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The Value of Multi-stage Stochastic Programming
in Risk-averse Unit Commitment under Uncertainty

Ali İrfan Mahmutoğulları, Shabbir Ahmed, Özlem Çavuş and M. Selim Aktürk

Abstract—Day-ahead scheduling of electricity generation or
unit commitment is an important and challenging optimization
problem in power systems. Variability in net load arising from the
increasing penetration of renewable technologies have motivated
study of various classes of stochastic unit commitment models.
In two-stage models, the generation schedule for the entire day
is fixed while the dispatch is adapted to the uncertainty, whereas
in multi-stage models the generation schedule is also allowed
to dynamically adapt to the uncertainty realization. Multi-
stage models provide more flexibility in the generation schedule,
however, they require significantly higher computational effort
than two-stage models. To justify this additional computational
effort, we provide theoretical and empirical analyses of the
value of multi-stage solution for risk-averse multi-stage stochastic
unit commitment models. The value of multi-stage solution
measures the relative advantage of multi-stage solutions over
their two-stage counterparts. Our results indicate that, for unit
commitment models, value of multi-stage solution increases with
the level of uncertainty and number of periods, and decreases
with the degree of risk aversion of the decision maker.

Index Terms—Unit commitment, risk-averse optimization,
stochastic programming.

I. INTRODUCTION

Unit commitment (UC) is a challenging optimization prob-
lem used for day-ahead generation scheduling given net

load forecasts and various operational constraints [1]. The
output schedule includes on-off status of generators and the
production amounts, called economic dispatch [2], for every
time step.

There has been a great deal of research on deterministic
UC models where the problem parameters are assumed to be
known exactly [3]. These models cannot capture variability
and uncertainty. Common sources of uncertainty are departures
from forecasts and unreliable equipment. The departures from
forecasts generally stem from the variability in net load
and production amounts, whereas unreliable equipment may
result in generator and transmission line outages [2], [4]. The
penetration of renewable energy has increased the volatility
of power systems in recent years. The production amount of
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energy from wind and solar power are not controllable but can
only be forecasted [5].

Robust optimization and stochastic programming are two
common frameworks used to address the uncertainty in UC
problems. In robust optimization models, it is assumed that
the uncertain parameters take values in some uncertainty sets
and the objective is to minimize the worst case cost (cf. [6],
[7], [8], [9] and [10]). In stochastic programming models,
the uncertainty is represented by a probability distribution
(cf. [11], [12], [13], [14] and [15]). In two-stage stochastic
programming UC models, the generation schedule is fixed for
the entire day before the beginning of the day while dispatch
is adapted to uncertainty as in [16], [17] and [18]. On the
other hand, in multi-stage stochastic programming UC models
both the generation schedule and dispatch are allowed to
dynamically adapt to uncertainty realization at each hour (see
for example, [15], [19] and [20]). Therefore, they incorporate
multistage forecasting information with varying accuracy and
express relation between time periods appropriately. However,
in general, the multi-stage models are computationally diffi-
cult. A detailed comparison of two- and multi-stage models
can be found in [21] and [22].

The computational challenge of multi-stage models moti-
vates the question on whether the effort to solve them is
worthwhile. In [23], this question is addressed for a risk-
neutral stochastic capacity planning problem. In the present
paper, we address this question for risk-averse UC (RA-UC)
problems where the objective is a dynamic measure of risk.
We provide theoretical and empirical analysis on the value
of the multi stage solution (VMS) where VMS measures the
relative advantage to solve the multi-stage models over their
two-stage counterparts.

The rest of the paper is organized as follows: In Section II,
we define the RA-UC problem and present two- and multi-
stage stochastic models. In Section III, we define VMS and
provide analytical bounds for it. In Section IV, we present
results of computational experiments. In Section V, we discuss
possible future extensions of the current work.

