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LECH’S INEQUALITY, THE STÜCKRAD–VOGEL CONJECTURE, AND

UNIFORM BEHAVIOR OF KOSZUL HOMOLOGY

PATRICIA KLEIN, LINQUAN MA, PHAM HUNG QUY, ILYA SMIRNOV, AND YONGWEI YAO

Abstract. Let (R,m) be a Noetherian local ring, and let M be a finitely generated R-module

of dimension d. We prove that the set
{

l(M/IM)
e(I,M)

}
√

I=m

is bounded below by 1/d!e(R) where

R = R/Ann(M). Moreover, when M̂ is equidimensional, this set is bounded above by a finite
constant depending only on M . The lower bound extends a classical inequality of Lech, and the
upper bound answers a question of Stückrad–Vogel in the affirmative. As an application, we obtain
results on uniform behavior of the lengths of Koszul homology modules.

1. Introduction

In [12], Lech proved a simple inequality relating the Hilbert–Samuel multiplicity and the colength
of an ideal. It states that if (R,m) is a Noetherian local ring of dimension d and I is any m-primary
ideal of R, then we have

e(I,R) 6 d!e(R)l(R/I),

where e(I,R) denotes the Hilbert–Samuel multiplicity of I and e(R) = e(m, R). In the same paper,
Lech conjectured that, for every flat local extension (R,m) → (S, n) of Noetherian local rings, one
has e(R) 6 e(S). This conjecture is wide open in general. Using the above inequality, Lech obtained
the estimate e(R) 6 d!e(S) where d = dimR [12]. We refer to [9] and [7] for some generalizations
of Lech’s inequality and to [13] for recent progress on Lech’s conjecture.

If we consider the set
{

l(R/I)
e(I,R)

}
√
I=m

of positive numbers, then Lech’s inequality is simply saying

that this set is bounded below by 1
d!e(R) (and, thus, is bounded away from 0). The infimum of this

set was investigated by Mumford in his study of local stability [14]. In a different direction, in [21]

Stückrad and Vogel studied whether
{

l(R/I)
e(I,R)

}
√
I=m

is bounded from above (see also [16]), and they

conjectured the following [21, Theorem 1 and Conjecture]:

Conjecture 1.1 (Stückrad–Vogel). Let (R,m) be a Noetherian local ring and let M be a finitely
generated R-module. Let e(I,M) be the Hilbert–Samuel multiplicity1 of M with respect to I. Set

n(M) = sup√
I+Ann(M)=m

{
l(M/IM)

e(I,M)

}
.

Then n(M) < ∞ if and only if M is quasi-unmixed (i.e., M̂ is equidimensional).

Stückrad and Vogel proved the “only if” direction in general and a graded version of the “if”
direction [21, Theorem 1]. Some other partial results were obtained in [1]. In this paper we settle

1In this paper, we define the Hilbert–Samuel multiplicity of a finitely generated module M with respect to I to

be e(I,M) = lim
n→∞

t! lR(M/InM)
nt where t = dimM . This is always a positive integer even when dimM < dimR. We

will simplify our notation when I = m and write e(M) for e(m,M).

1
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this conjecture in the affirmative. Furthermore, motivated by Conjecture 1.1, it is quite natural to
inquire whether Lech’s classical inequality can be extended to all finitely generated modules, i.e.,

whether there is a lower bound on the set
{

l(M/IM)
e(I,M)

}
√
I=m

for a finitely generated R-module M .

We also answer this question in the affirmative. In sum, our main result is the following:

Theorem A (Theorem 2.4 and Theorem 3.2). Let (R,m) be a Noetherian local ring, and let M be
a finitely generated R-module of dimension d. Set

m(M) = inf√
I+Ann(M)=m

{
l(M/IM)

e(I,M)

}
and n(M) = sup√

I+Ann(M)=m

{
l(M/IM)

e(I,M)

}
.

Then we have

m(M) >
1

d!e(R)

where R = R/Ann(M). Moreover, if M is quasi-unmixed, then we also have

n(M) < ∞.

As an application of Theorem A, we obtain the following result on Koszul homology:

Theorem B (Theorem 4.8). Let R be a Noetherian local ring, and let M be a finitely generated
quasi-unmixed R-module of dimension d. For every ε > 0, there exists t0 such that, for all t > t0,
all systems of parameters x := x1, . . . , xd of M , and all 1 6 i 6 d,

l(Hi(x
t
1, . . . , x

t
d;M))

l(M/(xt1, . . . , x
t
d)M)

< ε.

In fact, there exists a constant K such that for all t > 1, all systems of parameters x := x1, . . . , xd
of M , and all 1 6 i 6 d,

l(Hi(x
t
1, . . . , x

t
d;M))

l(M/(xt1, . . . , x
t
d)M)

6
K

ti
.

It is well known that the ratio in Theorem B tends to 0 for any fixed system of parameters x.
What we achieve in Theorem B is a uniform convergence. We also point out that our Theorem
A says that m(M) is bounded below by 1

d!e(R)
, which is independent of M (and only depends on

R/Ann(M)). One cannot expect the same for the upper bound n(M):

Example 1.2. Let R = k[[x, y]] and let Mt = m
t = (x, y)t. Then the Mt are all faithful R-modules

of rank one, but clearly

n(Mt) >
l(Mt/mMt)

e(m,Mt)
=

l(mt/mt+1)

e(R)
= t+ 1.

Therefore, there cannot exist a constant c such that n(Mt) 6 c works for all Mt.

Nonetheless, inspired by this example, we will see in Remark 4.14 that n(M)/µ(M) is indeed
bounded above by a constant depending only on R/Ann(M).

This paper is organized as follows. In Section 2 we prove Conjecture 1.1, which is the second
part of the Theorem A, and we also prove some results about the behavior of the invariant n(M)
under base change. In Section 3 we extend the classical version of Lech’s inequality and prove the
first part of Theorem A. In Section 4 we give many applications of Theorem A, prove Theorem B,
and obtain an alternative proof of Conjecture 1.1. In the Appendix, we establish global versions of
results in Section 4.
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2. Finiteness of n(M): resolving the Stückrad–Vogel conjecture

To prove the Stückrad–Vogel conjecture, we need the concept of extended degree of a finitely
generated module introduced by Vasconcelos in [22, 23].

