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Hitting times and resistance distances of
q-triangulation graphs: Accurate results and

applications

Yibo Zeng and Zhongzhi Zhang

Abstract—Graph operations or products, such as triangulation and Kronecker product have been extensively applied to model

complex networks with striking properties observed in real-world complex systems. In this paper, we study hitting times and resistance

distances of q-triangulation graphs. For a simple connected graph G, its q-triangulation graph Rq(G) is obtained from G by performing

the q-triangulation operation on G. That is, for every edge uv in G, we add q disjoint paths of length 2, each having u and v as its ends.

We first derive the eigenvalues and eigenvectors of normalized adjacency matrix of Rq(G), expressing them in terms of those

associated with G. Based on these results, we further obtain some interesting quantities about random walks and resistance distances

for Rq(G), including two-node hitting time, Kemeny’s constant, two-node resistance distance, Kirchhoff index, additive degree-Kirchhoff

index, and multiplicative degree-Kirchhoff index. Finally, we provide exact formulas for the aforementioned quantities of iterated

q-triangulation graphs, using which we provide closed-form expressions for those quantities corresponding to a class of scale-free

small-world graphs, which has been applied to mimic complex networks.

Index Terms—random walk, hitting time, Kirchhoff index, effective resistance, normalized Laplacian spectrum, triangulation graph.

✦

1 INTRODUCTION

G RAPH operations and products play an important role
in network science, which have been used to model

complex networks with the prominent scale-free [1] and
small-world [2] properties as observed in various real-life
networks [3]. Since diverse realistic large-scale networks
consist of smaller pieces or patterns, such as communi-
ties [4], motifs [5], and cliques [6], graph operations and
products are a natural way to generate a massive graph out
of smaller ones. Furthermore, there are many advantages
to using graph operations and products to create complex
networks. For example, it allows analytical treatment for
structural and dynamical aspects of the resulting networks.
Thus far, a variety of graph operations and products have
been introduced or proposed to construct models of com-
plex networks, including triangulation [7], [8], Kronecker
product [9], [10], [11], hierarchical product [12], [13], [14], as
well as corona product [15], [16], [17].

Among various graph operations and products, trian-
gulation is a popular one. Let G be a simple graph. The
triangulation graph of G, denoted by R(G), is the graph
obtained from G by performing triangulation operation [18].
That is, for each edge uv in G, a new node x is created and
connected to nodes u and v. Algebraic and combinatorial
properties of triangulation graphs have been comprehen-
sively studied [19], [20], [21], [22], [23]. For more convenient
and practical applications, an extended triangulation oper-
ation called q-triangulation was proposed [8], [24]. For a
positive integer q, the q-triangulation graph of G, denoted
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by Rq(G), is the graph obtained from G by adding, for each
edge uv in G, q disjoint paths of length 2: ux1v, ux2v, . . .,
uxqv. The q-triangulation operation can be iteratively used
to a triangle, generating a model for complex networks with
the scale-free small-world characteristics [8], [24]. However,
the properties of Rq(G) for a generic graph G are not
well understood, comparing to the traditional triangulation
graph, i.e., 1-triangulation graph.

In this paper, we provide an in-depth study on the
properties for q-triangulation graph Rq(G) of an arbitrary
simple connected graph G, focusing on random walks
and resistance distances, both of which have found wide
applications [25], [26]. We first give explicit formulas for
eigenvalues and eigenvectors of normalized adjacency (or
Laplacian) matrix for Rq(G), based on which we deter-
mine two-node hitting time and the Kemeny’s constant for
random walks on Rq(G). Also, we derive the expressions
for two-node resistance distance, Kirchhoff index, additive
degree-Kirchhoff index, and multiplicative degree-Kirchhoff
index for Rq(G). All obtained quantities for Rq(G) are
expressed in terms of those associated with G. Finally, we
obtain explicit expressions for the aforementioned quantities
of iterated q-triangulation of a graph G, and apply such
results to a category of scale-free small-world networks [27],
yielding closed-form formulas for several interesting quan-
tities.

2 PRELIMINARIES

In this section, we introduce some basic concepts for a
graph, random walks and electrical networks.

http://arxiv.org/abs/1808.01025v1
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2.1 Graph and Matrix Notation

Let G(V,E) be a simple connected graph with n
nodes/vertices and m edges. The n nodes form node set
V (G) = {1, 2, . . . , n}, and the m edges constitute edge set
E(G) = {e1, e2, . . . , em}.

Let A denote the adjacency matrix of G, whose entry
A(i, j) is 1 (or 0) if nodes i and j are (not) directly connected
in G. Let Γ(i) denote the set of neighbors of node i in graph
G. Then the degree of node i is di =

∑

j∈Γ(i) A(i, j), which
constitutes the ith entry of the diagonal degree matrix D of
G. The incidence matrix of G is an n ×m matrix B, where
B(i, j) = 1 (or 0) if node i is (not) incident with ej .

Lemma 1. [18] Let G be a simple connected graph with
n nodes. Then the rank of its incidence matrix B is
rank(B) = n − 1 if G is bipartite, and rank(B) = n
otherwise.

Lemma 2. Let G be a simple connected graph. Then its
incidence matrix B, adjacency matrix A and diagonal
degree matrix D satisfy

BB⊤ = A+D.

2.2 Random Walks on Graphs

For a graph G, we can define a discrete-time unbiased
random walk taking place on it. At any time step, the walker
jumps from its current location, node i, to an adjacent node
j with probability A(i, j)/di. Such a random walk on G is
in fact a Markov chain [28] characterized by the transition
probability matrix T = D−1A, with its entry T (i, j) equal
to A(i, j)/di. For a random walk on graph G, the stationary
distribution is an n-dimension vector π = (π1, π2, . . . , πn)
satisfying πT = π and

∑n
i=1 πi = 1. It is easy to verify

that π = (d1/2m, d2/2m, . . . , dn/2m) for unbiased random
walks on graph G.

The transition probability matrix T of graph G is gen-
erally asymmetric. However, T is similar to the normalized
adjacency matrix P of G, which is defined by

P = D− 1
2AD− 1

2 = D
1
2TD− 1

2 .

Obviously, P is symmetric, with the (i, j)th entry being

P (i, j) = A(i,j)√
didj

. I − P is the normalized Laplacian ma-

trix [29] of graph G, where I is the n× n identity matrix.

Lemma 3. [29] Let G be a simple connected graph with n
nodes, and let 1 = λ1 > λ2 ≥ . . . ≥ λn ≥ −1 be the
eigenvalues of its normalized adjacency matrix P . Then
λn = −1 if and only if G is bipartite.

Let v1, v2,. . ., vn be the orthonormal eigenvectors cor-
responding to the n eigenvalues λ1, λ2,. . ., λn, where
vi = (vi1, vi2, . . . , vin)

⊤. Then,

v1 =
(√

d1/2m,
√

d2/2m, ...,
√

dn/2m
)⊤

(1)

and

n∑

k=1

vikvjk =
n∑

k=1

vkivkj =

{
1, if i = j;
0, otherwise.

