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Abstract. We use properties of modular forms to prove the following extension
of the Ramanujan-Mordell formula,

zk−jzjp =
pk−j
χ − 1

pkχ − 1
Fp(k, j; τ) +

pkχ − pk−j
χ

pkχ − 1
Fp(k, j; pτ) + zkAp(k, j; τ),

for all 1 < k ∈ N, 0 ≤ j ≤ k and p an odd prime. We obtain this result by
computing the Fourier series expansions of modular forms at all cusps of Γ0(4p).
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1. Introduction

Let N, N0, Z, Q, C and H denote the sets of positive integers, non-negative
integers, integers, rational numbers, complex numbers and the upper half plane,
respectively. Throughout the paper we let τ ∈ H and q = e2πiτ . Let N ∈ N. Let
Γ0(N) be the modular subgroup defined by

Γ0(N) =

{[

a b
c d

]

| a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod N)

}

.

An element M =
[

a b
c d

]

∈ Γ0(1) acts on H ∪Q ∪ {∞} by

M(τ) =

{

aτ+b
cτ+d

if τ 6= ∞,
a
c

if τ = ∞.

E-mail address: selcukaygin@ntu.edu.sg.
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Let k ∈ N. We writeMk(Γ0(N), χ) to denote the space of modular forms for Γ0(N)
of weight k with multiplier system χ, and Ek(Γ0(N), χ) and Sk(Γ0(N), χ) to denote
the subspaces of Eisenstein forms and cusp forms of Mk(Γ0(N), χ), respectively.
When χ is the primitive principal character we tend to drop the character from
the notation. It is known thatMk(Γ0(N), χ) is a linear vector space and that, (see
for example [22, p. 83] and [20])

Mk(Γ0(N), χ) = Ek(Γ0(N), χ)⊕ Sk(Γ0(N), χ).(1.1)

Let χ and ψ be primitive characters. For n ∈ N we define σ(k,χ,ψ)(n) by

σ(k,χ,ψ)(n) =
∑

1≤d|n

χ(d)ψ(n/d)dk.(1.2)

If n 6∈ N we set σ(k,χ,ψ)(n) = 0. For each quadratic discriminant t, we put χ
t
(n) =

( t

n

)

, where
( t

n

)

is the Kronecker symbol defined by [14, p. 296]. Note that, we

use σk(n) to denote σ(k,χ1,χ1)(n), which coincides with the regular sum of divisors
function.

Suppose k ∈ N and p an odd prime. The Eisenstein series defined by

E2k(τ) = 1−
4k

B2k

∞
∑

n=1

σ2k−1(n)q
n,

E
(1)
2k−1(τ) = −

4k − 2

B2k−1,χ
−4

∑

n≥1

σ(2k−2,χ1,χ−4)(n)q
n,(1.3)

E
(2)
2k−1(τ) = 1−

4k − 2

B2k−1,χ
−4

∑

n≥1

σ(2k−2,χ
−4,χ1)(n)q

n,(1.4)

will be used to give bases for the spaces E2k(Γ0(4p)) and E2k(Γ0(4p), χ−4), see [22,
Theorem 5.9]. Here Bernoulli numbers B2k and the generalized Bernoulli numbers
B2k−1,χ

−4 attached to χ−4 are defined by the generating functions
∞
∑

k=0

Bk

k!
xk =

x

ex − 1
,

∞
∑

k=0

Bk,χ
−4

k!
xk =

4
∑

a=1

χ−4(a)xe
ax

e4x − 1
,

respectively. For presentation purposes we chose the above normalization for Eisen-
stein series, which is different from both [22, (5.3.1)] and [13, (7.1.1)]. Because of
this difference later on we will need the Gauss sum, for a character χ of conductor
L, defined by

W (χ) =
L−1
∑

a=0

χ(a)e2πiaτ/L.
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Let m ∈ N, ri ∈ N0, and ai ∈ N for all 1 ≤ i ≤ m. Let

N(a2r11 , a2r22 , . . . , a2rmm ;n)

denote the number of representations of n by the quadratic form

m
∑

i=1

2ri
∑

j=1

aix
2
j .(1.5)

Ramanujan’s theta function ϕ(τ) is defined by

ϕ(τ) =

∞
∑

n=−∞

qn
2

,

and for a ∈ N we define

za = ϕ2(aτ).

thus the generating function of number of representations of n by the quadratic
form (1.5) is given by

∞
∑

n=0

N(a2r11 , a2r22 , . . . , a2rmm ;n)qn =

m
∏

i=1

ϕ2ri(aiτ) =

m
∏

i=1

zriai .

