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5/6-SUPERDIFFUSION OF ENERGY FOR COUPLED CHARGED

HARMONIC OSCILLATORS IN A MAGNETIC FIELD

KEIJI SAITO, MAKIKO SASADA, AND HAYATE SUDA

Abstract. We consider a one-dimensional infinite chain of coupled charged har-
monic oscillators in a magnetic field with a small stochastic perturbation of order
ǫ. We prove that for a space-time scale of order ǫ

−1 the density of energy dis-
tribution (Wigner distribution) evolves according to a linear phonon Boltzmann
equation. We also prove that an appropriately scaled limit of solutions of the lin-
ear phonon Boltzmann equation is a solution of the fractional diffusion equation
with exponent 5/6.

1. Introduction

There has been much progress during the past decades in the understanding of
superdiffusion in one dimensional systems with several conservation laws. Chains
of coupled oscillators are typical models showing superdiffusive transport of energy.
They are the one-dimensional Hamiltonian systems

⎧⎪⎪⎨⎪⎪⎩
d
dt
qx(t) = ∂vxH(vx(t), qx(t))

d
dt
vx(t) = −∂qxH(vx(t), qx(t)),

with Hamiltonian

H = ∑
x∈Z
(∣vx∣2

2
+ V (qx − qx+1)) .

Here vx(t) is the velocity of the oscillator x at time t and qx(t) is the displacement
from its equilibrium position of the oscillator x at time t. In the case where the
potential V is quadratic, the dynamics is linear and the chain is said to be har-
monic and otherwise anharmonic. The Fermi-Pasta-Ulam chain (FPU chain) has
possibly cubic and/or quartic terms in the potential. Super diffusion of energy and
the divergence of the corresponding thermal conductivity have been observed nu-
merically in the dynamics of FPU chains ([5],[12],[13]). Strong efforts are made to
identify the exponent of the divergence and the nature of superdiffusion in FPU
chains numerically and theoretically in recent years.

In an innovative article [15], Spohn discussed an asymptotic behavior of time-
dependent correlation functions of heat mode applying the method of fluctuating
hydrodynamics. His argument suggests that for general anharmonic chains the
macroscopic diffusion of energy is governed by the fractional diffusion equation

∂te(y, t) = −(−∆y) s2 e(y, t). (1.1)

Moreover, Spohn’s theory suggests that there are only two universality classes, s = 3
2

or 5
3
.

However, a rigorous mathematical analysis of the energy transport in the an-
harmonic chains is too hard to justify Spohn’s theory. Recently as an analytically
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tractable model, the harmonic chains of oscillators with a stochastic exchange of mo-
mentum between neighboring sites, which we call the momentum exchange model,
was introduced [1]. In [1] the authors prove the divergence of the thermal conductiv-
ity for this model and obtain an explicit exponent of the divergence of Green-Kubo
formula. To understand the nature of superdiffusion for this model, a weak noise
limit is studied in [2]. They show that in the weak noise limit the time evolution of
the local density of the energy is governed by the Boltzmann equation

∂tu(y, k, t) + 1

2π
ω′(k)∂yu(y, k, t) = (Lu)(y, k, t), (1.2)

(Lu)(y, k, t) = ∫
T

dk′ R(k, k′)(u(y, k′, t) − u(y, k, t)).
Here, the local density of energy u(y, k, t) depends on the position y ∈ R along the
chain, the wave number k ∈ T = [−1

2
, 1
2
) and time t ≥ 0. ω(k) is the dispersion

relation. Later in [9], it is shown that a properly scaled solution of the Boltzmann
equation (1.2) converges to the solution of the fractional diffusion equation (1.1) with
s = 3

2
. The main idea of the proof of this convergence is the following: Since the

scattering kernel R(k, k′) is positive, (1.2) can be interpreted as the forward equation
for the probability density of a Markov process (z(t), k(t)) on R × T. Applying
a limit theorem for additive functionals of Markov processes, the scaled process

N−
2

3 z(Nt) converges to a Lévy process generated by −(−∆) 34 (up to a constant).
By this two-step scaling limit, the 3/4-fractional diffusion equation is derived from
the momentum exchange model rigorously. Recently the 3/4-fractional diffusion
equation is derived by a direct limit (namely one-step scaling limit) in [10]. For a
variant of the momentum exchange model, a skew 3/4-fractional diffusion equation
is derived by a direct space-time scaling limit in [3].

Most recently in [14, 16] two of the authors introduced another variant of the
momentum exchange model which also shows the superdiffusive behavior of the
energy but the exponent of the divergence of Green-Kubo formula is different from
the original one. The model is a chain of coupled charged harmonic oscillators in a
magnetic field with a stochastic exchange of velocity between neighboring sites.

The goal of the present paper is to understand the nature of the superdiffusion
for this coupled charged harmonic chain of oscillators in a magnetic field with noise.
We apply the two-step scaling limits. Following the idea of [2], we first show as
Theorem 1 that in the weak noise limit the local density of energy is governed by
the phonon linear Boltzmann equation

∂tu(y, k, i, t) + 1

2π
ω′(k)∂yu(y, k, i, t) = Lu(y, k, i, t), (1.3)

Lu(y, k, i, t) = ∑
j=1,2
∫
T

dk′ R(k, i, k′, j)(u(y, k′, j, t) − u(y, k, i, t)).
Here, the local density of energy u(y, k, i, t) depends on position y ∈ R along the
chain, the wave number k ∈ T, the type of phonon i = 1,2 and time t ≥ 0. Then,
we consider a properly scaled solution of the Boltzmann equation (1.3) and show
that it converges to the solution of the fractional diffusion equation (1.1) with s = 5

3

as Theorem 2. This provides a first rigorous example of the 5/6-superdiffusion of
energy in a chain of oscillators.

A key ingredient of the proof of Theorem 2 is the scaling limit of an additive
functional of a Markov process as the prior work. Actually, since the scattering
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kernel R(k, i, k′, j) is positive, (1.3) can be interpreted as the time evolution of the
density for a Markov process (Z(t),K(t), I(t)) on R×T×{1,2}. Applying a general

limit theorem in [9], we show that the scaled process N−
3

5Z(Nt) converges to a Lévy

process generated by −(−∆) 56 (up to a constant) as Theorem 3.
The difference of the exponents between 3

4
(obtained in [9, 10] for the original

momentum exchange model) and 5
6
is explained by the asymptotic behavior of the

derivative of the dispersion relation ω′(k) and the mean value of the scattering kernel
R(k) = ∫TR(k, k′)dk′ as k → 0. (We abbreviate the term i, j.) Roughly speaking, if

ω′(k) ∼ ka, R(k) ∼ kb as k → 0

for some a, b ∈ N≥0, by applying the argument in [9] formally, one will obtain a Lévy

process generated by −(−∆) b+1
2(b−a) as a proper scaling limit if 0 < b+1

2(b−a) < 1 and by ∆

if b+1
2(b−a) ≥ 1. For the original momentum exchange model presented in [2] and [10]

ω′(k) ∼ 1, R(k) ∼ k2 as k → 0,

while in our model

ω′(k) ∼ k, R(k) ∼ k4 as k → 0.

In particular, our model has the vanishing sound speed since limk→0ω
′(k) = 0. To

be more precise, in our model R(k, i) = ∑2
j=1 ∫TR(k, i, k′, j)dk′ satisfies R(k,1) ∼ k2

and R(k,2) ∼ k4 (or R(k,2) ∼ k2 and R(k,1) ∼ k4 depending on the sign of the
magnetic field) and the latter dominates the macroscopic evolution. Note that for a
class of non-acoustic chains introduced in [11],

ω′(k) ∼ k, R(k) ∼ k2 as k → 0

and so its macroscopic evolution is diffusive.
A technically crucial idea of our proof of Theorem 1 is that we consider the micro-

scopic local density of energy, called the Wigner distribution in physics, associated
to the eigenvectors of the deterministic dynamics including the effect of the mag-
netic field. If we employ the classical wave functions which are the eigenvectors of
the harmonic Hamiltonian dynamics (without a magnetic field) and study its asso-
ciated Wigner distribution, then we obtain a system of Boltzmann equations as the
weak noise limit. However, so far we do not know how to rescale the solutions of
the system and derive the fractional diffusion equation from it. By employing the
modified wave functions, instead of the classical wave functions, we obtain a single
limiting Boltzmann equation which is much easier to analyze. This strategy can be
applied to derive the limiting equation from other Hamiltonian systems with some
energy-conservative external field.

Our paper is organized as follows: In Section 2 we prepare some notations. In
Section 3 we introduce our model, wave functions and its associated Wigner distri-
bution. Note that since we consider the infinite system, we need to define our model
in terms of wave functions to make the argument rigorous. In Section 4 we state
our main results, Theorem 1 and 2. We study a Markov process associated to our
Boltzmann equation and its scaling limit in Section 5. Proofs of Theorem 1 and 2
are given in Sections 6 and 7 respectively.
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2. Notations

Let T ≅ [−1
2
, 1
2
) be the one-dimensional torus. For f ∈ ℓ2(Z), we introduce the

discrete Laplacian ∆f ∶ Z→ R defined by

∆f(x) = f(x + 1) + f(x − 1) − 2f(x)
and its Fourier transform f̂ ∈ L2(T) defined by

f̂(k) = ∑
x∈Z

e−2π
√
−1kxf(x).

For functions f, g ∈ ℓ2(Z), the discrete convolution f ∗ g ∶ Z→ R is defined by

f ∗ g(x) = ∑
z∈Z

f(x − z)g(z).
For J ∶ R × T → C such that J(y, k) is rapidly decreasing in y ∈ R, we define

Ĵ ∶ R ×T→ C as

Ĵ(p, k) = ∫
R

dy e−2π
√
−1pyJ(y, k).