(2)

As for a bipartite graph G, whose node set V (G) can be
divided into two disjoint subsets V1 and V2, i.e., V (G) =
V1 ∪ V2, we have

vni =
√

di/2m, i ∈ V1; vni = −
√

di/2m, i ∈ V2. (3)

A fundamental quantity related to random walks is
hitting time. The hitting time Tij from one node i to another
node j is the expected number of jumps needed for a walker
to first reach node j starting from node i, which is relevant
in various scenarios [30]. Many interesting quantities of
graph G can be defined or derived from hitting times. For
example, for a graph G, its Kemeny’s constant K(G) is
defined as the expected number of steps required for a
walker starting from node i to a destination node, which
is chosen randomly according to a stationary distribution of
random walks on G [31]. The Kemeny’s constant K(G) is
independent of the selection of starting node i [32]. It has
found various applications in many fields. For example, it
has been recently applied to gauge the robotic surveillance
efficiency [33].

The hitting time Tij for random walks on graph G is en-
coded in the eigenvalues and eigenvectors of its normalized
adjacency (or Laplacian) matrix.

Theorem 1. [34] For random walks on a simple connected
graph G, the hitting time Tij from one node i to another
node j is

Tij = 2m
n∑

k=2

1

1− λk

(

v2kj
dj

− vkivkj
√
didj

)

.

In particular, when G is a bipartite graph with V (G) =
V1 ∪ V2, then

Tij = 2m
n−1∑

k=2

1

1− λk

(

v2kj
dj

− vkivkj
√
didj

)

,

if i and j are both in V1 or V2;

Tij = 2m
n−1∑

k=2

1

1− λk

(

v2kj
dj

− vkivkj
√
didj

)

+ 1,

otherwise.

In contrast, the Kemeny’s constant of G is only depen-
dent on the eigenvalues of P .

Lemma 4. [35] Let G be a simple connected graph with n
nodes. Then

K(G) =
n∑

j=1

πjTij =
n∑

i=2

1

1− λi

,

where 1 = λ1 > λ2 ≥ . . . ≥ λn ≥ −1 are eigenvalues of
matrix P .

2.3 Electrical Networks

For a simple connected graph G, we can define a corre-
sponding electrical network G∗, which is obtained from
G by replacing each edge in G with a unit resistor [36].
The resistance distance rij between a pair of nodes i and
j in G is equal to the effective resistance between i and j
in G∗. Similar to the hitting time Tij , resistance distance
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rij can also be expressed in terms of the eigenvalues and
eigenvectors of normalized adjacency matrix P .

Lemma 5. [37] Let G be a simple connected graph. Then
resistance distance rij between nodes i and j is

rij =
n∑

k=2

1

1− λk

(

vki√
di

− vkj
√
dj

)2

.

Lemma 6. [38] Let G be a simple connected graph with n
nodes. Then the sum of resistance distances between all
pairs of adjacent nodes in G is equivalent to n− 1, i.e.

∑

ij∈E(G)

rij = n− 1.

where the summation is taken over all the edges in G.

There are some intimate relationships between random
walks on graphs and electrical networks. For example, the
resistance distance rij is closely related to hitting times Tij

and Tji of G, as stated in the following lemma.

Lemma 7. [39] For any pair of nodes i and j in a simple
connected graph G with m edges, the following relation
holds true:

2mrij = Tij + Tji.

The resistance distance is an important quantity [40].
Various graph invariants based on resistance distances have
been defined and studied. Among these invariants, the
Kirchhoff index [41] is of vital importance.

Definition 1. [41] The Kirchhoff index of a graph G is
defined as

K(G) =
1

2

n∑

i,j=1

rij =
∑

{i,j}⊆V (G)

rij .

Kirchhoff index has found wide applications. For example,
it can be used as measures of the overall connectedness of
a network [42], the robustness of first-order consensus algo-
rithm in noisy networks [43], as well as the edge centrality
of complex networks [44].

In recent years, several modifications for Kirchhoff index
have been proposed, including additive degree-Kirchhoff
index [45] and multiplicative degree-Kirchhoff index [37].
For a graph G, its additive degree-Kirchhoff index K̄(G)
and multiplicative degree-Kirchhoff index K̂(G) are defined
as

K̄(G) =
1

2

n∑

i,j=1

(di + dj)rij =
∑

{i,j}⊆V (G)

(di + dj)rij

and

K̂(G) =
1

2

n∑

i,j=1

didjrij =
∑

{i,j}⊆V (G)

didjrij ,

respectively.
It has been proved that K̂(G) can be represented in terms

of the eigenvalues of the matrix P .

Lemma 8. [37] Let G be a simple connected graph with n
nodes and m edges. Then

K̂(G) = 2m
n∑

i=2

1

1− λi

.

3 q-TRIANGULATION GRAPHS AND THEIR MATRI-

CES

In this section, we introduce the q-triangulation graph of
a graph G, which is a generalization of the traditional
triangulation graph, since 1-triangulation graph is exactly
the triangulation graph. The triangulation of G, denoted by
R(G), is the graph obtained from G by adding, for each
edge uv in G, a new node x and two edges xu and xv. The
triangulation graph can be easily extended to a general case.

Definition 2. Let G be a simple connected graph. For a posi-
tive integer q, the q-triangulation graph of G, denoted by
Rq(G), is the graph obtained from G by adding, for each
edge uv in G, q disjoint paths of length 2: ux1v, ux2v,
. . ., uxqv.

In what follows, for a quantity Z of G, we use Z̃ to
denote the corresponding quantity associated with Rq(G).
Then it is easy to verify that in the q-triangulation graph
Rq(G), there are ñ = n + mq nodes and m̃ = m(2q + 1)
edges.

Moreover, the node set Ṽ := V (Rq(G)) of Rq(G) can
be divided into two disjoint parts V and V ′, where V is
the set of old nodes inherited from G, while V ′ is the set
of new nodes generated in the process of performing q-
triangulation operation on G. Moreover, V ′ can be further
classified into q parts as V ′ = V (1)∪V (2)∪· · ·∪V (q), where
each V (i) (i = 1, 2,. . ., q) contains m new nodes produced
by m different edges in G. Namely,

Ṽ = V ∪V (1)∪V (2)∪...∪V (q). (4)

By construction, for each old edge uv, there exists one and
only one node x in each V (i) (i = 1, 2,. . ., q), satisfying
Γ̃(x) = {u, v}. Thus, for two different sets V (i) and V (j),
the structural and dynamical properties of nodes belonging
to them are equivalent to each other.

For Rq(G), its adjacency matrix Ã, diagonal degree
matrix D̃, and normalized adjacency matrix P̃ , can be
expressed in terms of related matrices of G as

Ã =








A B · · · B
B⊤ O · · · O

...
...

. . .
...

B⊤ O · · · O







,

D̃ = diag{(q + 1)D, 2Im, ..., 2Im
︸ ︷︷ ︸

q

},

and

P̃ = D̃− 1
2 ÃD̃− 1

2

=
1

√

2(q + 1)









√
2

q+1P D− 1
2B · · · D− 1

2B

B⊤D− 1
2 O · · · O

...
...