Ramanujan in [17] gave a formula for zk for k ∈ N, from which the value of
N(12k;n) follows. This formula was proven by Mordell [15]. In 2010, Lemire in his
PhD thesis ([10]) gave formulas forN(1r, 2s, 4t;n) for r ∈ N, s, t ∈ N0, r+s+t = 4k.
Recently, Cooper et al. in [7] gave analogues of Ramanujan-Mordell formula for
(ϕ(τ)ϕ(pτ))k for k ∈ N and p = 3, 7, 11, 23, from which the value of N(1k, pk;n)
follows. In this paper we extend the Ramanujan-Mordell formula with coefficients
1 and p, i.e. we give formulas for zk−jzjp for 1 < k ∈ N, 0 ≤ j ≤ k and all odd

primes p. This determines the values of N(12k−2j, p2j ;n) for all 1 < k, 0 ≤ j ≤ k
and p an odd prime. There are some results in the literature which give similar
results in terms of products of local densities, see [1, 19, 21]. The strength of our
results is that we manage to give contributions from the Eisenstein parts explicitly
as opposed to the previous algorithmic results. We use modular forms to prove
our results. Our approach is different from the previous applications of modular
forms. In the literature, usually the Fourier series expansions at ∞ is considered.
In this paper, we compute the Fourier series expansions of certain modular forms
at all cusps of Γ0(4p), and use them to prove the main theorem.

The organization of the paper is as follows. In Section 2 we state the main theo-
rem. In Section 3 we introduce the concept of the constant term of modular forms
at the cusps 1/c. We then compute these terms for the Eisenstein series. Then in
Section 4 we take advantage of the fact that the constant terms of Fourier series ex-
pansions of cusp forms are always 0 to obtain some equations and we solve them to
give the main terms of any modular form in M2k(Γ0(4p)) and M2k−1(Γ0(4p), χ−4).
Our particular interest is the extensions of Ramanujan-Mordell formula, which fall
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into these spaces. In Section 5, we prove the main theorem which is an application
of Theorem 4.1 with the values of constant terms of the Fourier series expansions
of ϕ4k−2j(τ)ϕ2j(pτ) and ϕ4k−2j−2(τ)ϕ2j(pτ) at cusps of Γ0(4p). The main theorem
fails to provide precise description of the cusp part of the formula. In Section 6,
we fix p = 5 and introduce families of eta quotients which give bases for the spaces
S2k(Γ0(20)) and S2k−1(Γ0(20), χ−4). We then express the cusp part of the formula
as linear combinations of these eta quotients. This basis additionally provides an
example of a family of modular form spaces which are generated by eta quotients,
a question asked by Ono [16, Problem 1.68] and recently answered by Rouse and
Webb [18].

2. The main theorem

We define

Fp(2k, j; τ) =
χ−4(p)

j

22k − 1

(

(−1)kE2k(τ)−
(

(−1)k + χ−4(p)
j
)

E2k(2τ) + χ−4(p)
j22kE2k(4τ)

)

,

Fp(2k − 1, j; aτ) = E
(2)
2k−1(aτ) + χ−4(a)χ−4(p)

j(−4)k−1E
(1)
2k−1(aτ), a ∈ {1, p}.

Note that the function Fp(2k, 0; τ) is the same function Ramanujan used to give
the main terms of his formula. We also define

pχ = χ−4(p)p =

{

p, if p ≡ 1 (mod 4),

−p, if p ≡ 3 (mod 4).

We are now ready to state our main theorem.

Theorem 2.1. Let k > 1 be an integer and 0 ≤ j ≤ k. Then there exists a
modular function Ap(k, j; τ) of weight 0 for Γ0(4p) such that

zk−jzjp =
pk−jχ − 1

pkχ − 1
Fp(k, j; τ) +

pkχ − pk−jχ

pkχ − 1
Fp(k, j; pτ) + zkAp(k, j; τ),(2.1)

and zkAp(k, j; τ) is a cusp form.

