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Abstract

Let S be a finite set of positive integers. A graph G = (V (G), E(G)) is
said to be S-magic if there exists a bijection f : V (G) → S such that for
any vertex u of G,

∑
v∈NG(u) f(v) is a constant, where NG(u) is the set of

all vertices adjacent to u. Let α(S) = max
x∈S

x. Define i(G) = min
S
α(S),

where the minimum runs over all S for which the graph G is S-magic. Then
i(G) − |V (G)| is called the distance magic index of a graph G. In this
paper, we compute the distance magic index of graphs G[K̄n], where G is
any arbitrary regular graph, disjoint union of m copies of complete multi-
partite graph and disjoint union of m copies of graph Cp[K̄n], with m ≥ 1.
In addition to that, we also prove some necessary conditions for an regular
graph to be of distance magic index one.

Keywords: Distance magic, S-magic graph, distance magic index, complete
multi-partite graphs, lexicographic product.
2010 MSC: 05C78, 05C76.

1. Introduction

In this paper, we consider only simple and finite graphs. We use V (G) for
the vertex set and E(G) for the edge set of a graph G. The neighborhood,
NG(v) or shortly N(v) of a vertex v of G is the set of all vertices adjacent
to v in G. For further graph theoretic terminology and notation, we refer
Bondy and Murty [1] and Hammack et al.[2].
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A distance magic labeling of a graph G is a bijection f : V (G) →
{1, ..., |V (G)|}, such that for any u ofG, the weight of u, wG(u) =

∑
v∈NG(u)

f(v)

is a constant, say c. A graph G that admits such a labeling is called a distance
magic graph.

The motivation for distance magic labeling came from the concept of
magic squares and tournament scheduling. An equalized incomplete tourna-
ment, denoted by EIT (n, r), is a tournament, with n teams and r rounds,
which satisfies the following conditions:

(i) every team plays against exactly r opponents.

(ii) the total strength of the opponents, against which each team plays is
a constant.

Therefore, finding a solution for an equalized incomplete tournament
EIT (n, r) is equivalent to establish a distance magic labeling of an r-regular
graph of order n. For more details, one can refer [3, 4].

The following results provide some necessary condition for distance mag-
icness of regular graphs.

Theorem 1. [5, 6, 7, 8] No r-regular graph with r-odd can be a distance
magic graph.

Theorem 2. [4] Let EIT (n, r) be an equalized tournament with an even
number n of teams and r ≡ 2 mod 4. Then n ≡ 0 mod 4.

In [6], Miller et al. discussed the distance magic labeling of the graphHn,p,
the complete multi-partite graph with p partitions in which each partition
has exactly n vertices, n ≥ 1 and p ≥ 1. It is clear that Hn,1 is a distance
magic graph. From [6] it is observed that Kn is distance magic if and only
if n = 1 and hence, H1,p

∼= Kp is not distance magic for all p 6= 1. The next
result gives a characterization for the distance magicness of Hn,p.

Theorem 3. [6] Let n > 1 and p > 1. Hn,p has a labeling if and only if
either n is even or both n and p are odd.

Recall a standard graph product (see [2]). Let G and H be two graphs.
Then, the lexicographic product G ◦ H or G[H] is a graph with the vertex
set V (G)×V (H). Two vertices (g, h) and (g′, h′) are adjacent in G[H] if and
only if g is adjacent to g′ in G, or g = g′ and h is adjacent to h′ in H.

Miller et al. [6] proved the following.
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Theorem 4. [6] Let G be an arbitrary regular graph. Then G[K̄n] is distance
magic for any even n.

Later, Froncek et al. [4, 9] proved the following results.

Theorem 5. [4] For n even an EIT (n, r) exists if and only if 2 ≤ r ≤
n− 2; r ≡ 0 mod 2 and either n ≡ 0 mod 4 or n ≡ r + 2 ≡ 2 mod 4.

Theorem 6. [9] Let n be odd, p ≡ r ≡ 2 mod 4, and G be an r-regular
graph with p vertices. Then G[K̄n] is not distance magic.

Theorem 7. [9] Let G be an arbitrary r-regular graph with an odd number
of vertices and n be an odd positive integer. Then r is even and the graph
G[K̄n] is distance magic.

The following results by Shafiq et al. [10], discusses the distance magic
labeling of disjoint union of m copies of complete multi-partite graphs, Hn,p,
and disjoint union of m copies of product graphs, Cp[K̄n].