. . . O

B⊤D− 1
2 O · · · O









,
(5)

where Im is the m×m identity matrix.
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4 EIGENVALUES AND EIGENVECTORS OF NOR-

MALIZED ADJACENCY MATRIX FOR

q-TRIANGULATION GRAPHS

In this section, we study the eigenvalues and eigenvec-
tors of normalized adjacency matrix P̃ for q-triangulation
graphs Rq(G). We will show that both eigenvalues and
eigenvectors for P̃ can be expressed in terms of those related
quantities associated with graph G.

For the sake of convenience, for each eigenvalue λi of
P , we define ∆i as ∆i := λ2

i + 2q(q + 1)(1 + λi). Thus, by
Eqs. (4) and (5), we have the following result.

Theorem 2. Let G be a simple connected graph with n nodes
and m edges. Let 1 = λ1 > λ2 ≥ ... ≥ λn ≥ −1
be the eigenvalues of P , and let v1, v2, ..., vn be their
corresponding orthonormal eigenvectors. Then

1) if G is non-bipartite, then λi±
√
∆i

2(q+1) , i = 1, 2,. . ., n are

eigenvalues of P̃ , and the corresponding orthonor-
mal eigenvectors are

√

1

2
± λi

2
√
∆i











vi√
2(q+1)

λi±
√
∆i

B⊤D− 1
2 vi

...√
2(q+1)

λi±
√
∆i

B⊤D− 1
2 vi











;

and 0’s are eigenvalues of P̃ with multiplicity mq−
n, with their corresponding orthonormal eigenvec-
tors being

(
0
Yz

)

, z = 1, 2, . . . , mq − n,

where Y1, Y2,. . ., Ymq−n are an orthonormal basis of
the kernel space of matrix

C :=
(
B B · · · B

)

︸ ︷︷ ︸

q

.

2) if G is bipartite, then λi±
√
∆i

2(q+1) , i = 1, 2, . . . , n− 1 are

eigenvalues of P̃ , and the corresponding orthonor-
mal eigenvectors are

√

1

2
± λi

2
√
∆i











vi√
2(q+1)

λi±
√
∆i

B⊤D− 1
2 vi

...√
2(q+1)

λi±
√
∆i

B⊤D− 1
2 vi











;

0’s are eigenvalues of P̃ with multiplicity mq−n+1,
with their corresponding orthonormal eigenvectors
being

(
0
Yz

)

, z = 1, 2, . . . ,mq − n+ 1,

where Y1, Y2, . . . , Ymq−n+1 is an orthonormal basis
of the kernel space of matrix

C :=
(
B B · · · B

)

︸ ︷︷ ︸

q

;

and − 1
q+1 is an eigenvalue of P̃ of single degener-

acy, with its corresponding eigenvector being
(

vn
0

)

.

Proof: We first prove 1). Since G is non-bipartite, by
Lemma 3, every eigenvalue λi of P is not equal to −1.
Notice that Pvi = λivi. Then by Lemma 2 and Eq. (5), it
is easy to verify

P̃











vi√
2(q+1)

λi±
√
∆i

B⊤D− 1
2 vi

...√
2(q+1)

λi±
√
∆i

B⊤D− 1
2 vi











=











λivi
q+1 + q(1+λi)vi

λi±
√
∆i

1√
2(q+1)

B⊤D− 1
2 vi

...
1√

2(q+1)
B⊤D− 1

2 vi











=
λi ±

√
∆i

2(q + 1)











vi√
2(q+1)

λi±
√
∆i

B⊤D− 1
2 vi

...√
2(q+1)

λi±
√
∆i

B⊤D− 1
2 vi











,

which leads to our result through normalization.
For the zero eigenvalues, from Lemma 1, rank(B) =

n since G is non-bipartite. Thus, rank(C) = n and
dim(Ker(C)) = mq − n. Let Y1, Y2,. . ., Ymq−n be an or-
thonormal basis of the kernel space of matrix C. It is easy to

confirm that

(
0
Yz

)

, z = 1, 2, . . . ,mq−n, are eigenvectors

for eigenvalues 0 of matrix P̃ . Moreover, together with the
aforementioned eigenvectors, they constitute an orthonor-
mal basis of P̃ .

For 2), our proof is similar. We just need to verify that

P̃

(
vn
0

)

= − 1

q + 1

(
vn
0

)

,

which is trivial according to Eqs. (3) and (5).
Note that when q = 1, Theorem 2 reduces to the result

in [20].

5 HITTING TIMES FOR RANDOM WALKS ON q-

TRIANGULATION GRAPHS

Theorem 2 provides complete information about the eigen-
values and eigenvectors of P̃ in terms of those of P . In
this section, we use this information to determine two-node
hitting time and Kemeny’s constant for unbiased random
walks on Rq(G).

5.1 Two-Node Hitting Time

We first compute the hitting time from one node to another
in Rq(G). For this purpose, we express the orthonormal
eigenvectors of Rq(G) in more explicit forms. By Eq. (1) and
Theorem 2, we can easily derive the following results.

1) The eigenvectors corresponding to eigenvalues
λ1±

√
∆1

2(q+1) = 1,− q
q+1 for matrix P̃ are

(

√

(q + 1)d1
2m(2q + 1)

, · · · ,
√

(q + 1)dn
2m(2q + 1)

,

1
√

m(2q + 1)
, · · · , 1

√

m(2q + 1)

)⊤
(6)



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, MONTH YYYY 5

and

(

√

qd1

2m(2q + 1)
, · · · ,

√

qdn

2m(2q + 1)
,

−
√

q + 1

mq(2q + 1)
, · · · ,−

√

q + 1

mq(2q + 1)

)⊤
(7)

respectively.

2) If G is non-bipartite, then λi±
√
∆i

2(q+1) , i = 1, 2,. . .,

n are eigenvalues of P̃ , and the element of their
orthonormal eigenvectors corresponding to node j
is














√

1
2
± λi

2
√

∆i

vij , j ∈ V ;

±
√

q+1

∆i±λi

√
∆i

(

vis√
ds

+ vit√
dt

)

, j ∈ V ′, Γ̃(j) = {s, t}.

(8)
Moreover, for each j ∈ V ′ with Γ̃(j) = {s, t},

mq−n
∑

z=1

Y
2
zj = 1− 1

mq
−

n
∑

k=2

1

(1 + λk)q

(

vks√
ds

+
vkt√
dt

)2

.

(9)

3) If G is bipartite, then λi±
√
∆i

2(q+1) , i = 1, 2, . . . , n− 1 are

eigenvalues of P̃ , and the element of their orthonor-
mal eigenvectors corresponding to node j is














√

1
2
± λi

2
√

∆i

vij , j ∈ V ;

±
√

q+1

∆i±λi

√
∆i

(

vis√
ds

+ vit√
dt

)

, j ∈ V ′, Γ̃(j) = {s, t}.

(10)
Moreover, for each j ∈ V ′ with Γ̃(j) = {s, t},

mq−n+1
∑

z=1

Y
2
zj = 1− 1

mq
−

n−1
∑

k=2

1

(1 + λk)q

(

vks√
ds

+
vkt√
dt

)2

.

