Distance Magic Index One Graphs

A V Prajeesh^a, Krishnan Paramasivam^{a,*}

^aDepartment of Mathematics National Institute of Technology Calicut Kozhikode 673601, India.

Abstract

Let S be a finite set of positive integers. A graph G = (V(G), E(G)) is said to be S-magic if there exists a bijection $f: V(G) \to S$ such that for any vertex u of G, $\sum_{v \in N_G(u)} f(v)$ is a constant, where $N_G(u)$ is the set of all vertices adjacent to u. Let $\alpha(S) = \max_{x \in S} x$. Define $i(G) = \min_{S} \alpha(S)$, where the minimum runs over all S for which the graph G is S-magic. Then i(G) - |V(G)| is called the distance magic index of a graph G. In this paper, we compute the distance magic index of graphs $G[\bar{K}_n]$, where G is any arbitrary regular graph, disjoint union of m copies of complete multipartite graph and disjoint union of m copies of graph $C_p[\bar{K}_n]$, with $m \geq 1$. In addition to that, we also prove some necessary conditions for an regular graph to be of distance magic index one.

Keywords: Distance magic, *S*-magic graph, distance magic index, complete multi-partite graphs, lexicographic product. 2010 MSC: 05C78, 05C76.

1. Introduction

In this paper, we consider only simple and finite graphs. We use V(G) for the vertex set and E(G) for the edge set of a graph G. The neighborhood, $N_G(v)$ or shortly N(v) of a vertex v of G is the set of all vertices adjacent to v in G. For further graph theoretic terminology and notation, we refer Bondy and Murty [1] and Hammack *et al.*[2].

^{*}Corresponding author

Email addresses: prajeesh_p150078ma@nitc.ac.in (A V Prajeesh), sivam@nitc.ac.in (Krishnan Paramasivam)

A distance magic labeling of a graph G is a bijection $f : V(G) \rightarrow \{1, ..., |V(G)|\}$, such that for any u of G, the weight of $u, w_G(u) = \sum_{v \in N_G(u)} f(v)$ is a constant, say c. A graph G that admits such a labeling is called a distance

is a constant, say c. A graph G that admits such a labeling is called a distance magic graph.

The motivation for distance magic labeling came from the concept of magic squares and tournament scheduling. An equalized incomplete tournament, denoted by EIT(n,r), is a tournament, with n teams and r rounds, which satisfies the following conditions:

- (i) every team plays against exactly r opponents.
- (ii) the total strength of the opponents, against which each team plays is a constant.

Therefore, finding a solution for an equalized incomplete tournament EIT(n,r) is equivalent to establish a distance magic labeling of an *r*-regular graph of order *n*. For more details, one can refer [3, 4].

The following results provide some necessary condition for distance magicness of regular graphs.

Theorem 1. [5, 6, 7, 8] No r-regular graph with r-odd can be a distance magic graph.

Theorem 2. [4] Let EIT(n,r) be an equalized tournament with an even number n of teams and $r \equiv 2 \mod 4$. Then $n \equiv 0 \mod 4$.

In [6], Miller *et al.* discussed the distance magic labeling of the graph $H_{n,p}$, the complete multi-partite graph with p partitions in which each partition has exactly n vertices, $n \ge 1$ and $p \ge 1$. It is clear that $H_{n,1}$ is a distance magic graph. From [6] it is observed that K_n is distance magic if and only if n = 1 and hence, $H_{1,p} \cong K_p$ is not distance magic for all $p \ne 1$. The next result gives a characterization for the distance magicness of $H_{n,p}$.

Theorem 3. [6] Let n > 1 and p > 1. $H_{n,p}$ has a labeling if and only if either n is even or both n and p are odd.

Recall a standard graph product (see [2]). Let G and H be two graphs. Then, the lexicographic product $G \circ H$ or G[H] is a graph with the vertex set $V(G) \times V(H)$. Two vertices (g, h) and (g', h') are adjacent in G[H] if and only if g is adjacent to g' in G, or g = g' and h is adjacent to h' in H.

Miller et al. [6] proved the following.

Theorem 4. [6] Let G be an arbitrary regular graph. Then $G[K_n]$ is distance magic for any even n.

Later, Froncek et al. [4, 9] proved the following results.