Definition 2.1. Let (R,m) be a Noetherian local ring with infinite residue field. Let M(R) denote
the category of finitely generated R-modules. An extended degree on M(R) with respect to an
m-primary ideal I is a numerical function

Deg(I, •) : M(R) → R

satisfying the following conditions:

(1) Deg(I,M) = Deg(I,M ) + l(H0
m
(M)), where M = M/H0

m
(M);

(2) Deg(I,M) > Deg(I,M/xM) for every generic element x ∈ I −mI of M ;
(3) If M is Cohen-Macaulay then Deg(I,M) = e(I,M).

The original definition in [23] only deals with the case I = m. The above definition was taken from
[5, Definition 5.3]. The first question is whether, given a Noetherian local ring (R,m), an extended
degree function exists. This question was settled in the affirmative by Vasconcelos ([22, 23]), who
showed that homological degree is an example of extended degree (when the residue field is infinite).2

Definition 2.2. Let (R,m) be a homomorphic image of a Gorenstein local ring (S, n) of dimension
n, and let M be a finitely generated R-module of dimension d. Then the homological degree,
hdeg(I,M), of M with respect to an m-primary ideal I is defined by the following recursive formula:

hdeg(I,M) = e(I,M) +

n∑

i=n−d+1

(
d− 1

i− n+ d− 1

)
hdeg(I,ExtiS(M,S)).

We note that the above definition is recursive on dimension since dimExtiS(M,S) 6 n− i < d =
dimM for all i = n−d+1, . . . , n. For a long time, the homological degree was the only known explicit
example of an extended degree. Quite recently in [5], Cuong and the third author discovered another

extended degree, this one defined in terms of the Cohen-Macaulay deviated sequence {Ui(M)}d−1
i=0

of M . Roughly speaking, Ui(M) is the unmixed component of M/(xi+2, . . . , xd)M for a certain
carefully chosen system of parameters x1, . . . , xd of M . It is shown in [5, Theorem 4.4] that this
unmixed component is independent of the choice of x1, . . . , xd as long as x1, . . . , xd is a C-system of
parameters of M , which always exists when R is a homomorphic image of a Cohen-Macaulay local
ring. Thus, {Ui(M)}d−1

i=0 is a sequence of finitely generated R-modules depending only on M . Note
that Ud−1(M) is just the unmixed component of M . We refer to [5, Section 4] for more details.

2Here again, Vasconcelos’s papers [22, 23] focus on the case I = m, and in fact the main case Vasconcelos considered
is the graded case. However the proofs in [22, 23] work in the general set up, and we refer to [5] for more details.
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Definition 2.3. Let (R,m) be a homomorphic image of a Cohen-Macaulay local ring, let M be a
finitely generated R-module of dimension d, and let Ui(M), 0 6 i 6 d− 1, be the Cohen-Macaulay
deviated sequence of M . We define the unmixed degree of M with respect to an m-primary ideal I,
denoted udeg(I,M), as follows:

udeg(I,M) = e(I,M) +

d−1∑

i=0

δi,dimUi(M)e(I, Ui(M)).

It is shown in [5, Theorem 5.18] that udeg(I, •) is an extended degree (when the residue field
is infinite). We make an elementary but important observation that, for a fixed finitely generated
module M , hdeg(I,M) (resp. udeg(I,M)) is a finite sum

∑
i e(I,Mi), where {Mi} only depends on

M : this is clear from the definition for udeg(I,M) and is easily seen by induction for hdeg(I,M).
Therefore, by the associativity formula for multiplicities, for a fixed finitely generated R-module
M , there exists a finite collection of prime ideals Λ(M) = Λ ⊆ Supp(M) (allowing repetition) such
that

(2.1) hdeg(I,M) =
∑

P∈Λ
e(I,R/P ), and similarly for udeg(I,M).

Now we are ready to state and prove our main result in this section. We recall that a finitely

generated R-module M is called quasi-unmixed if M̂ is equidimensional. This is equivalent to the

condition that R̂ be equidimensional where R = R/Ann(M).

Theorem 2.4. Let (R,m) be a Noetherian local ring, and let M be a finitely generated quasi-
unmixed R-module. Then we have

n(M) = sup√
I+Ann(M)=m

{
l(M/IM)

e(I,M)

}
< ∞.

Proof. By passing to the m-adic completion, we can assume that R is a complete local ring and
M is equidimensional. We can assume also that the residue field is infinity. We now consider
Deg(I,M) = hdeg(I,M) (or Deg(I,M) = udeg(I,M)), which is an extended degree. Thus, by
Definition 2.1 (2) we know that, for every generic element x ∈ I −mI of M , we have

Deg(I,M) > Deg(I,M/xM).

Therefore, for a generic sequence of elements x1, . . . , xd of M (we may choose xi sufficiently general
such that x1, . . . , xd is a system of parameters of M), we have

Deg(I,M) > Deg(I,M/x1M) > · · · > Deg(I,M/(x1, . . . , xd)M) = l(M/(x1, . . . , xd))M > l(M/IM),

where the equality is because M/(x1, . . . , xd)M is Cohen-Macaulay and, thus

Deg(I,M/(x1, . . . , xd)M) = e(I,M/(x1, . . . , xd)M) = l(M/(x1, . . . , xd)M).

Thus, it is enough to prove that

sup√
I=m

{
Deg(I,M)

e(I,M)

}
< ∞.

At this point we invoke (2.1): it is enough to prove that, for every P ∈ Supp(M),

(2.2) sup√
I=m

{
e(I,R/P )

e(I,M)

}
< ∞.
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In order to prove (2.3), we use induction on dimM . If dimM = 0, (2.3) is obvious. In the
general case, if dimR/P = dimM then e(I,R/P ) 6 e(I,M) by the associativity of multiplicities,
so (2.3) is again obvious. Now we assume dimR/P < dimR. We choose a prime ideal P0 ∈ AssM
such that dimR/P0 = dimM and P0 ⊆ P . We have e(I,R/P0) 6 e(I,M) by the associativity of
multiplicities again. Therefore, it is enough to prove that, for every P ∈ SpecR,

(2.3) sup√
I=m

{
e(I,R/P )

e(I,R)

}
< ∞,

where R is a complete local domain and dimR/P < dimR. We pick 0 6= x ∈ P and a minimal
prime Q of (x) such that Q ⊆ P . Since R is a complete local domain, R/(x) is equidimensional; in
particular, dimR/(x) = dimR/Q, and, thus, e(I,R/(x)) > e(I,R/Q). Now we write

e(I,R/P )

e(I,R)
=

e(I,R/P )

e(I,R/Q)
· e(I,R/Q)

e(I,R/(x))
· e(I,R/(x))

e(I,R)
6

e(I,R/P )

e(I,R/Q)
· e(I,R/(x))

e(I,R)
.