Theorem 8. [10]

(i) If n is even or mnp is odd, m ≥ 1;n > 1 and p > 1; then mHn,p has a
distance magic labeling.

(ii) If np is odd, p ≡ 3 mod 4, and m is even, then mHn,p does not have
a distance magic labeling.

Theorem 9. [10] Let m ≥ 1, n > 1 and p ≥ 3. mCp[K̄n] has a distance
magic labeling if and only if either n is even or mnp is odd or n is odd and
p ≡ 0 mod 4.

In [10], Shafiq et al. posted a problem on the graph mHn,p.

Problem 1. For the graph mHn,p, where m is even, n is odd, p ≡ 1 mod 4,
and p > 1, determine if there is a distance magic labeling.

Later, Froncek et al.[9] proved the following necessary condition formHn,p.

Theorem 10. The graph mHn,p, where m is even, n is odd, p ≡ 1 mod 4,
and p > 1, is not distance magic.
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Figure 1: A graph G with c′ = 13 and S = {1, 3, 4, 5, 6, 7}.

For more details and results, one can refer Arumugam et al. [11].
From Theorem 1, one can observe that any odd-regular graph G of order

n is not distance magic. But if we label the graph with respect to a different
set S of positive integers with |S| = n, then G may admit a magic labeling
with a magic constant c′. See Figure 1.

Motivated by this fact Godinho et al. [? ] defined the concept of S-magic
labeling of a graph.

Definition 1. [? ] Let G = (V (G), E(G)) be a graph and let S be a set of
positive integers with |V (G)| = |S|. Then G is said to be S-magic if there
exists a bijection f : V (G)→ S satisfying

∑
v∈N(u) f(v) = c (a constant) for

every u ∈ V (G). The constant c is called the S-magic constant.

Definition 2. [? ] Let α(S) = max {s : s ∈ S}. Let i(G) = min α(S),
where the minimum is taken over all sets S for which the graph G admits an
S-magic labeling. Then i(G) − |V (G)| is called the distance magic index of
a graph G and is denoted by θ(G).

From above definitions, one can observe that a graph G is distance magic
if and only if θ(G) = 0 and if G is not S-magic for any S with |V (G)| = |S|,
then θ(G) =∞.

Let G be a graph for which θ(G) is finite (however so small) and non-zero.
Now, a natural question arises that for all such graphs G, does there exist
an S-magic labeling with θ(G) = 1?

In the following section, we prove some necessary conditions for an r-
regular S-magic graph G to have θ(G) = 1. Further, we compute the distance
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magic index of disjoint union of m copies of Hn,p and disjoint union of m
copies of Cp[K̄n], where m ≥ 1. Also, for any arbitrary regular graph G, we
compute the distance magic index of the graph G[K̄n]. In addition to that,
we construct twin sets S and S ′ for the same graph Hn,p with θ(G) = 1,
for which Hn,p is both S-magic and S ′-magic with distinct magic constants.
We also discuss the maximum and minimum bounds attained by the magic
constant for the graph Hn,p.

2. Main results

If G is a graph with θ(G) = 1, then it is clear that G is S-magic for
S = {1, ..., n+ 1} \ {a}, for at least one a ∈ {1, ..., n}. We call a, the deleted
label of S.

The following results are similar to that of Theorem 1 and 2.

Lemma 1. If G is an odd r-regular S-magic graph with θ(G) = 1, then
a 6= 1.

Proof. Assume that G is an r-regular graph with θ(G) = 1, where r is odd.
If S = {1, ..., n+ 1} \ {a} with the S-magic constant c, then,

nc = r(1 + ...+ n+ 1)− ra (1)

c =
rn+ 3r

2
+
r − ra
n

. (2)

Therefore, if a = 1, then c is not an integer, a contradiction.

Lemma 2. If G is an r-regular S-magic graph with θ(G) = 1 and r, n ≡ 2
mod 4, then a is an even integer, a 6= 2, n.

Proof. Assume that G is an r-regular graph with θ(G) = 1 and r, n ≡ 2
mod 4. Let c be the S-magic constant of G, where S = {1, 2, ..., n+ 1} \ {a}
and a is an odd integer belonging to {1, 2, .., n}. Let r = 4k + 2 and n =
4k′ + 2, with 0 < k < k′.
Case 1: when a = 1, from eq.(2), we have,

c = (2k + 1)(4k′ + 5).