Theorem 5. [4] For n even an EIT(n, r) exists if and only if $2 \le r \le n-2$; $r \equiv 0 \mod 2$ and either $n \equiv 0 \mod 4$ or $n \equiv r+2 \equiv 2 \mod 4$.

Theorem 6. [9] Let n be odd, $p \equiv r \equiv 2 \mod 4$, and G be an r-regular graph with p vertices. Then $G[\bar{K}_n]$ is not distance magic.

Theorem 7. [9] Let G be an arbitrary r-regular graph with an odd number of vertices and n be an odd positive integer. Then r is even and the graph $G[\bar{K}_n]$ is distance magic.

The following results by Shafiq *et al.* [10], discusses the distance magic labeling of disjoint union of m copies of complete multi-partite graphs, $H_{n,p}$, and disjoint union of m copies of product graphs, $C_p[\bar{K_n}]$.

Theorem 8. [10]

- (i) If n is even or mnp is odd, $m \ge 1$; n > 1 and p > 1; then $mH_{n,p}$ has a distance magic labeling.
- (ii) If np is odd, $p \equiv 3 \mod 4$, and m is even, then $mH_{n,p}$ does not have a distance magic labeling.

Theorem 9. [10] Let $m \ge 1, n > 1$ and $p \ge 3$. $mC_p[\bar{K}_n]$ has a distance magic labeling if and only if either n is even or mnp is odd or n is odd and $p \equiv 0 \mod 4$.

In [10], Shafiq *et al.* posted a problem on the graph $mH_{n,p}$.

Problem 1. For the graph $mH_{n,p}$, where m is even, n is odd, $p \equiv 1 \mod 4$, and p > 1, determine if there is a distance magic labeling.

Later, Froncek et al. [9] proved the following necessary condition for $mH_{n,p}$.

Theorem 10. The graph $mH_{n,p}$, where m is even, n is odd, $p \equiv 1 \mod 4$, and p > 1, is not distance magic.

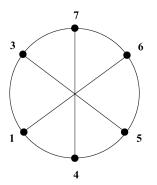


Figure 1: A graph G with c' = 13 and $S = \{1, 3, 4, 5, 6, 7\}$.

For more details and results, one can refer Arumugam et al. [11].

From Theorem 1, one can observe that any odd-regular graph G of order n is not distance magic. But if we label the graph with respect to a different set S of positive integers with |S| = n, then G may admit a magic labeling with a magic constant c'. See Figure 1.

Motivated by this fact Godinho *et al.* [?] defined the concept of *S*-magic labeling of a graph.

Definition 1. [?] Let G = (V(G), E(G)) be a graph and let S be a set of positive integers with |V(G)| = |S|. Then G is said to be S-magic if there exists a bijection $f : V(G) \to S$ satisfying $\sum_{v \in N(u)} f(v) = c$ (a constant) for every $u \in V(G)$. The constant c is called the S-magic constant.

Definition 2. [?] Let $\alpha(S) = max \{s : s \in S\}$. Let $i(G) = min \alpha(S)$, where the minimum is taken over all sets S for which the graph G admits an S-magic labeling. Then i(G) - |V(G)| is called the distance magic index of a graph G and is denoted by $\theta(G)$.

From above definitions, one can observe that a graph G is distance magic if and only if $\theta(G) = 0$ and if G is not S-magic for any S with |V(G)| = |S|, then $\theta(G) = \infty$.

Let G be a graph for which $\theta(G)$ is finite (however so small) and non-zero. Now, a natural question arises that for all such graphs G, does there exist an S-magic labeling with $\theta(G) = 1$?

In the following section, we prove some necessary conditions for an r-regular S-magic graph G to have $\theta(G) = 1$. Further, we compute the distance

magic index of disjoint union of m copies of $H_{n,p}$ and disjoint union of m copies of $C_p[\bar{K}_n]$, where $m \geq 1$. Also, for any arbitrary regular graph G, we compute the distance magic index of the graph $G[\bar{K}_n]$. In addition to that, we construct twin sets S and S' for the same graph $H_{n,p}$ with $\theta(G) = 1$, for which $H_{n,p}$ is both S-magic and S'-magic with distinct magic constants. We also discuss the maximum and minimum bounds attained by the magic constant for the graph $H_{n,p}$.