Since dimR/Q < dimR, sup√I=m

{
e(I,R/P )
e(I,R/Q)

}
< ∞ by induction, which means there exists a

constant c1 such that e(I,R/P )
e(I,R/Q) 6 c1 for all m-primary ideals I. Since x is a nonzerodivisor in a

complete local ring R, by Lemma 2.5 below, we know that there exists a constant c2 such that
e(I,R/(x))
e(I,R) 6 c2 for all m-primary ideals I. Thus, putting c = c1c2 we see that

e(I,R/P )

e(I,R)
6 c

for all m-primary ideals I. This finishes the proof. �

Lemma 2.5. Let (R,m) be a Noetherian complete local ring, and let x be a nonzerodivisor on R.
Then there exists a constant k such that, for all m-primary ideals I, we have

e(I,R/(x)) 6 k · e(I,R).

Proof. We consider the short exact sequence:

0 → R

In : x

·x−→ R

In
→ R

In + (x)
→ 0

Note that if y ∈ In : x, then xy ∈ In ∩ (x). By Huneke’s uniform Artin-Rees lemma [8, Theorem
4.12], there exists a constant k such that, for all I ⊆ R, In ∩ (x) ⊆ In−kx. Thus, xy ∈ In−kx, and
so y ∈ In−k since x is a nonzerodivisor. This shows that In : x ⊆ In−k for all m-primary ideals I.
By the short exact sequence above, we know that

l

(
R

In + (x)

)
6 l

(
R

In

)
− l

(
R

In−k

)

Now we let n → ∞ and compute the corresponding Hilbert function to see that

e(I,R/(x)) 6 k · e(I,R)

for all m-primary ideals I. �

Remark 2.6. Assume that R is a (not necessarily local) Noetherian ring such that R is a homo-
morphic image of a Noetherian Gorenstein ring S with dim(S) < ∞. Further assume that M is
a finitely generated R-module such that R/Ann(M) is locally equidimensional and satisfies the
uniform Artin-Rees property (e.g., [8, Theorem 4.12]) and that, for all P ∈ Supp(M), the residue
field of RP is infinite. Then the proof of Theorem 2.4 actually gives us a (global) upper bound of
n(MP ) for all P ∈ Supp(M). Also see Remark A.11 for an alternative treatment.
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Given Theorem 2.4, it is quite natural to ask whether the supremum is actually a maximum, i.e.,
whether n(M) is attained at some I. We do not know the answer to this question. Below we prove
a special case. Recall that a finitely generated R-module M is called generalized Cohen-Macaulay
if H i

m
(M) has finite length for all i < dim(M).

Theorem 2.7. Let (R,m) be a Noetherian local ring with infinite residue field, and let M be a
finitely generated R-module. If M is generalized Cohen-Macaulay (e.g., dim(M) = 1), then n(M)
is attained, i.e., n(M) = l(M/IM)/e(I,M) for some m-primary ideal I.

Proof. Since the residue field of R is infinite, every m-primary ideal I has a minimal reduction (x)

generated by a system of parameters of M . Because l(M/IM)
e(I,M) 6

l(M/(x)M)
e((x),M) for any minimal reduction

(x) of I, we have

n(M) = sup

{
l(M/(x)M)

e((x),M)

∣∣∣ x is a system of parameter of M

}
.

When M is Cohen-Macaulay, it is easy to see that n(M) = 1 = l(M/(x)M)
e((x),M) for any ideal (x)

generated by a system of parameters of M . Thus, we assume that M is not Cohen-Macaulay;
hence, n(M) > 1 + ε for some ε > 0.

Since M is generalized Cohen-Macaulay, it is well known that there exists C > 0 (e.g., C =∑d−1
i=0

(d−1
i

)
l(H i

m
(M)) [19, Theorem 3.18]) such that

l(M/(x)M) 6 e((x),M) + C hence
l(M/(x)M)

e((x),M)
6 1 +

C

e((x),M)

for all systems of parameters x of M (for example see [18] or [20]). This shows that n(M) 6

1 + C
e(M) < ∞. There exists a positive integer N such that 1 + C

n < 1 + ε for all n > N . Therefore

n(M) = sup

{
l(M/(x)M)

e((x),M)

∣∣∣ x is a system of parameters of M such that e((x),M) 6 N

}
.

However, the set of numbers on the right side is finite, so n(M) is must be attained at some system
of parameters of M . �

2.1. The behavior of n(M) under base change. In this subsection we study the behavior of
n(M) under localization, flat local extension, and the killing of a parameter. We begin with a result
on localization.

Theorem 2.8. Let (R,m) be a Noetherian local ring and M a finitely generated R-module. Then
for any P ∈ Supp(M), we have nRP

(MP ) 6 nR(M).

Proof. We can assume M is quasi-ummixed since otherwise n(M) = ∞ by [20, Theorem 1], in
which case there is nothing to prove. We can replace R by R/Ann(M): this does not affect n(M)
or n(MP ). Therefore, we can assume R is quasi-unmixed. By [15, Theorem 31.6], this implies R is
equidimensional and catenary and that RP is also quasi-unmixed. We set dim(R) = d.

By induction it is enough to consider the case of dim(R/P ) = 1. Since the residue field of RP is
infinite, it suffices to show that

n(M) >
lRP

(MP /IMP )

e(I,MP )

for all ideals I generated by a system of parameters in RP (as in the proof of Theorem 2.7).
We know dimRP = htP = d − 1 since R is equidimensional and catenary; thus, for any such
I, by prime avoidance, we can find elements x1, . . . , xd−1 ∈ R that form part of a system of
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parameters in R and that have images in RP that generate I. So, abusing notation a bit, we will
call I = (x1, . . . , xd−1) ⊆ R.