This theorem extends the original Ramanujan-Mordell formula, see [6, 15, 17].
To recover the Ramanujan-Mordell formula we put j = 0 in (2.1) and obtain

zk =Fp(k, 0; τ) + zkAp(k, 0; τ),

where Fp(k, 0; τ) is the same expression with the formulas from [6, 15, 17]. Recently
in [7], Cooper et al. gave formulas for (ϕ(τ)ϕ(pτ))k valid for all k ∈ N and p =
3, 7, 11 and 23. Letting 1 < k ∈ N be even, and replacing j by k/2 in (2.1), we
obtain

(ϕ(τ)ϕ(pτ))k =
1

p
k/2
χ + 1

Fp(k, k/2; τ) +
p
k/2
χ

p
k/2
χ + 1

Fp(k, k/2; pτ) + zkAp(k, k/2; τ).
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When we put p = 3, 7, 11 or 23, the main terms of the above formula agrees with
the main terms of the formulas given by [7]. Our formula additionally holds for
all odd primes.

3. Preliminary results

In this section we give some theoretic background and then compute the constant
terms of Fourier series expansions of Eisenstein series at cusps of Γ0(4p). We use
Theorem 3.1 to compute this for E2k(dτ) for all d ∈ N. Then we prove a similar
theorem for modular forms in M2k−1(Γ0(4), χ−4). And we finish the computations
using a theorem from [13]. These results will be used to prove the main theorem.

A set of representatives of all cusps of Γ0(4p) can be given by

R(4p) =

{

1,
1

2
,
1

4
,
1

p
,
1

2p
,∞

}

,

see [8, Proposition 2.6] or [12].
Let

Ac =

[

−1 0
c −1

]

,(3.1)

then the Fourier series expansion of f(τ) ∈Mk(Γ0(N)) at the cusp
1

c
∈ Q is given

by the Fourier series expansion of (cτ +1)kf(A−1
c τ) at the cusp ∞, see [9, pg. 35].

Let the Fourier series expansion of f(τ) at the cusp
1

c
be given by the infinite sum

(cτ + 1)−kf(A−1
c τ) =

∑

n≥0

ac(n)e
2πi(n+κ)τ/h,

where h the width of Γ0(N) at the cusp, and 0 ≤ κ < 1 is the cusp parameter of f
at 1/c. Then we use the notation [n]cf(τ) to denote ac(n). Noting that [n]0 = [n]N ,
for notational convenience we write [n]N instead of [n]0. If we say Fourier series
expansion (or Fourier coefficients) without specifying the cusp, we mean the cusp
∞. And, for modular forms, ‘constant term of the Fourier expansion of f(τ) at
cusp 1

c
’ refers to the term [0]cf(τ). We define vc(f) = n + κ, the order of f(τ)

at 1
c
, where n is the smallest integer such that [n]cf(τ) 6= 0. Here we should note

that, on irregular cusps, the order of the modular form may not be an integer. In
this paper, the cusps 1/2 and 1/2p ∈ R(4p) are irregular, and we have

v2(f), v2p(f) ∈ N0,when f ∈M2k(Γ0(4p)),

v2(f), v2p(f) ∈ N0 +
1

2
,when f ∈M2k−1(Γ0(4p), χ−4),

see [2, Theorem 2.3.5] for details. For the latter case, it turns out we don’t need to
compute constant terms to prove our results. This appears to be connected to the
relationship between the number of cusps and the dimension of Eisenstein spaces.
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The following theorem is from an unpublished manuscript from the author.

Theorem 3.1. [3, Theorem 2.1] Let k ∈ N. Let f(τ) ∈ M2k(Γ0(1)), with the
Fourier series expansion given by

f(τ) =
∑

n≥0

anq
n.

Then for d ∈ N, the Fourier series expansion of fd(τ) = f(dτ) at cusp 1/c ∈ Q is
given by

fd(A
−1
c τ) =

(g

d

)2k

(cτ + 1)2kf
(g2

d
τ +

yg

d

)

=
(g

d

)2k

(cτ + 1)2k
∑

n≥0

anq
n
c ,

where g = gcd(d, c), y is some integer, Ac is the matrix given by (3.1) and qc =

e
2πi

(

g2

d
τ+ yg

d

)

.

The proof of the theorem, which is similar to the proof of [9, Proposition
2.1], follows from some matrix relations and transformation formula for f(τ) ∈
M2k(Γ0(1)). We use Theorem 3.1 to obtain the following table of the constant
coefficients of Fourier series expansions of E2k(dτ) at cusps of Γ0(4p) for k > 1.

