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Abstract

Let S be a finite set of positive integers. A graph G = (V(G), E(G)) is
said to be S-magic if there exists a bijection f : V(G) — S such that for
any vertex u of G, 7 ., f(v) is a constant, where Ng(u) is the set of
all vertices adjacent to u. Let «(S) = max . Define i(G) = mSinOz(S),

where the minimum runs over all S for which the graph G is S-magic. Then
i(G) — |[V(Q)| is called the distance magic index of a graph G. In this
paper, we compute the distance magic index of graphs G[K,], where G is
any arbitrary regular graph, disjoint union of m copies of complete multi-
partite graph and disjoint union of m copies of graph C,[K,], with m > 1.
In addition to that, we also prove some necessary conditions for an regular
graph to be of distance magic index one.
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multi-partite graphs, lexicographic product.
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1. Introduction

In this paper, we consider only simple and finite graphs. We use V(G) for
the vertex set and E(G) for the edge set of a graph GG. The neighborhood,
N¢(v) or shortly N(v) of a vertex v of G is the set of all vertices adjacent
to v in G. For further graph theoretic terminology and notation, we refer
Bondy and Murty [I] and Hammack et al.[2].
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A distance magic labeling of a graph G is a bijection f : V(G) —
{1,...,|[V(G)|}, such that for any u of G, the weight of u, wg(u) = >,  f(v)

vENG(u)
is a constant, say c¢. A graph G that admits such a labeling is called a distance

magic graph.

The motivation for distance magic labeling came from the concept of
magic squares and tournament scheduling. An equalized incomplete tourna-
ment, denoted by EIT(n,r), is a tournament, with n teams and r rounds,
which satisfies the following conditions:

(i) every team plays against exactly r opponents.

(ii) the total strength of the opponents, against which each team plays is
a constant.

Therefore, finding a solution for an equalized incomplete tournament
EIT(n,r) is equivalent to establish a distance magic labeling of an r-regular
graph of order n. For more details, one can refer [3] [4].

The following results provide some necessary condition for distance mag-
icness of regular graphs.

Theorem 1. [B, 6, [7, B] No r-reqular graph with r-odd can be a distance
magic graph.

Theorem 2. [4] Let EIT(n,r) be an equalized tournament with an even
number n of teams and r =2 mod 4. Then n =0 mod 4.

In [6], Miller et al. discussed the distance magic labeling of the graph H,, ,,
the complete multi-partite graph with p partitions in which each partition
has exactly n vertices, n > 1 and p > 1. It is clear that H, ; is a distance
magic graph. From [0] it is observed that K, is distance magic if and only
if n =1 and hence, H,;, = K, is not distance magic for all p # 1. The next
result gives a characterization for the distance magicness of H,, .

Theorem 3. [6] Let n > 1 and p > 1. H,, has a labeling if and only if
either n is even or both n and p are odd.

Recall a standard graph product (see [2]). Let G and H be two graphs.
Then, the lexicographic product G o H or G[H] is a graph with the vertex
set V(G) x V(H). Two vertices (g, h) and (¢', h') are adjacent in G[H] if and
only if ¢ is adjacent to ¢’ in G, or g = ¢’ and h is adjacent to h' in H.

Miller et al. [6] proved the following.
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Theorem 4. [6] Let G be an arbitrary reqular graph. Then G[K,) is distance
magic for any even n.

Later, Froncek et al. [4, 9] proved the following results.

Theorem 5. [4] For n even an EIT(n,r) exists if and only if 2 < r <
n—2;r=0 mod 2 and eithern =0 mod 4 orn=r+2=2 mod 4.

Theorem 6. [9] Let n be odd, p = r = 2 mod 4, and G be an r-regular
graph with p vertices. Then G[K,| is not distance magic.

Theorem 7. [9] Let G be an arbitrary r-reqular graph with an odd number
of vertices and n be an odd positive integer. Then r is even and the graph
G[K,] is distance magic.

The following results by Shafiq et al. [10], discusses the distance magic
labeling of disjoint union of m copies of complete multi-partite graphs, Hy, ),
and disjoint union of m copies of product graphs, C,[K,].

Theorem 8. [10]

(i) If n is even or mnp is odd, m > 1;n > 1 and p > 1; then mH,, has a
distance magic labeling.

(ii) If np is odd, p =3 mod 4, and m is even, then mH, , does not have
a distance magic labeling.

Theorem 9. [I0] Let m > 1,n > 1 and p > 3. mC,[K,] has a distance
magic labeling if and only if either n is even or mnp is odd or n is odd and
p=0 mod 4.