Let S be the space of rapidly decreasing functions on R ×T defined by

S = {J ∈ C∞(R × T,C) ; ∣J ∣m,n <∞ ∀m,n ∈ Z≥0}
where

∣J ∣m,n = sup
r,s≤m

sup
y∈R,k∈T

(1 + y2)n∣∂ry∂skJ(y, k)∣.
We introduce a norm ∣∣ ⋅ ∣∣ on S2 = S × S defined by

∣∣J ∣∣ = ∑
i=1,2
∫
R

dp sup
k

∣Ĵi(p, k)∣

for J = (J1, J2) ∈ S2 and define a topology on S2 induce by the norm ∣∣ ⋅ ∣∣.
By (S2)′ we denote the dual space of S2 equipped with the weak-∗ topology.
For two functions f(k) and g(k) defined on T or T∖{0}, we denote by f(k) ∼ g(k)

as k → 0 if there exists a constant C > 0 such that for all k whose absolute value is
small enough, 1

C
∣g(k)∣ ≤ ∣f(k)∣ ≤ C ∣g(k)∣.

3. The Dynamics

We consider the one-dimensional infinite chain of coupled charged harmonic os-
cillators in two-dimensional space with weak continuous noise. Since the dynamics
involves infinite number of particles, we give a formal description of the determinis-
tic dynamics in Section 3.1, a formal construction of the associated wave functions
in Section 3.2 and a formal description of the stochastic perturbation in Section
3.3. They are rigorous when we consider a finite chain. Then we present a proper
definition of the dynamics in Section 3.4. In Section 3.5 we introduce the Wigner
distribution associated to our wave functions.
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3.1. Deterministic dynamics. We consider a one-dimensional chain of oscillators
in a magnetic field. Our deterministic dynamics (vx(t),qx(t)) ∈ R2 ×R2 is formally
given as follows:

⎧⎪⎪
⎨
⎪⎪⎩

d
dt
qix = vix

d
dt
vix = [∆qi]x + δi,1Bv2x − δi,2Bv1x (3.1)

for x ∈ Z, i = 1,2 where B ∈ R ∖ {0} is the strength of the magnetic field.
The total energy E of the system is formally given by

E = ∑
i=1,2
∑
x∈Z
( ∣vix∣2

2
+ ∣qix − qix+1∣2

2
) .

We introduce operators A and G as follows:

A = ∑
i=1,2
∑
x∈Z
(vix∂qix + [∆qi]x∂vix),

G = ∑
x∈Z
(v2x∂v1x − v1x∂v2x).

Then our deterministic dynamics formally satisfies d
dt
f(v,q) = (A +BG)f(v,q) for

any smooth cylinder function f , that is, f depends on the configuration (v,q) only
through a finite set of coordinates.

Let α ∶ Z→ R be a function that α(0) = 2, α(1) = α(−1) = −1 and α(x) = 0, ∣x∣ ≥ 2.
Using this function, the total energy E and the operator A are also written as follows:

E = ∑
i=1,2

⎛⎝∑x∈Z
∣vix∣2
2
+ ∑

x,x′∈Z

α(x − x′)
2

qixq
i
x′
⎞⎠ ,

A = ∑
i=1,2

⎛⎝∑x∈Zvix∂qix − ∑x,x′∈Zα(x − x′)qix′∂vix
⎞⎠ .

Remark 3.1. Suppose that α∗ ∶ Z → R is a function satisfying the following condi-
tions (a.1) − (a.4).(a.1) α∗(x) ≠ 0 for some x ∈ Z.(a.2) α∗(x) = α∗(−x) for all x ∈ Z.(a.3) There exist some positive constants C1,C2 such that ∣α∗(x)∣ ≤ C1e

−C2∣x∣ for
all x ∈ Z.(a.4) α̂∗(k) > 0 for all k ≠ 0 , α̂∗(0) = 0, α̂∗′′(0) > 0.

We can consider the dynamics associated to α∗, or precisely that given by A∗+BG
where

A∗ = ∑
i=1,2

⎛⎝∑x∈Zvix∂qix − ∑x,x′∈Zα∗(x − x′)qix′∂vix
⎞⎠ .

Then, Theorem 1, 2, and 3 are generalized to this dynamics (with stochastic pertur-
bation) by replacing α with α∗. The generalization from α to α∗ is straightforward,
so we omit the proof.

3.2. Wave functions. To define our dynamics rigorously and then introduce the
Wigner distribution, we consider the Fourier transform of the configuration (v,q).

5



From the formal description of the dynamics (3.1), the time evolution of the deter-
ministic process (v̂(k, t), q̂(k, t)) should be given by

∂t

⎛⎜⎜⎜⎜⎝
q̂1(k, t)
q̂2(k, t)
v̂1(k, t)
v̂2(k, t)

⎞⎟⎟⎟⎟⎠
=M(k)

⎛⎜⎜⎜⎜⎝
q̂1(k, t)
q̂2(k, t)
v̂1(k, t)
v̂2(k, t)

⎞⎟⎟⎟⎟⎠
, (3.2)

M(k) =
⎛⎜⎜⎜⎝

0 0 1 0
0 0 0 1−α̂(k) 0 0 B

0 −α̂(k) −B 0

⎞⎟⎟⎟⎠ ,

for each k ∈ T where α̂(k) = 2−2cos 2πk. Note that the dynamics (3.2) is well-defined
for any initial condition (v̂(k,0), q̂(k,0)) for each k ∈ T.

We denote the eigenvalues of the matrix M(k) by {±√−1ωi(k), i = 1,2}, which
are explicitly given as

ω1(k) =
√
α̂(k) + B2

4
+ B

2
,

ω2(k) =
√
α̂(k) + B2

4
− B

2
.

Note that ωi(k), ω′i(k), i = 1,2 are bounded in k ∈ T and ω′1 = ω′2. Denote by
ω′(k) the common value of ω′i(k). We introduce the corresponding wave functions{ψ̂i(k, t); i = 1,2} given by

ψ̂1(k, t) = θ1(k)(v̂1(k, t) −√−1ω2(k)q̂1(k, t) +√−1v̂2(k, t) + ω2(k)q̂2(k, t)),
ψ̂2(k, t) = θ2(k)(v̂1(k, t) −√−1ω1(k)q̂1(k, t) −√−1v̂2(k, t) − ω1(k)q̂2(k, t)) (3.3)

with

θi(k) =
¿ÁÁÀ ωi(k)

ω1(k) + ω2(k) , i = 1,2.
ψ̂i(k) is the eigenfunction associated to the eigenvalue −√−1ωi(k) :

∂tψ̂i(k) = −√−1ωi(k)ψ̂i(k), i = 1,2.
We normalize ψ̂ by multiplying θi so that the total energy E is given by the integral
of the L2 norm of the wave functions as

E = 1

2
∫
T

dk (∣v̂1(k)∣2 + ∣v̂2(k)∣2 + α̂(k)(∣q̂1(k)∣2 + ∣q̂2(k)∣2))
= 1

2
∫
T

dk (∣ψ̂1(k)∣2 + ∣ψ̂2(k)∣2) .
6



By a direct computation we have

v̂1(k) = θ1(k)
2
(ψ̂1(k) + ψ̂1(−k)∗) + θ2(k)

2
(ψ̂2(k) + ψ̂2(−k)∗),

v̂2(k) = −
√−1θ1(k)

2
(ψ̂1(k) − ψ̂1(−k)∗) +

√−1θ2(k)
2

(ψ̂2(k) − ψ̂2(−k)∗),
q̂1(k) =

√−1θ1(k)
2ω1(k) (ψ̂1(k) − ψ̂1(−k)∗) +

√−1θ2(k)
2ω2(k) (ψ̂2(k) − ψ̂2(−k)∗),

q̂2(k) = θ1(k)
2ω1(k)(ψ̂1(k) + ψ̂1(−k)∗) − θ2(k)

2ω2(k)(ψ̂2(k) + ψ̂2(−k)∗). (3.4)

3.3. Stochastic perturbation. We consider a local stochastic perturbation of the
dynamics (3.1) which conserves the total energy. We introduce an operator S as
follows:

S = 1

2
∑
x∈Z
(Yx,x+1)2 = 1

4
∑
x∈Z

∑
z∈Z;∣x−z∣=1

(Yx,z)2,
Yx,z = (v2z − v2x)(∂v1z − ∂v1x) − (v1z − v1x)(∂v2z − ∂v2x).

We consider a Markov process (vx(t),qx(t)) generated by L ∶= A+BG+ǫγS. γ > 0 is
the strength of the stochastic noise and 0 < ǫ < 1 is a scale parameter. The dynamics
can be also given by the stochastic differential equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dqix = vixdt
dvix = (−[α ∗ qi]x + δi,1Bv2x − δi,2Bv1x + ǫγ[∆vi]x)dt+√ǫγ∑z;∣z−x∣=1(Yx,zvix)dwx,z,

(3.5)

for x ∈ Z, i = 1,2 where {wx,z(t) = wz,x(t);x, z ∈ Z, ∣z − x∣ = 1} are independent
standard Wiener processes on R. Note that L formally conserves the total energy
and the total pseudomomentum ∑x v

1
x − Bq2x,∑x v

2
x +Bq1x. For more details about

the conserved quantities, see [14].

Remark 3.2. This specific choice of noise is not important. Our proof is also
applicable for the velocity exchange noise used in [14] and yields the same scaling
limits. For the construction of this jump-type process, we can follow the argument
in Chapter 5 of [6].

3.4. Rigorous definition of the dynamics. In this subsection, we define the
dynamics rigorously. First, we calculate the time evolution of the wave functions
ψ̂i(k, t) obtained from the formal description (3.5):

dq̂i(k, t) = v̂i(k, t)dt , i = 1,2,
dv̂1(k, t) = (−α̂(k)q̂1(k, t) +Bv̂2(k, t) + ǫγβ̂(k)v̂1(k, t))dt

−√ǫγ ∫
T

r(k, k′)v̂2(k − k′, t)W (dk′, dt),
dv̂2(k, t) = (−α̂(k)q̂2(k, t) −Bv̂1(k, t) + ǫγβ̂(k)v̂2(k, t))dt

+√ǫγ ∫
T

r(k, k′)v̂1(k − k′, t)W (dk′, dt), (3.6)
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where

β̂(k) = 2cos 2πk − 2,
r(k, k′) = (e−2π√−1k′ − e−2π√−1k)(e2π√−1k − 1),
W (k, t) = ∑

x∈Z
wx,x+1(t)e−2π√−1kx.