Table 3.1: The constant terms of the Fourier series ex-
pansions of E2k(dτ) at cusps of Γ0(4p)

cusps E2k(τ) E2k(2τ) E2k(4τ) E2k(pτ) E2k(2pτ) E2k(4pτ)

1 1
(

1
2

)2k (

1
4

)2k
(

1
p

)2k (

1
2p

)2k (

1
4p

)2k

1/2 1 1
(

1
2

)2k
(

1
p

)2k (

1
p

)2k (

1
2p

)2k

1/4 1 1 1
(

1
p

)2k (

1
p

)2k (

1
p

)2k

1/p 1
(

1
2

)2k (

1
4

)2k
1

(

1
2

)2k (

1
4

)2k

1/2p 1 1
(

1
2

)2k
1 1

(

1
2

)2k

∞ 1 1 1 1 1 1

The next theorem is equivalent of the previous theorem for the modular form
space M2k−1(Γ0(4), χ−4), i.e., given that f(τ) ∈ M2k−1(Γ0(4), χ−4) and we know
the Fourier series expansion of f(τ) at cusps 1 and ∞, we determine the Fourier
series expansions of modular forms f(pτ) ∈ M2k−1(Γ0(4p), χ−4) at cusps 1, 1/4,
1/p and ∞. The proof of Theorem 3.2 depends on manipulations of 2×2 matrices.

Theorem 3.2. Let k ∈ N and f(τ) ∈ M2k−1(Γ0(4), χ−4), and the Fourier series
expansions of f(τ) at cusps 1 and ∞, be given by

(τ + 1)1−2kf(A−1
1 τ) =

∑

n≥0

a1(n)e
2πinτ/4,

6



f(τ) =
∑

n≥0

a0(n)e
2πinτ ,

respectively. Let p be an odd prime. Then the Fourier series expansions of f(τ)
and fp(τ) = f(pτ) ∈M2k−1(Γ0(4p), χ−4) at cusps 1, 1/4, 1/p and ∞ are given by

(τ + 1)1−2kf(A−1
1 τ) =

∑

n≥0

a1(n)e
2πinτ/4,(3.2)

(τ + 1)1−2kfp(A
−1
1 τ) =

(

1

p

)2k−1
∑

n≥0

a1(n)e
2πi

n(τ−pχp+1)

4p ,(3.3)

(4τ + 1)1−2kf(A−1
4 τ) =

∑

n≥0

a0(n)e
2πinτ ,(3.4)

(4τ + 1)1−2kfp(A
−1
4 τ) = χ−4(p)

(

1

p

)2k−1
∑

n≥0

a0(n)e
2πin

4τ−pχ+1

4p ,(3.5)

(pτ + 1)1−2kf(A−1
p τ) = χ−4(p)

∑

n≥0

(χ−4(p))
na1(n)e

2πinτ/4,(3.6)

(pτ + 1)1−2kfp(A
−1
p τ) =

∑

n≥0

a1(n)e
2πinpτ/4,(3.7)

f(τ) =
∑

n≥0

a0(n)e
2πinτ ,(3.8)

fp(τ) =
∑

n≥0

a0(n)e
2πinpτ ,(3.9)

respectively.

Proof. We use the following matrix equations to prove (3.2)–(3.9). The idea is
to write a 2 × 2 matrix into A = M1A

−1
c M2, where M1 ∈ Γ0(4) and M2 is any

matrix with bottom-left entry equal to 0. As the remaining cases are similar, we
prove only (3.5) and in Table 3.2 we give the matrix equations used to prove other
expansions.

Table 3.2: Matrices

Equation Matrix Decomposition

(3.2)

[

−1 0
−1 −1

]

=

[

1 0
0 1

] [

−1 0
−1 −1

] [

1 0
0 1

]

(3.3)

[

−p 0
−1 −1

]

=

[

p− p2 + 1 p2 − 1
1− p p

] [

−1 0
−1 −1

] [

1 1− p2

0 p

]

, if p ≡ 1 (mod 4)

[

−p 0
−1 −1

]

=

[

−p2 − p− 1 p2 + 1
−p− 1 p

] [

−1 0
−1 −1

] [

−1 −p2 − 1
0 −p

]

, if p ≡ 3 (mod 4)

Continued on next page
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Table 3.2 – Continued from previous page

Equation Matrix Decomposition

(3.4)

[

−1 0
−4 −1

]

=

[

1 0
0 1

] [

−1 0
−4 −1

] [

1 0
0 1

]

(3.5)

[

−p 0
−4 −1

]

=

[

p (p− 1)/4
4 1

] [

1 0
0 1

] [

−1 (p− 1)/4
0 −p

]

, if p ≡ 1 (mod 4)

[

−p 0
−4 −1

]