In [10], Shafiq et al. posted a problem on the graph mH,, .

Problem 1. For the graph mH,, ,, where m is even, n is odd, p =1 mod 4,
and p > 1, determine if there is a distance magic labeling.

Later, Froncek et al.|[9] proved the following necessary condition for mH,, ,,.

Theorem 10. The graph mH, ,, where m is even, n is odd, p =1 mod 4,
and p > 1, is not distance magic.



Figure 1: A graph G with ¢/ =13 and S ={1,3,4,5,6,7}.

For more details and results, one can refer Arumugam et al. [11].

From Theorem [1], one can observe that any odd-regular graph G of order
n is not distance magic. But if we label the graph with respect to a different
set S of positive integers with |S| = n, then G may admit a magic labeling
with a magic constant ¢’. See Figure 1.

Motivated by this fact Godinho et al. [? | defined the concept of S-magic
labeling of a graph.

Definition 1. [? | Let G = (V(G), E(G)) be a graph and let S be a set of
positive integers with |V (G)| = |S|. Then G is said to be S-magic if there
exists a bijection f: V(G) = S satisfying >,y f(v) = ¢ (a constant) for
every u € V(G). The constant ¢ is called the S-magic constant.

Definition 2. [? | Let a(S) = maz {s : s € S}. Let i(G) = min «(S5),
where the minimum is taken over all sets S for which the graph G admits an
S-magic labeling. Then i(G) — |V (G)| is called the distance magic index of
a graph G and is denoted by 6(G).

From above definitions, one can observe that a graph G is distance magic
if and only if (G) = 0 and if G is not S-magic for any S with |V(G)| = |5/,
then 0(G) = co.

Let G be a graph for which 6(G) is finite (however so small) and non-zero.
Now, a natural question arises that for all such graphs G, does there exist
an S-magic labeling with 6(G) = 17

In the following section, we prove some necessary conditions for an 7-
regular S-magic graph G to have §(G) = 1. Further, we compute the distance



magic index of disjoint union of m copies of H,, and disjoint union of m
copies of C,[K,,], where m > 1. Also, for any arbitrary regular graph G, we
compute the distance magic index of the graph G[K,]. In addition to that,
we construct twin sets S and S for the same graph H,, with 6(G) = 1,
for which H, , is both S-magic and S’-magic with distinct magic constants.
We also discuss the maximum and minimum bounds attained by the magic

constant for the graph H,, .

2. Main results

If G is a graph with 0(G) = 1, then it is clear that G is S-magic for
S ={1,...,n+1}\ {a}, for at least one a € {1,...,n}. We call a, the deleted
label of S.

The following results are similar to that of Theorem [I] and

Lemma 1. If G is an odd r-reqgular S-magic graph with 6(G) = 1, then
a# 1.

Proof. Assume that G is an r-regular graph with (G) = 1, where 7 is odd.
If S={1,....,n+ 1} \ {a} with the S-magic constant ¢, then,

nc = r(l+..4+n+1)—ra (1)
rm+3r r—ra
= ) 2
¢ 2 + n 2)
Therefore, if a = 1, then ¢ is not an integer, a contradiction. O

Lemma 2. If G is an r-reqular S-magic graph with (G) =1 and r,n = 2
mod 4, then a is an even integer, a # 2,n.

Proof. Assume that G is an r-regular graph with 6(G) = 1 and r,n = 2
mod 4. Let ¢ be the S-magic constant of G, where S = {1,2,....n+1}\{a}
and a is an odd integer belonging to {1,2,..,n}. Let r = 4k +2 and n =
4k + 2, with 0 < k < k.

Case 1: when a = 1, from eq.(2), we have,

c=(2k +1)(4K +5).

Here ¢ is an odd integer and every vertex is adjacent to odd number of vertices
which are labeled with odd integers. Note that, here there are 2k’ 4+ 1 such



vertices. Then the graph induced by the vertices having odd label has every
vertex of odd degree, a contradiction.

Case 2: When a = 2¢g + 1, with ¢ > 0. Then rn + 3r = 2 mod 4 and
r —ra =0 mod 4 and hence c fails to be an integer.

Case 3: When a = 2 or a = n, c is not an integer and hence the result
follows. O

The following theorem discusses the distance magic index of the graph,
H,,,n>1and p> 1. We define the integer-valued function a given by

a(j) = 0 for j even

=Y 1 for j odd,

and thesets Q. = {i: 5 <i<n—1and i =k mod 4}, where k € {0, 1,2, 3}.
Both a and €2;’s are used in the next theorem.