(11)

Now we present our results for hitting times of random
walks on Rq(G).

Theorem 3. Let G be a simple connected graph with n nodes
and m edges. Rq(G) is the q-triangulation graph of G
with Ṽ = V ∪ V ′. Then

1) if i, j ∈ V , then T̃ij =
4q+2
q+2 Tij ;

2) if i ∈ V ′, j ∈ V , Γ̃(i) = {s, t}, then

T̃ij =1 +
2q + 1

q + 2
(Tsj + Ttj);

T̃ji =m(2q + 1)− 1

+
2q + 1

2(q + 2)

[
2(Tjs + Tjt)− (Tts + Tst)

]
;

3) if i, j ∈ V ′, j ∈ V , Γ̃(i) = {s, t}, Γ̃(j) = {u, v}, then

T̃ji =m(2q + 1) +
2q + 1

2(q + 2)

[
Tsu + Ttu

+ Tsv + Ttv − (Tuv + Tvu)
]
.

Proof: Note that m̃ = m(2q + 1), d̃i = (q + 1)di if
i ∈ V , and d̃i = 2 if i ∈ V ′.

We first prove 1). We distinguish two cases: (a) G is non-
bipartite, and (b) G is bipartite. When G is non-bipartite, by
Theorems 1 and 2, we have

T̃ij =2m̃

n
∑

k=2

(

1

1− λk+
√

∆k

2(q+1)

(1

2
+

λk

2
√
∆k

)

+
1

1− λk−
√

∆k

2(q+1)

(1

2
− λk

2
√
∆k

)

)

(

v2kj

(q + 1)dj
− vkivkj

(q + 1)
√

didj

)

=2m̃

n
∑

k=2

2q + 2

q + 2

1

1− λk

(

v2kj

(q + 1)dj
− vkjvki

(q + 1)
√

didj

)

=
4q + 2

q + 2
· 2m

n
∑

k=2

1

1− λk

(v2kj

dj
− vkjvki
√

didj

)

=
4q + 2

q + 2
Tij .

When G is non-bipartite, the proof is similar. Thus 1) is
proved.

We continue to prove 2). Since Γ̃(i) = {s, t},

T̃ij = 1 +
1

2

(
T̃sj + T̃tj

)
= 1 +

2q + 1

q + 2
(Tsj + Ttj).

While for T̃ji, we also divide it into two cases: (a) G is a
non-bipartite graph, and (b) G is a bipartite graph. For the
first case that G is non-bipartite, by Theorems 1 and 2 and
Eqs. (6)-(9), we have

T̃ji =2m̃

(

1

1 + q

q+1

2q + 1

2mq(2q + 1)
+

n
∑

k=2

1

2

( vks√
ds

+
vkt√
dt

)2

(

1

1− λk+
√

∆k

2(q+1)

q + 1

∆k + λk

√
∆k

+
1

1− λk−
√

∆k

2(q+1)

q + 1

∆k − λk

√
∆k

)

−
n
∑

k=2

vkj
√

2(q + 1)dj

(

vks√
ds

+
vkt√
dt

)

(

1

1− λk+
√

∆k

2(q+1)

√

q + 1

∆k + λk

√
∆k

+
1

1− λk−
√

∆k

2(q+1)

√

q + 1

∆k − λk

√
∆k

)

+

mq−n
∑

z=1

Y 2
zi

2

)

=m(2q + 1) − 1 +
2q + 1

q + 2
2m

n
∑

k=2

1

1− λk

(

(

v2ks
ds

− vksvkj
√

dsdj

)

+
(

v2kt
dt

− vktvkj
√

dtdj

)

− 1

2

(

vks√
ds

− vkt√
dt

)2
)

=m(2q + 1) − 1 +
2q + 1

2(q + 2)

[

2(Tjs + Tjt)− (Tts + Tst)
]

.

If G is bipartite, our proof is similar.

We finally prove 3). Considering Γ̃(i) = {s, t}, Γ̃(j) =
{u, v}, we obtain

T̃ij =1 +
1

2
(T̃sj + T̃tj)

=(2q + 1)m+
2q + 1

2(q + 2)

[
Tsu + Ttu

+ Tsv + Ttv − (Tuv + Tvu)
]
.

This completes the proof.
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5.2 Kemeny’s Constant

In addition to the two-node hitting time, the Kemeny’s
constant of Rq(G) can also be expressed in terms of that
of G.

Theorem 4. Let G be a simple connected graph with n nodes
and m edges, and let Rq(G) be the q-triangulation graph.
Then

K(Rq(G)) =
4q + 2

q + 2
K(G) +

q2 + (4n− 1)q + 2n

(q + 2)(2q + 1)
+mq− n.

Proof: Suppose that 1 = λ1 > λ2 ≥ ... ≥ λn ≥ −1 are
eigenvalues of the matrix P . We first consider the case that
G is a non-bipartite graph. For this case, by Lemma 4 and
Theorem 2, we have

K(Rq(G)) =

n
∑

k=2

1

1− λk+
√

∆k

2(q+1)

+

n
∑

k=2

1

1− λk−
√

∆k

2(q+1)

+
1

1 + q

q+1

+mq − n

=

n
∑

k=2

( 2

q + 2
+

4q + 2

q + 2

1

1− λk

)

+
q + 1

2q + 1
+mq − n

=
4q + 2

q + 2
K(G) +

q2 + (4n− 1)q + 2n

(q + 2)(2q + 1)
+mq − n.

For the other case that G is bipartite, we can prove similarly.

6 RESISTANCE DISTANCES OF q-TRIANGULATION

GRAPHS

In this section, we determine the two-node resistance
distance, multiplicative degree-Kirchhoff index, additive
degree-Kirchhoff index, and Kirchhoff index of Rq(G), in
terms of those of G.

6.1 Two-Node Resistance Distance

We first determine the resistance distance between any pair
of nodes in Rq(G).

Theorem 5. Let G be a simple connected graph with n nodes
and m edges, and let Rq(G) be the q-triangulation graph
with node set Ṽ = V ∪ V ′. Then

1) for i, j ∈ V ,

r̃ij =
2

q + 2
rij ;

2) for i ∈ V ′, j ∈ V and Γ̃(i) = {s, t},

r̃ij =
1

2
+

2rsj + 2rtj − rst
2(q + 2)

;

3) for i, j ∈ V ′, Γ̃(i) = {s, t} and Γ̃(j) = {u, v},

r̃ij = 1 +
rsu + rtu + rsv + rtv − ruv − rst

2(q + 2)
.

Proof: The results follow directly from Lemma 7 and
Theorem 3.

6.2 Some Intermediary Results

In the next subsections, we will derive the Kirchhoff index,
the additive degree-Kirchhoff index and the multiplicative
degree-Kirchhoff index for Rq(G). In the computation of
the first two graph invariants, we need the following two
properties for resistance distances in Rq(G).