=

[

p −(p+ 1)/4
4 −1

] [

1 0
0 1

] [

−1 −(p+ 1)/4
0 −p

]

, if p ≡ 3 (mod 4)

(3.6)

[

−1 0
−p −1

]

=

[

1 0
p− 1 1

] [

−1 0
−1 −1

] [

1 0
0 1

]

, if p ≡ 1 (mod 4)

[

−1 0
−p −1

]

=

[

1 −2
p+ 1 −2p− 1

] [

−1 0
−1 −1

] [

−1 2
0 −1

]

, if p ≡ 3 (mod 4)

(3.7)

[

−p 0
−p −1

]

=

[

1 0
0 1

] [

−1 0
−1 −1

] [

p 0
0 1

]

(3.8)

[

1 0
0 1

]

=

[

1 0
0 1

] [

1 0
0 1

] [

1 0
0 1

]

(3.9)

[

p 0
0 1

]

=

[

1 0
0 1

] [

1 0
0 1

] [

p 0
0 1

]

Now we prove (3.5), when p ≡ 3 (mod 4). Using the matrix decomposition
given in Table 3.2 and f(τ) being in M2k−1(Γ0(4), χ−4) we have

fp(A
−1
4 τ) = f

([

p −(p+ 1)/4
4 −1

] [

−1 −(p+ 1)/4
0 −p

]

(τ)

)

= χ−4(−1)

(

4

[

−1 −(p + 1)/4
0 −p

]

(τ)− 1

)2k−1

f

([

−1 −(p+ 1)/4
0 −p

]

(τ)

)

= χ−4(p)

(

4τ + 1

p

)2k−1

f

(

4τ − pχ + 1

4p

)

.

�

To conclude this section we give the table of Fourier series expansions of Ek,χ
−4,χ1(τ)

and Ek,χ1,χ−4(τ) at regular cusps of Γ0(4p). The Fourier series expansions of

E
(2)
2k−1(τ) and E

(1)
2k−1(τ) at ∞ are already known, see (1.3) and (1.4). We use

[13, Lemma 7.1.2] to obtain the following equalities, which allow us to compute
desired Fourier series expansions at the cusp 1. The Gauss sum W (χ) in the below
formulas appear due to different choice of normalization of Eisenstein series.

E
(2)
2k−1

(

−1

τ

)

=
W (χ1)

W (χ−4)
(τ)2k−1E

(1)
2k−1

(τ

4

)

=
−i

2
(τ)2k−1E

(1)
2k−1

(τ

4

)

,

E
(1)
2k−1

(

−1

τ

)

= −
W (χ−4)

W (χ1)42k−1
(τ)2k−1E

(2)
2k−1

(τ

4

)

=
−2i

42k−1
(τ)2k−1E

(2)
2k−1

(τ

4

)

.

8



We use

[

−1 0
−1 −1

]

=

[

1 1
0 1

] [

0 1
−1 0

] [

1 1
0 1

]

to obtain

(τ + 1)1−2kE
(2)
2k−1(A

−1
1 τ) =

−i

2
E

(1)
2k−1

(

τ + 1

4

)

,

(τ + 1)1−2kE
(1)
2k−1(A

−1
1 τ) =

−2i

42k−1
E

(2)
2k−1

(

τ + 1

4

)

.

Now we turn to Theorem 3.2 to obtain the following table.

Table 3.3: The constant terms of the Fourier series ex-
pansions of E

(2)
2k−1(τ) and E

(1)
2k−1(τ)

cusps E
(2)
2k−1(τ) E

(2)
2k−1(pτ) E

(1)
2k−1(τ) E

(1)
2k−1(pτ)

1 0 0 −2i
42k−1

−2i

(4p)2k−1

1/4 1 χ
−4(p)
p2k−1 0 0

1/p 0 0 −2iχ
−4(p)

42k−1
−2i

42k−1

∞ 1 1 0 0

4. The spaces M2k(Γ0(4p)) and M2k−1(Γ0(4p), χ−4)

In this paper our particular interest is on extensions of the Ramanujan-Mordell
formula. However our calculations yield to the following theorem, which provides
information on any modular form in M2k(Γ0(4p)) and M2k−1(Γ0(4p), χ−4). For
notational convenience let us fix

Ak(p, t, f) =
[0]tf − χ−4(p)

tk[0]tpf

(2k − 1)(pkχ − 1)

Bk(p, t, f) =
pkχ[0]tf − χ−4(p)

tk[0]tpf

(2k − 1)(pkχ − 1)

for t | 4.