The term with β̂(k) comes from the stochastic perturbation. In our case α̂(k) =−β̂(k), but in general (cf. Remark 3.1) there is no such relation between α̂ and β̂,

and so we keep α̂ and β̂ for the generalization. W is called a cylindrical Wiener
process on L

2(T). A precise derivation of (3.6) from (3.5) is given in Appendix A.
Combining (3.3) and (3.6) we have

dψ̂1(k, t) = (−√−1ω1(k)ψ̂1(k, t) + ǫγθ1(k)β(k)(θ1(k)ψ̂1(k, t) + θ2(k)ψ̂2(−k, t)∗))dt
+√−1θ1(k)√ǫγ ∫

T

r(k, k′)(θ1(k − k′)ψ̂1(k − k′, t) + θ2(k − k′)ψ̂2(k′ − k, t)∗)W (dk′, dt),
dψ̂2(k, t) = (−√−1ω2(k)ψ̂2(k, t) + ǫγθ2(k)β(k)(θ1(k)ψ̂1(−k, t)∗ + θ2(k)ψ̂2(k, t)))dt
−√−1θ2(k)√ǫγ ∫

T

r(k, k′)(θ1(k − k′)ψ̂1(k′ − k, t)∗ + θ2(k − k′)ψ̂2(k − k′, t))W (dk′, dt).
(3.7)

Now we define a stochastic process {ψ̂(⋅, t) ∈ (L2(T))2; t ≥ 0} as the unique solu-
tion of (3.7). We can show the existence of the solution by using a classical technique,
called a fixed-point theorem. For the sketch of the proof, see Appendix B. Once we
define the dynamics ψ̂(⋅, t) ∈ (L2(T))2, then we can also define v̂(k, t) by (3.4) and
then define a stochastic process {vx(t),ψ(x, t);x ∈ Z, t ≥ 0} by

vix(t) = ∫
T

dk e2π
√
−1kxv̂i(k, t),

ψi(x, t) = ∫
T

dk e2π
√
−1kxψ̂i(k, t)

for x ∈ Z, i = 1,2. On the other hand, q̂(⋅, t) is not necessarily well-defined as an
element of (L2(T))2 because ω2(k) ∼ k2 as k → 0 if B > 0 and ω1(k) ∼ k2 as k → 0 if
B < 0. Hence, qx(t) are also not necessarily well-defined. Hereafter we do not use
the variables qx.

3.5. Wigner distribution. Let Qǫ be a probability measure on (L2(T))2 which
satisfies the following condition:

K0 = sup
0<ǫ<1

∑
i=1,2

ǫ∫
T

dk EQǫ[∣ψ̂1(k)∣2 + ∣ψ̂2(k)∣2] < ∞. (3.8)

Denote by Eǫ the expectation with respect to the distribution of {ψ̂i(⋅, t)}t≥0 which
starts from Qǫ. In Appendix C, we show that

∑
i=1,2

Eǫ[∣∣ψ̂i(⋅, t)∣∣2L2
] = ∑

i=1,2
Eǫ[∣∣ψ̂i(⋅,0)∣∣2L2

]
for any t ≥ 0. In particular, under the condition (3.8)

sup
0<ǫ<1

∑
i=1,2

ǫ∫
T

dk Eǫ[∣ψ̂1(k, t)∣2 + ∣ψ̂2(k, t)∣2] =K0 < ∞ (3.9)

for any time t ≥ 0.
8



For the wave function ψ, we introduce the averaged Wigner function as in Section
3 of [2]. We denote the Wigner distribution on the time scale ǫ−1t by Ωǫ(t) with ǫ
the small semiclassical parameter. Namely, we define Ωǫ(t) ∈ (S2)′ by

< Ωǫ(t),J > = ∑
i=1,2
< Ωǫ

i(t), Ji >
for J = (J1, J2) ∈ S2 with

< Ωǫ
i(t), J >

= ǫ
2
∑

x,x′∈Z
Eǫ[ψi(x′, t

ǫ
)∗ψi(x, t

ǫ
)]∫

T

dk e2π
√
−1(x′−x)kJ( ǫ

2
(x + x′), k)∗

= ǫ
2
∫
R

dp∫
T

dk Eǫ[ψ̂i(k − ǫp
2
,
t

ǫ
)∗ ψ̂i(k + ǫp

2
,
t

ǫ
)]Ĵ(p, k)∗ (3.10)

for J ∈ S. By the Cauchy-Schwarz inequality and (3.9),
sup
0<ǫ<1

sup
t≥0
∣ < Ωǫ(t),J > ∣ ≤ 1

2
K0∣∣J ∣∣ (3.11)

under the condition (3.8).
Remark 3.3. As discussed in [2], Ωǫ(⋅) is well-defined on a wider class of test
functions than S2. In particular we can take J(y, k) = (J(k), J(k)) with a bounded
function J(k) on T, and then we have

< Ωǫ(t),J >= ǫ
2
∫
T

dk ∑
i=1,2

Eǫ[∣ψ̂i(k, t
ǫ
)∣2]J(k).

From this representation one can see that Ωǫ(⋅) is the distribution of the spectral
density of the energy. Also if we take J(y, k) = (J(y), J(y)) with a rapidly decreasing
function J(y) on R as a test function, then we have

< Ωǫ(t),J >= ǫ
2
∑
x∈Z
∑
i=1,2

Eǫ[∣ψi(x, t
ǫ
)∣2]J(ǫx).

This is the integral of J with respect to the averaged empirical measure of 1
2 ∑i=1,2 ∣ψi(x, tǫ)∣2.

Namely, Ωǫ(t) is a rescaled microscopic local spectral density.

4. Main results

As mentioned in the Introduction, the main purpose of the present paper is to
understand the nature of the superdiffusion for the coupled charged harmonic chain
of oscillators in a magnetic field with noise defined in the last section, and we apply
the two-step scaling limits. In Subsection 4.1, following the idea of [2], we claim that
in the weak noise limit the local density of energy is governed by a phonon linear
Boltzmann equation. In Subsection 4.2, we consider a properly scaled solution of
the Boltzmann equation and state that it converges to the solution of the fractional
diffusion equation (1.1) with s = 5

3
, which is our main result.

4.1. Boltzmann equation. In this subsection we state the limiting behavior of the
Wigner distribution.

Theorem 1. Suppose the condition (3.8) holds. If Ωǫ(0) converges to Ω0 in (S2)′
as ǫ → 0, then for all t ≥ 0, Ωǫ(t) converges to a vector-valued finite positive measure
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µ(t) = (µ1(t), µ2(t)) in (S2)′ as ǫ→ 0, which is the unique solution of the following
Boltzmann equation

⎧⎪⎪⎨⎪⎪⎩
∂t ∫ dµ(t) ⋅ J = 1

2π ∫ dµ(t) ⋅ ω′∂yJ + γ ∫ dµ(t) ⋅CJ∫ dµ(0) ⋅ J =< Ω0,J >, (4.1)

where

∫ dµ ⋅ J = ∑
i=1,2
∫
R×T

µi(dy, dk) Ji(y, k)∗ for µ = (µ1, µ2),
(CJ)i(x,k) = ∑

j=1,2
∫
T

dk′θi(k)2R(k, k′)θj(k′)2(Jj(x,k′) − Ji(x,k))
for J = (J1, J2) ∈ S2 with R(k, k′) = 16 sin2 πk sin2 πk′.
Remark 4.1. In the case B = 0, if we assume an additional assumption

lim
ρ→0

lim sup
ǫ→0

ǫ

2

2∑
i=1
∫∣k∣<ρ dk EQǫ[∣ψ̂i(k)∣2] = 0

on the initial measure Qǫ, the same statement of Theorem 1 holds. For this case,
the proof is essentially given in [2].

Remark 4.2. Suppose that the solution of (4.1) has the density u(y, k, i, t) for all
t ∈ [0, T ] , that is,

µi(t)(dy, dk) = u(y, k, i, t)dydk , i = 1,2,
µi(0)(dy, dk) = u0(y, k, i)dydk , i = 1,2.

Then u(y, k, i, t) is a weak solution of the linear Boltzmann equation

⎧⎪⎪⎨⎪⎪⎩
∂tu(y, k, i, t) + 1

2π
ω′(k)∂yu(y, k, i, t) = γLu(y, k, i, t)

u(y, k, i,0) = u0(y, k, i), (4.2)

where

Lu(y, k, i, t) = ∑
j=1,2
∫
T

dk′θi(k)2R(k, k′)θj(k′)2(u(y, k′, j, t) − u(y, k, i, t)).
We prove Theorem 1 in Section 6. The strategy of our proof is as follows: First

we derive a microscopic evolution equation of Ωǫ, which is not closed in terms of
Ωǫ. Then, with this expression of the time evolution, we show that for any fixed
T > 0, {Ωǫ(t),0 ≤ t ≤ T}0<ǫ<1 is sequentially compact in C([0, T ]; (S2)′) in a certain
weak-∗ sense. See its precise meaning in Section 6. We verify that any limit of
a convergent subsequence is extended to a vector-valued finite positive measure in
Appendix D. The uniqueness of the bounded solution of (4.1) in the class of vector-
valued finite positive measures is shown in Appendix E. Finally we show that any
limit of a convergent subsequence satisfies (4.1), which is a closed equation in terms
of µ. Summarizing the above we can show that (Ωǫ(⋅))ǫ is convergent and the limit
satisfies (4.1).
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4.2. Derivation of the 5
6
fractional diffusion equation. In this subsection we

study a macroscopic behavior of a solution of properly scaled Boltzmann equation
(4.2). Consider a spatially scaled linear Boltzmann equation with a scaling param-
eter N as ⎧⎪⎪⎨⎪⎪⎩

∂tu(y, k, i, t) + 1

N3/5
1
2π
ω′(k)∂yu(y, k, i, t) = γLu(y, k, i, t)

u(y, k, i,0) = u0(y, k, i), (4.3)

and denote its solution by uN .