2. Main results

If G is a graph with $\theta(G) = 1$, then it is clear that G is S-magic for $S = \{1, ..., n+1\} \setminus \{a\}$, for at least one $a \in \{1, ..., n\}$. We call a, the deleted label of S.

The following results are similar to that of Theorem 1 and 2.

Lemma 1. If G is an odd r-regular S-magic graph with $\theta(G) = 1$, then $a \neq 1$.

Proof. Assume that G is an r-regular graph with $\theta(G) = 1$, where r is odd. If $S = \{1, ..., n+1\} \setminus \{a\}$ with the S-magic constant c, then,

$$nc = r(1 + \dots + n + 1) - ra$$
 (1)

$$c = \frac{rn+3r}{2} + \frac{r-ra}{n}.$$
 (2)

Therefore, if a = 1, then c is not an integer, a contradiction.

Lemma 2. If G is an r-regular S-magic graph with $\theta(G) = 1$ and $r, n \equiv 2 \mod 4$, then a is an even integer, $a \neq 2, n$.

Proof. Assume that G is an r-regular graph with $\theta(G) = 1$ and $r, n \equiv 2 \mod 4$. Let c be the S-magic constant of G, where $S = \{1, 2, ..., n+1\} \setminus \{a\}$ and a is an odd integer belonging to $\{1, 2, ..., n\}$. Let r = 4k + 2 and n = 4k' + 2, with 0 < k < k'.

Case 1: when a = 1, from eq.(2), we have,

$$c = (2k+1)(4k'+5).$$

Here c is an odd integer and every vertex is adjacent to odd number of vertices which are labeled with odd integers. Note that, here there are 2k' + 1 such

vertices. Then the graph induced by the vertices having odd label has every vertex of odd degree, a contradiction.

Case 2: When a = 2q + 1, with q > 0. Then $rn + 3r \equiv 2 \mod 4$ and $r - ra \equiv 0 \mod 4$ and hence c fails to be an integer.

Case 3: When a = 2 or a = n, c is not an integer and hence the result follows.

The following theorem discusses the distance magic index of the graph, $H_{n,p}$, n > 1 and p > 1. We define the integer-valued function α given by

$$\alpha(j) = \begin{cases} 0 & \text{for } j \text{ even} \\ 1 & \text{for } j \text{ odd,} \end{cases}$$

and the sets $\Omega_k = \{i : 5 \le i \le n-1 \text{ and } i \equiv k \mod 4\}$, where $k \in \{0, 1, 2, 3\}$. Both α and Ω_i 's are used in the next theorem.

Theorem 11. If G is a complete multi-partite graph $H_{n,p}$ with p partitions having n vertices in each partition, then

$$\theta(G) = \begin{cases} 0 & \text{for } n \text{ even or } n \text{ and } p \text{ both odd} \\ 1 & \text{for } n \text{ odd and } p \text{ even.} \end{cases}$$

Proof. Let $G \cong H_{n,p}$ with n > 1, p > 1. From Theorem 3, it is clear that if n is even or when n and p both are odd, then $\theta(G) = 0$.

Now, to construct an $(n \times p)$ - rectangular matrix $A = (a_{i,j})$ with distinct entries from a set S having column sum b (a constant) is equivalent to find an S-magic labeling of G with magic constant (p-1)b.

Note that j^{th} column of A can be used to label the vertices of j^{th} partition of G and hence G admits a magic labeling with magic constant (p-1)b. In addition, if the entries of A are all distinct and are from $S = \{1, ..., np+1\} \setminus \{a\}$, where $a \in \{1, ..., np\}$, then G is S-magic with $\theta(G) = 1$.

Let n be an odd and p be an even integer.

Case 1: If n = 3 and p = 2m, m > 0, then construct A as,

$$\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & 2m-3 & 2m-2 & 2m-1 & 2m \\ 3m & 4m & 3m-1 & 4m-1 & \dots & 2m+2 & 3m+2 & 2m+1 & 3m+1 \\ 6m+1 & 5m & 6m & 5m-1 & \dots & 5m+3 & 4m+2 & 5m+2 & 4m+1 \end{pmatrix}$$

Note that, the deleted label is 5m + 1 here. One can observe that each column adds up to a constant 9m + 2 and thus, $\theta(H_{3,2m}) = 1$. Case 2: If n = 5 and p = 2m, m > 0, then construct A as,