Suppose x ∈ R is such that (I, x) is m-primary. Since M is faithful, x1, . . . , xd−1, x form a system
of parameters on both R and M . We have

l(M/(I, x)M) > e(x,M/IM) =
∑

Q∈Min(M/IM)

e(x,R/Q)l(MQ/IMQ),

where the equality holds by the additivity property of multiplicity. By Lech’s associativity formula
for multiplicities for parameter ideals [11] (see also [17]), we also have

e((I, x),M) =
∑

Q∈Min(M/IM)

e(x,R/Q)e(IRQ,MQ).

Therefore, by definition,

n(M) >
l(M/(I, x)M)

e((I, x),M)
>

∑
Q∈Min(M/IM) e(x,R/Q)lRQ

(MQ/IMQ)∑
Q∈Min(M/IM) e(x,R/Q)e(IRQ,MQ)

.

Now we let y ∈
⋂

Q∈Min(M/IM)
Q 6=P

Q \P and z ∈ P \
⋃

Q∈Min(M/IM)
Q 6=P

Q. Observe that, for any t > 1, we can

use x = yt + z to complete I to a full system of parameters. In this case
∑

Q e(x,R/Q)lRQ
(MQ/IMQ)∑

Q e(x,R/Q)e(IRQ,MQ)
=

e(yt, R/P )lRP
(MP /IMP ) +

∑
Q 6=P e(z,R/Q)lRQ

(MQ/IMQ)

e(yt, R/P )e(IRP ,MP ) +
∑

Q 6=P e(z,R/Q)e(IRQ,MQ)
.

Since e(yt, R/P ) = te(y,R/P ), if we pass to the limit as t approaches infinity we obtain

n(M) >
lRP

(MP /IMP )

e(IRP ,MP )
. �

As a consequence, we show that the invariant n(−) is non-decreasing under flat local extensions.

Corollary 2.9. Let (R,m) → (S, n) be a flat local extension of Noetherian local rings. Suppose M
is a finitely generated R-module. Then nR(M) 6 nS(M ⊗R S).

Proof. Let P be a minimal prime of mS. By Theorem 2.8, we have

nSP
((M ⊗R S)P ) 6 nS(M ⊗R S).

Thus, replacing S by SP , we may assume that S is local and that mS is n-primary. For any m-
primary ideal I, its extension IS is an n-primary ideal, and tensoring the composition series with
S shows that

lR(M/IM)lS(S/mS) = lS ((M ⊗R S)/I(M ⊗R S))

for any finitely generated R-module M . Thus, e(I,M)lS(S/mS) = e(IS,M ⊗R S) and

n(M) = sup√
I+Ann(M)=m

{
lR(M/IM)

e(I,M)

}

= sup√
I+Ann(M)=m

{
lS ((M ⊗R S)/I(M ⊗R S))

e(IS,M ⊗R S)

}

6 sup√
IS+Ann(M)S=n

{
lS ((M ⊗R S)/I(M ⊗R S))

e(IS,M ⊗R S)

}
= n(M ⊗R S). �
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Given a flat local extension (R,m) → (S, n) and a finitely generated R-module M , it would also
be interesting to bound n(M⊗RS) in terms of n(M) and n(S/mS). We do not know how to obtain
such a relation yet. Our last result in this subsection relates n(M) and n(M/xM) for a parameter
x on M (i.e., dim(M/xM) = dim(M)− 1 or, equivalently, x is a parameter on R/Ann(M)).

Proposition 2.10. Let (R,m) be a Noetherian local ring, and let M be a finitely generated R-
module of dimension d. Then for any parameter x of M , we have n(M/xM) 6 n(M).

Proof. Replacing R by R/Ann(M), we may assume M is a faithful R-module. Hence x is a
parameter on R as well. Since e(I,M/xM) > e(I,M) for every m-primary ideal I that contains x,
we have

l((M/xM)/I(M/xM))

e(I,M/xM)
=

l(M/IM)

e(I,M/xM)
6

l(M/IM)

e(I,M)
6 n(M).

This clearly implies n(M/xM) 6 n(M), as desired. �

3. The lower bound: a generalization of Lech’s inequality

Our goal in this section is to generalize Lech’s inequality to all finitely generated R-modules,
thus proving the first part of Theorem A in the introduction. We first prove a key lemma.

Lemma 3.1. Let (R,m, k) be a complete local domain with an algebraically closed residue field.
Let M be a finitely generated R-module with dim(R) = dim(M), and let J be an integrally closed
m-primary ideal. Then we have

l(M/JM) > l(R/J) dimK(M ⊗R K),

where K denotes the fraction field of R.

Proof. First of all, if we let T (M) denote the torsion submodule of M , then we have

0 → T (M) → M → M ′ → 0

where M ′ is torsion-free. Since l(M/JM) > l(M ′/JM ′) while dimK(M ⊗R K) = dimK(M ′ ⊗K),
if the lemma holds for M ′ then it also holds for M . Thus, in the rest of the proof we assume M is
torsion-free. In this case dimK(M ⊗K) = rankM .

By [4, Corollary 2.2], we have

l(M/JM) > l̄(R/J) · rankM,

where l̄(R/J) denotes the length of the longest chain of integrally closed ideals between J and R.
Therefore, it is enough to show l̄(R/J) = l(R/J). To prove this it is enough to find an integrally
closed ideal J ′ ⊇ J in R such that l(J ′/J) = 1 because then l̄(R/J) = l(R/J) follows from an easy
induction. Let R → S be the normalization of R. Since R is a complete local domain, S is local
by [10, Proposition 4.8.2], and so S = (S, n) is a normal local domain with R/m = S/n = k since k
is algebraically closed. Now by [24, Theorem 2.1], there exists a chain

JS = J0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jn = n

such that

(1) Each Ji is integrally closed in S;
(2) l(Ji+1/Ji) = 1 for every i.
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Since J is integrally closed in R and S is integral over R, by [10, Proposition 1.6.1] we know

J0 ∩R = JS ∩R = J̄ = J.

Let t = max{i | Ji ∩ R = J}. Obviously 0 6 t < n. Set J ′ = Jt+1 ∩ R. It is easy to see that
J ′ ⊇ J is integrally closed in R (one can use [10, Proposition 1.6.1] again). Moreover, l(J ′/J) > 0
by our choice of t while J ′/J →֒ Jt+1/Jt shows that l(J ′/J) 6 l(Jt+1/Jt) = 1. Thus, we have
l(J ′/J) = 1. �

We define Assh(M) = {P ∈ Ass(M) | dim(R/P ) = dim(M)} for a finitely generated R-module
M . We are now ready to state and prove the following generalization of Lech’s inequality.