Theorem 11. If G is a complete multi-partite graph H, , with p partitions
having n vertices in each partition, then

0(G) = 0 forn even orn and p both odd
1 1 formn odd and p even.

Proof. Let G = H,, with n > 1,p > 1. From Theorem [3] it is clear that if
n is even or when n and p both are odd, then 0(G) = 0.

Now, to construct an (n X p)- rectangular matrix A = (a; ;) with distinct
entries from a set S having column sum b (a constant) is equivalent to find
an S-magic labeling of G with magic constant (p — 1)b.

Note that j*" column of A can be used to label the vertices of j** partition
of G and hence G admits a magic labeling with magic constant (p — 1)b. In
addition, if the entries of A are all distinct and are from S = {1,...,np+ 1} \
{a}, where a € {1,...,np}, then G is S-magic with 0(G) = 1.

Let n be an odd and p be an even integer.

Case 1: If n = 3 and p = 2m, m > 0, then construct A as,

1 2 3 4 oo 2m =3 2m—2 2m—1 2m
3m dm 3m—1 4m—-1 ... 2m+2 3m+2 2m—+1 3m+1
6m+1 bm 6m Sm—1 ... bm+3 4dm+2 m+2 4dm+1

Note that, the deleted label is 5m + 1 here. One can observe that each col-
umn adds up to a constant 9m + 2 and thus, 0(Hs2,) = 1.



Case 2: If n =5 and p = 2m, m > 0, then construct A as,

1 2 3 4 . 2m—3 2m—2 2m-—1 2m
3m 4m 3m—1 4m—-1 ... 2m+2 3m+2 2m+1 3m+1
6m om 6m—1 d5m—1 ... bm+2 4m+2 dm+1 4dm+1
m 8m "m—1 8n—-1 ... 6m+2 ™m+2 6m+1 "Tm+1
Im+2 8m+1 I9Im+3 8n+2 ... 10m 9m—1 10m+1 Im

Here, the deleted label is 9m + 1 and each column adds up to a constant
25m + 3. Therefore, 0(Hs 9,,) = 1.

Case 3: If n > 5 is odd and p = 2m,m > 0, then for each j € {1,...,p},
construct A as follows.

( ' for i =1

(20— )m — (G +a(i+1)(m+3) fori=24

2mi—(%){+a(j+1)(—m+%) for i =3

2mi—m+%+a(j)(—m—|—%) fori=1 mod4,i€ {5,6,...,n— 1}
aij =19 2mi—m+3+a(j); —alj+1)m fori=2 mod 4,i € {5,6,....,n —1}

2mi—(]'%1)+a(j+1(fm+%) fori=3 mod 4,: € {5,6,...,n—1}

2mi — (551) + a(j)(—m) + a(j + 1)}  fori=0 mod 4,i€ {5,6,....,n—1}

2mi — m—f—%—f—oz(j)(%)— a(j+1)ym fori=n=1 mod4

2mi— 4+ 3 —a(j+1)(m+1) fori=n=3 mod 4

Therefore, m(2n — 1) 4+ 1 is the deleted label in this case.
Subcase 1: If n = 1 mod 4, then n — 5 = 0 mod 4. Let n = 4q + 5,

where ¢ > 1.
Now for any fixed odd j, the j** column sum in A is,

;aw Zaz,]+Za1]+zal,j+zalj+zalj (an—m+%+g)

ZEQI lEQQ 1693 ZEQO
i3m0+ 0m— () +Tm— (457) + 3y (2m<4k+1)—2m+%1)+

S, (2m(4k +2) — JT) + 3 (2m(4k +3) — (%1)) +

S (2m(ah ) —m — (52)) + 2mn = 14 52



= 15m + 32mg + 16mg® + 2mn + 2q + 3 = "2,

Similarly, for any fixed even j, the j** column sum in A is,

ZZ;(IM Zal]+za1]+za1j+za2]+zaz] (2mn—2m+%)

i€ i€y i€Qs i€
= j+4m—(52)+5m— (52) +8m— (552) + >0, <2m(4k+1)—m+%) +
S, (2m(4k3 +2) —2m + %) +>1 (2m(4l€ +3)—m— (%)) +
Dy (2m(4/{: +4) — (372)) +2mn —2m + 4
= 15m + 32mq + 16mg® + 2mn + 2 + 3 = "2
Subcase 2: if n = 3 mod 4, then n — 5 = 2 mod4. Let n = 4¢ + 3

where ¢ > 0.
Now, for any fixed odd j, the j*" column sum in A is,

;ai] Za1]+zaz]+za23+za2]+za1j ( _%—"g)

i€ 1€ 1€Q3 1€Q0
= j+3m—(5) +6m— (51 +Tm— (5 + 34 (2m(4k+1) 2m+j%1)+
0t (2m(4l€ +2)—m+ )+ 30 (2m(4k: +3) - (j%l)) +