/ 1	2	3	4	 2m - 3	2m - 2	2m - 1	2m
3m	4m	3m - 1	4m - 1	 2m + 2	3m+2	2m + 1	3m + 1
6m	5m	6m - 1	5m - 1	 5m + 2	4m + 2	5m + 1	4m + 1
7m	8m	7m - 1	8m-1	 6m + 2	7m + 2	6m + 1	7m + 1
$\sqrt{9m+2}$	8m+1	9m + 3	8m + 2	 10m	9m - 1	10m + 1	9m /

Here, the deleted label is 9m + 1 and each column adds up to a constant 25m + 3. Therefore, $\theta(H_{5,2m}) = 1$.

Case 3: If n > 5 is odd and p = 2m, m > 0, then for each $j \in \{1, ..., p\}$, construct A as follows.

$$a_{i,j} = \begin{cases} j & \text{for } i = 1\\ (2i-1)m - (\frac{j-1}{2}) + \alpha(j+1)(m+\frac{1}{2}) & \text{for } i = 2, 4\\ 2mi - (\frac{j-1}{2}) + \alpha(j+1)(-m+\frac{1}{2}) & \text{for } i = 3\\ 2mi - m + \frac{j}{2} + \alpha(j)(-m+\frac{1}{2}) & \text{for } i \equiv 1 \mod 4, i \in \{5, 6, ..., n-1\}\\ 2mi - m + \frac{j}{2} + \alpha(j)\frac{1}{2} - \alpha(j+1)m & \text{for } i \equiv 2 \mod 4, i \in \{5, 6, ..., n-1\}\\ 2mi - (\frac{j-1}{2}) + \alpha(j+1)(-m+\frac{1}{2}) & \text{for } i \equiv 3 \mod 4, i \in \{5, 6, ..., n-1\}\\ 2mi - (\frac{j-1}{2}) + \alpha(j)(-m) + \alpha(j+1)\frac{1}{2} & \text{for } i \equiv 0 \mod 4, i \in \{5, 6, ..., n-1\}\\ 2mi - m + \frac{j}{2} + \alpha(j)(\frac{3}{2}) - \alpha(j+1)m & \text{for } i = n \equiv 1 \mod 4\\ 2mi - \frac{j}{2} + \frac{1}{2} - \alpha(j+1)(m+\frac{1}{2}) & \text{for } i = n \equiv 3 \mod 4 \end{cases}$$

Therefore, m(2n-1) + 1 is the deleted label in this case.

Subcase 1: If $n \equiv 1 \mod 4$, then $n-5 \equiv 0 \mod 4$. Let n = 4q + 5, where $q \geq 1$.

Now for any fixed odd j, the j^{th} column sum in A is,

$$\begin{split} \sum_{i=1}^{n} a_{i,j} &= \sum_{i=1}^{4} a_{i,j} + \sum_{i \in \Omega_{1}} a_{i,j} + \sum_{i \in \Omega_{2}} a_{i,j} + \sum_{i \in \Omega_{3}} a_{i,j} + \sum_{i \in \Omega_{0}} a_{i,j} + \left(2mn - m + \frac{j}{2} + \frac{3}{2}\right) \\ &= j + 3m - \left(\frac{j-1}{2}\right) + 6m - \left(\frac{j-1}{2}\right) + 7m - \left(\frac{j-1}{2}\right) + \sum_{k=1}^{q} \left(2m(4k+1) - 2m + \frac{j+1}{2}\right) + \\ &\sum_{k=1}^{q} \left(2m(4k+2) - m + \frac{j+1}{2}\right) + \sum_{k=1}^{q} \left(2m(4k+3) - \left(\frac{j-1}{2}\right)\right) + \\ &\sum_{k=1}^{q} \left(2m(4k+4) - m - \left(\frac{j-1}{2}\right)\right) + 2mn - m + 1 + \frac{j+1}{2} \end{split}$$