Theorem 3.2. Let (R,m, k) be a Noetherian local ring, and let M be a finitely generated R-module
of dimension d. Then for every ideal I of R whose image in R = R/Ann(M) is m-primary, we
have

e(I,M) 6 d!e(R)l(M/IM).

Proof. Replacing R by R does not change either side of the inequality. Therefore, we may assume
Ann(M) = 0 and so that dim(R) = dim(M) = d. We next take a flat local extension (R,m, k) →
(R′,m′, k′) such that m

′ = mR′ and k′ = R′/m′ is the algebraic closure of R/m = k. (Such
an R′ always exists: it is a suitable gonflement of R; see [3, Corollaire in Appendice 2]). Then

R → R′ → R̂′ is a faithfully flat extension with mR̂′ = m
R̂′ , so passing from R to R̂′ and replacing

M by M ⊗R R̂′ do not affect either side of the inequality. Therefore, without loss of generality, we
may assume (R,m, k) is a complete local ring with k = k̄ and Assh(R) = Assh(M).

By the associativity formula of multiplicity, we have

e(I,M) =
∑

P∈Assh(M)

lRP
(MP )e(I,R/P ) =

∑

P∈Assh(R)

lRP
(MP )e(IR/P ,R/P ).

Using Lech’s inequality [12, Theorem 3] for each R/P , we have

(3.1) e(I,M) 6
∑

P∈Assh(R)

d!e(R/P )l
(
(R/P )/(IR/P )

)
lRP

(MP ).

Claim 3.3. For every minimal prime P of R, we have

(3.2) l
(
(R/P )/(IR/P )

)
· lRP

(MP ) 6 l(M/IM) · lRP
(RP ).

Proof of Claim. Clearly we have lRP
(MP ) 6 lRP

(RP ) · lRP
(MP /PMP ) because lRP

(MP /PMP ) is
the minimal number of generators of MP as an RP -module. Therefore,

l
(
(R/P )/(IR/P )

)
· lRP

(MP ) 6 l
(
(R/P )/(IR/P )

)
· lRP

(MP /PMP ) · lRP
(RP ).

Now R/P is a complete local domain with algebraically closed residue field k = k̄, and M/PM is a
finitely generated R/P -module. Applying Lemma 3.1 and noting that dimκ(P )(M/PM) ⊗ κ(P ) =
lRP

(MP /PMP ), we have

l
(
(R/P )/(IR/P )

)
· lRP

(MP /PMP ) 6 l

(
M/PM

(IR/P )(M/PM)

)
6 l

(
M

(I + P )M

)
6 l(M/IM).

Putting the two inequalities above together, we get

l
(
(R/P )/(IR/P )

)
· lRP

(MP ) 6 l(M/IM) · lRP
(RP ).

This finishes the proof of the Claim. �
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Finally, we plug in (3.2) to (3.1) and use additivity of multiplicity to get

e(I,M) 6
∑

P∈Assh(R)

d!e(R/P )lRP
(RP )l(M/IM)

= d!l(M/IM)


 ∑

P∈Assh(R)

lRP
(RP )e(R/P )


 = d!e(R)l(M/IM).

This finishes the proof. �

4. Applications and an alternative approach

In this section we give some applications of our results in Section 2 and Section 3. In the process,
we obtain another way to prove Conjecture 1.1 without using Vasconcelos’s extended degree (see
Remark 4.12).

Lemma 4.1. If (R,m) is a Noetherian local ring and M is a finitely generated quasi-unmixed
R-module of dimension d, then there exists a constant C such that for every h ∈ R

h

C
6 inf√

I=
√
J=m

e(I,M)>he(J,M)

{
l(M/IM)

l(M/JM)

}
and sup√

I=
√
J=m

e(I,M)6he(J,M)

{
l(M/IM)

l(M/JM)

}
6 hC.

In particular, there exists a constant C such that such that for all m-primary ideals I and for all
n > 1 we have

nd

C
6

l(M/InM)

l(M/IM)
6 Cnd.

Proof. Let dim(M) = dim(R) = d where R = R/Ann(M). We use Theorem 2.4 and Theorem 3.2
to see

l(M/IM) > e(I,M)/(d!e(R)) > he(J,M)/(d!e(R)) > hl(M/JM)/(n(M)d!e(R)),

which proves the first inequality. By symmetry, we have

l(M/IM) 6 n(M)e(I,M) 6 n(M)he(J,M) 6 hn(M)d!e(R)l(M/JM),

which proves the second inequality. So we can take C = n(M)d!e(R) in both cases. Finally, taking
h = nd and noting that e(In,M) = nde(I,M) immediately proves the last claim. �

This lemma has an immediate consequence, which we will need.

Corollary 4.2. If (R,m) is a Noetherian local ring and M is a finitely generated quasi-unmixed
R-module, then

sup√
I=m

I⊆J⊆I

{
l(M/IM)

l(M/JM)

}
< ∞.

Proof. The condition I ⊆ J ⊆ I implies e(I,M) = e(J,M). Therefore we apply Lemma 4.1 with
h = 1 to get the desired claim. �

Next we prove a result that extends Lemma 3.1 at the cost of precision in the inequality.
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Lemma 4.3. Let (R,m) be a Noetherian local ring and N be a finitely generated quasi-unmixed
R-module. Then there exists a constant CN > 0 depending only on N such that

1/CN 6 inf√
I=m

{
l(M/IM)

l(N/IN)

}
and, equivalently, sup√

I=m

{
l(N/IN)

l(M/IM)

}
6 CN

for all finitely generated R-modules M with Supp(M) ⊇ Supp(N).