P (Qm(4k: +4)—m — (JT)) +2mn+1—(51)

= 35m + 48mq + 16mq® + 2mn + 2q + 4 = 2L P;”H_

Similarly, for any fixed even j, the j** column sum in A is,

izlaw Zaz]+zaz]+za13+zaz]+z (an—m_%+1)

1€Qq i€Q9 i€Q3 1€Qp
= j+4m—(552) +5m— (52) +8m— (552) + >0 <2m(4k+1) _m+g) -
s (2m(4k: +2) —2m+ ) + >0 <2m(4k +3)—m— (%)) +
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S <2m(4k +4) — (%2)) +2mn —m — (52)

=3bm + 48mq + 16mq2 + 2mn + 2(] 14 = nZ;DJgnJrl.

Since the sum of the entries in each column of A is M for odd n > 5,
H,, o is S-magic with magic constant M(p —1)and 0(Hyom) =1. O

Theorem 12. If G = H,,, is an S-magic graph with (G) = 1 and S-magic
constant %(p —1), then there exists a set S" such that G is an S'-magic
graph with 0(G) = 1 and S’-magic constant %(p —1).

Proof. For every S-magic graph G = H,, , with (G) = 1, one can obtain the
corresponding rectangular matrix A = (a; ;) associated with G by Theorem
11l

Define a new (n X p)- rectangular matrix A" = (a;

;;) with entries,

a;; = (np+2) — a;; for all i and j. (3)

By Theorem , it is clear that the entries in A belong to the set {1,...,np+

1} \ {np + 1 — £}, which sum up to w and is divisible by p. Hence

the magic constant is %(p —1).
Now using (3)), define the new set 5" = SU{np+1—5}\ {5 +1} and the

n2p2+p(n+1)) _ n®p*+3np—p
2 = 2

divisible by p. Therefore, we obtain the magic constant as % (p—1). O

sum of all the entries in A’ = np(np+2) —( , which is

The rectangular matrices A and A’ associated with Hj; ¢ are given below,

1 2 3 4 5 6 31 30 29 28 27 26
9 12 8 11 7 10 23 20 24 21 25 22
A= |18 15 17 14 16 13 A =14 17 15 18 16 19
21 24 20 23 19 22 11 8 12 9 13 10
29 25 30 26 31 27 3 7 2 6 1 5

Here, the sum of the entries in each column of A and A’ are 78 and 82
respectively. Then, H;¢ is S-magic with magic constant 390 and S’-magic
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Figure 2: Hj g with S-magic constant 390 and S’ magic constant 410.

with magic constant 410.
Now the following result is immediate.

Lemma 3. If G is an r-reqgular graph with 0(G) = 1 and with S-magic
constant c, then

nr+r +£ o< m’+3r.
2 n- 2
Proof. The proof is obtained from Lemma [I| by substituting a =1 and a =n
for c. [

Observation 1. If G = H,,, is a graph with §(G) = 1 and S-magic constant

c, then
2 2 _
np+n+1(p—1)§c§ n‘p+3n—1
2

O

The lower and upper bounds in Observation [1| are tight when one com-

pares with Lemma [ It is noticed that if S = {1,...,np + 1} \ {a}, which

confirms that H, , is S-magic, then the sum of all the entries in S is divisible
by p. Therefore, the highest a that can be removed to get a multiple of p is
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np + 1 — L and the lowest a that can be removed to get a multiple of p is

g + 1. Hence the result follows.

Lemma 4. Let B be an (n x p)-rectangular matriz with distinct entries from
the set {1,2,..,np+1}\{a}, where a € {1,2,...,np} having column sum s. If
there exists an integer m > 1, m|p, then there exizts m, (n x t)-rectangular
matrices, By, (1 <m <t), having column sum s.

Proof. Consider the (n x mt)-rectangular matrix B with distinct entries from
the set {1,2,..,np+1}\{a}, where a € {1,2,...,np} and having column sum
s.

Construct an (n x t)-rectangular matrix, B; by choosing any ¢ distinct
columns of B and update the B matrix by replacing all the entries in the
newly chosen ¢ columns with 0's. Now the updated B matrix will have
exactly (m — 1)t nonzero columns and t columns having all zero entries.