Lemma 9. Let G be a simple connected graph with n nodes
and m edges, and let Rq(G) be the q-triangulation graph
of G with node set Ṽ = V ∪ V ′. Then

∑

i∈V ′

∑

j∈V

r̃ij =
q

q + 2
K̄(G) +

mnq

2
− n(n− 1)q

2(q + 2)
.

Proof: Note that
∑

i∈V ′

∑

j∈V r̃ij can be divided into
two sum terms as

∑

i∈V ′

∑

j∈V

r̃ij =
∑

i∈V ′

∑

j∈Γ̃(i)

r̃ij +
∑

i∈V ′

∑

j∈V \Γ̃(i)

r̃ij . (12)

We next compute the above two sum terms separately.

1) As for the first term, by Lemma 6, we have

∑

i∈V ′

∑

j∈Γ̃(i)

r̃ij =
∑

ij∈Ẽ

r̃ij −
∑

ij∈E

r̃ij

=
(

|Ṽ | − 1
)

− 2

q + 2

(

|V | − 1
)

=mq +
(n− 1)q

q + 2
.

(13)

2) As for the second term, suppose that Γ̃(i) = {s, t}.
According to Eq. (4), Lemma 6 and Theorem 5, we
have

∑

i∈V ′

∑

j∈V \Γ̃(i)

r̃ij

=

q
∑

m=1

∑

i∈V (f)

∑

j∈V \Γ̃(i)

(1

2
+

2rsj + 2rtj − rst
2(q + 2)

)

=q
∑

i∈V (1)

∑

j∈V \Γ̃(i)

(1

2
+

2rsj + 2rtj − rst
2(q + 2)

)

=
∑

i∈V (1)

(
(n− 2)q

2
+

∑

j∈V \Γ̃(i)

(q(rsj + rtj)

q + 2

− (n− 2)q

2(q + 2)
rst
))

.

(14)
For convenience, let rs be the sum of resistance
distances between s and all other nodes in graph
G, that is,

rs =
∑

j∈V
j 6=s

rsj .
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Thus, Eq. (14) can be rewritten as
∑

i∈V ′

∑

j∈V \Γ̃(i)

r̃ij

=
∑

i∈V (1)

(
(n− 2)q

2
+

q(rs + rt)

q + 2
− (n+ 2)q

2(q + 2)
rst

)

=
m(n− 2)q

2
+

q

q + 2

∑

i∈V (1)

(
rs + rt

)

− (n+ 2)q

2(q + 2)

∑

i∈V (1)

rst.

(15)
The term q

q+2

∑

i∈V (1)

(
rs + rt

)
can be further com-

puted as

q

q + 2

∑

i∈V (1)

(
rs + rt

)

=
q

q + 2

∑

st∈E

(
rs + rt

)
=

q

q + 2

∑

s∈V

dsrs

=
q

q + 2

∑

{i,j}⊆V

(di + dj)rij =
q

q + 2
K̄(G).

(16)

Further, by Lemma 6, the term (n+2)q
2(q+2)

∑

i∈V (1) rst
can be evaluated as

(n+ 2)q

2(q + 2)

∑

i∈V (1)

rst =
(n+ 2)q

2(q + 2)

∑

st∈E

rst

=
(n+ 2)(n− 1)q

2(q + 2)
.

(17)

Plugging Eqs. (16) and (17) into Eq. (15) gives
∑

i∈V ′

∑

j∈V \Γ̃(i)

r̃ij

=
m(n− 2)q

2
+

q

q + 2
K̄(G)− (n+ 2)(n− 1)q

2(q + 2)
.

(18)

Combining Eqs. (13) and (18) gives the desired result.

Lemma 10. Let G be a connected graph with n nodes and m
edges, and let Rq(G) be the q-triangulation graph of G
with node set Ṽ = V ∪ V ′. Then

∑

{i,j}⊆V ′

r̃ij =
q2

2(q + 2)
K̂(G) +

mq(mq − 1)

2
− m(n− 1)q2

2(q + 2)
.

Proof: Suppose that Γ̃(i) = {s, t} and Γ̃(j) = {u, v}.
Then by Theorem 5, we obtain

∑

{i,j}⊆V ′

r̃ij

=
∑

{i,j}⊆V ′

(

1 +
rsu + rtu + rsv + rtv

2(q + 2)
− rst + ruv

2(q + 2)

)

=
mq(mq − 1)

2
+

∑

{i,j}⊆V ′

rsu + rtu + rsv + rtv
2(q + 2)

−
∑

{i,j}⊆V ′

rst + ruv
2(q + 2)

.

(19)

We now compute the second term in Eq. (19). It is not
easy to evaluate it directly. Thus, we will compute it in
an alternative way. For any pair of nodes {k, l} ⊆ V , we

consider how many times rkl appears in the summation.
Observe that rkl is summed once if and only if there exists
a unique subset {i, j} ⊆ V ′ such that k ∈ Γ̃(i) and l ∈ Γ̃(j).
Thus, our problem can be simplified and converted to the
following one: how many pairwise different aforementioned
subsets exist? It is not difficult to see that if k is not adjacent
to l, there exist q2dkdl subsets; and that if kl ∈ E, there exist
q2dkdl − q such subsets. Thus, once again by Lemma 6, we
have

∑

{i,j}⊆V ′

rsu + rtu + rsv + rtv
2(q + 2)

=
∑

{k,l}⊆V
kl/∈E

q2dkdl
2(q + 2)

rkl +
∑

{k,l}⊆V
kl∈E

q2dkdl − q

2(q + 2)
rkl

=
∑

{k,l}⊆V

q2dkdl
2(q + 2)

rkl −
q

2(q + 2)

∑

{k,l}⊆V
kl∈E

rkl

=
q2

2(q + 2)

∑

{k,l}⊆V

dkdlrkl −
(n− 1)q

2(q + 2)

=
q2

2(q + 2)
K̂(G) − (n− 1)q

2(q + 2)
.

(20)

We proceed to evaluate the third term in Eq. (19). Note
that for any two different nodes i and j in V ′, if their
neighbors are the same, i.e., Γ̃(i) = Γ̃(j) = {s, t}, we use
i ∼ j to denote this relation. Otherwise, the sets of their
neighbors are different, we call i ≁ j. According to these
two relations and Eq. (4), it follows that

∑

{i,j}⊆V ′

rst + ruv

2(q + 2)
=

1

4(q + 2)

∑

i∈V ′

∑

j∈V ′

(

rst + ruv
)

=
1

4(q + 2)

q
∑

f=1

∑

i∈V (f)

(

∑

i≁j

(

rst + ruv
)

+
∑

i∼j
i6=j

(

rst + rst
)

)

=
1

4(q + 2)
q
∑

st∈E

(

q
∑

uv∈E
uv 6=st

(

rst + ruv
)

+ 2(q − 1)rst

)

=
q

4(q + 2)

∑

st∈E

(

q
∑

uv∈E

ruv + (mq − 2)rst

)

.

(21)

By Lemma 6, Eq. (21) can be recast as

∑

{i,j}⊆V ′

rst + ruv
2(q + 2)

=
q

4(q + 2)

∑

st∈E

(

(n− 1)q + (mq − 2)rst
)

=
m(n− 1)q2

4(q + 2)
+

(mq − 2)(n− 1)q

4(q + 2)
.