Theorem 4.1. Let k > 1 be an integer and p be an odd prime. If f(τ) ∈
M2k(Γ0(4p)), then there exists a cusp form C2k,4p(τ) ∈ S2k(Γ0(4p)) such that

f(τ) =
∑

d|4p

bd(p, f)E2k(dτ) + C2k,4p(τ)

where

b1(p, f) = 22kB2k(p, 1, f)− B2k(p, 2, f),

b2(p, f) = −22kB2k(p, 1, f) +
(

22k + 1
)

B2k(p, 2, f)− B2k(p, 4, f),

b4(p, f) = −22k (B2k(p, 2, f)−B2k(p, 4, f)) ,

bp(p, f) = −p2k
(

22kA2k(p, 1, f)− A2k(p, 2, f)
)

,
9



b2p(p, f) = p2k
(

22kA2k(p, 1, f)−
(

22k + 1
)

A2k(p, 2, f) + A2k(p, 4, f)
)

,

b4p(p, f) = (2p)2k (A2k(p, 2, f)− A2k(p, 4, f)).

If f(τ) ∈M2k−1(Γ0(4p), χ−4), then there exists a cusp form C2k−1,4p(τ)
∈ S2k−1(Γ0(4p), χ−4) such that

f(τ) =a1(p, f)E
(2)
2k−1(τ) + a2(p, f)E

(2)
2k−1(pτ)

+ a3(p, f)E
(1)
2k−1(τ) + a4(p, f)E

(1)
2k−1(τ) + C2k−1,4p(τ)

where

a1(p, f) = (22k−1 − 1)B2k−1(p, 4, f),

a2(p, f) = (22k−1 − 1)p2k−1
χ A2k−1(p, 4, f),

a3(p, f) =
i42k−1(22k−1 − 1)

2
B2k−1(p, 1, f),

a4(p, f) =
−i(4p)2k−1(22k−1 − 1)

2
A2k−1(p, 1, f).

Proof. By [22, Theorem 5.9] and (1.1), for any f(τ) ∈ M2k(Γ0(4p)) we have

f(τ) =
∑

d|4p

bdE2k(dτ) + C2k,4p(τ)

for some bd ∈ C and C2k,4p(τ) ∈ S2k(Γ0(4p)). We use the fact that constant
coefficients of cusp forms are 0 at all cusps to obtain

[0]cf(τ) =
∑

d|4p

bd[0]cE2k(dτ) + 0,(4.1)

for all c | 4p. The entries of the matrix of system of linear equations determined
by (4.1) is given by Table 3.1. We solve this system to obtain desired equations for
bd. The second part of the theorem can be proven similarly by using the entries
given by Table 3.3. �

For brevity we don’t state Theorem 4.1 for weight 2 spaces. One can use (5.1)
and above arguments to give the statement for M2(Γ0(4p)).

5. Proof of the main theorem

By Jacobi’s triple product identity [5, p. 10] we have

za = ϕ2(aτ) =

(

η5(2aτ)

η2(aτ)η2(4aτ)

)2

.

That is, we can rewrite the generating function in terms of eta quotients:

z2k−j−1zjp = ϕ4k−2j−2(τ)ϕ2j(pτ) =

(

η5(2τ)

η2(τ)η2(4τ)

)4k−2j−2(
η5(2p · τ)

η2(p · τ)η2(4p · τ)

)2j

,
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z2k−jzjp = ϕ4k−2j(τ)ϕ2j(pτ) =

(

η5(2τ)

η2(τ)η2(4τ)

)4k−2j (
η5(2p · τ)

η2(p · τ)η2(4p · τ)

)2j

.

By Ligozat Theorem ([11], or [4, Theorem 2.1]), for k ∈ N we have

ϕ4k−2j−2(τ)ϕ2j(pτ) ∈M2k−1(Γ0(4p), χ−4), for all 0 ≤ j ≤ 2k + 1,

ϕ4k−2j(τ)ϕ2j(pτ) ∈M2k(Γ0(4p)), for all 0 ≤ j ≤ 2k.

We compute

[0]ϕ2(τ) = 1, and [0]1ϕ
2(τ) =

−i

2
,

using [9, Proposition 2.1]. Then by Theorem 3.2 we compute the following table
for k ∈ N (or, alternatively one can use [9, Proposition 2.1] to compute all the
entries without using Theorem 3.2.)