Remark 4.3. For any given u0(y, k, i) ∈ C∞0 (R × T), i = 1,2, a solution of (4.2) is
constructed explicitly using a Markov process associated to the Boltzmann equation
in the next section. The uniqueness of solutions in a certain class follows from that
of (4.1). The argument also applies to (4.3) and so the existence and uniqueness of
uN follows.

Theorem 2. Suppose u0(y, k, i) ∈ C∞0 (R×T), i = 1,2. Define the initial local density
of energy at y ∈ R as ū0(y) = ∑i=1,2 ∫T×{1,2} dk u0(y, k, i). Then, for all y ∈ R, t ≥ 0,

lim
N→∞

∑
i=1,2
∫
T

dk ∣uN(y, k, i,Nt) − 1

2
ū(y, t)∣2 = 0,

where ū is a solution of ⎧⎪⎪⎨⎪⎪⎩
∂tū(y, t) = −D(−∆y) 56 ū(y, t)
ū(y,0) = ū0(y) (4.4)

and D =D(B,γ,α) is a positive constant such that

D = C ∣B∣− 1

3γ−
2

3 α̂′′(0)
with a universal constant C. In particular,

lim
N→∞

∣ ∑
i=1,2
∫
T

dk uN(y, k, i,Nt) − ū(y, t)∣2 = 0.
Remark 4.4. In the case B = 0, if we denote by uN(y, k, i, t) the solution of a scaled
linear Boltzmann equation⎧⎪⎪⎨⎪⎪⎩

∂tu(y, k, i, t) + 1

N2/3
1
2π
ω′(k)∂yu(y, k, i, t) = γLu(y, k, i, t)

u(y, k, i,0) = u0(y, k, i),
then for all y ∈ R, t ≥ 0,

lim
N→∞

∑
i=1,2
∫
T

dk ∣uN(y, k, i,Nt) − 1

2
ū(y, t)∣2 = 0

where ū is the solution of⎧⎪⎪⎨⎪⎪⎩
∂tū(y, t) = −D′(−∆y) 34 ū(y, t)
ū(y,0) = ū0(y).

and D′ =D′(γ,α) is a positive constant such that

D′ = C ′γ− 1

2 (α̂′′(0)) 34
with a universal constant C ′. The result is essentially proved in [9].
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For the proof, we follow the strategy of [9]. Namely, we consider a long-time
asymptotic behavior of a Markov process associated to the Boltzmann equation
(4.2) and then use a functional limit theorem for a continuous time random walk.
To apply a general theorem in [9], we need to check several conditions. This is the
main subject of the next section, where we conclude all the required conditions are
satisfied and then Theorem 3 on the asymptotic behavior of a Markov process is
obtained. We apply it to the study of the limit of uN and prove Theorem 2 in
Section 7.

5. Markov process associated to the Boltzmann equation

In this section we construct a solution of (4.2) probabilistically. We will see that
there exists a Markov process associated to (4.2) and study its long-time asymptotic
behavior.

Let {(Kn, In);n ∈ Z≥0} be a Markov chain on T × {1,2} whose transition proba-
bility is given by

P (k, i, dk′, j) = t(k, i)γθi(k)2R(k, k′)θj(k′)2dk′,
where

t(k, i) = [γθi(k)2R(k)]−1, R(k) = ∫
T

dk′R(k, k′).
Since R(k, k′) is a product of functions of k and k′, we have

P (k, i, dk′, j) = π(dk′, j)
where π(dk, di) is a reversible measure for this Markov chain given as

π(dk, di) = ∑
j=1,2

t(k, j)−1
γR

dkδ{j}(di), R = ∫
T

dk R(k).
In particular, {(Kn, In);n ≥ 1} is an i.i.d. sequence of random variables on T×{1,2}
with distribution π.

Now we construct a continuous time random walk generated by L. Let {τn, n ≥ 1}
be an i.i.d. sequence of random variables such that τ1 is exponentially distributed
with intensity 1 and {(Kn, In);n ∈ Z≥0} and {τn, n ≥ 1} are independent. Set tn ∶=∑n

m=1 t(Km−1, Im−1)τm, n ≥ 1, t0 = 0 and define a stochastic process (K(t), I(t)) as
K(t) = Kn, I(t) = In if t ∈ [tn, tn+1). Then, by the construction {(K(t), I(t))}t≥0 is
a continuous time random walk generated by L. With this process we can construct
an explicit solution of the equation (4.2) by

u(y, k, i, t) = E(k,i)[u0(Z(t),K(t), I(t))],
where

Z(t) = y + 1

2π ∫
t

0
ds ω′(K(s)),

and K(0) = k, I(0) = i. For this process, we have the following result.

Theorem 3. Suppose (K(0), I(0)) = (k, i) for some k ≠ 0 and i = 1 or 2. Then

as N → ∞, the finite-dimensional distribution of scaled processes {N− 3

5Z(Nt)}t≥0
converge weakly to a Lévy process generated by −D(−∆y) 56 , where D =D(B,γ,α) is
a positive constant such that

D = C ∣B∣− 1

3 γ−
2

3 α̂′′(0),
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and C is a positive constant which does not depend on B, γ, α.

Remark 5.1. In the case of B = 0,the finite-dimensional distribution of scaled pro-

cesses {N− 2

3Z(Nt); t ≥ 0} converge weakly to a Lévy process generated by −D′(−∆y) 34 ,
where D′ =D′(γ,α) is a positive constant such that

D′ = C ′γ− 1

2 (α̂′′(0)) 34 ,
and C ′ is a positive constant which does not depend on γ, α. It is essentially shown
in [9].

5.1. Proof of Theorem 3. We apply [9, Theorem 2.8 (i)] to our process with
α = 5

3
. For this, it is enough to show that Conditions 2.1, 2.2, 2.3 and (2.12) of [9]

are satisfied.
First we verify that Condition 2.1 is satisfied. Define

Ψ(k, i) = ω′(k)t(k, i).
The tail of Ψ under π is

π({(k, i);Ψ(k, i) ≥ λ}) = ∑
i=1,2
∫{k;Ψ(k,i)≥λ} dk

θi(k)2R(k)
R

= C ∣B∣− 1

3γ−
5

3 α̂′′(0)λ− 5

3 (1 +O(λ− 4

3 )),
as λ→∞ because

θ1(k)2 ∼ 1, and θ2(k)2 ∼ α̂′′(0)k2∣B∣2 as k → 0 if B > 0
θ1(k)2 ∼ α̂′′(0)k2∣B∣2 and θ2(k)2 ∼ 1as k → 0 if B < 0

and

ω′(k) ∼ α̂(0)′′k∣B∣ , R(k) ∼ k2 as k → 0.

C is a positive constant which does not depend on B,γ,α. Ψ is odd for k and the
density of π(⋅, i) with respect to the Lebesgue measure is even for k, so

π({(k, i);Ψ(k, i) ≥ λ}) = π({(k, i);Ψ(k, i) ≤ −λ})
and ∫ Ψdπ = 0.

Next we check Condition 2.2. It is obvious that

sup{∣∣Pf ∣∣L2(π);∫ dπ f = 0, ∣∣f ∣∣L2(π) = 1} = 0
because Pf = ∫ dπ f .

Finally we show that Condition 2.3 and (2.12) hold. Condition 2.3 is obviously
satisfied with Q ≡ 0 and p ≡ 1. Also, we have

∣∣PΨ∣∣2
L2(π) = ∑

i=1,2
∫
T

dk
⎛⎝ ∑j=1,2∫T dk′Ψ(k′, j)

t(k′, j)−1
γR

⎞⎠
2

t(k, i)−1
γR

= ∑
i=1,2
∫
T

dk
⎛⎝ ∑j=1,2∫T dk′

ω′(k′)
γR

⎞⎠
2

t(k, i)−1
γR

<∞.
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Therefore, by [9, Theorem 2.8 (i)], the finite-dimensional distributions of the

scaled process {N− 3

5Z(Nt)}t≥0 under Pπ converge to a stable process with exponent
5
3
whose characteristic function at time 1, denoted by φ(x) is

φ(x) = exp (∫
R

dλ e
√
−1λxc∗(λ)∣λ∣− 8

3 ),
where

c∗(λ) = 5C ∣B∣− 1

3 γ−
5

3 α̂′′(0)A 5

3

t̄

for all λ ≠ 0, C is a positive constant appeared in the tail estimate of Ψ and

A 5

3

= ∫ ∞

0
dy e−yy

5

3 ,

t̄ = ∫ dπ t(k, i) = 1

2γ
.

Finally we show that the finite-dimensional distributions of {N− 3

5Z(Nt); t ≥ 0}
under P(k,i) also converge to the same stable process for k ∈ T ∖ {0}, i = 1,2. For
t ≥ 0 define n(t) as the nonnegative integer such that

tn(t) ≤ t < tn(t)+1.
Then we have

N−
3

5Z(Nt) = N− 3

5

n(Nt)∑
n=0

Ψ(Kn, In)τn+1.
If k ≠ 0 then N−

3

5Ψ(k, i)τ1 → 0 as N → ∞ P(k,i) - almost surely. Moreover, un-
der P(k,i), the distribution of {(Kn, In)}n≥1 is an i.i.d. sequence with distribution
π. By Theorem 6.1 and Lemma 6.2 of [9], the finite-dimensional distributions of{N− 3

5 ∑n(Nt)
n=1 Ψ(Kn, In)τn+1; t ≥ 0} under P(k,i) converge to the stable process, so the

finite-dimensional distributions of {N− 3

5Z(Nt); t ≥ 0} under P(k,i) also converge to
the same stable process if k ≠ 0.