Proof. Since N is quasi-unmixed, it is equidimensional. We set c = maxP∈Min(N) lRP
(NP ). Let M

be any finitely generated R-module M with Supp(M) ⊇ Supp(N). Denote M = M/aM , where
a = ∩P∈Min(N)P . Then Supp(M ) = Supp(N), and, by the associativity formula for multiplicities,

ce(I,M ) =
∑

P∈Min(N)

c · lRP
(MP )e(I,R/P ) >

∑

P∈Min(N)

lRP
(NP )e(I,R/P ) = e(I,N)

for all m-primary ideals I. Now we use Theorem 2.4 and Theorem 3.2 to obtain (with d = dim(N))

l(N/IN) 6 n(N)e(I,N) 6 n(N)ce(I,M ) 6 n(N)cd!e(R)l(M/IM ) 6 n(N)cd!e(R)l(M/IM)

where R = R/a depends only on N . So we can take CN = n(N)cd!e(R). �

Lemma 4.3 allows us to establish the following general result:

Theorem 4.4. Let (R,m) be a Noetherian local ring, and let M and N denote finitely generated
R-modules. Then

(1) 0 < inf√I=m

{
l(M/IM)
l(N/IN)

}
⇐⇒ sup√I=m

{
l(N/IN)
l(M/IM)

}
< ∞ ⇐⇒ Supp(M) ⊇ Supp(N).

(2) There exists a constant C > 0 depending only on N such that

1/C 6 inf√
I=m

{
l(M/IM)

l(N/IN)

}
and, equivalently, sup√

I=m

{
l(N/IN)

l(M/IM)

}
6 C

for all (finitely generated R-modules) M with Supp(M) ⊇ Supp(N).

(3) 0 < inf√I=m

{
l(M/IM)
l(N/IN)

}
6 sup√I=m

{
l(M/IM)
l(N/IN)

}
< ∞ ⇐⇒ Supp(M) = Supp(N).

Proof. (1): Clearly, we only need to prove the second equivalence. For the forward direction,

assume sup√I=m

{
l(N/IN)
l(M/IM)

}
< ∞ and let P ∈ Supp(N). Denote M = M/PM and N = N/PN .

As
{

l(N/IN)
l(M/IM) |

√
I = m

}
⊇
{

l(N/IN)

l(M/IM)
|
√
I = m

}
, we get sup√I=m

{
l(N/IN)

l(M/IM)

}
< ∞, which implies

dim(N) 6 dim(M) by considering l(N/IN)

l(M/IM)
with I = m

t for t ≫ 0. Note that dim(N/PN) =

dim(R/P ), since P ∈ Supp(N). Thus, dim(M/PM) = dim(R/P ), which forces P ∈ Supp(M).
For the backward direction, assume Supp(M) ⊇ Supp(N). We can further assume that R is

complete, which does not affect the statement. We next take a prime cyclic filtration of N of
length n with factors Ni = R/Pi such that Pi ∈ Supp(N) for i = 1, . . . , n (note that the Pi are
not necessarily distinct). As l(N/IN) 6

∑n
i=1 l(Ni/INi) for every m-primary ideal I, it suffices

to show sup√I=m

{
l(Ni/INi)
l(M/IM)

}
< ∞ for each i = 1, . . . , n. But this follows from Lemma 4.3 since

each Ni = R/Pi is quasi-unmixed (since R is complete) and Supp(M) ⊇ Supp(Ni). In detail, let
CNi > 0 be as in Lemma 4.3 for each i = 1, . . . , n. Then

sup√
I=m

{
l(N/IN)

l(M/IM)

}
6

n∑

i=1

sup√
I=m

{
l(Ni/INi)

l(M/IM)

}
6

n∑

i=1

CNi < ∞

with
∑n

i=1 CNi < ∞ depending only on N .
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(2): From the proof of (1) above (for the backward direction), we can set C =
∑n

i=1CNi , which
depends only on (the completion of) N .

(3): This is clear from (1). �

Lemma 4.5. Let (R,m) be a Noetherian local ring and M a finitely generated R-module. If
(y1, . . . , yd) ⊆ (x1, . . . , xk) are m-primary ideals of R, then for all 0 6 i 6 k,

l(Hi(x1, . . . , xk;M)) 6
k∑

j=0

(
k

j

)
l(Hi−j(y1, . . . , yd;M)) 6 2k max

06j6k
l(Hi−j(y1, . . . , yd;M)),

with the convention that H<0(y1, . . . , yd;M) = 0.

Proof. If f = f1, . . . , fs is any sequence of elements of R and f− = f1, . . . , fs−1, then there is a
short exact sequence for each 0 6 i 6 s− 1

0 →
Hi(f

−;M)

fsHi(f
−;M)

→ Hi(f ;M) → AnnHi−1(f
−;M)(fs) → 0,

Using the short exact sequence above, we see that

l(Hi(x1, . . . , xk;M)) 6 l(Hi(x1, . . . , xk;M)) + l(Hi−1(x1, . . . , xk;M))

= l(Hi(x1, . . . , xk, y1;M)) (since y1 ∈ (x1, . . . , xk))

6 · · · (by joining y2, . . . , yd inductively)

6 l(Hi(x1, . . . , xk, y1, . . . , yd;M))

= l

(
Hi(x1, . . . , xk−1, y1, . . . , yd;M)

xkHi(x1, . . . , xk−1, y1, . . . , yd;M)

)
+ l
(
AnnHi−1(x1,...,xk−1,y1,...,yd;M)(xk)

)

6 l (Hi(x1, . . . , xk−1, y1, . . . , yd;M)) + l (Hi−1(x1, . . . , xk−1, y1, . . . , yd;M))

6 · · · (by removing xk−1, . . . , x1 inductively)

6

k∑

j=0

(
k

j

)
l(Hi−j(y1, . . . , yd;M))

6 2k max
06j6k

l(Hi−j(y1, . . . , yd;M)),

completing the proof. �

Remark 4.6 ([19] or [2]). Let (R,m) be a local ring of dimension d that is a homomorphic image
of a local Gorenstein ring S of dimension n. Then for every finitely generated R-module M , every
system of parameters x = x1, . . . , xd of R, and every i = 1, . . . , d, we have

l(Hi(x1, . . . , xd;M)) 6
d−i∑

j=0

l(Hd−i−j(x1, . . . , xd; Ext
n−j
S (M,S))).3

Note that dim(Extn−j
S (M,S)) 6 d − i for each j = 0, . . . , d − i, since Extn−j

S (M,S)∨ ∼= Hj
m(M)

where (−)∨ stands for Matlis dual.