$$= 15m + 32mq + 16mq^2 + 2mn + 2q + 3 = \frac{n^2p + n + 1}{2}.$$

Similarly, for any fixed even j, the j^{th} column sum in A is,

$$\begin{split} \sum_{i=1}^{n} a_{i,j} &= \sum_{i=1}^{4} a_{i,j} + \sum_{i \in \Omega_1} a_{i,j} + \sum_{i \in \Omega_2} a_{i,j} + \sum_{i \in \Omega_3} a_{i,j} + \sum_{i \in \Omega_0} a_{i,j} + \left(2mn - 2m + \frac{j}{2}\right) \\ &= j + 4m - \left(\frac{j-2}{2}\right) + 5m - \left(\frac{j-2}{2}\right) + 8m - \left(\frac{j-2}{2}\right) + \sum_{k=1}^{q} \left(2m(4k+1) - m + \frac{j}{2}\right) + \\ \sum_{k=1}^{q} \left(2m(4k+2) - 2m + \frac{j}{2}\right) + \sum_{k=1}^{q} \left(2m(4k+3) - m - \left(\frac{j-2}{2}\right)\right) + \\ \sum_{k=1}^{q} \left(2m(4k+4) - \left(\frac{j-2}{2}\right)\right) + 2mn - 2m + \frac{j}{2} \\ &= 15m + 32mq + 16mq^2 + 2mn + 2q + 3 = \frac{n^2p + n + 1}{2}. \end{split}$$

Subcase 2: if $n \equiv 3 \mod 4$, then $n-5 \equiv 2 \mod 4$. Let n = 4q+3 where $q \geq 0$. Now, for any fixed odd j, the j^{th} column sum in A is,

$$\begin{split} \sum_{i=1}^{n} a_{i,j} &= \sum_{i=1}^{4} a_{i,j} + \sum_{i \in \Omega_1} a_{i,j} + \sum_{i \in \Omega_2} a_{i,j} + \sum_{i \in \Omega_3} a_{i,j} + \sum_{i \in \Omega_0} a_{i,j} + \left(2mn - \frac{j}{2} + \frac{3}{2}\right) \\ &= j + 3m - \left(\frac{j-1}{2}\right) + 6m - \left(\frac{j-1}{2}\right) + 7m - \left(\frac{j-1}{2}\right) + \sum_{k=1}^{q+1} \left(2m(4k+1) - 2m + \frac{j+1}{2}\right) + \\ \sum_{k=1}^{q+1} \left(2m(4k+2) - m + \frac{j+1}{2}\right) + \sum_{k=1}^{q} \left(2m(4k+3) - \left(\frac{j-1}{2}\right)\right) + \\ \sum_{k=1}^{q} \left(2m(4k+4) - m - \left(\frac{j-1}{2}\right)\right) + 2mn + 1 - \left(\frac{j-1}{2}\right) \\ &= 35m + 48mq + 16mq^2 + 2mn + 2q + 4 = \frac{n^2p + n + 1}{2}. \end{split}$$

Similarly, for any fixed even j, the j^{th} column sum in A is,

$$\begin{split} \sum_{i=1}^{n} a_{i,j} &= \sum_{i=1}^{4} a_{i,j} + \sum_{i \in \Omega_1} a_{i,j} + \sum_{i \in \Omega_2} a_{i,j} + \sum_{i \in \Omega_3} a_{i,j} + \sum_{i \in \Omega_0} + \left(2mn - m - \frac{j}{2} + 1\right) \\ &= j + 4m - \left(\frac{j-2}{2}\right) + 5m - \left(\frac{j-2}{2}\right) + 8m - \left(\frac{j-2}{2}\right) + \sum_{k=1}^{q+1} \left(2m(4k+1) - m + \frac{j}{2}\right) + \\ &\sum_{k=1}^{q+1} \left(2m(4k+2) - 2m + \frac{j}{2}\right) + \sum_{k=1}^{q} \left(2m(4k+3) - m - \left(\frac{j-2}{2}\right)\right) + \end{split}$$

$$\sum_{k=1}^{q} \left(2m(4k+4) - \left(\frac{j-2}{2}\right) \right) + 2mn - m - \left(\frac{j-2}{2}\right)$$

= 35m + 48mq + 16mq² + 2mn + 2q + 4 = $\frac{n^2 p + n + 1}{2}$.

Since the sum of the entries in each column of A is $\frac{n^2p+n+1}{2}$ for odd n > 5, $H_{n,2m}$ is S-magic with magic constant $\frac{n^2p+n+1}{2}(p-1)$ and $\theta(H_{n,2m}) = 1$. \Box

Theorem 12. If $G \cong H_{n,p}$ is an S-magic graph with $\theta(G) = 1$ and S-magic constant $\frac{n^2p+n+1}{2}(p-1)$, then there exists a set S' such that G is an S'-magic graph with $\theta(G) = 1$ and S'-magic constant $\frac{n^2p+3n-1}{2}(p-1)$.