6. Proof of the Theorem 1.

To simplify the notation, we define functions Ω̂ǫ
i+(t)(p, k), Γ̂ǫ

i+(t)(p, k) on R × T
by

Ω̂ǫ
i+(t)(p, k) = ǫ2Eǫ[ψ̂i(k − ǫp

2
,
t

ǫ
)∗ ψ̂i(k + ǫp

2
,
t

ǫ
)],

Γ̂ǫ
i+(t)(p, k) = ǫ2Eǫ[ψ̂i(−k + ǫp

2
,
t

ǫ
) ψ̂i∗(k + ǫp

2
,
t

ǫ
)]

for i = 1,2 where i∗ = 3− i. We use the notation i∗ throughout the rest of the paper.
We also define Ω̂ǫ

i−(t)(p, k), Γ̂ǫ
i−(t)(p, k) as

Ω̂ǫ
i−(t)(p, k) = Ω̂ǫ

i+(t)(p,−k),
Γ̂ǫ
i−(t)(p, k) = Γ̂ǫ

i+(t)∗(−p, k).
Note that for all p ∈ R these functions satisfy

∣∣Ω̂ǫ
i ι
(t)(p, ⋅)∣∣L1(T) ≤ 1

2
K0, ∣∣Γ̂ǫ

i ι
(t)(p, ⋅)∣∣L1(T) ≤ 1

2
K0
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for i = 1,2, ι = +,− under the condition (3.8). With this notation, Wigner distribu-
tion is rewritten as

< Ωǫ(t),J > = ∑
i=1,2
∫
R

dp∫
T

dk Ω̂ǫ
i+(t)(p, k)Ĵi(p, k)∗. (6.1)

From now on we will show that the time evolution of Ωǫ(⋅) satisfies the following
equation

∂t < Ωǫ(t),J >
= 1

2π
< Ωǫ(t), ω′(k)∂yJ > +γ < Ωǫ(t),CJ >

+ γ(< Γǫ(t),C ′J > + < (Γǫ)∗(t),C ′J >) +OJ(ǫ) (6.2)

for J ∈ S2 where

< Γǫ(t),J > = ∑
i=1,2
∫
R

dp∫
T

dk Γ̂ǫ
i+(t)(p, k)Ĵi(p, k)∗,

< (Γǫ)∗(t),J > = ∑
i=1,2
∫
R

dp∫
T

dk Γ̂ǫ
i−(t)(p, k)Ĵi(p, k)∗ (6.3)

and

(C ′J)i(p, k) = ∫
T

dk′ θ1(k)θ2(k)R(k, k′)θ2i∗(k′)Ji∗(p, k′) + β̂(k)θ1(k)θ2(k)Ji(p, k).
Here, OJ(ǫ) is a term which satisfies

OJ(ǫ)
ǫ
≤ CJ

for all 0 < ǫ < 1 with a positive constant CJ which depends on J .
By (3.7) the time evolution of Ω̂ǫ

i+(t)(p, k) is
∂tΩ̂ǫ

i+(t)(p, k)
= −√−1

ǫ
(ωi(k + ǫp

2
) − ωi(k − ǫp

2
))Ω̂ǫ

i+(t)(p, k)
+ γ(β̂(k + ǫp

2
)θ2i (k + ǫp2 ) + β̂(k − ǫp2 )θ2i (k − ǫp2 ))Ω̂ǫ

i+(t)(p, k)
+ γβ̂(k + ǫp

2
)θi(k + ǫp

2
)θi∗(k + ǫp

2
)Γ̂ǫ

i∗−(t)(p, k)
+ γβ̂(k − ǫp

2
)θi(k − ǫp

2
)θi∗(k − ǫp

2
)Γ̂ǫ

i∗+(t)(p, k)
+ γθi(k − ǫp

2
)θi(k + ǫp

2
)∫

T

dk′Rǫp(k, k′)
× [θi(k′ − ǫp

2
)θi(k′ + ǫp

2
)Ω̂ǫ

i+(t)(p, k′) + θi∗(k′ − ǫp2 )θi∗(k′ + ǫp2 )Ω̂ǫ
i∗+(t)(p, k′))

+ θi(k′ − ǫp
2
)θi∗(k′ + ǫp

2
)Γ̂ǫ

i∗−(t)(p, k′) + θi(k′ + ǫp2 )θi∗(k′ − ǫp2 )Γ̂ǫ
i∗+(t)(p, k′)],

(6.4)

where

Rǫp(k, k′) = 16 sin (k + ǫp
2
) sin (k − ǫp

2
) sin (k′ + ǫp

2
) sin (k′ − ǫp

2
).

For the derivation of (6.4), see Appendix F.
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Since β̂, θi and ωi are smooth on T, the term (6.4) is rewritten as

∂tΩ̂ǫ
i+(t)(p, k)

= −√−1pω′i(k)Ω̂ǫ
i+(t)(p, k) + 2γβ̂(k)θ2i (k)Ω̂ǫ

i+(t)(p, k)+ γβ̂(k)θi(k)θi∗(k)(Γ̂ǫ
i∗−(t)(p, k) + Γ̂ǫ

i∗+(t)(p, k))
+ γθ2i (k)∫

T

dk′R(k, k′)[θ2i (k′)Ω̂ǫ
i+(t)(p, k′) + θ2i∗(k′)Ω̂ǫ

i∗+(t)(p, k′)
+ θi(k′)θi∗(k′)Γ̂ǫ

i∗−(t)(p, k′) + θi(k′)θi∗(k′)Γ̂ǫ
i∗+(t)(p, k′)] +Ri(p, k), (6.5)

where Ri, i = 1,2 are the remainder terms and these satisfy

∣∣Ri(p, ⋅)∣∣L1(T) ≤ C(T,B,γ,α,K0)∣p∣ǫ
for all p ∈ R. Then for any J ∈ S2,

∫
R

dp∫
T

dk Ri(p, k)Ĵi(p, k)∗ = OJ(ǫ). (6.6)

Combining (6.1), (6.3), (6.5) and (6.6) with the relation ∫T dk′R(k, k′) = −2β̂(k), we
conclude that (6.2) holds.

From (3.11) and (6.2), for any fixed T > 0 and J ∈ S2, {< Ωǫ(⋅),J >}0<ǫ<1 ⊂
C([0, T ],C) is uniformly bounded and equicontinuous. Hence, for each J ∈ S2,
there exists a subsequence ǫN ↓ 0 such that < ΩǫN (⋅),J > converges to a function in
C([0, T ],C) uniformly as N →∞. Since S2 is separable, there is a dense countable

subset {J (m);m ∈ N} of S2 and by the diagonal argument we can find a sequence

ǫN ↓ 0 such that < ΩǫN (⋅),J (m) > converges for all m ∈ N. Now, we show that for
all J ∈ S2, < ΩǫN (⋅),J > converges uniformly to a continuous function as N → ∞.

Fix J ∈ S2 and δ > 0. Since {J (m);m ∈ N} is dense we can take some J (l) so that∣∣J −J (l)∣∣ < δ. Then for any n,m ∈ N we have

sup
t∈[0,T ]

∣ < Ωǫn(t),J > − < Ωǫm(t),J > ∣
≤ sup

t∈[0,T ]
∣ < Ωǫn(t),J > − < Ωǫn(t),J (l) > ∣

+ sup
t∈[0,T ]

∣ < Ωǫn(t),J (l) > − < Ωǫm(t),J (l) > ∣
+ sup

t∈[0,T ]
∣ < Ωǫm)(t),J (l) > − < Ωǫm(t),J > ∣

≤K0δ + sup
t∈[0,T ]

∣ < Ωǫn(t),J (l) > − < Ωǫm(t),J (l) > ∣.
by (3.11). Hence, for sufficiently large n,m,

sup
t∈[0,T ]

∣ < Ωǫn(t),J > − < Ωǫm(t),J > ∣ ≤ (1 +K0)δ
and so < ΩǫN (⋅),J > converges uniformly.

In Appendix D, we prove that for any t ≥ 0, any limit of a weak-* convergent
subsequence of {Ωǫ(t)}ǫ can be extended to a vector-valued finite positive measures
on R×T. The uniqueness of solutions of the equation (4.1) is shown in Appendix E.

Hence, noting that ω′(k)∂yJ ,CJ ,C ′J ∈ S2 for any J ∈ S2, by (6.2) and the
following lemma we conclude the proof of Theorem 1.
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Lemma 6.1. For any T > 0 and J ∈ S2,

lim
ǫ→0
∣∫ T

0
dt < Γǫ(t),J > ∣ = 0,

lim
ǫ→0
∣∫ T

0
dt < (Γǫ)∗(t),J > ∣ = 0.

Proof. By (3.7) the time evolution of Γ̂ǫ
i+(t)(p, k), i = 1,2 is

∂tΓ̂ǫ
i+(t)(p, k)

= −√−1
ǫ
(ωi(k − ǫp

2
) + ωi∗(k + ǫp

2
))Γ̂ǫ

i+(t)(p, k)
+ γ(β̂(k − ǫp

2
)θ2i (k − ǫp2 ) + β̂(k + ǫp2 )θ2i∗(k + ǫp2 ))Γ̂ǫ

i+(t)(p, k)
+ γβ̂(k + ǫp

2
)θi(k + ǫp

2
)θi∗(k + ǫp

2
)Ω̂ǫ

i−(t)(p, k)
+ γβ̂(k − ǫp

2
)θi(k − ǫp

2
)θi∗(k − ǫp

2
)Ω̂ǫ

i∗+(t)(p, k)
+ γθi(k − ǫp

2
)θi∗(k + ǫp

2
)∫

T

dk′Rǫp(k, k′)
× [θi(k′ − ǫp

2
)θi(k′ + ǫp

2
)Ω̂ǫ

i+(t)(p, k′) + θi∗(k′ − ǫp2 )θi∗(k′ + ǫp2 )Ω̂ǫ
i∗+(t)(p, k′))

+ θi(k′ − ǫp
2
)θi∗(k′ + ǫp

2
)Γ̂ǫ

i+(t)(p, k′) + θi(k′ + ǫp2 )θi∗(k′ − ǫp2 )Γ̂ǫ
i−(t)(p, k′)].