(22)

Plugging Eqs. (20) and (22) into Eq. (19) gives the result.

6.3 The multiplicative degree-Kirchhoff index

We first determine the multiplicative degree-Kirchhoff index
for Rq(G).
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Theorem 6. Let G be a simple connected graph with n nodes
and m edges, and let Rq(G) be its q-triangulation graph.
Then

K̂(Rq(G)) =
2(2q + 1)2

q + 2
K̂(G) + 2m

(

q2 + (4n− 1)q + 2n

q + 2

+ (mq − n)(2q + 1)

)

.

Proof: According to Lemmas 4 and 8, Theorem 6 is an
obvious consequence of Theorem 4.

6.4 The addictive degree-Kirchhoff index

We continue to determine the additive degree-Kirchhoff
index for Rq(G).

Theorem 7. Let G be a connected graph with n nodes and m
edges, and let Rq(G) be the q-triangulation graph. Then

K̄(Rq(G)) =
2(2q + 1)

q + 2
K̄(G) +

2q(2q + 1)

q + 2
K̂(G)

+m2q(3q + 1)−mq(2n− 1)

+
(5m− n)(n− 1)q

q + 2
.

Proof: By definition of the addictive degree-Kirchhoff
index, we have

K̄(Rq(G)) =
∑

{i,j}⊆V ∪V ′

(d̃i + d̃j)r̃ij

=
∑

{i,j}⊆V

(d̃i + d̃j)r̃ij +
∑

i∈V ′

∑

j∈V

(d̃i + d̃j)r̃ij

+
∑

{i,j}⊆V ′

(d̃i + d̃j)r̃ij .

(23)
We now compute the three sum terms on the last row of
Eq. (23) one by one.

For the first sum term, by Theorem 5, we have

∑

{i,j}⊆V

(d̃i + d̃j)r̃ij

=
∑

{i,j}⊆V

(q + 1)(di + dj)
2

q + 2
rij =

2(q + 1)

q + 2
K̄(G).

(24)

For the second sum term, it can be evaluated as

∑

i∈V ′

∑

j∈V

(d̃i + d̃j)r̃ij

=
∑

i∈V ′

∑

j∈V

(2 + (q + 1)dj)r̃ij

=2
∑

i∈V ′

∑

j∈V

r̃ij + (q + 1)
∑

i∈V ′

∑

j∈V

dj r̃ij .

(25)

By Lemma 9, we have

2
∑

i∈V ′

∑

j∈V

r̃ij =
2q

q + 2
K̄(G) +mnq − n(n− 1)q

q + 2
. (26)

On the other hand, by Lemma 6 and Theorem 5,

(q + 1)
∑

i∈V ′

∑

j∈V

dj r̃ij

=(q + 1)
∑

i∈V ′

∑

j∈V

dj

(
1

2
+

2rsj + 2rtj − rst
2(q + 2)

)

=
q + 1

2

∑

i∈V ′

∑

j∈V

dj +
q + 1

q + 2

∑

i∈V ′

∑

j∈V

dj
(

rsj + rtj
)

− q + 1

2(q + 2)

∑

i∈V ′

∑

j∈V

djrst

=
q + 1

2

∑

i∈V ′

2m+
q + 1

q + 2

∑

i∈V ′

∑

j∈V

dj
(

rsj + rtj
)

− q + 1

2(q + 2)

∑

i∈V ′

2mrst

=m2q(q + 1) +
q + 1

q + 2

∑

i∈V ′

∑

j∈V

dj
(

rsj + rtj
)

− m(n− 1)q(q + 1)

q + 2
.

(27)

For the middle part of Eq. (27), we obtain

q + 1

q + 2

∑

i∈V ′

∑

j∈V

dj
(
rsj + rtj

)

=
q + 1

q + 2
q
∑

i∈V (1)

∑

j∈V

dj
(
rsj + rtj

)

=
q(q + 1)

q + 2

∑

j∈V

∑

i∈V (1)

dj
(
rsj + rtj

)

=
q(q + 1)

q + 2

∑

j∈V

∑

k∈V

djdkrkj =
2q(q + 1)

q + 2
K̂(G).

(28)

Combining Eqs. (25)-(28) yields

∑

i∈V ′

∑

j∈V

(d̃i + d̃j)r̃ij

=
2q

q + 2
K̄(G) +

2q(q + 1)

q + 2
K̂(G) +m2q2 +m2q

+mnq − (mq +m+ n)(n− 1)q

q + 2
.

(29)

For the third sum term in Eq. (23), by Lemma 10, we
have

∑

{i,j}⊆V ′

(d̃i + d̃j)r̃ij

=4

(

q2

2(q + 2)
K̂(G) +

mq(mq − 1)

2
− m(n− 1)q2

2(q + 2)

)

=
2q2

q + 2
K̂(G) + 2mq(mq − 1)− 2m(n− 1)q2

q + 2
.

(30)

Substituting Eqs. (24), (29) and (30) back into Eq. (23),
our proof is completed after simple calculations.

6.5 The Kirchhoff index

We finally determine the Kirchhoff index for Rq(G).
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Theorem 8. Let G be a connected graph with n nodes, and
let Rq(G) be the q-triangulation graph. Then

K(Rq(G)) =
2

q + 2
K(G) +

q

q + 2
K̄(G) +

q2

2(q + 2)
K̂(G)

+
m2q2

2
+

(2m− n)(n− 1)q

2(q + 2)
.

Proof: According to Definition 1 and Eq. (4), we have

K(Rq(G)) =
∑

{i,j}⊆Ṽ

r̃ij =
∑

{i,j}⊆V ∪V ′

r̃ij

=
∑

{i,j}⊆V

r̃ij +
∑

i∈V ′

∑

j∈V

r̃ij +
∑

{i,j}⊆V ′

r̃ij .
(31)

Below we shall compute the three sum terms in Eq. (31)
separately.

For the first sum term, by Theorem 5,

∑

{i,j}⊆V

r̃ij =
∑

{i,j}⊆V

2

q + 2
rij =

2

q + 2
K(G). (32)

For the second sum term, by Lemma 9, we obtain

∑

i∈V ′

∑

j∈V

r̃ij =
q

q + 2
K̄(G) +

mnq

2
− n(n− 1)q

2(q + 2)
. (33)

For the third sum term, by Lemma 10, we have

∑

{i,j}⊆V ′

r̃ij =
q2

2(q + 2)
K̂(G)+

mq(mq− 1)

2
−m(n− 1)q2

2(q + 2)
. (34)

Plugging Eqs. (32)-(34) back into Eq. (31) leads to the
desired result.

7 PROPERTIES OF ITERATED q-TRIANGULATION

GRAPHS AND THEIR APPLICATIONS

The q-triangulation graphs have found many applications
in physics and network science. For example, by iteratively
applying q-triangulation operation to 3-clique, a complete
graph with 3 nodes and 3 edges, we can obtain a family of
scale-free small-world networks, called pseudofractal scale-
free webs [7], [8], which have attracted considerable atten-
tion [19], [20], [22], [23]. In this section, we study the prop-
erties of iterated q-triangulation graphs, based on which
we further obtain exact expressions for some interesting
quantities for pseudofractal scale-free webs.