Here c is an odd integer and every vertex is adjacent to odd number of vertices
which are labeled with odd integers. Note that, here there are 2k′ + 1 such
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vertices. Then the graph induced by the vertices having odd label has every
vertex of odd degree, a contradiction.
Case 2: When a = 2q + 1, with q > 0. Then rn + 3r ≡ 2 mod 4 and
r − ra ≡ 0 mod 4 and hence c fails to be an integer.
Case 3: When a = 2 or a = n, c is not an integer and hence the result
follows.

The following theorem discusses the distance magic index of the graph,
Hn,p, n > 1 and p > 1. We define the integer-valued function α given by

α(j) =

{
0 for j even
1 for j odd,

and the sets Ωk = {i : 5 ≤ i ≤ n−1 and i ≡ k mod 4}, where k ∈ {0, 1, 2, 3}.
Both α and Ωi’s are used in the next theorem.

Theorem 11. If G is a complete multi-partite graph Hn,p with p partitions
having n vertices in each partition, then

θ(G) =

{
0 for n even or n and p both odd
1 for n odd and p even.

Proof. Let G ∼= Hn,p with n > 1, p > 1. From Theorem 3, it is clear that if
n is even or when n and p both are odd, then θ(G) = 0.

Now, to construct an (n× p)- rectangular matrix A = (ai,j) with distinct
entries from a set S having column sum b (a constant) is equivalent to find
an S-magic labeling of G with magic constant (p− 1)b.

Note that jth column of A can be used to label the vertices of jth partition
of G and hence G admits a magic labeling with magic constant (p− 1)b. In
addition, if the entries of A are all distinct and are from S = {1, ..., np+ 1} \
{a}, where a ∈ {1, ..., np}, then G is S-magic with θ(G) = 1.

Let n be an odd and p be an even integer.

Case 1: If n = 3 and p = 2m,m > 0, then construct A as, 1 2 3 4 ... 2m− 3 2m− 2 2m− 1 2m
3m 4m 3m− 1 4m− 1 ... 2m+ 2 3m+ 2 2m+ 1 3m+ 1

6m+ 1 5m 6m 5m− 1 ... 5m+ 3 4m+ 2 5m+ 2 4m+ 1


Note that, the deleted label is 5m + 1 here. One can observe that each col-
umn adds up to a constant 9m+ 2 and thus, θ(H3,2m) = 1.
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Case 2: If n = 5 and p = 2m,m > 0, then construct A as,
1 2 3 4 ... 2m− 3 2m− 2 2m− 1 2m
3m 4m 3m− 1 4m− 1 ... 2m+ 2 3m+ 2 2m+ 1 3m+ 1
6m 5m 6m− 1 5m− 1 ... 5m+ 2 4m+ 2 5m+ 1 4m+ 1
7m 8m 7m− 1 8m− 1 ... 6m+ 2 7m+ 2 6m+ 1 7m+ 1

9m+ 2 8m+ 1 9m+ 3 8m+ 2 ... 10m 9m− 1 10m+ 1 9m


Here, the deleted label is 9m + 1 and each column adds up to a constant
25m+ 3. Therefore, θ(H5,2m) = 1.

Case 3: If n > 5 is odd and p = 2m,m > 0, then for each j ∈ {1, ..., p},
construct A as follows.

ai,j =



j for i = 1

(2i− 1)m− ( j−1
2 ) + α(j + 1)(m+ 1

2) for i = 2, 4

2mi− ( j−1
2 ) + α(j + 1)(−m+ 1

2) for i = 3

2mi−m+ j
2 + α(j)(−m+ 1

2) for i ≡ 1 mod 4, i ∈ {5, 6, ..., n− 1}
2mi−m+ j

2 + α(j)1
2 − α(j + 1)m for i ≡ 2 mod 4, i ∈ {5, 6, ..., n− 1}

2mi− ( j−1
2 ) + α(j + 1)(−m+ 1

2) for i ≡ 3 mod 4, i ∈ {5, 6, ..., n− 1}
2mi− ( j−1

2 ) + α(j)(−m) + α(j + 1)1
2 for i ≡ 0 mod 4, i ∈ {5, 6, ..., n− 1}

2mi−m+ j
2 + α(j)(3

2)− α(j + 1)m for i = n ≡ 1 mod 4

2mi− j
2 + 1

2 − α(j + 1)(m+ 1
2) for i = n ≡ 3 mod 4

Therefore, m(2n− 1) + 1 is the deleted label in this case.