Since β̂, θi and ωi are smooth on T, the above term is rewritten as

∂tΓ̂
ǫ
i+(t)(p, k)

= −√−1
ǫ
(ωi(k) + ωi∗(k))Γ̂ǫ

i+(t)(p, k) + γ(β̂(k)θ2i (k) + β̂(k)θ2i∗(k))Γ̂ǫ
i+(t)(p, k)

+ γβ̂(k)θi(k)θi∗(k)Ω̂ǫ
i−(t)(p, k) + γβ̂(k)θi(k)θi∗(k)Ω̂ǫ

i∗+(t)(p, k)
+ γθi(k)θi∗(k)∫

T

dk′R(k, k′)[θ2i (k′)Ω̂ǫ
i+(t)(p, k′) + θ2i∗(k′)Ω̂ǫ

i∗+(t)(p, k′))
+ θi(k′)θi∗(k′)Γ̂ǫ

i+(t)(p, k′) + θi(k′)θi∗(k′)Γ̂ǫ
i−(t)(p, k′)] +Ri+2(p, k) (6.7)

for i = 1,2 where Ri, i = 3,4 are the remainder terms which satisfy

∣∣Ri(p, ⋅)∣∣L1(T) ≤ C(T,B,γ,α,K0)∣p∣(1 + ǫ) (6.8)

for all p ∈ R. Hence, for any J ∈ S2 and i = 1,2,
∫
R

dp∫
T

dk Ri+2(p, k)Ĵi(p, k)∗ = OJ(1).
Combining (6.1), (6.7) and (6.8) we have

∂t < Γǫ(t),J >
= −√−1

ǫ
< Γǫ, (ω1 + ω2)J > + < Ωǫ,R′J > + < Ωǫ,R′J t > + < Γǫ,R′′J >

+ < (Γǫ)∗,R′′J > + < Ωǫ, β′J t > + < (Ωǫ)∗, β′J > + < Γǫ, βJ > + OJ(1),
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where J t = (J2, J1) and
< (Ωǫ)∗(t),J >= ∑

i=1,2
∫
R

dp∫
T

dk Ω̂ǫ
i−(t)(p, k)Ĵi(p, k)∗,

β′(k) = θ1(k)θ2(k)β(k),
(R′J)i(p, k) = ∫

T

dk′θi(k)2R(k, k′)θ1(k′)θ2(k′)Ji(p, k′),
(R′′J)i(p, k) = ∫

T

dk′θ1(k)θ2(k)R(k, k′)θ1(k′)θ2(k′)Ji(p, k′).
Therefore, we have

lim
ǫ→0
∣∫ T

0
dt < Γǫ(t), (ω1 + ω2)J > ∣ = 0

for all J ∈ S2. Since ω1(k) + ω2(k) is uniformly bounded by positive constants from
above and below, (ω1 + ω2)−1J ∈ S2 for all J ∈ S2. Hence we conclude that

lim
ǫ→0
∣∫ T

0
dt < Γǫ(t),J > ∣ = 0

for all J ∈ S2.
For (Γǫ)∗ we can apply the same proof.

�

7. Proof of Theorem 2.

We use the Markov chain (K(t), I(t)) introduced in Section 5. First note that
for any u0 ∈ C∞0 (R ×T × {1,2}),

uN(y, k, i, t) = E(k,i)[u0(ZN(t),K(t), I(t))].
where

ZN(t) = y + 1

2πN
3

5

∫ t

0
ds ω′(K(s)).

Then, by using the Fourier transform we can write

uN(y, k, i,Nt) = E(k,i)[u0(ZN(Nt),K(Nt), I(Nt))]
= ∑

x∈Z
∫
R

dp ∑
j=1,2

ũ0(p,x, j)E(k,i)[e√−1pZN(Nt)e
√
−1xK(Nt)1{I(Nt)=j}],

where ũ(p,x, i) is the Fourier transform of u(y, k, i). Denote by di the counting
measure on {1,2}. Let P t, t ≥ 0 be the semigroup generated by L. Since 1

2
dkdi is

a reversible probability measure of the process {(K(t), I(t))}t≥0 and 0 is a simple
eigenvalue for the generator L, we have

lim
t→∞
∣∣P tf ∣∣L2(T×{1,2}) = 0

for any f ∈ L2(T×{1,2}) satisfying ∫T×{1,2} dkdif(k, i) = 0 by the ergodicity and the

reversibility (cf. Theorem 1.6.1, 1.6.3 and Exercise 4.7.2 of [7]). Let {mN}N∈N be
an increasing sequence of positive numbers such that

lim
N→∞

mN =∞,
lim
N→∞

mNN
− 3

5 = 0.
18



Then for any t ≥ 0, p ∈ R, x ∈ Z and j = 1,2
∣E(k,i)[e√−1pZN(Nt)e

√
−1xK(Nt)1{I(Nt)=j}] − E(k,i)[e√−1pZN(Nt−mN t)e

√
−1xK(Nt)1{I(Nt)=j}]∣

≤ E(k,i)[∣1 − e√−1p(ZN(Nt)−ZN (Nt−mN t))∣]
≤ E(k,i)[∣p(ZN(Nt) −ZN(Nt −mN t))∣]
since ∣1 − e√−1a∣ ≤ ∣a∣ for any a ∈ R. The last expression converges to 0 as N → ∞
since

E(k,i)[∣p(ZN(Nt) −ZN(Nt −mN t))∣] = E(k,i)[∣p 1

2πN
3

5

∫ Nt

Nt−mN t
ds ω′(K(s))∣]

≤ ∥ω′∥∞t∣p∣mNN
− 3

5 → 0

where ∥ω′∥∞ = supk ∣ω′(k)∣. By the Markov property

E(k,i)[e√−1pZN(Nt−mN t)e
√
−1xK(Nt)1{I(Nt)=j}]

= E(k,i)[e√−1pZN(Nt−mN t)
E(K(Nt−mN t),I(Nt−mN t))[e√−1xK(mN t)1{I(mN t)=j}]].

By the Schwarz’s inequality,

∣E(k,i)[e√−1pZN(Nt−mN t)
E(K(Nt−mN t),I(Nt−mN t))[e√−1xK(mN t)1{I(mN t)=j}]]

− E(k,i)[e√−1pZN(Nt−mN t)
E(K(Nt−mN t),I(Nt−mN t))[1

2
∫
T

dk′e
√
−1xk′]]∣

≤ E(k,i)[∣E(K(Nt−mN t),I(Nt−mN t))[e√−1xK(mN t)1{I(mN t)=j} − 1

2
∫
T

dk′e
√
−1xk′]∣2] 12 .

(7.1)

Let g(k, i) = e√−1xk1{j}(i)− 1
2 ∫T dk′e

√
−1xk′ . Since 1

2
dkdi is the reversible probability

measure we have

∫
T×{1,2}

dkdi E(k,i)[∣E(K(Nt−mN t),I(Nt−mN t))[e√−1xK(mN t)1{I(mN t)=j} − 1

2
∫
T

dk′e
√
−1xk′]∣2]

= ∣∣PmN tg∣∣2
L2(T×{1,2}).

Hence we conclude that (7.1) converges to 0 in L
2(T × {1,2}) as N → ∞ since

∫T×{1,2} dkdi g(k, i) = 0.
Summarizing the above and applying the dominated convergence theorem, we

have

lim
N→∞∫T×{1,2} dkdi∑x∈Z∫R dp ∑j=1,2 ∣ũ0(p,x, j)∣
× ∣E(k,i)[e√−1pZN(Nt)e

√
−1xK(Nt)1{I(Nt)=j}] − E(k,i)[e√−1pZN(Nt−mN t) 1

2
∫
T

dk′e
√
−1xk′]∣2

= 0.
Note that

∑
x∈Z
∫
R

dp ∑
j=1,2

ũ0(p,x, j)E(k,i)[e√−1pZN(Nt−mN t) 1

2 ∫T dk′e
√
−1xk′]

= E(k,i)[1
2
∫
T×{1,2}

dk′dj u0(ZN(Nt −mN t), k′, j)],
= 1

2
E(k,i)[ū0(ZN(Nt −mN t))].
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By Theorem 3, ZN(Nt − mN t) converges to a Lévy process starting from y and

generated by D(−∆y) 56 and so the last term converges to ū(y, t) given in (4.4) for
k ≠ 0, i = 1,2. Therefore,

1

2
E(k,i)[ū0(ZN(Nt −mN t))]→ 1

2
ū(y, t) a.e.

and by the dominated convergence theorem,

lim sup
N→∞

∫
T×{1,2}

dkdi∣uN (y, k, i,Nt) − 1

2
ū(y, t)∣2

≤ lim sup
N→∞

∫
T×{1,2}

dkdi∣uN (y, k, i,Nt) − 1

2
E(k,i)[ū0(ZN(Nt −mN t))]∣2.

Applying the Fourier transform, the last term is bounded from above by

limsup
N→∞

⎛⎝∑x∈Z∫R dp ∑j=1,2 ∣ũ0(p,x, j)∣
⎞⎠∫T×{1,2} dkdi∑x∈Z∫R dp ∑j=1,2 ∣ũ0(p,x, j)∣

× ∣E(k,i)[e√−1pZN(Nt)e
√
−1xK(Nt)1{I(Nt)=j}] −E(k,i)[e√−1pZN(Nt−mN t) 1

2
∫
T

dk′e
√
−1xk′]∣2

and so we complete the proof.
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Appendix A. Derivation of (3.6)

We only consider the time evolution of v̂1(k, t). By the same calculation one can
get the time evolution of v̂2(k, t). From (3.5) we have

dv̂1(k, t) = ∑
x∈Z

e−2π
√
−1kxdv1(x, t)

= (−α̂(k)q̂1(k, t) +Bv̂2(k, t) + ǫγβ̂(k)v̂1(k, t))dt
+√ǫγ∑

x∈Z
∑

z;∣z−x∣=1
e−2π

√
−1kx(Yx,zv1(x, t))dwx,z .