7.1 Definition of Iterated q-triangulation Graphs

The family of iterated q-triangulation graphs Rq,k(G) of a
graph G is defined as follows. For k = 0, Rq,0(G) = G. For
k ≥ 1, Rq,k(G) is obtained from Rq,k−1(G) by performing
the q-triangulation operation on Rq,k−1(G). In other words,
Rq,k(G) = Rq(Rq,k−1(G)). For a quantity Z of G, we use
Zq,k to denote the corresponding quantity associated with
Rq,k(G). Then, in Rq,k(G), the number of edges is

mq,k = (2q + 1)mq,k−1 = (2q + 1)km, (35)

and the number of nodes is

nq,k = nq,k−1 + qmq,k−1 =
m
[
(2q + 1)k − 1

]

2
+ n. (36)

7.2 Formulas of Quantities for Iterated q-triangulation

Graphs

We here present expressions for some interesting quantities
for iterated q-triangulation graphs Rq,k(G).

7.2.1 Kemeny’s constant

Theorem 9. Let G be a connected graph with n nodes and m
edges. Then

Kq,k =
(4q + 2

q + 2

)k

Kq,0 +
m(2q + 3)

2(2q + 1)

[

(2q + 1)k −
(4q + 2

q + 2

)k]

+

(

(q − 1)

3(2q + 1)
+

m− 2n

6

)

[(4q + 2

q + 2

)k

− 1
]

.

Proof: According to Theorem 4 and Eqs. (35) and (36),
we have

Kq,k =
4q + 2

q + 2
Kq,k−1 +

q2 + (4nq,k−1 − 1)q + 2nq,k−1

(q + 2)(2q + 1)

+mq,k−1q − nq,k−1

=
4q + 2

q + 2
Kq,k−1 +

mq(2q + 3)(2q + 1)k−1

2(q + 2)

+
q(q − 1)

(q + 2)(2q + 1)
+

(m− 2n)q

2(q + 2)
.

Dividing both sides by
(
4q+2
q+2

)k

, we obtain

( q + 2

4q + 2

)k

Kq,k −
( q + 2

4q + 2

)k−1

Kq,k−1

=
mq(2q + 3)

2(q + 2)(2q + 1)

(q + 2

2

)k

+

(
q(q − 1)

(q + 2)(2q + 1)
+

(m− 2n)q

2(q + 2)

)( q + 2

4q + 2

)k

.

By properties of geometric sequences, we have

( q + 2

4q + 2

)k

Kq,k −
( q + 2

4q + 2

)0

Kq,0

=
m(2q + 3)

2(2q + 1)

[(q + 2

2

)k

− 1
]

+

(
(q − 1)

3(2q + 1)
+

m− 2n

6

)[

1−
( q + 2

4q + 2

)k]

,

which leads to the result through simple calculations.

7.2.2 The multiplicative degree-Kirchhoff index

Theorem 10. Let G be a connected graph with n nodes and
m edges. Then

K̂q,k =
(2(2q + 1)2

q + 2

)k

K̂q,0 +
m2(2q + 3)

2q + 1

[

(2q + 1)2k

−
(2(2q + 1)2

q + 2

)k]

+

(

2m(q − 1)

3(2q + 1)
+

m(m− 2n)

3

)

[(2(2q + 1)2

q + 2

)k

− (2q + 1)k
]

.

Proof: By Lemmas 4 and 8, the result follows directly
from Theorem 9.
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7.2.3 The addictive degree-Kirchhoff index

Theorem 11. Let G be a connected graph with n nodes and
m edges. Then

K̄q,k =
(2(2q + 1)

q + 2

)k

K̄q,0 +
[(2(2q + 1)2

q + 2

)k

−
(2(2q + 1)

q + 2

)k]

(

K̂q,0

2
− 2(q + 2)m2 + (2q + 1)mn−m(q − 1)

3(2q + 1)

)

+
[

(2q + 1)2k −
(2(2q + 1)

q + 2

)k]m2(2q + 3)(6q + 11)

4(2q + 1)(2q + 5)

+
[(2(2q + 1)

q + 2

)k

− (2q + 1)k
]

(

m

2(2q + 1)
+

(q + 2)m(m− 2n+ 1)

3(2q + 1)

)

−
[(2(2q + 1)

q + 2

)k

− 1
] (m− 2n)(m − 2n+ 2)

12
.

Proof: By Theorem 7 and Eqs. (35) and (36), we obtain

K̄q,k =
2(2q + 1)

q + 2
K̄q,k−1 +

2q(2q + 1)

q + 2
K̂q,k−1

+ (mq,k−1)
2q(3q + 1)−mq,k−1q(2nq,k−1 − 1)

+
(5mq,k−1 − nq,k−1)(nq,k−1 − 1)q

q + 2

=
2(2q + 1)

q + 2
K̄q,k−1 +

2q(2q + 1)

q + 2
K̂q,k−1

+ (2q + 1)2k−2 3m
2q(4q2 + 8q + 3)

4(q + 2)

+ (2q + 1)k−1 mq

2(q + 2)

(

2q(m− 2n+ 1)− 5
)

− q

4(q + 2)
(m− 2n)(m− 2n+ 2).

(37)
Inserting Theorem 10 into Eq. (37) gives

K̄q,k =
2(2q + 1)

q + 2
K̄q,k−1 +

(2(2q + 1)2

q + 2

)k−1[2q(2q + 1)

q + 2
K̂q,0

− 4mq

3(q + 2)

(

2(q + 2)m+ (2q + 1)n− (q − 1)
)]

+ (2q + 1)2k−2m
2q(2q + 3)(6q + 11)

4(q + 2)

− (2q + 1)k−1

(

mq

2(q + 2)
+

mq(m− 2n+ 1)

3

)

− q

4(q + 2)
(m− 2n)(m − 2n+ 2).

(38)

Dividing both sides by
(
2(2q+1)

q+2

)k

, we obtain a geometric

sequence, which is solved to yield the result.

7.2.4 The Kirchhoff index

Theorem 12. Let G be a connected graph with n nodes and
m edges. Then

Kq,k

=
( 2

q + 2

)k

Kq,0 +
[(2(2q + 1)2

q + 2

)k

−
( 2

q + 2

)k]

( K̂q,0

16
− m2(q + 2)

12(2q + 1)
− mn

24
+

m(q − 1)

24(2q + 1)

)

+
[(2(2q + 1)

q + 2

)k

−
( 2

q + 2

)k]
(

K̄q,0

4
− K̂q,0

8

− m2(q + 2)(2q − 1)

6(2q + 1)(2q + 5)
+

m(2n(q − 1) − q + 4)

12(2q + 1)
− n(n− 1)

12

)

+
[

(2q + 1)2k −
( 2

q + 2

)k] m2(2q + 3)2

8(2q + 1)(2q + 5)

−
[

(2q + 1)k −
( 2

q + 2

)k]

(

m(4q2 + 12q + 11)(m− 2n)

12(2q + 1)(2q + 5)
+

m(4q2 + 18q + 23)

12(2q + 1)(2q + 5)

)

+
[( 2

q + 2

)k

− 1
] (m− 2n)(m− 2n+ 2)

24
.