3This is written down in [2]. We point out that this also follows from [19, Theorem 3.16] as follows: since x
is a system of parameters of R, we can pick y = y1, . . . , yd with (y) = (x) such that they form a strong filter
regular sequence on R and M by prime avoidance. Replacing x by y does not affect the Koszul homology, so we
can assume x is a strong filter regular sequence on R and M and then note that we have a canonical isomorphism
Hj(x1, . . . , xd;N

∨) ∼= Hj(x1, . . . , xd;N)∨ for all finitely generated R-modules N by [19, bottom of page 286]. (In
particular, they have the same length.). Therefore, the displayed formula is a restatement of [19, Theorem 3.16].
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Theorem 4.7. Let (R,m) be a Noetherian local ring and M a finitely generated R-module of
dimension d. Then there exists a constant C depending on M such that, for every k > d, we have

sup√
(x1,...,xk)+Ann(M)=m

06i6k

{
l(Hi(x1, . . . , xk;M))

l(M/(x1, . . . , xk)M)

}
6 2kC.

Proof. As in the first paragraph in the proof of Theorem 3.2, we can replace R by R/Ann(M),
enlarge the residue field of R, and then complete R. Therefore, we can assume that R is a complete
local ring with infinite residue field and that M is a faithful R-module. (The rest of the proof only
relies on the fact that (R,m) is a homomorphic image of a Gorenstein ring S with infinite residue
field.)

We proceed by induction on d = dim(M). When dim(M) = 0, clearly C = l(M) works. Assume
that the theorem holds for modules of dimension < d. Now let dim(M) = d. Let R/P1, . . . , R/Pr

be the (not necessarily distinct) factors appearing in a prime cyclic filtration of M . We note that,
for each 0 6 i 6 d,

l(Hi(x1, . . . , xk;M))

l(M/(x1, . . . , xk)M)
6

∑r
j=1 l(Hi(x1, . . . , xk;R/Pj))

l(M/(x1, . . . , xk)M)
6

r∑

j=1

l(Hi(x1, . . . , xk;R/Pj))

l(M/((x1, . . . , xk) + Pj)M)
.

Now each M/PjM is a finitely generated faithful module over the local domain R/Pj with infinite
residue field. It then follows from Lemma 4.3 or Theorem 4.4 (applied to M/PjM and R/Pj) that
we may replace each term l(M/((x1, . . . , xk)+Pj)M) by l(R/((x1, . . . , xk)+Pj)R) without affecting
the claim of the theorem. We have now reduced to the case of M = R/Pj over the local domain
R/Pj of dimension 6 d.

Therefore, it suffices to verify the case of M = R where R is a domain with dim(R) = d. (We
still have that R is a homomorphic image of a Gorenstein local ring S with infinite residue field.)

Let (y1, . . . , yd) be a minimal reduction of (x1, . . . , xk). By Corollary 4.2 and Lemma 4.5, it
suffices to find a constant D such that

l(Hi(y1, . . . , yd;R))

l(R/(y1, . . . , yd))
6 D

for all systems of parameters y := y1, . . . , yd of R and for all i = 0, . . . , d. Now by Remark 4.6, it
suffices to show that, for any fixed finitely generated R-module L with dim(L) < d, there exists a
constant DL such that

l(Hi(y1, . . . , yd;L))

l(R/(y1, . . . , yd))
6 DL

independent of y and i. Indeed, as l(L/(y1, . . . , yd)L) 6 µ(L)l(R/(y1, . . . , yd)), we have

l(Hi(y1, . . . , yd;L))

l(R/(y1, . . . , yd))
6 µ(L)

l(Hi(y1, . . . , yd;L))

l(L/(y1, . . . , yd)L)
.

Since dim(L) < d, the right hand side of the above inequality is bounded above (independent of y

and i) by the inductive hypothesis (noting that 2d is a constant as well). �

It is well known that (for example, see [6]) if R is a complete local domain of characteristic p > 0

and dimension d > 1, then, for every system of parameters (x1, . . . , xd) of R,
l(Hi(x

pe

1 ,...,xpe

d ;R))

l(H0(x
pe

1 ,...,xpe

d ;R))

e→∞−−−→
0 for each 1 6 i 6 d. This classical result is essentially saying that the length of higher Koszul
homology modules tends to 0 compared to the length of the 0-th Koszul homology module when
we raise any system of parameters to high Frobenius powers. Our final result is a generalization of
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this result to a characteristic-free version. More importantly, the convergence to 0 occurs in a way
that is independent of the system of parameters!

Theorem 4.8. Let R be a Noetherian local ring and M be a finitely generated quasi-unmixed R-
module with dim(M) = d. For every ε > 0, there exists t0 such that, for all t > t0, all systems of
parameters x := x1, . . . , xd of M , and all 1 6 i 6 d,

l(Hi(x
t
1, . . . , x

t
d;M))

l(M/(xt1, . . . , x
t
d)M)

< ε.

In fact, there exists a constant K such that for all t > 1, all systems of parameters x := x1, . . . , xd
of M , and all 1 6 i 6 d,

l(Hi(x
t
1, . . . , x

t
d;M))

l(M/(xt1, . . . , x
t
d)M)

6
K

ti
.

Proof. As usual, we replace R by R = R/Ann(M) and complete R to assume that R is complete and
that M is faithful over R. Our hypothesis then implies that both M and R are equidimensional.
(The rest of the proof only relies on the fact that M is equidimensional and that (R,m) is a
homomorphic image of a Gorenstein local ring S.)

Because we consider only finitely many i, it is sufficient to fix some 1 6 i 6 d. By Remark 4.6,
it suffices to show that, for any fixed finitely generated R-module L with dim(L) 6 d − i and any
fixed j = 0, . . . , d− i, there exists a constant K such that, for all t > 1 and all x,

l(Hj(x
t
1, . . . , x

t
d;L))

l(M/(xt1, . . . , x
t
d)M)

6
K

ti
.

By taking a prime cyclic filtration of L, it suffices to show that, for any fixed P ∈ Spec(R) such
that dim(R/P ) = d′ 6 d− i, there exists a constant K such that, for all t > 1 and all x,

l(Hj(x
t
1, . . . , x

t
d;R/P ))

l(M/(xt1, . . . , x
t
d)M)

6
K

ti
.