Now we compute the last term. By summation by parts we have

−∑
x∈Z

∑
z;∣z−x∣=1

e−2π
√
−1kx(Yx,zv1(x, t))dwx,z

= ∑
x∈Z
∑
z∈Z

h(z)v2(x + z)e−2π√−1k(x+z)dwx,x+1,

where h ∶ Z→ Z is defined as

h(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e2π
√
−1k − 1, z = 1

e−2π
√
−1k − 1, z = 0

0, z ≠ 0,1.
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By the change of variables, the last term is rewritten as

∑
x∈Z
∑
z∈Z

h(z)v2(x + z)e−2π√−1k(x+z)dwx,x+1

= ∑
x∈Z
∑
x′∈Z

h(x′ − x)v2(x′)e−2π√−1kx′dwx,x+1

= ∑
x,x′∈Z

(∫
T

dk′e2π
√
−1k′(x′−x)∑

y∈Z
e−2π

√
−1k′yh(y))v2(x′)e−2π√−1kx′dwx,x+1,

and

∑
y∈Z

e−2π
√
−1k′yh(y) = e−2π√−1k − 1 + e−2π√−1k′(e2π√−1k − 1)

= (e−2π√−1k′ − e−2π√−1k)(e2π√−1k − 1)
= r(k, k′).

Therefore we have (3.6).
Appendix B. Existence and uniqueness of the solution of (3.7)

We follow the strategy of [4] to show the existence by classical fixed point theorem.
First we prepare some notations. We introduce a norm on (L2(T))2 defined as

∣∣f ∣∣2(L2(T))2 = ∣∣f1∣∣2L2(T) + ∣∣f2∣∣2L2(T)

for f = (f1, f2) ∈ (L2(T))2. Let (E,F ,P) be a probability space and W be a cylin-
drical Wiener process on (E,F ,P). Fix T > 0. Denote by (H, ∣∣ ⋅ ∣∣H) the Banach
space of (L2(T))2-valued measurable processes f(k, t), k ∈ T, t ∈ [0, T ] such that

∣∣f ∣∣H = ( sup
t∈[0,T ]

E[∣∣f(⋅, t)∣∣2(L2(T))2]) 12 <∞,
where two processes are identified if they are P × dt almost surely equal.

Next we rewrite (3.7) as

d(ψ̂1(k, t)
ψ̂2(k, t)) = A1(ψ̂(⋅, t))(k)dt +A2(k′)(ψ̂(⋅, t))(k)W (dk′, dt),

where A1 and A2(k′), k′ ∈ T are bounded linear operators on (L2(T))2 defined as

A1(f)(k) = ({−
√−1ω1(k) + ǫγβ(k)θ1(k)2}f1(k) + ǫγβ(k)θ1(k)θ2(k)f∗2 (k)

ǫγβ(k)θ1(k)θ2(k)f∗1 (k) + {−√−1ω2(k) + ǫγβ(k)θ2(k)2}f2(k)) ,
A2(k′)(f)(k) = (r(k, k′)(θ1(k − k′)f1(k − k′) + θ2(k − k′)f∗2 (k′ − k))r(k, k′)(θ1(k − k′)f∗1 (k′ − k) + θ2(k − k′)f2(k − k′)))

for f = (f1, f2) ∈ (L2(T))2. Fix ψ̂0 ∈ (L2(T))2. We define a functional I ∶H →H as

I(f)t = ψ̂0 +∫[0,t]A1(f(⋅, s))ds +∫[0,t]A2(k′)(f(⋅, s))W (dk′, ds).
For sufficiently small T > 0, I is contractive and so there exists the unique fixed point
ψ̂ ∈ H such that I(ψ̂) = ψ̂. In this way we can construct a solution on the time
interval [0, T ], and then we can construct a solution on the time interval [T,2T ] by
the same argument and so on.
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Finally we check the uniqueness of the solution in the sense of the distribution.
Suppose that f (1) and f (2) ∈ H are two solutions of (3.7) with a same initial condition.
By the Cauchy-Schwarz inequality and the boundedness of A1 and A2, we have

E[∣∣f (1)(⋅, t) − f (2)(⋅, t)∣∣2(L2(T))2]
≤ C(T )∫[0,t] ds E[∣∣f (1)(⋅, s) − f (2)(⋅, s)∣∣2(L2(T))2]

for all t ≥ 0. By the Gronwall’s inequality we have E[∣∣f (1)(⋅, t)−f (2)(⋅, t)∣∣2(L2(T))2] = 0.
Appendix C. Conservation of the total energy

By (3.7), the time evolution of ∫T dk Eǫ[∣ψ̂i(k, t)∣2] is given by

d

dt
∫
T

dk Eǫ[∣ψ̂i(k, t)∣2]
= ∫

T

dk 2γβ̂(k)θ2i (k)Eǫ[∣ψ̂i(k, t)∣2] + 2γβ̂(k)θi(k)θi∗(k)R(Eǫ[ψ̂i(k, t)ψ̂i∗(k, t)])
+ γθ2i (k)∫

T

dk′R(k, k′){θ2i (k′)Eǫ[∣ψ̂i(k′, t)∣2] + θ2i∗(k′)Eǫ[∣ψ̂i∗(k′, t)∣2]
+ 2θi(k′)θi∗(k′)R(Eǫ[ψ̂i(k, t)ψ̂i∗(k, t))])}

where Ra is the real part of a ∈ C. Since ∑i=1,2 θi(k)2 = 1 and ∫T dk′ R(k, k′) =−2β̂(k), we have

d

dt
∑
i=1,2
∫
T

dk Eǫ[∣ψ̂i(k, t)∣2]
= ∫

T

dk 2γβ̂(k) ∑
i=1,2

θ2i (k)Eǫ[∣ψ̂i(k, t)∣2] + 4γβ̂(k)θ1(k)θ2(k)R(Eǫ[ψ̂1(k, t)ψ̂2(k, t)])
+ γ ∫

T

dk′R(k, k′){θ21(k′)Eǫ[∣ψ̂1(k′, t)∣2] + θ22(k′)Eǫ[∣ψ̂2(k′, t)∣2]
+ 2θ1(k′)θ2(k′)R(Eǫ[ψ̂1(k, t)ψ̂2(k, t)])}
= 0.
Appendix D. Uniqueness of solutions of the linear kinetic equation

Lemma D.1. Let {ΩǫN (t)}N∈N be a convergent subsequence with its limit Ω(t).
Then there exists a vector-valued finite positive measure µ(t) = (µ1(t), µ2(t)) such
that

∫
R×T

µi(t)(dy, dk)Ji(y, k)∗ =< Ω(t), Ji >, i = 1,2
for all J ∈ S2.

Proof. Let Ω1(t) ∈ S′ as < Ω1(t), J >∶=< Ω(t),J > for J = (J,0), J ∈ S. First we
show that Ω1(⋅) is multiplicatively positive, that is,

< Ω1(t), ∣J ∣2 > ≥ 0
for all t ≥ 0 and J ∈ S. Fix t ≥ 0 and J ∈ S. Since J is smooth,

J( ǫ
2
(x + x′), k) − J(ǫx, k) = ǫ

2
∫ 1

0
dr (x′ − x)∂yJ(ǫx + r ǫ

2
(x′ − x), k)

22



for all x,x′ ∈ Z and so

∣∫
T

dke2π
√
−1(x′−x)k (J( ǫ

2
(x + x′), k)J( ǫ

2
(x + x′), k)∗ − J(ǫx, k)J( ǫ

2
(x + x′), k)∗)∣

= ∣ ǫ
2
(x′ − x)∫

T

dke2π
√
−1(x′−x)kJ( ǫ

2
(x + x′), k)∗ ∫ 1

0
dr∂yJ(ǫx + r ǫ

2
(x′ − x), k)∣ .

By repeating the integration by parts we have

∣∫
T

dke2π
√
−1(x′−x)kJ( ǫ

2
(x + x′), k)∗ ∫ 1

0
dr∂yJ(ǫx + r ǫ

2
(x′ − x), k)∣

= RRRRRRRRRRR∫T dk (
1

2π
√−1(x′ − x))

3

e2π
√
−1(x′−x)k∂3k[J( ǫ2(x + x′), k)∗ ∫

1

0
dr∂yJ(ǫx + r ǫ

2
(x′ − x), k)]RRRRRRRRRRR

≤ 1

8π3∣x − x′∣3 ∫T dk ∣∂3k[J( ǫ2(x + x′), k)∗ ∫
1

0
dr∂yJ(ǫx + r ǫ

2
(x′ − x), k)]∣.

Hence, we have

∣∫
T

dke2π
√
−1(x′−x)k (J( ǫ

2
(x + x′), k)J( ǫ

2
(x + x′), k)∗ − J(ǫx, k)J( ǫ

2
(x + x′), k)∗)∣

≤ ǫ

16π3∣x − x′∣2 ∫T dk ∣∂3k[J( ǫ2(x + x′), k)∗ ∫
1

0
dr∂yJ(ǫx + r ǫ

2
(x′ − x), k)]∣

≤ 1∣x − x′∣2OJ(ǫ)
for all x ≠ x′ ∈ Z. In the same way, we can show that

∣∫
T

dke2π
√
−1(x′−x)k (J(ǫx, k)J( ǫ

2
(x + x′), k)∗ − J(ǫx, k)J(ǫx′, k)∗)∣ ≤ 1∣x − x′∣2OJ(ǫ).

On the other hand we have
ǫ

2
∑

x,x′∈Z
< ψ1(x′, t

ǫ
)∗ψ1(x, t

ǫ
) >ǫ ∫

T

dk e2π
√
−1(x′−x)kJ(ǫx, k)J(ǫx′, k)∗

= ǫ
2
∫
T

dk < ∣∑
x∈Z

e−2π
√
−1xkψ(x, t

ǫ
)J(ǫx, k)∣2 >ǫ ≥ 0.

Since

∣∫
T

dke2π
√
−1(x′−x)k ∣J( ǫ

2
(x + x′), k)∣2 − J(ǫx, k)J(ǫx′, k)∗∣

≤ ∣∫
T

dke2π
√
−1(x′−x)k (J( ǫ

2
(x + x′), k)J( ǫ

2
(x + x′), k)∗ − J(ǫx, k)J( ǫ

2
(x + x′), k)∗)∣

+ ∣∫
T

dke2π
√
−1(x′−x)k (J(ǫx, k)J( ǫ

2
(x + x′), k)∗ − J(ǫx, k)J(ǫx′, k)∗)∣ ,

combining the above calculations we have

< Ωǫ
1(t), ∣J ∣2 >= ǫ2 ∫T dk < ∣∑x∈Z e−2π

√
−1xkψ1(x, t

ǫ
)J(ǫx, k)∣2 >ǫ +OJ(ǫ).