Subcase 1: If n ≡ 1 mod 4, then n − 5 ≡ 0 mod 4. Let n = 4q + 5,
where q ≥ 1.
Now for any fixed odd j, the jth column sum in A is,

n∑
i=1

ai,j =
4∑

i=1

ai,j +
∑
i∈Ω1

ai,j +
∑
i∈Ω2

ai,j +
∑
i∈Ω3

ai,j +
∑
i∈Ω0

ai,j +

(
2mn−m+

j

2
+

3

2

)

=j+3m−( j−1
2

)+6m−( j−1
2

)+7m−( j−1
2

)+
∑q

k=1

(
2m(4k+1)−2m+ j+1

2

)
+∑q

k=1

(
2m(4k + 2)−m+ j+1

2

)
+
∑q

k=1

(
2m(4k + 3)− ( j−1

2
)

)
+∑q

k=1

(
2m(4k + 4)−m− ( j−1

2
)

)
+ 2mn−m+ 1 + j+1

2
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= 15m+ 32mq + 16mq2 + 2mn+ 2q + 3 = n2p+n+1
2

.

Similarly, for any fixed even j, the jth column sum in A is,
n∑

i=1

ai,j =
4∑

i=1

ai,j +
∑
i∈Ω1

ai,j +
∑
i∈Ω2

ai,j +
∑
i∈Ω3

ai,j +
∑
i∈Ω0

ai,j +

(
2mn− 2m+

j

2

)

= j+ 4m− ( j−2
2

) + 5m− ( j−2
2

) + 8m− ( j−2
2

) +
∑q

k=1

(
2m(4k+ 1)−m+ j

2

)
+∑q

k=1

(
2m(4k + 2)− 2m+ j

2

)
+
∑q

k=1

(
2m(4k + 3)−m− ( j−2

2
)

)
+∑q

k=1

(
2m(4k + 4)− ( j−2

2
)

)
+ 2mn− 2m+ j

2

= 15m+ 32mq + 16mq2 + 2mn+ 2q + 3 = n2p+n+1
2

.

Subcase 2: if n ≡ 3 mod 4, then n − 5 ≡ 2 mod 4. Let n = 4q + 3
where q ≥ 0.
Now, for any fixed odd j, the jth column sum in A is,
n∑

i=1

ai,j =
4∑

i=1

ai,j +
∑
i∈Ω1

ai,j +
∑
i∈Ω2

ai,j +
∑
i∈Ω3

ai,j +
∑
i∈Ω0

ai,j +

(
2mn− j

2
+

3

2

)

= j+3m−( j−1
2

)+6m−( j−1
2

)+7m−( j−1
2

)+
∑q+1

k=1

(
2m(4k+1)−2m+ j+1

2

)
+∑q+1

k=1

(
2m(4k + 2)−m+ j+1

2

)
+
∑q

k=1

(
2m(4k + 3)− ( j−1

2
)

)
+∑q

k=1

(
2m(4k + 4)−m− ( j−1

2
)

)
+ 2mn+ 1− ( j−1

2
)

= 35m+ 48mq + 16mq2 + 2mn+ 2q + 4 = n2p+n+1
2

.

Similarly, for any fixed even j, the jth column sum in A is,
n∑

i=1

ai,j =
4∑

i=1

ai,j +
∑
i∈Ω1

ai,j +
∑
i∈Ω2

ai,j +
∑
i∈Ω3

ai,j +
∑
i∈Ω0

+

(
2mn−m− j

2
+ 1

)

= j+ 4m− ( j−2
2

) + 5m− ( j−2
2

) + 8m− ( j−2
2

) +
∑q+1

k=1

(
2m(4k+ 1)−m+ j

2

)
+∑q+1

k=1

(
2m(4k + 2)− 2m+ j

2

)
+
∑q

k=1

(
2m(4k + 3)−m− ( j−2

2
)

)
+
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∑q
k=1

(
2m(4k + 4)− ( j−2

2
)

)
+ 2mn−m− ( j−2

2
)

= 35m+ 48mq + 16mq2 + 2mn+ 2q + 4 = n2p+n+1
2

.