Now, repeat the process to obtain the next matrix By by choosing any ¢
non-zero columns from the remaining (m — 1)t columns and update the B
matrix in the same manner as in first step. Now repeatedly apply the above
technique to obtain the remaining m — 2 matrices, B;, (3 < i < m), until the
matrix B becomes an zero matrix. 0

From Theorem [§] it is observed that in both the cases when n is odd, p is
even and when np is odd, p =3 mod 4 and m is even, 8(mH,,) # 0. The
following theorem computes the distance magic index of mH, , for above
cases.

Theorem 13. Ifn > 1,p>1,m > 1, then

| 0 formn even or mnp is odd,
O(mHn,) = { 1 otherwise.

Proof. Using Theorem 8] it is clear that §(mH,,,) = 0, when either n is even
or mnp is odd and #(mH,,) # 0, when either np is odd, p = 3 mod 4,
and m is even. On the other hand, by Theorem [10] one can conclude that
6(mH,,) # 0, when m is even, n is odd, p=1 mod 4, and p > 1.

For all the remaining cases, use Theorem to construct the rectangular
matrix A associated with the graph H, ,,,. Now using Lemma EL construct
the (n X p)-matrices By, for k € {1,...,m} Here, each By forms the matrix
associated with the k™ copy of H, , and hence we obtain an S-magic labeling

of mH, , with ¢ = %(p —1). Therefore, 6(mH,,,) = 1. O
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Theorem [9 confirms that if n is even or mnp is odd or n is odd and p = 0
mod 4, then §(mC,[K,]) = 0. Now the remaining cases are given below.
Case 1: n is odd, m is even, p =2 mod 4.

Case 2: n is odd, m is odd, p =2 mod 4.
Case 3: n is odd, m is even, p is odd.

The following theorem determines the distance magic index of the graph

mC,[K,] for all the above mentioned three cases.

Theorem 14. Let m > 1,n > 1 and p > 3, then

=+ J 0 ifn s even or mnp is odd or n is odd, p = 0 mod 4,
O(mCy|K]) _{ 1 otherwise.

Proof. Let G = mC,[K,]. From Theorem |§|, it is clear that 0(G) = 0, when
n even or mnp is odd or n is odd and p =0 mod 4.

Now, for all the remaining cases, using Theorem [11| construct the matrix
A associated with the graph H,, ,, and use A in Lemma [4] to construct the
m rectangular matrices associated with m copies of graph C,[K,]. Hence, we
obtain a S-magic labeling of G with ¢ = n?mp+n+1 and hence (G) =1. O

Let G be an r-regular graph on p vertices. From Theorem 5], for the graph
G[K,), if n is odd, r is even and p is even except when p =7 =2 mod 4,
then 0(G|[K,] = 0. The following theorem computes the distance magic index
of the graph G[K,,).

Theorem 15. Let G be an r-regular graph on p vertices. Then,

B 0 ifn is even or n,p are odd, r is even,
O(GIK,])) =4 1 ifn,r are odd orn is odd, r =p =2 mod 4
0 otherwise.

Proof. Let G be a graph on p vertices vy, ...,v, and let V; = {v}, .. "} be
set the vertices of G[K,] that replace the vertex v; of G for all i = 1
Note that here V(G[K,]) = U_, Vi.

When n is even, by Theorem [i] 8(G[K,]) = 0 and when n is odd, p is
odd and r is even, by Theorem 7 I 7 0(G[K,]) = 0. Further, when n is odd and
p =r =2 mod 4, then by Theorem @ 0(G[K,]) # 0. Also when n is odd
and r is odd, by Theorem [l §(G[K,]) # 0. Further for all the other cases
0(G[K,] = 0 by Theorem [5| Now for both the cases when 0(G[K,]) # 0,
use Theorem to construct the rectangular matrix A associated with the
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graph H, , and use the i column of A to label the set of vertices, V;,
for all i« = 1,2,..,p. Hence, we obtain a S-magic labeling of G[K,], with
c= T(M). Therefore we obtain that 0(C,[K,]) = 1. O

3. Conclusion

In this paper, the distance magic index of disjoint union of m copies of
H,,, and disjoint union of m copies of C,[K,] are computed and few necessary
conditions are derived for a regular graph G for which 0(G) is 1. The paper
establishes a technique to construct a new set of labels from an existing one
in such a way that both magic constants are distinct. Further, the lower and
upper bounds of magic constant of a regular graph G with (G) = 1, are also

determined.
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