Proof. For every S-magic graph $G \cong H_{n,p}$ with $\theta(G) = 1$, one can obtain the corresponding rectangular matrix $A = (a_{i,j})$ associated with G by Theorem 11.

Define a new $(n \times p)$ - rectangular matrix $A' = (a'_{i,j})$ with entries,

$$a'_{i,j} = (np+2) - a_{i,j}$$
 for all *i* and *j*. (3)

By Theorem 11, it is clear that the entries in A belong to the set $\{1, ..., np + 1\} \setminus \{np + 1 - \frac{p}{2}\}$, which sum up to $\frac{n^2p^2 + p(n+1)}{2}$ and is divisible by p. Hence the magic constant is $\frac{n^2p + n + 1}{2}(p - 1)$. Now using (3), define the new set $S' = S \cup \{np + 1 - \frac{p}{2}\} \setminus \{\frac{p}{2} + 1\}$ and the

Now using (3), define the new set $S' = S \cup \{np+1-\frac{p}{2}\} \setminus \{\frac{p}{2}+1\}$ and the sum of all the entries in $A' = np(np+2) - (\frac{n^2p^2+p(n+1)}{2}) = \frac{n^2p^2+3np-p}{2}$, which is divisible by p. Therefore, we obtain the magic constant as $\frac{n^2p+3n-1}{2}(p-1)$. \Box

The rectangular matrices A and A' associated with $H_{5,6}$ are given below,

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 9 & 12 & 8 & 11 & 7 & 10 \\ 18 & 15 & 17 & 14 & 16 & 13 \\ 21 & 24 & 20 & 23 & 19 & 22 \\ 29 & 25 & 30 & 26 & 31 & 27 \end{pmatrix} \qquad A' = \begin{pmatrix} 31 & 30 & 29 & 28 & 27 & 26 \\ 23 & 20 & 24 & 21 & 25 & 22 \\ 14 & 17 & 15 & 18 & 16 & 19 \\ 11 & 8 & 12 & 9 & 13 & 10 \\ 3 & 7 & 2 & 6 & 1 & 5 \end{pmatrix}$$

Here, the sum of the entries in each column of A and A' are 78 and 82 respectively. Then, $H_{5,6}$ is S-magic with magic constant 390 and S'-magic

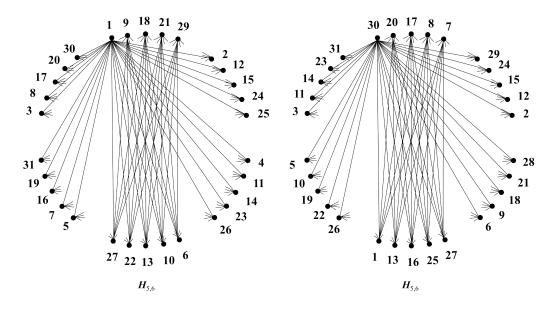


Figure 2: $H_{5,6}$ with S-magic constant 390 and S' magic constant 410.

with magic constant 410.

Now the following result is immediate.

Lemma 3. If G is an r-regular graph with $\theta(G) = 1$ and with S-magic constant c, then

$$\frac{nr+r}{2} + \frac{r}{n} \le c \le \frac{nr+3r}{2}.$$

Proof. The proof is obtained from Lemma 1 by substituting a = 1 and a = n for c.

Observation 1. If $G \cong H_{n,p}$ is a graph with $\theta(G) = 1$ and S-magic constant c, then

$$\frac{n^2p + n + 1}{2}(p - 1) \le c \le \frac{n^2p + 3n - 1}{2}(p - 1)$$

The lower and upper bounds in Observation 1 are tight when one compares with Lemma 3. It is noticed that if $S = \{1, ..., np + 1\} \setminus \{a\}$, which confirms that $H_{n,p}$ is S-magic, then the sum of all the entries in S is divisible by p. Therefore, the highest a that can be removed to get a multiple of p is $np + 1 - \frac{p}{2}$ and the lowest *a* that can be removed to get a multiple of *p* is $\frac{p}{2} + 1$. Hence the result follows.