II. RISK-AVERSE UNIT COMMITMENT PROBLEM

A. Deterministic UC formulation

We first present an abstract deterministic formulation of
the UC problem. Let I be the number of generators and T
be the number of periods. Also, let I := {1, . . . , I} and
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T := {1, . . . , T} be the sets of generators and time periods,
respectively. A formulation of the UC problem is as follows:

min
T∑
t=1

ft(ut,vt,wt) (1)

s.t.
I∑
i=1

vit ≥ dt, ∀t ∈ T (2)

q
i
uit ≤ vit ≤ qiuit, ∀i ∈ I, t ∈ T (3)

(u1,v1,w1) ∈ X1, (4)
(ut,vt,wt) ∈ Xt(ut−1,vt−1,wt−1), ∀t ∈ T \ {1} (5)

ut ∈ {0, 1}I ,vt ∈ RI+,wt ∈ Rk, ∀t ∈ T (6)

Decision variables uit and vit represent the binary on/off
status and production of generator i ∈ I in period t ∈ T ,
respectively. The bold symbols ut := (u1t, u2t, . . . , uIt)
and vt := (v1t, v2t, . . . , vIt) are the vectors of status and
production decisions in period t ∈ T , respectively. The vector
wt denotes auxiliary variables associated with period t ∈ T .
These variables are used model various operational constraints.
The objective (1) is the sum of production, start-up and shut-
down costs in all periods. The function ft(·) represents the
total cost in a period t ∈ T . Constraint (2) ensures satisfaction
of the power demand. Constraint (3) enforces lower and
upper production limits on the generators. Other operational
restrictions are represented by constraints (4) and (5). The
temporal relationship between consecutive periods such as
start-up, rump-up, shut-down and rump-down restrictions are
modeled by the set constraint (5). Domain restrictions of the
decision variables are given by constraint (6). A concrete
version of the above abstract formulation is presented in
Appendix A.

B. Uncertainty and Risk models

In the deterministic formulation above, net load values are
assumed to be known exactly. This is a restrictive assumption
in practice. We assume that the net load is random and denoted
by a random variable d̃t in period t ∈ T from a probability
space (Ω,F , P ). Here Ω is a sample space equipped with
sigma algebra F and probability measure P . An element of the
sample space Ω is called as a scenario (or a sample path) and
represents a possible realization of the net load values in all
periods. The sequence of sigma algebras {∅,Ω} = F1 ⊆ F2 ⊆
· · · ⊆ FT = F is called as a filtration and it represents the
gradually increasing information through the decision horizon
1, 2, . . . , T . The set of Ft−measurable random variables is
denoted by Zt for t ∈ T . The random demand d̃t in period t
is Ft−measurable, that is d̃t ∈ Zt for t ∈ T . Note that since
F1 = {∅,Ω} by definition, Z1 = R and the demand in the
first period is deterministic.

To extend the deterministic UC model to this ucertainty
setting, we have that the decisions in period t to depend on re-
alization of the history of net load process d̃[t] := (d̃1, . . . , d̃t)
up to period t. Therefore, we use the Ft−measurable vec-
tors ũt(d̃[t]), ṽt(d̃[t]) and w̃t(d̃[t]) to represent status, pro-
duction and auxiliary decisions in period t ∈ T , respec-
tively. The total cost at period t is also Ft−measurable, i.e.,

ft(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t])) ∈ Zt. We use conditional risk
measures in order to quantify the risk involved in a random
cost at period t + 1 based on the available informations at
period t for t ∈ T \ {T}. The mapping ρt : Zt+1 → Zt is
called a conditional risk measure if it satisfies the following
four axioms of coherent risk measures (the subscript t is
suppressed for notational brevity):

(A1) Convexity: ρ(αZ + (1−α)W ) ≤ αρ(Z) + (1−α)ρ(W )
for all Z,W ∈ Z and α ∈ [0, 1],

(A2) Monotonicity: Z � W implies ρ(Z) ≥ ρ(W ) for all
Z,W ∈ Z ,

(A3) Translational Equivariance: ρ(Z + c) = ρ(Z) + c for all
c ∈ R and Z ∈ Z ,

(A4) Positive Homogeneity: ρ(cZ) = cρ(Z) for all c > 0 and
Z ∈ Z ,

where Z �W indicates point-wise partial ordering defined on
set Z . See [24] and [26] for a detailed discussions on coherent
and conditional risk measures. An example of a conditional
risk measure is the conditional mean-upper semi deviation

ρt(Zt+1) = E[Zt+1|Ft]+λE[(Zt+1−E[Zt+1|Ft])+|Ft], (7)

where E[·|Ft] is the conditional expectation with respect to
the sigma algebra Ft, λ ∈ [0, 1] is a parameter controlling the
degree of risk aversion and (·)+ is the positive part function
for all Zt+1 ∈ Zt+1.