Table 5.1: The constant terms of the Fourier series ex-
pansions of ϕ2k−2j(τ)ϕ2j(pτ)

cusps 1 1/2 1/4 1/p 1/2p ∞

ϕ4k−2j−2(τ)ϕ2j(pτ)
(−1)ki

22k−1pj
NA

χ−4(p)
j

pj
(−1)kχ−4(p)

j−1i

22k−1
NA 1

ϕ4k−2j(τ)ϕ2j(pτ)
(−1)k

22kpj
0

χ−4(p)
j

pj
(−1)k χ−4(p)

j

22k
0 1

Then we put the values of constant terms of generating functions at the cusps
given by Table 5.1 in Theorem 4.1. Thus, for k > 1, we have that there exist cusp
forms C2k,4p(τ) ∈ S2k(Γ0(4p)) and C2k−1,4p(τ) ∈ S2k−1(Γ0(4p), χ−4) such that

ϕ4k−2j(τ)ϕ2j(pτ) =
p2k−jχ − 1

p2kχ − 1
Fp(2k, j; τ) +

p2kχ − p2k−jχ

p2kχ − 1
Fp(2k, j; pτ) + C2k,4p(τ),

ϕ4k−2j−2(τ)ϕ2j(pτ) =
p2k−1−j
χ − 1

p2k−1
χ − 1

Fp(2k − 1, j; τ) +
p2k−1
χ − p2k−1−j

χ

p2k−1
χ − 1

Fp(2k − 1, j; pτ)

+ C2k−1,4p(τ).

On the other hand Ap(k, j; τ) =
Ck,4p(τ)

zk
is a modular function of weight 0 for

Γ0(4p), from which the theorem follows. Note that, the poles of Ap(k, j; τ) occur
at cusps 1

2
and 1

2p
, a similar feature is present in the original Ramanujan-Mordell

formula.
We didn’t state Theorem 4.1 for weight 2k = 2 spaces for brevity. Below we

sketch the proof of main theorem for weight 2 spaces. By [22, Theorem 5.9] the set
{Ld(τ) : 1 < d | 4p} form a basis for E2(Γ0(4p)), where Ld(τ) = E2(τ)− dE2(dτ).
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We use [9, (1.21)] to compute

[0]cLd(τ) = 1−
gcd(c, d)2

d
, for all c, d | 4p, d > 1.(5.1)

The result for weight 2 extension follows from solving the equations

[0]cz
2−jzjp = [0]cϕ

4−2j(τ)ϕ2j(pτ) =
∑

1<d|4p

bd[0]cLd(τ) =
∑

1<d|4p

bd

(

1−
gcd(c, d)2

d

)

,

(c | 4p) for bd.

6. Eta quotients generating Sk(Γ0(20), χ)

For p ≤ 13 it is possible to express zkAp(k, j; τ) in terms of eta quotients,
see [18, Corollary 3]. The case p = 3, has been given in author’s PhD thesis,
see [2, Theorem 5.1.3]. In this section we give the bases for S2k(Γ0(20)) and
S2k−1(Γ0(20), χ−4) in terms of eta quotients. We then express A5(k, j; τ) as linear
combinations of eta quotients. Let us define the following eta quotients, which will
be used to express basis elements.

S1(k, l; τ) =

(

ϕ(5τ)

ϕ(τ)

)k (
η3(2τ)η5(5τ)η10(20τ)

η(τ)η2(4τ)η15(10τ)

)l(
η12(2τ)η12(5τ)η12(20τ)

η4(τ)η4(4τ)η28(10τ)

)

,

S2(k, l; τ) =

(

ϕ(5τ)

ϕ(τ)

)k (
η3(2τ)η5(5τ)η10(20τ)

η(τ)η2(4τ)η15(10τ)

)l(
η8(2τ)η13(5τ)η15(20τ)

η(τ)η3(4τ)η32(10τ)

)

,

S3(k, l; τ) =

(

ϕ(5τ)

ϕ(τ)

)k (
η3(2τ)η5(5τ)η10(20τ)

η(τ)η2(4τ)η15(10τ)

)l(
η9(2τ)η15(5τ)η18(20τ)

η3(τ)η2(4τ)η37(10τ)

)

.