Since the sum of the entries in each column of A is n2p+n+1
2

for odd n > 5,
Hn,2m is S-magic with magic constant n2p+n+1

2
(p− 1) and θ(Hn,2m) = 1.

Theorem 12. If G ∼= Hn,p is an S-magic graph with θ(G) = 1 and S-magic
constant n2p+n+1

2
(p−1), then there exists a set S ′ such that G is an S ′-magic

graph with θ(G) = 1 and S ′-magic constant n2p+3n−1
2

(p− 1).

Proof. For every S-magic graph G ∼= Hn,p with θ(G) = 1, one can obtain the
corresponding rectangular matrix A = (ai,j) associated with G by Theorem
11.

Define a new (n× p)- rectangular matrix A′ = (a′i,j) with entries,

a′i,j = (np+ 2)− ai,j for all i and j. (3)

By Theorem 11, it is clear that the entries in A belong to the set {1, ..., np+

1} \ {np + 1− p
2
}, which sum up to n2p2+p(n+1)

2
and is divisible by p. Hence

the magic constant is n2p+n+1
2

(p− 1).
Now using (3), define the new set S ′ = S ∪{np+ 1− p

2
} \ {p

2
+ 1} and the

sum of all the entries in A′ = np(np+2)−(n
2p2+p(n+1)

2
) = n2p2+3np−p

2
, which is

divisible by p. Therefore, we obtain the magic constant as n2p+3n−1
2

(p−1).

The rectangular matrices A and A′ associated with H5,6 are given below,

A =


1 2 3 4 5 6
9 12 8 11 7 10
18 15 17 14 16 13
21 24 20 23 19 22
29 25 30 26 31 27

 A′ =


31 30 29 28 27 26
23 20 24 21 25 22
14 17 15 18 16 19
11 8 12 9 13 10
3 7 2 6 1 5


Here, the sum of the entries in each column of A and A′ are 78 and 82

respectively. Then, H5,6 is S-magic with magic constant 390 and S ′-magic
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Figure 2: H5,6 with S-magic constant 390 and S′ magic constant 410.

with magic constant 410.
Now the following result is immediate.

Lemma 3. If G is an r-regular graph with θ(G) = 1 and with S-magic
constant c, then

nr + r

2
+
r

n
≤ c ≤ nr + 3r

2
.

Proof. The proof is obtained from Lemma 1 by substituting a = 1 and a = n
for c.

Observation 1. If G ∼= Hn,p is a graph with θ(G) = 1 and S-magic constant
c, then

n2p+ n+ 1

2
(p− 1) ≤ c ≤ n2p+ 3n− 1

2
(p− 1)

The lower and upper bounds in Observation 1 are tight when one com-
pares with Lemma 3. It is noticed that if S = {1, ..., np + 1} \ {a}, which
confirms that Hn,p is S-magic, then the sum of all the entries in S is divisible
by p. Therefore, the highest a that can be removed to get a multiple of p is
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np + 1 − p
2
and the lowest a that can be removed to get a multiple of p is

p
2

+ 1. Hence the result follows.

Lemma 4. Let B be an (n×p)-rectangular matrix with distinct entries from
the set {1, 2, .., np+1}\{a}, where a ∈ {1, 2, ..., np} having column sum s. If
there exists an integer m ≥ 1, m|p, then there exixts m, (n × t)-rectangular
matrices, Bm, (1 ≤ m ≤ t), having column sum s.

Proof. Consider the (n×mt)-rectangular matrix B with distinct entries from
the set {1, 2, .., np+1}\{a}, where a ∈ {1, 2, ..., np} and having column sum
s.

Construct an (n × t)-rectangular matrix, B1 by choosing any t distinct
columns of B and update the B matrix by replacing all the entries in the
newly chosen t columns with 0′s. Now the updated B matrix will have
exactly (m− 1)t nonzero columns and t columns having all zero entries.

Now, repeat the process to obtain the next matrix B2 by choosing any t
non-zero columns from the remaining (m − 1)t columns and update the B
matrix in the same manner as in first step. Now repeatedly apply the above
technique to obtain the remaining m− 2 matrices, Bi, (3 ≤ i ≤ m), until the
matrix B becomes an zero matrix.

From Theorem 8, it is observed that in both the cases when n is odd, p is
even and when np is odd, p ≡ 3 mod 4 and m is even, θ(mHn,p) 6= 0. The
following theorem computes the distance magic index of mHn,p for above
cases.