The objective of the risk averse UC (RA-UC) problem is to
minimize the risk involved with the cost sequence {Zt}Tt=1

where Zt := ft(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t])) is a shorthand
notation for the total cost in period t ∈ T . Thus, as in
[25], [26], we define the dynamic coherent risk measure
% : Z1 × Z2 × · · · × ZT → R by using nested composition
of the conditional risk measures ρ1(·), ρ2(·), . . . , ρT−1(·), that
is,

%(Z1, Z2, . . . , ZT ) := Z1 + ρ1(Z2 + · · · ρT−1(ZT ) · · · )

is the risk associated with this cost sequence. Due to trans-
lational equivariance property of conditional risk measures,
we have an alternative representation of the dynamic coherent
measure of risk %(·) as

ρ

(
T∑
t=1

Zt

)
:= %(Z1, Z2, . . . , ZT ) (8)

where ρ = ρ1◦ρ2◦· · ·◦ρT−1 : Z → R is called as a composite
risk measure and Z := ZT . The composite risk measure ρ(·)
satisfies the coherence axioms (A1)-(A4). Therefore, ρ(·) is a
coherent risk measure as shown in [26, Eqn. 6.234].

C. Two-stage and Multi-stage models

We consider two different models for the RA-UC problem.
In the two-stage model, the on/off status decisions are fixed at
the beginning of the day and production (or dispatch) decisions
are adapted to uncertainty in the random demand. On the other
hand, in the multi-stage model, both the status and production
decisions are fully adapted to uncertainty in net load. In order
to clarify the distinction between two models, the decision
dynamics in the two- and multi-stage models are depicted as
in Fig. 1 and Fig. 2, respectively.
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Fig. 1: Order of decisions in the two-stage model.

Decide
{ut}Tt=1,v1,w1

Observe
d̃2

Decide
v2,w2

... Observe
d̃T

Decide
vT ,wT

Fig. 2: Order of decisions in the multi-stage model.

Decide
u1,v1,w1

Observe
d̃2

Decide
u2,v2,w2

... Observe
d̃T

Decide
uT ,vT ,wT

The two-stage model (TS) for the RA-UC problem is given
as

min ρ

[
T∑
t=1

ft(ut, ṽt(d̃[t]), w̃t(d̃[t]))

]
(9)

s.t.
∑
i∈I

ṽit(d̃[t]) ≥ d̃t, ∀t ∈ T (10)

q
i
uit ≤ ṽit(d̃[t]) ≤ qiuit, ∀i ∈ I, t ∈ T (11)

(u1,v1,w1) ∈ X1 (12)

(ut, ṽt(d̃[t]), w̃t(d̃[t])) ∈
Xt(ut−1, ṽt−1(d̃[t−1]), w̃t−1(d̃[t−1]), d̃[t]), ∀t ∈ T \ {1}

(13)

ut ∈ {0, 1}I , ṽt(d̃[t]) ∈ RI+, w̃t(d̃[t]) ∈ Rk, ∀t ∈ T
(14)

The objective (9) of TS is the composite risk measure defined
in (8) applied to the total cost sequence. The inequalities (10)
and (11) are analogous to the constraints (2) and (3), respec-
tively. The set constraint (12) is identical to (4) since the net
load in the first period is deterministic. In constraint (13), Xt is
an Ft−measurable feasibility set. The domain constraint (14)
states that only production and auxiliary decisions depend on
the demand history and the status decisions are deterministic.
However, in the multi-stage model of the RA-UC problem,
all decisions are made based on the history. Hence, the multi-
stage model (MS) can be written as

min ρ

[
T∑
t=1

ft(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t]))

]
(15)

s.t.
∑
i∈I

ṽit(d̃[t]) ≥ d̃t, ∀t ∈ T (16)

s.t. q
i
ũit(d̃[t]) ≤ ṽit(d̃[t]) ≤ qiũit(d̃[t]), ∀i ∈ I, t ∈ T (17)

(u1,v1,w1) ∈ X1 (18)

(ũt(d̃[t]), ṽt(d̃[t]), w̃t(d̃[t])) ∈
Xt(ũt−1(d̃[t−1]), ṽt−1(d̃[t−1]), w̃t−1(d̃[t−1]), d̃[t]),

∀t ∈ T \ {1} (19)

ũt(d̃[t]) ∈ {0, 1}I , ṽt(d̃[t]) ∈ RI+, w̃t(d̃[t]) ∈ Rk,
∀t ∈ T (20)

Note that the multi-stage model MS is identical with TS except
the status decisions are fully adaptive to the random net load
process.