Therefore Ω1(⋅) is multiplicatively positive.
Next we show that Ω1(⋅) is positive, that is,

< Ω1(t), J > ≥ 0
for all t ≥ 0 and J ∈ S, J ≥ 0. Since {J ∈ S;J ∈ C∞0 (R×T), J ≥ 0} is a dense subset of{J ∈ S;J ≥ 0}, it is sufficient to show the positivity on C∞0 (R × T). Fix t ≥ 0 and a

23



positive function J ∈ C∞0 (R × T). There exists a positive constant M > 0 such that
the support of J is a subset of [−M,M] × T. Let a(y) ∈ C∞0 (R) be a function such

that a(y) = 1, y ∈ [−M,M]. Define J(m)(y, k) ∈ C∞0 (R × T), m ∈ N as

J(m)(y, k) = a(y)
√
J(y, k) + 1

m
.

Then the sequence {∣J(m)∣2, m ∈ N} converges to J(y, k) in the topology of C∞0 (R×
T). Since the embedding of the space C∞0 (R × T) into the space S is continuous,{∣J(m)∣2, m ∈ N} also converges to J(y, k) in the topology of S. By the continuity
of Ω1(t), we have

< Ω1(t), J >= lim
m→∞

< Ω1(t), ∣J(m) ∣2 > ≥ 0.
Therefore Ω1(⋅) is positive.

In the same way we can show that Ω2(⋅) is also positive.
By the usual method, for example see Lemma 1 in Chapter 2 of [8], we can extend

the domain of Ωi(⋅), i = 1,2 to the space C0(R × T). By the Riesz representation
theorem there exists a finite positive measure µi(⋅), i = 1,2 such that

< Ωi(t), J > = ∫
R×T

µi(t)(dy, dk) J(y, k), i = 1,2
for all t ≥ 0 and J ∈ C0(R ×T). By the linearity and the definition of Ωǫ

i(⋅),
< Ωi(t), J > = ∫

R×T
µi(t)(dy, dk) J(y, k)∗, i = 1,2

for all J ∈ S. �

Appendix E. Uniqueness of the solution of the Boltzmann equation

Suppose that a vector-valued finite positive measure µ(t) is a solution of the
Boltzmann equation (4.2). Then µ̃(t)(dy, dk) ∶= µ(t)(dy+ 1

2π
ω′(k)t, dk) is a solution

of the following space-homogeneous Boltzmann equation

∂t∫ dµ̃(t) ⋅ J = ∫ dµ̃(t) ⋅ (CJ)
where

∫ dµ̃(t) ⋅ J = ∫ µ(t)(dy + 1

2π
ω′(k)t, dk) ⋅ J

∶= ∫ µ(t)(dy, dk) ⋅ J(y − 1

2π
ω′(k)t, k).

Conversely, if µ̃(t) is a solution of the space-homogeneous Boltzmann equation,
then µ(t)(dy, dk) ∶= µ̃(t)(dy − 1

2π
ω′(k)t, dk) is a solution of the Boltzmann equation

(4.2). Therefore, it is sufficient to show the uniqueness of the solution for the space-
homogeneous Boltzmann equation.

Suppose that J1(y, k) = fλ,y∗,r(y)G(k), J2(y, k) = 0, where
fλ,y

∗,r(y) = exp(− λ

r2 − ∣y − y∗∣2) 1B(y∗,r)(y),
B(y∗, r) = {y ∈ R ; ∣y − y∗∣ < r},
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y∗ ∈ R , r > 0 and G(⋅) ∈ C∞(T). Note that fλ,y
∗,r ∈ C∞0 (R), ∥fλ,y∗,r∥∞ ≤ 1 and

lim
λ→0

fλ,y
∗,r(y) = 1B(y∗,r)(y).

Let µ(t),ν(t) be solutions of the space-homogeneous Boltzmann equation with a
same initial condition. Then

∣∫ dµ(t) ⋅ J − ∫ dν(t) ⋅ J ∣
= ∣∫ dµ(t) ⋅ fλ,y∗,r(y)G −∫ dν(t) ⋅ fλ,y∗,r(y)G∣
≤ ∫ t

0
ds ∣∫ d(µ(s) − ν(s)) ⋅ (fλ,y∗,r(y)CG(k))∣

where G = (G(k),0). By taking the limit λ → 0, we have

∣∫
T

G(k)d(µ1(t)(B(y∗, r), dk) − ν1(t)(B(y∗, r), dk))∣
≤ ∫ t

0
ds∣∫

T

d(µ(s)(B(y∗, r), dk) − ν(s)(B(y∗, r), dk)) ⋅ (CG)∣
≤ ∫ t

0
ds ∑

i=1,2
∣∫

T

d(µi(s)(B(y∗, r), dk) − νi(s)(B(y∗, r), dk))(CG)i ∣
≤ 32 sup

k

∣G(k)∣∫ t

0
ds ∑

i=1,2
∣∣µi(s)(B(y∗, r), dk) − νi(s)(B(y∗, r), dk)∣∣

where ∣∣ ⋅ ∣∣ is the total variation for a bounded signed measure on T. Hence,

∣∣µ1(t)(B(y∗, r), dk) − ν1(t)(B(y∗, r), dk)∣∣
≤ 32∫ t

0
ds ∑

i=1,2
∣∣µi(s)(B(y∗, r), dk) − νi(s)(B(y∗, r), dk)∣∣.

By the same proof, we have

∣∣µ2(t)(B(y∗, r), dk) − ν2(t)(B(y∗, r), dk)∣∣
≤ 32∫ t

0
ds ∑

i=1,2
∣∣µi(s)(B(y∗, r), dk) − νi(s)(B(y∗, r), dk)∣∣.

∴ ∑
i=1,2
∣∣µi(t)(B(y∗, r), dk) − νi(t)(B(y∗, r), dk)∣∣
≤ 64∫ t

0
ds ∑

i=1,2
∣∣µi(s)(B(y∗, r), dk) − νi(s)(B(y∗, r), dk)∣∣.

Therefore µi(t)(B(y∗, r), dk) = νi(t)(B(y∗, r), dk) on T for any ball B(y∗, r) ⊂ R,
which concludes µ(t) = ν(t) for any t ≥ 0.
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Appendix F. Derivation of (6.4)
We only consider the time evolution of Ω̂ǫ

1+(t)(p, k). By the same calculation we

can obtain the time evolution of Ω̂ǫ
2+(t)(p, k). From (3.7) we have

∂tΩ̂ǫ
1+(t)(p, k)

= −√−1
ǫ
(ω1(k + ǫp

2
) − ω1(k − ǫp

2
)) Ω̂ǫ

1+(t)(p, k)
+ γ (β(k + ǫp

2
)θ1(k + ǫp

2
)2 + β(k − ǫp

2
)θ1(k − ǫp

2
)2) Ω̂ǫ

1+(t)(p, k)
+ γβ(k + ǫp

2
)θ1(k + ǫp

2
)θ2(k + ǫp

2
)Γ̂ǫ

2−(t)(p, k)
+ γβ(k − ǫp

2
)θ1(k − ǫp

2
)θ2(k − ǫp

2
)Γ̂ǫ

2+(t)(p, k)
+ γθ1(k − ǫp

2
)θ1(k + ǫp

2
)∫

T

dk′r(k − ǫp
2
, k′)∗r(k + ǫp

2
, k′)

× [θ1(k − k′ − ǫp
2
)θ1(k − k′ + ǫp

2
)Ω̂ǫ

1+(t)(p, k − k′)
+ θ2(k − k′ − ǫp

2
)θ2(k − k′ + ǫp

2
)Ω̂ǫ

2+(t)(p, k − k′))
+ θ1(k − k′ − ǫp

2
)θ2(k − k′ + ǫp

2
)Γ̂ǫ

2−(t)(p, k − k′)
+ θ1(k − k′ + ǫp

2
)θ2(k − k′ − ǫp

2
)Γ̂ǫ

2+(t)(p, k − k′)].
By the change of variables k − k′ → k′, the last integral is rewritten as

∫
T

dk′r(k − ǫp
2
, k − k′)∗r(k + ǫp

2
, k − k′)

× [θ1(k′ − ǫp
2
)θ1(k′ + ǫp

2
)Ω̂ǫ

1+(t)(p, k′) + θ2(k′ − ǫp2 )θ2(k′ + ǫp2 )Ω̂ǫ
2+(t)(p, k′))

+ θ1(k′ − ǫp
2
)θ2(k′ + ǫp

2
)Γ̂ǫ

2−(t)(p, k′) + θ1(k′ + ǫp2 )θ2(k′ − ǫp2 )Γ̂ǫ
2+(t)(p, k′)].

Hence, it is sufficient to show that r(k − ǫp
2
, k − k′)∗r(k + ǫp

2
, k − k′) = Rǫp(k, k′). By

the following direct calculations

r(k − ǫp
2
, k − k′)∗r(k + ǫp

2
, k − k′)

= (e2π√−1(k−k′) − e2π√−1(k− ǫp

2
))(e−2π√−1(k− ǫp

2
) − 1)

× (e−2π√−1(k−k′) − e−2π√−1(k+ ǫp

2
))(e2π√−1(k+ ǫp

2
) − 1)

= (1 − e−π√−1ǫp(e2π√−1k′ + e−2π√−1k′) + e−2π√−1ǫp)
× (1 − eπ√−1ǫp(e2π√−1k + e−2π√−1k) + e2π√−1ǫp)
= (eπ√−1ǫp − (e2π√−1k′ + e−2π√−1k′) + e−π√−1ǫp)
× (e−π√−1ǫp − (e2π√−1k + e−2π√−1k) + eπ√−1ǫp)
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and

e−π
√
−1ǫp − (e2π√−1k + e−2π√−1k) + eπ√−1ǫp

= 2cosπǫp − 2cos 2πk
= 4 sin (k + ǫp

2
) sin (k − ǫp

2
),

we can verify the equation r(k − ǫp
2
, k − k′)∗r(k + ǫp

2
, k − k′) = Rǫp(k, k′).
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