Theorem 13. If n > 1, p > 1,m ≥ 1, then

θ(mHn,p) =

{
0 for n even or mnp is odd,
1 otherwise.

Proof. Using Theorem 8, it is clear that θ(mHn,p) = 0, when either n is even
or mnp is odd and θ(mHn,p) 6= 0, when either np is odd, p ≡ 3 mod 4,
and m is even. On the other hand, by Theorem 10, one can conclude that
θ(mHn,p) 6= 0, when m is even, n is odd, p ≡ 1 mod 4, and p > 1.
For all the remaining cases, use Theorem 11 to construct the rectangular
matrix A associated with the graph Hn,mp. Now using Lemma 4, construct
the (n × p)-matrices Bk, for k ∈ {1, ...,m} Here, each Bk forms the matrix
associated with the kth copy of Hn,p and hence we obtain an S-magic labeling
of mHn,p with c = n2mp+n+1

2
(p− 1). Therefore, θ(mHn,p) = 1.
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Theorem 9 confirms that if n is even or mnp is odd or n is odd and p ≡ 0
mod 4, then θ(mCp[K̄n]) = 0. Now the remaining cases are given below.
Case 1: n is odd, m is even, p ≡ 2 mod 4.
Case 2: n is odd, m is odd, p ≡ 2 mod 4.
Case 3: n is odd, m is even, p is odd.

The following theorem determines the distance magic index of the graph
mCp[K̄n] for all the above mentioned three cases.

Theorem 14. Let m ≥ 1, n > 1 and p ≥ 3, then

θ(mCp[K̄n]) =

{
0 if n is even or mnp is odd or n is odd, p ≡ 0 mod 4,
1 otherwise.

Proof. Let G ∼= mCp[K̄n]. From Theorem 9, it is clear that θ(G) = 0, when
n even or mnp is odd or n is odd and p ≡ 0 mod 4.

Now, for all the remaining cases, using Theorem 11 construct the matrix
A associated with the graph Hn,mp and use A in Lemma 4 to construct the
m rectangular matrices associated with m copies of graph Cp[K̄n]. Hence, we
obtain a S-magic labeling of G with c = n2mp+n+1 and hence θ(G) = 1.

Let G be an r-regular graph on p vertices. From Theorem 5, for the graph
G[K̄n], if n is odd, r is even and p is even except when p ≡ r ≡ 2 mod 4,
then θ(G[K̄n] = 0. The following theorem computes the distance magic index
of the graph G[K̄n].

Theorem 15. Let G be an r-regular graph on p vertices. Then,

θ(G[K̄n]) =


0 if n is even or n,p are odd, r is even,
1 if n, r are odd or n is odd, r ≡ p ≡ 2 mod 4
0 otherwise.

Proof. Let G be a graph on p vertices v1, ..., vp and let Vi = {v1
i , ..., v

n
i } be

set the vertices of G[K̄n] that replace the vertex vi of G for all i = 1, ..., p.
Note that here V (G[K̄n]) =

⋃p
i=1 Vi.

When n is even, by Theorem 4, θ(G[K̄n]) = 0 and when n is odd, p is
odd and r is even, by Theorem 7, θ(G[K̄n]) = 0. Further, when n is odd and
p ≡ r ≡ 2 mod 4, then by Theorem 6, θ(G[K̄n]) 6= 0. Also when n is odd
and r is odd, by Theorem 1, θ(G[K̄n]) 6= 0. Further for all the other cases
θ(G[K̄n] = 0 by Theorem 5. Now for both the cases when θ(G[K̄n]) 6= 0,
use Theorem 11, to construct the rectangular matrix A associated with the
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graph Hn,p and use the ith column of A to label the set of vertices, Vi,
for all i = 1, 2, .., p. Hence, we obtain a S-magic labeling of G[K̄n], with
c = r

(
n2p+n+1

2

)
. Therefore we obtain that θ(Cp[K̄n]) = 1.

3. Conclusion

In this paper, the distance magic index of disjoint union of m copies of
Hn,p and disjoint union ofm copies of Cp[K̄n] are computed and few necessary
conditions are derived for a regular graph G for which θ(G) is 1. The paper
establishes a technique to construct a new set of labels from an existing one
in such a way that both magic constants are distinct. Further, the lower and
upper bounds of magic constant of a regular graph G with θ(G) = 1, are also
determined.
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