An optimal solution of either TS and MS is a policy that
minimizes the value of the dynamic coherent risk measure.

Both in TS and MS, the optimality of a policy should only be
with respect to possible future realizations given the available
information at the time when the decision is made. This
principle is called as time consistency. In [27, Example 2], it
is shown that time consistency enables us to use the composite
risk measure in minimization among all possible decisions in-
stead of nested minimizations in a dynamic coherent measure
of risk.

III. VALUE OF THE MULTI-STAGE SOLUTION

Although an optimal solution of MS provides more flexible
day-ahead schedule with respect to different realizations of
parameters, the number of binary variables in MS is propor-
tional to N × I where N is the number of possible demand
realizations in all periods if Ω is finite. However, the number of
binary variables in TS is proportional to T×I . Since N >> T
for any non-trivial problem, computational difficulty of MS is
significantly more than TS. Therefore, it is important to figure
out if the additional effort to solve MS is worthwhile. We
define the VMS in order to quantify the relative advantage of
the multi-stage solution over their two-stage counterparts.

Definition 1. The value of multi-stage solution (VMS) is the
difference between the optimal values of TS and MS, that is,
VMS = zTS − zMS where zTS and zMS are the optimal
values of TS and MS, respectively.

Since an optimal solution of MS provides more flexibility in
status decisions with respect to uncertain net load realizations,
we have zTS ≥ zMS and therefore VMS ≥ 0. Next we pro-
vide theoretical bounds on the VMS under some assumptions.

Assumption 1. There exists a generator j∗ ∈ I such that
q
j∗
≤ d̃t ≤ qj∗ with probability 1 and with no minimum start

up and shut down time for each t ∈ T .

Assumption 2. There exists an upper bound dmax
t ∈ R+ on

the net load values such that 0 ≤ d̃t ≤ dmax
t with probability

1 for each t ∈ T .

Assumption 3. The production cost of the each generator
i ∈ I is linear and stationary, and there are no start-up and
shut-down costs. In this case the total cost function in each
period is of the form ft(ut,vt,wt) =

∑
i∈I(aiuit+bivit) for

some positive coefficients ai and bi for all i ∈ I.

Assumption 1 ensures that TS and MS always have at
least one feasible solutions and therefore both problems have
complete recourse. Assumption 2 states that the net load in
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each period is bounded. We also define D̃ :=
∑T
t=1 d̃t as the

total net load and Dmax :=
∑T
t=1 d

max
t as an upper bound

on D̃. The above assumptions are somewhat restrictive but
necessary for the analytical result next. In Section IV, we will
provide numerical results showing that the analytical results
hold even without these assumptions.

Theorem 1. Under Assumptions 1, 2 and 3 we have that

α∗D
max − α∗ρ(D̃) ≤ VMS ≤ α∗Dmax − α∗ρ(D̃).

where

α∗ := min
i∈I

{
ai + biqi

}/
max
i∈I
{qi} and

α∗ := max
i∈I
{ai + biqi}

/
min
i∈I

{
q
i

}
are cost related problem parameters.

Proof. Assumption 1 implies that both TS and MS are fea-
sible. Since the net loads are bounded due to Assumption 2,
both models have at least one optimal solution.

