A.5.17)

Remark A.5.7. An immediate application of the multiplication formulas is to demonstrate a stabilization
property for {S, 4 | d € N}, and further construct an algebra KC,, so that the multiplication rules on /K,
are compatible with the rules on any S,, 4. The algebras K,, have been introduced by Fan and Li in loc.
cit.

A.6. Schur duality. Let g be the simple Lie algebra of type Dy, and let p be the half sum of the positive
roots of g. It was mentioned in a framework [LW17] that Ap can be viewed as the set of orbits of W on
a (truncated) p-shifted weight lattice of g. Then the v-tensor space @ ya. Ap LreH can be viewed as the
quantum version of the Grothendieck groups of the category O of g-modules.

This picture is also valid when Ap is replaced by its subset. Each subset Ay ¢ Ap corresponds to a
Schur algebra

Sy = EndH<>\ee/9\f :EAH.>

A Schur duality is also obtained in loc. cit. for each pair (S¢, H) on the tensor space @xea s oAH.

Remark A.6.1. If Ay = AT LA™, then Sy is the algebra S™ in [FL15, §6.1]. The stabilization procedure
affords a different quantum algebra X in loc. cit.

Remark A.6.2. Fan and Li told the authors in private conversations that they have also been aware of
the Schur algebra Sy and the related Schur duality for Ay = A or A% L AT although they did not write
it down.
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