Proof: By Theorems 8 and Eqs. (35) and (36), we obtain

Kq,k =
2

q + 2
Kq,k−1 +

q

q + 2
K̄q,k−1 +

q2

2(q + 2)
K̂q,k−1

+
(mq,k−1)

2q2

2
+

(2mq,k−1 − nq,k−1)(nq,k−1 − 1)q

2(q + 2)

=
2

q + 2
Kq,k−1 +

q

q + 2
K̄q,k−1 +

q2

2(q + 2)
K̂q,k−1

+ (2q + 1)2k−2m
2q(4q2 + 8q + 3)

8(q + 2)

− (2q + 1)k−1mq(m− 2n+ 3)

4(q + 2)

− q

8(q + 2)
(m− 2n)(m− 2n+ 2).

(39)
According to Theorems 10 and 11, Eq. (39) can be rewritten
as

Kq,k =
2

q + 2
Kq,k−1 +

(2(2q + 1)2

q + 2

)k−1
(

q(q + 1)

2(q + 2)
K̂q,0

− 2m2q(q + 1)

3(2q + 1)
− mnq(q + 1)

3(q + 2)
+

mq(q + 1)(q − 1)

3(q + 2)(2q + 1)

)

+
(2(2q + 1)

q + 2

)k−1
(

q

q + 2
K̄q,0 − q

2(q + 2)
K̂q,0

− 2m2q(2q − 1)

3(2q + 1)(2q + 5)
+

mq(2n(q − 1) − q + 4)

3(q + 2)(2q + 1)

− n(n− 1)q

3(q + 2)

)

+ (2q + 1)2k−2 m2q(2q + 3)4

8(q + 2)(2q + 1)(2q + 5)

− (2q + 1)k−1

(

mq(4q2 + 12q + 11)(m− 2n)

12(q + 2)(2q + 1)

+
mq(4q2 + 18q + 23)

12(q + 2)(2q + 1)

)

− q

24(q + 2)
(m− 2n)(m− 2n+ 2).

(40)

Dividing both sides by
(

2
q+2

)k

, we derive our result

through simple calculations.
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k = 2k = 0 k = 1

Fig. 1. Illustration of pseudofractal scale-free webs N1,0, N1,1, and
N1,2.

Our results in this section generalize those previously
obtained for triangulation graphs [46], but our computation
method is much easier.

7.3 Applications to pseudofractal scale-free webs

The family of pseudofractal scale-free webs [8] is a par-
ticular example of iterated q-triangulation graphs. They
are constructed in an iterative way. Let Nq,k, q ≥ 1 and
k ≥ 0, denote the pseudofractal scale-free webs after k
iterations. For k = 0, Nq,0 is the 3-node complete graph. For
k ≥ 1, Nq,k is obtained from Nq,k−1 by performing the q-
triangulation operation on Nq,k−1. Thus, the pseudofractal
scale-free webs are actually iterated q-triangulation graphs
Rq,k(G) when G is a 3-clique. Fig. 1 illustrates the first
several iterations for pseudofractal scale-free webs for a
particular case of q = 1.

In the sequel, we provide some properties of the pseud-
ofractal scale-free webs, using the results obtained in last
subsections.

For Nq,0, its adjacency matrix, diagonal degree matrix,
and normalized adjacency matrix are

A(Nq,0) =





0 1 1
1 0 1
1 1 0



 ,

D(Nq,0) =





2 0 0
0 2 0
0 0 2



 ,

and

P (Nq,0) =
1

2
A(Nq,0), (41)

respectively. The eigenvalues of P (Nq,0) are 1 and − 1
2 , with

their multiplicity being 1 and 2. Hence, by Lemmas 4 and 8,
the Kemeny constant and multiplicative degree-Kirchhoff

index for Nq,0 are K(Nq,0) = 4
3 and K̂(Nq,0) = 8, respec-

tively. Note that for the degree of each node in Nq,0 is 2. By
definition, for Nq,0, its additive degree-Kirchhoff index is
K̄(Nq,0) = 8, and its Kirchhoff index is K(Nq,0) = 2. Then,
by Theorems 9, 10, 11, and 12, we obtain the following exact
solutions to the Kemeny’s constant K(Nq,k), multiplicative

degree-Kirchhoff index K̂(Nq,k), additive degree-Kirchhoff
index K̄(Nq,k), and Kirchhoff index K(Nq,k) for Nq,k.

K(Nq,k) =
3(2q + 3)(2q + 1)k−1

2
− q + 4

2q + 1

(4q + 2

q + 2

)k

+
4q + 5

6(2q + 1)
.

(42)

K̂(Nq,k) =
9(2q + 3)

2q + 1
(2q + 1)2k − 6(q + 4)

2q + 1

(2(2q + 1)2

q + 2

)k

+ (4q + 5)(2q + 1)k−1
.

(43)

K̄(Nq,k) =
9(2q + 3)(6q + 11)

4(2q + 1)(2q + 5)
(2q + 1)2k

− 3(q + 4)

2q + 1

(2(2q + 1)2

q + 2

)k

+
3(q + 4)

2q + 5

(2(2q + 1)

q + 2

)k

+
4q + 5

2
(2q + 1)k−1 +

1

4
.

(44)

K(Nq,k) =
9(2q + 3)2

8(2q + 1)(2q + 5)
(2q + 1)2k

− 3(q + 4)

8(2q + 1)

(2(2q + 1)2

q + 2

)k

+
3(q + 4)

4(2q + 5)

(2(2q + 1)

q + 2

)k

+
(q + 1)(4q + 5)

2(2q + 5)
(2q + 1)k−1

+
5(q + 4)

8(2q + 5)

( 2

q + 2

)k

− 1

8
.

(45)

8 CONCLUSIONS

The q-triangulation operation is an natural extension of
traditional triangulation operation on a graph, which has
been successfully applied to generate complex networks. In
this paper, we presented an extensive study of various prop-
erties for q-triangulation graph Rq(G) of a simple connected
graph G, and obtained some interesting quantities of Rq(G),
which are expressed in terms of those associated with G.
For this purpose, we first deduced formulas for eigenvalues
and eigenvectors of normalized adjacency matrix of Rq(G).
Using these results, we then determined two-node hitting
time and two-node resistance distance for an arbitrary node
pair in Rq(G). Also, we obtained the Kemeny’s constant,
Kirchhoff index, multiplicative degree-Kirchhoff index, and
additive degree-Kirchhoff index for Rq(G). As an appli-
cation, we finally provided analytical formulas for some
related quantities of iterated q-triangulations for a graph
G, and obtained exact expressions for such quantities cor-
responding to pseudofractal scale-free webs, which mimic
well realistic networks with scale-free small-world proper-
ties.
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