Let {ũ∗t , ṽ
∗
t , w̃

∗
t }t∈T be an optimal policy obtained by

solving the multi-stage model MS. By Assumption 3, we have
ft(ũ

∗
t (d̃[t]), ṽ

∗
t (d̃[t]), w̃

∗
t (d̃[t])) =

∑
t∈T

∑
i∈I aiũ

∗
it(d̃[t]) +

biṽ
∗
it(d̃[t])

For a realization d1, d2, . . . , dT of the random net load
process d̃1, d̃2, . . . , d̃T , let [u∗t ,v

∗
t ] := [ũ∗t , ṽ

∗
t ](d[t]) be the

optimal status and production decisions for t ∈ T . Then, we
have∑
t∈T

∑
i∈I

aiu
∗
it + biv

∗
it ≥

∑
t∈T

∑
i∈I

aiu
∗
it + biqiu

∗
it

=
∑
t∈T

∑
i∈I

(ai + biqi)u
∗
it ≥ min

i∈I
{ai + biqi}

∑
t∈T

∑
i∈I

u∗it

≥ min
i∈I
{ai + biqi}

∑
t∈T

∑
i∈I

v∗it
qi
≥

min
i∈I
{ai + biqi}

max
i∈I
{qi}

∑
t∈T

∑
i∈I

v∗it

= a∗
∑
t∈T

∑
i∈I

v∗it ≥ a∗
∑
t∈T

dt

where the first, third and fifth inequalities follow from feasi-
bility. Since

∑
t∈T

∑
i∈I aiu

∗
it + biv

∗
it ≥ a∗

∑
t∈T dt for any

sample path d1, d2, . . . , dT , we have
∑
t∈T

∑
i∈I aiũ

∗
it(d[t])+

biṽ
∗
it(d[t]) � a∗

∑
t∈T d̃t = α∗D̃. Due to the monotonicity

axiom (A2) and positive homogeneity axiom (A4), we get

zMS = ρ

(∑
t∈T

∑
i∈I

aiũ
∗
ti(d[t]) + biṽ

∗
ti(d[t])

)
≥ ρ(α∗D̃) = α∗ρ(D̃).

Next, we consider a feasible policy {û∗t , v̂
∗
t , ŵ

∗
t }t∈T to the

multi-stage model where ûj∗t(d̃[t]) = 1, v̂j∗t(d̃[t]) = d̃t and
all other status and generation variables are set to zero for a

sample path d1, d2, . . . , dt. The feasibility of the solution is
guaranteed by Assumption 1. Then,

zMS ≤ ρ

(∑
t∈T

∑
i∈I

aiûit(d̃[t]) + biv̂it(d̃[t])

)

= ρ

(∑
t∈T

aj∗ ûj∗t(d̃[t]) + bj∗ v̂j∗t(d̃[t])

)
= ρ

(∑
t∈T

aj∗ + bj∗ d̃t

)

= ρ

(∑
t∈T

aj∗ + bj∗ d̃t

d̃t
d̃t

)
≤ ρ

(∑
t∈T

aj∗ + bj∗qj∗

q
j∗

d̃t

)

≤
max
i∈I
{ai + biqi}

min
i∈I
{q
i
}

ρ

(∑
t∈T

d̃t

)
= α∗ρ

(∑
t∈T

d̃t

)
≤ α∗ρ(D̃)

where the first inequality follows from feasibility, the second
inequality follows from Assumption 1 and the third equality
follows from axiom (A4) and the definition of α∗. Thus, we
get lower and upper bounds for the multi-stage problems, that
is,

α∗ρ(D̃) ≤ zMS ≤ α∗ρ(D̃). (21)

Note that in the two-stage model, the status decisions in period
t ∈ T is identical for all realizations of problem parameters in
that period and satisfies max{ṽ∗it(d̃[t])} ≤ qu∗it. Then, using
this fact, a similar analysis can be used to obtain lower and
upper bounds for the two-stage model and we get

α∗D
max ≤ zTS ≤ α∗Dmax. (22)

The claim of the theorem follows from (21) and (22).

If the generators are almost identical and lower and upper
production limits are close enough, we have α∗ ≈ α ≈ α∗.
Then, we have

VMS ≈ α(Dmax − ρ(D̃)). (23)

Note that 0 ≤ ρ(D̃) ≤ Dmax and the approximation (23)
implies that the VMS increases with Dmax and therefore
variability in the net load. However, for fixed variability, the
VMS decreases with ρ(D̃) and therefore the degree of risk
aversion.