Lemma 4. Let B be an $(n \times p)$ -rectangular matrix with distinct entries from the set $\{1, 2, ..., np+1\} \setminus \{a\}$, where $a \in \{1, 2, ..., np\}$ having column sum s. If there exists an integer $m \ge 1$, m|p, then there exists m, $(n \times t)$ -rectangular matrices, B_m , $(1 \le m \le t)$, having column sum s.

Proof. Consider the $(n \times mt)$ -rectangular matrix B with distinct entries from the set $\{1, 2, ..., np+1\} \setminus \{a\}$, where $a \in \{1, 2, ..., np\}$ and having column sum s.

Construct an $(n \times t)$ -rectangular matrix, B_1 by choosing any t distinct columns of B and update the B matrix by replacing all the entries in the newly chosen t columns with 0's. Now the updated B matrix will have exactly (m-1)t nonzero columns and t columns having all zero entries.

Now, repeat the process to obtain the next matrix B_2 by choosing any t non-zero columns from the remaining (m-1)t columns and update the B matrix in the same manner as in first step. Now repeatedly apply the above technique to obtain the remaining m-2 matrices, B_i , $(3 \le i \le m)$, until the matrix B becomes an zero matrix.

From Theorem 8, it is observed that in both the cases when n is odd, p is even and when np is odd, $p \equiv 3 \mod 4$ and m is even, $\theta(mH_{n,p}) \neq 0$. The following theorem computes the distance magic index of $mH_{n,p}$ for above cases.

Theorem 13. If $n > 1, p > 1, m \ge 1$, then

$$\theta(mH_{n,p}) = \begin{cases} 0 & \text{for } n \text{ even or } mnp \text{ is odd,} \\ 1 & \text{otherwise.} \end{cases}$$

Proof. Using Theorem 8, it is clear that $\theta(mH_{n,p}) = 0$, when either *n* is even or *mnp* is odd and $\theta(mH_{n,p}) \neq 0$, when either *np* is odd, $p \equiv 3 \mod 4$, and *m* is even. On the other hand, by Theorem 10, one can conclude that $\theta(mH_{n,p}) \neq 0$, when *m* is even, *n* is odd, $p \equiv 1 \mod 4$, and p > 1.

For all the remaining cases, use Theorem 11 to construct the rectangular matrix A associated with the graph $H_{n,mp}$. Now using Lemma 4, construct the $(n \times p)$ -matrices B_k , for $k \in \{1, ..., m\}$ Here, each B_k forms the matrix associated with the k^{th} copy of $H_{n,p}$ and hence we obtain an S-magic labeling of $mH_{n,p}$ with $c = \frac{n^2mp+n+1}{2}(p-1)$. Therefore, $\theta(mH_{n,p}) = 1$.

Theorem 9 confirms that if n is even or mnp is odd or n is odd and $p \equiv 0 \mod 4$, then $\theta(mC_p[\bar{K_n}]) = 0$. Now the remaining cases are given below. **Case 1:** n is odd, m is even, $p \equiv 2 \mod 4$. **Case 2:** n is odd, m is odd, $p \equiv 2 \mod 4$.

Case 3: n is odd, m is even, p is odd.

The following theorem determines the distance magic index of the graph $mC_p[\bar{K_n}]$ for all the above mentioned three cases.

Theorem 14. Let $m \ge 1, n > 1$ and $p \ge 3$, then

$$\theta(mC_p[\bar{K_n}]) = \begin{cases} 0 & \text{if } n \text{ is even or } mnp \text{ is odd or } n \text{ is odd, } p \equiv 0 \mod 4, \\ 1 & \text{otherwise.} \end{cases}$$

Proof. Let $G \cong mC_p[\overline{K_n}]$. From Theorem 9, it is clear that $\theta(G) = 0$, when n even or mnp is odd or n is odd and $p \equiv 0 \mod 4$.

Now, for all the remaining cases, using Theorem 11 construct the matrix A associated with the graph $H_{n,mp}$ and use A in Lemma 4 to construct the m rectangular matrices associated with m copies of graph $C_p[\bar{K}_n]$. Hence, we obtain a S-magic labeling of G with $c = n^2mp+n+1$ and hence $\theta(G) = 1$. \Box

Let G be an r-regular graph on p vertices. From Theorem 5, for the graph $G[\bar{K}_n]$, if n is odd, r is even and p is even except when $p \equiv r \equiv 2 \mod 4$, then $\theta(G[\bar{K}_n] = 0$. The following theorem computes the distance magic index of the graph $G[\bar{K}_n]$.