Theorem 6.1. Let k ∈ N. The sets of eta quotients
{

z2S1(6, 0; τ)
}

,
{

z4kS1(10k, l; τ) | 0 ≤ l ≤ 4k − 3
}

∪
{

z4kS2(10k, l; τ) | 0 ≤ l ≤ 4k − 3
}

∪
{

z4kS3(10k, l; τ) | 0 ≤ l ≤ 4k − 3
}

,
{

z4k−2S1(10k − 4, l; τ) | 0 ≤ l ≤ 4k − 4
}

∪
{

z4k−2S2(10k − 6, l; τ) | 0 ≤ l ≤ 4k − 5
}

∪
{

z4k−2S3(10k − 6, l; τ) | 0 ≤ l ≤ 4k − 6
}

,

form a basis for S2(Γ0(20)), S4k(Γ0(20)) (for k ≥ 1) and S4k−2(Γ0(20)) (for k > 1),
respectively; and
{

z4k−1S1(10k − 2, l; τ) | 0 ≤ l ≤ 4k − 3
}

∪
{

z4k−1S2(10k − 2, l; τ) | 0 ≤ l ≤ 4k − 4
}

∪
{

z4k−1S3(10k − 2, l; τ) | 0 ≤ l ≤ 4k − 4
}

,
{

z4k−3S1(10k − 6, l; τ) | 0 ≤ l ≤ 4k − 5
}

∪
{

z4k−3S2(10k − 8, l; τ) | 0 ≤ l ≤ 4k − 6
}

∪
{

z4k−3S3(10k − 8, l; τ) | 0 ≤ l ≤ 4k − 6
}

,
12



form a basis for S4k−1(Γ0(20), χ−4) (for k ≥ 1) and S4k−3(Γ0(20), χ−4) (for k > 1),
respectively.

Proof. We use Ligozat Theorem ([11], or [4, Theorem 2.1]) to check each eta quo-
tient is a cusp form in the corresponding space, and use [22, Proposition 6.1 and
pg. 98] to compute

dim(S2(Γ0(20))) = 1,

dim(S4k(Γ0(20))) = 12k − 6,

dim(S4k−2(Γ0(20))) = 12k − 12,

dim(S4k−1(Γ0(20), χ−4)) = 12k − 8,

dim(S4k−3(Γ0(20), χ−4)) = 12k − 14.

Further, the orders of zeros of eta quotients at ∞ in each set are different, from
which the linear independence follows. �

Additionally this choice of bases give a lower triangular shape to the correspond-
ing matrix system, which allows iterative determination of the coefficients of eta
quotients in linear combinations to represent zkA5(k, j; τ).

Theorem 6.2. Let k > 1 be an integer and 0 ≤ j ≤ k. Then we have

zk−jzj5 =
5k−j − 1

5k − 1
F5(k, j; τ) +

5k − 5k−j

5k − 1
F5(k, j; 5τ) + zkA5(k, j; τ),

where

A5(k, j; τ ) =














































































4

3
(1− (−1)j)S1(6, 0; τ ), if k = 2,

k−3
∑

l=0

α3l+1S1

(

5k

2
, l; τ

)

+
k−3
∑

l=0

α3l+2S2

(

5k

2
, l; τ

)

+
k−3
∑

l=0

α3l+3S3

(

5k

2
k, l; τ

)

, if 4 | k,

k−2
∑

l=0

α3l+1S1

(

5k + 3

2
, l; τ

)

+
k−3
∑

l=0

α3l+2S2

(

5k − 1

2
, l; τ

)

+
k−3
∑

l=0

α3l+3S3

(

5k − 1

2
, l; τ

)

, if 4 | k − 1,

k−2
∑

l=0

α3l+1S1

(

5k + 2

2
, l; τ

)

+
k−3
∑

l=0

α3l+2S2

(

5k − 2

2
, l; τ

)

+
k−4
∑

l=0

α3l+3S3

(

5k − 2

2
, l; τ

)

, if 4 | k − 2,

k−2
∑

l=0

α3l+1S1

(

5k + 1

2
, l; τ

)

+
k−3
∑

l=0

α3l+2S2

(

5k + 1

2
, l; τ

)

+
k−3
∑

l=0

α3l+3S3

(

5k + 1

2
, l; τ

)

, if 4 | k − 3,

and

αl = [l]zk−jzj5 −
5k−j − 1

5k − 1
[l]F5(k, j; τ) −

5k − 5k−j

5k − 1
[l]F5(k, j; 5τ) − ([l]zkA5(k, j; τ) − αl).

The iteration given for αl makes sense and computationally efficient, since
[l]Sa(∗, n; τ) = 0 for all 3n + a > l, and [3l + a]Sa(∗, l; τ) = 1. For an execu-
tion of a similar iteration see [2, (7.1.9)].
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