Assume that the net load in period t ∈ T is d̃t = dt +
U [−∆,∆] where dt is a deterministic value and U [−∆,∆] is
an error term uniformly distributed between −∆ and ∆ for
some ∆ ∈ R+. Also assume that the composite risk measure
ρ(·) is obtained using conditional mean-upper semi deviation
as given in (7). Then,

VMS ≈ α(Dmax − ρ(D̃))

= α

(
T∑
t=1

dmax
t − ρ

(
T∑
t=1

d̃t

))

= αT

(
1− λ

4

)
∆ (24)

where the second equality follows from definitions of dmax
t ,

d̃t and evaluation of mean-upper semi deviation risk measure
ρ(·). The approximation in (24) suggests that the VMS in-
creases with the number of periods T and the variability in



5

the net load ∆. However, VMS decreases with the degree of
risk aversion λ.

IV. COMPUTATIONAL EXPERIMENTS

The analytical result of the previous section rely on re-
strictive assumptions to simplify the structure of the RA-UC
problem. In order to see how the VMS behave in the absence
of these assumptions, we conduct a set of computational
experiments next.

We consider a power system with 10 generators in the
computational experiments. We use the data set presented in
[1] with some modifications. We also consider a random net
load process with eight scenarios where the power demand at
each hour is subject to uncertainty. The scenario tree depicting
the random process is given Fig.3. A similar scenario tree
structure is used in [28].

Fig. 3: Scenario tree

The test data is presented in Appendix B. We use the base
demand values presented in Table IV to generate random
demands. A variability parameter ε is used to control the
dispersion of demand across all scenarios. Demand values for
each scenario are presented in Table V. All other parameters
are set to the values presented in Table VI. A PC with
two 2.2GHz processors and 6 GB of RAM is used in the
computational experiments.

The quadratic production cost functions {gi(·)}i∈I are
approximated by a piecewise linear cost function with four
pieces of equal lengths. We use a conditional mean-upper semi
deviation risk measure (7) in each period. The conditional risk
measures ρ1(·), ρ2(·), . . . , ρT−1(·), the dynamic coherent risk
measure %(·) and the composite risk measure ρ(·) are defined
accordingly.

We model and solve the two-stage model TS and the
multi-stage model MS for five different values of variability
parameter ε and six different values of the penalty parameter λ.
For each ε and λ pair, we calculate VMS in terms of difference
of optimal values, that is,

VMS ($) = zTS − zMS ,

and in terms of percentage

VMS (%) =
zTS − zMS

zMS
,

The results on the VMS are presented in Fig.4.

Fig.4 verifies our analytical findings on VMS. We observe
an increase in VMS with the uncertainty in net load values.
The VMS and hence importance of the multi-stage model
increases as the dispersion among the scenarios increases.
As expected, the day-ahead schedule obtained by solving
the multi-stage model is more adaptive and provides more
flexibility in case of high variability of problem parameters.
We also observe decrease in the VMS with the level of risk
aversion. In parallel with the analytical results in Theorem 1,
higher risk aversion leads lower VMS. Hence, the importance
of the multi-stage model decreases as risk aversion increases.

We also consider a rolling horizon policy obtained by
solving two-stage approximations to the multi-stage problem
in each period and fixing the decisions at that stage with
respect to the optimal solution of the two-stage model. In
order to the measure the quality of the rolling horizon policy,
we calculate the gap between the value of the rolling horizon
policy and the optimal value of MS. The gap value GAP is
calculated in terms of difference of objective values

GAP ($) = zRH − zMS ,

and in terms of percentage

GAP (%) =
zRH − zMS

zMS
.

where zRH is the value of the rolling horizon policy. Note
that since rolling horizon provides a feasible policy to the
multistage problem that is at least as good as that of TS, we
have that 0 ≤ GAP ≤ VMS. The results are presented in
Fig.5.

We present the solution times for each TS and MS instance
at Table I and Table II, respectively. The required time to
obtain the rolling horizon policy is also presented in Table III.