Theorem 15. Let G be an r-regular graph on p vertices. Then,

 $\theta(G[\bar{K_n}]) = \begin{cases} 0 & \text{if } n \text{ is even or } n, p \text{ are odd, } r \text{ is even,} \\ 1 & \text{if } n, r \text{ are odd or } n \text{ is odd, } r \equiv p \equiv 2 \mod 4 \\ 0 & \text{otherwise.} \end{cases}$

Proof. Let G be a graph on p vertices $v_1, ..., v_p$ and let $V_i = \{v_i^1, ..., v_i^n\}$ be set the vertices of $G[\bar{K_n}]$ that replace the vertex v_i of G for all i = 1, ..., p. Note that here $V(G[\bar{K_n}]) = \bigcup_{i=1}^p V_i$.

When n is even, by Theorem 4, $\theta(G[\bar{K_n}]) = 0$ and when n is odd, p is odd and r is even, by Theorem 7, $\theta(G[\bar{K_n}]) = 0$. Further, when n is odd and $p \equiv r \equiv 2 \mod 4$, then by Theorem 6, $\theta(G[\bar{K_n}]) \neq 0$. Also when n is odd and r is odd, by Theorem 1, $\theta(G[\bar{K_n}]) \neq 0$. Further for all the other cases $\theta(G[\bar{K_n}] = 0$ by Theorem 5. Now for both the cases when $\theta(G[\bar{K_n}]) \neq 0$, use Theorem 11, to construct the rectangular matrix A associated with the graph $H_{n,p}$ and use the i^{th} column of A to label the set of vertices, V_i , for all i = 1, 2, ..., p. Hence, we obtain a S-magic labeling of $G[\bar{K_n}]$, with $c = r(\frac{n^2p+n+1}{2})$. Therefore we obtain that $\theta(C_p[\bar{K_n}]) = 1$.

3. Conclusion

In this paper, the distance magic index of disjoint union of m copies of $H_{n,p}$ and disjoint union of m copies of $C_p[\bar{K}_n]$ are computed and few necessary conditions are derived for a regular graph G for which $\theta(G)$ is 1. The paper establishes a technique to construct a new set of labels from an existing one in such a way that both magic constants are distinct. Further, the lower and upper bounds of magic constant of a regular graph G with $\theta(G) = 1$, are also determined.

References

- [1] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
- [2] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, CRC Press, Boca Raton, FL, 2011.
- [3] D. Froncek, Fair incomplete tournaments with odd number of teams and large number of games, Congressus Numerantium 187 (2007) 83–89.
- [4] D. Froncek, P. Kovár, T. Kovárová, Fair incomplete tournaments, Bulletin of the Institute of Combinatorics and its Applications 48 (2006) 31–33.
- [5] M. I. Jinnah, On ∑ − labelled graphs, in: Technical Proceedings of Group Discussion on Graph Labeling Problems, (eds.) B.D. Acharya and S.M. Hedge (1999) 71–77.
- [6] M. Miller, C. Rodger, R. Simanjuntak, Distance magic labelings of graphs, Australasian Journal of Combinatorics 28 (2003) 305–315.
- [7] S. B. Rao, Sigma graphs-a survey, in: Labelings of Discrete Structures and Applications, (eds.) B.D. Acharya, S. Arumugam, A. Rosa, Narosa Publishing House, New Delhi (2008) 135–140.
- [8] V. Vilfred, \sum labelled graphs and circulant graphs, Ph.D. thesis, University of Kerala, Trivandrum, India, 1994.

- [9] D. Froncek, P. Kovar, T. Kovárová, Constructing distance magic graphs from regular graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 78 (2011) 349.
- [10] M. K. Shafiq, G. Ali, R. Simanjuntak, Distance magic labelings of a union of graphs, AKCE International Journal of Graphs and Combinatorics 6 (1) (2009) 191–200.
- [11] S. Arumugam, D. Froncek, N. Kamatchi, Distance magic graphs-a survey, Journal of the Indonesian Mathematical Society (2012) 11–26.