TABLE I: Solution times of TS (in seconds)

ε\λ 0 0.1 0.2 0.3 0.4 0.5
0.1 7.5 10.4 9.6 7.7 7.2 7.2
0.2 4.2 3.8 3.5 4.0 3.7 3.2
0.3 12.2 10.9 9.5 8.1 7.8 6.0
0.4 7.9 3.8 4.1 4.0 3.3 2.7
0.5 8.8 5.4 6.3 4.8 4.8 4.6

TABLE II: Solution times of MS (in seconds)

ε\λ 0 0.1 0.2 0.3 0.4 0.5
0.1 1004.2 1280.0 1255.2 1489.7 1789.6 2009.1
0.2 328.3 381.6 400.4 444.7 324.6 393.8
0.3 480.0 1042.4 435.8 780.0 453.8 358.5
0.4 192.9 674.5 529.4 323.0 328.6 279.8
0.5 85.7 147.5 116.6 119.0 118.5 113.1

TABLE III: Required time to obtain the rolling horizon policy
(in seconds)

ε\λ 0 0.1 0.2 0.3 0.4 0.5
0.1 16.6 15.1 14.7 13.6 14.9 12.8
0.2 8.0 9.0 9.0 8.7 8.0 8.5
0.3 15.1 17.3 15.1 15.2 14.6 11.4
0.4 9.0 10.4 8.3 9.1 7.7 7.8
0.5 10.2 9.6 9.0 12.3 9.7 9.5

In all instances, the rolling horizon policy performs much
better than the policy obtained by solving the two-stage
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Fig. 4: Results of the computational experiments on the VMS.
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Fig. 5: Results of the computational experiments on GAP.
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problem with a small increase in computational effort. The
GAP (%) of rolling horizon policy is 0.12% on the average
(with maximum 0.32%) whereas the VMS (%) is 1.42%
on the average (with maximum 3.20%). Thus, the rolling
horizon policy obtained by using two-stage approximations
to the multi-stage solution can provide enough flexibility in
generation schedule to obtain a near-optimal schedule in RA-
UC problems with a reasonable computational effort.

The computational effort to solve the MS model is much
larger than that of the TS model and the rolling horizon policy
in all instances. The higher the demand variability leads higher
VMS while decreasing the solution times as an additional
benefit.

V. CONCLUSION

Recent improvements in the renewable power production
technologies have motivated the stochastic unit commitment
problems, since these models can explicitly address the vari-
ability in net load. Multi-stage models provide completely
flexible schedules where all decisions are adapted to the

uncertainty. However, these models require high computational
effort, and therefore, their two-stage counterparts are used to
obtain approximate policies. In order to justify the additional
effort to solve the multi-stage model rather than its two-
stage counterpart, we define the VMS and provide analytical
and computational results on it. These results reveal that, for
RA-UC problems, the VMS decreases with the degree of
risk aversion, and increases with the level of uncertainty and
number of time periods.

Performance of the rolling horizon polices obtained by two-
stage approximations of the multi-stage models are promising.
As a future research direction, it would be interesting to
consider the rolling horizon policies in instances with more
complicated random net load processes. However, in that case,
the number of two-stage models to be solved would be large
and their solution would require significant computation time.
Theoretical analysis of the value of rolling horizon policies is
also an important future step.
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APPENDIX A
DETERMINISTIC UNIT COMMITMENT FORMULATION

Indexes and Sets

t : Period index, i : Generator index,
T : Number of periods, I : Number of generators,
T : Set of periods, I : Set of generators,

Parameters

ai : Fixed cost of running generator i ∈ I,
gi(·) : Production cost function of running generator i ∈ I,

specifically, gi(v) = biv + civ
2 for v ≥ 0

with parameters bi, ci ∈ R+,

SUi : Start-up cost of generator i ∈ I,
SDi : Shut-down cost of generator i ∈ I,
q
i

: Minimum production amount of generator i ∈ I,
qi : Maximum production amount of generator i ∈ I,
dt : Net load in period t ∈ T ,
Mi : Minimum up time of generator i ∈ I,
Li : Minimum down time of generator i ∈ I,
V ′i : Start up rate of generator i ∈ I,
Vi : Ramp up rate of generator i ∈ I,
B′i : Shut down rate of generator i ∈ I,
Bi : Ramp down production limit of generator i ∈ I.

Variables

uit : Status of generator i ∈ I in period t ∈ T ,
(1 if generator i is ON in period t; 0 otherwise),

vit : Production amount of generator i ∈ I in period t ∈ T ,
yit : Start up decision of generator i ∈ I in period t ∈ T ,

(1 if ui(t−1) = 0 and uit = 1; 0 otherwise),

zit : Shut down decision of generator i ∈ I in period t ∈ T ,
(1 if ui(t−1) = 1 and uit = 0; 0 otherwise).

Model

min
u,v,y,z

T∑
t=1

I∑
i=1

aiuit + gt(vit) + SUiyit + SDizit, (25)

s.t. (2), (3)

uit − ui(t−1) ≤ uiτ , ∀t ∈ T ,∀i ∈ I,
∀τ ∈ {t+ 1, . . . ,min{t+Mi, T}} (26)

ui(t−1) − uit ≤ 1− uiτ , ∀t ∈ T ,∀i ∈ I,
∀τ ∈ {t+ 1, . . . ,min{t+ Li, T}} (27)

uit − ui(t−1) ≤ yit, ∀t ∈ T ,∀i ∈ I (28)
ui(t−1) − uit ≤ zit, ∀t ∈ T ,∀i ∈ I (29)
vit − vi(t−1) ≤ V ′i yit + Viui(t−1),

∀t ∈ T ,∀i ∈ I (30)
vi(t−1) − vit ≤ B′izit +Biuit,

∀t ∈ T ,∀i ∈ I (31)

uit, yit, zit ∈ {0, 1}, vti ≥ 0, ∀t ∈ T ,∀i ∈ I.

The objective (25) is total fixed, production, start up and shut
down costs. Constraints (26), (27), (28) and (29) are minimum
up time, minimum down time, start up and shut down con-
straints, respectively. The rump/start up rate constraint is given
in (30). Similarly, (31) is the rump/shut down rate constraint.

APPENDIX B
COMPUTATIONAL EXPERIMENT DATA

TABLE IV: Demand Data (MW = megawatt)

t 1 2 3 4 5 6
dt (MW) 700 750 850 950 1000 1100

t 7 8 9 10 11 12
dt (MW) 1150 1200 1300 1400 1450 1500

t 13 14 15 16 17 18
dt (MW) 1400 1300 1200 1050 1000 1100

t 19 20 21 22 23 24
dt (MW) 1200 1400 1300 1100 900 800

TABLE V: Scenario Data

Period (or hour) t
Scenario Probability 1-6 7-12 13-18 19-24

1 0.125 dt (1− ε)dt (1− ε)dt (1− ε)dt
2 0.125 dt (1− ε)dt (1− ε)dt (1 + ε)dt
3 0.125 dt (1− ε)dt (1 + ε)dt (1− ε)dt
4 0.125 dt (1− ε)dt (1 + ε)dt (1 + ε)dt
5 0.125 dt (1 + ε)dt (1− ε)dt (1− ε)dt
6 0.125 dt (1 + ε)dt (1− ε)dt (1 + ε)dt
7 0.125 dt (1 + ε)dt (1 + ε)dt (1− ε)dt
8 0.125 dt (1 + ε)dt (1 + ε)dt (1 + ε)dt

TABLE VI: Generator Data (MW = megawatt)

i 1 2 3 4 5
ai ($/h) 1000 970 700 680 450

bi ($/MWh) 16.19 17.26 16.6 16.5 19.7
ci ($/MW2h) 0.00048 0.00031 0.002 0.00211 0.00398
qi (MW) 682.5 682.5 195 195 243
q
i

(MW) 225 225 30 30 37.5
V ′
i (MW) 337.5 337.5 45 45 56.25
Vi (MW) 405 405 54 54 67.5
B′

i (MW) 337.5 337.5 45 45 56.25
Bi (MW) 405 405 54 54 67.5
Mi (h) 8 8 5 5 6
Li (h) 8 8 5 5 6

SUi ($/h) 4500 5000 550 560 900
SDi ($/h) 0 0 0 0 0

i 6 7 8 9 10
ai ($/h) 370 480 660 665 670

bi ($/MWh) 22.26 27.74 25.92 27.27 27.79
ci ($/MW2h) 0.00712 0.00079 0.00413 0.00222 0.00173
qi (MW) 120 127.5 82.5 82.5 82.5
q
i

(MW) 30 37.5 15 15 15
V ′
i (MW) 45 56.25 22.5 22.5 22.5
Vi (MW) 54 67.5 27 27 27
B′

i (MW) 45 56.25 22.5 22.5 22.5
Bi (MW) 54 67.5 27 27 27
Mi (h) 3 3 1 1 1
Li (h) 3 3 1 1 1

SUi ($/h) 170 260 30 30 30
SDi ($/h) 0 0 0 0 0
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