Denote D := R/P . By Theorem 4.7, we fix

C = sup√
(x1,...,xd)=m

{
l(Hj(x1, . . . , xd;D))

l(D/(x1, . . . , xd)D)

}
< ∞.

According to Theorem 2.4, we let

B = sup√
I=m

{
l(D/ID)

e(I,D)

}
< ∞.

Moreover, as M is equidimensional, there exists Q ∈ Min(R) = Min(M) such that Q ( P so
that D is a proper homomorphic image of R/Q, in which case dim(R/Q) = d > d′ = dim(D)
and e(I,R/Q) 6 e(I,M) for all m-primary ideals I (since dim(R/Q) = dim(M)). In light of
Equation (2.3) in the proof of Theorem 2.4, we set

A = sup√
I=m

{
e(I,D)

e(I,R/Q)

}
< ∞.
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Finally, we see

l(Hj(x
t
1, . . . , x

t
d;D))

l(M/(xt1, . . . , x
t
d)M)

6
l(Hj(x

t
1, . . . , x

t
d;D))

e((xt1, . . . , x
t
d),M)

6 C
l(D/(xt1, . . . , x

t
d)D)

e((xt1, . . . , x
t
d),M)

6 BC
e((xt1, . . . , x

t
d),D)

e((xt1, . . . , x
t
d),M)

= BC
td

′
e((x1, . . . , xd),D)

tde((x1, . . . , xd),M)

6
BC

td−d′
e((x1, . . . , xd),D)

e((x1, . . . , xd), R/Q)
6

ABC

td−d′
6

ABC

ti
,

whose convergence to 0, as t → ∞, is independent of systems of parameters x := x1, . . . , xd. �

Lemma 4.9. Let R be a (Noetherian) ring, M a finitely generated R-module, x := x1, . . . , xd a
sequence of elements of R such that l(M/(x)M) < ∞, and tj > sj > 1 for 1 6 j 6 d. Then for all
i, we have

l(Hi(x
t1
1 , . . . , x

td
d ;M)) 6 l(Hi(x

s1
1 , . . . , xsdd ;M))

d∏

j=1

tj
sj

Proof. By symmetry, it suffices to show l(Hi(x
t
1, x2, . . . , xd;M)) 6 l(Hi(x

s
1, x2, . . . , xd;M)) ts for all

t > s > 1. For each i, denote Hi = Hi(x2, . . . , xd;M). From the exact sequence

Hi
xt
1·−−→ Hi → Hi(x

t
1, x2, . . . , xd;M) → Hi−1

xt
1·−−→ Hi−1

we see that

l(Hi(x
t
1, x2, . . . , xd;M)) = l(Hi/x

t
1Hi) + l((0 :Hi−1 xt1))

=

t∑

j=1

l(xj−1
1 Hi/x

j
1Hi) +

t∑

j=1

l((0 :Hi−1 xj1)/(0 :Hi−1 xj−1
1 )).

Now, as we can do the above to l(Hi(x
s
1, x2, . . . , xd;M)) as well, it suffices to show the sequences

{l(xj−1
1 Hi/x

j
1Hi)}j and {l((0 :Hi−1 xj1)/(0 :Hi−1 xj−1

1 ))}j are both non-increasing. But this follows
because the following maps induced by multiplication by x1:

xj−1
1 Hi

xj1Hi

x1·−−→ xj1Hi

xj+1
1 Hi

and
(0 :Hi−1 xj+1

1 )

(0 :Hi−1 xj1)

x1·−−→ (0 :Hi−1 xj1)

(0 :Hi−1 xj−1
1 )

,

are onto and 1-1 respectively. �

The next theorem generalizes the uniform convergence established in Theorem 4.8.

Theorem 4.10. Let R be a Noetherian local ring and M a finitely generated quasi-unmixed R-
module with dim(M) = d. For every ε > 0, there exists t0 such that, for all tj > t0 with 1 6 j 6 d,
all systems of parameters x := x1, . . . , xd of M , and all 1 6 i 6 d,

l(Hi(x
t1
1 , . . . , x

td
d ;M))

l(M/(xt11 , . . . , x
td
d )M)

< ε.
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In fact, there exists a constant K such that for all tj > 1 with 1 6 j 6 d, all systems of parameters
x := x1, . . . , xd of M , and all 1 6 i 6 d,

l(Hi(x
t1
1 , . . . , x

td
d ;M))

l(M/(xt11 , . . . , x
td
d )M)

6
K

(minj tj)i
.

Proof. With tj > 1 for 1 6 j 6 d, we denote t = minj tj. Then for all systems of parameters
x := x1, . . . , xd of M and all 1 6 i 6 d, we have

l(Hi(x
t1
1 , . . . , x

td
d ;M))

l(M/(xt11 , . . . , x
td
d )M)

6
l(Hi(x

t
1, . . . , x

t
d;M))

l(M/(xt11 , . . . , x
td
d )M)

d∏

j=1

tj
t

(Lemma 4.9)

6
l(Hi(x

t
1, . . . , x

t
d;M))

e((xt11 , . . . , x
td
d ),M)

d!e(R)

d∏

j=1

tj
t

(Theorem 3.2)

=
l(Hi(x

t
1, . . . , x

t
d;M))

e((xt1, . . . , x
t
d),M)

d!e(R)

6
l(Hi(x

t
1, . . . , x

t
d;M))

l(M/(xt1, . . . , x
t
d)M)

n(M)d!e(R) (Theorem 2.4)

in which R = R/Ann(M). Now Theorem 4.8 completes the proof. �

Remark 4.11. We would like to mention that, in Theorem 4.8 (hence in Theorem 4.10), the
assumption that M is quasi-unmixed is necessary (at least when R has infinite residue field). In
fact, the conclusion of Theorem 4.8 (i.e., the uniform convergence to 0) for M implies n(M) < ∞
provided that R has infinite residue field, which forces M to be quasi-unmixed by [21, Theorem

1]. For details, the existence of t such that
∑d

i=1(−1)i−1l(Hi(xt
1,...,x

t
d;M))

l(M/(xt
1,...,x

t
d)M)

< ε < 1 for all systems of

parameters x := x1, . . . , xd of M implies

e((x1, . . . , xd),M)

l(M/(x1, . . . , xd)M)
=

e((xt1, . . . , x
t
d),M)

tdl(M/(x1, . . . , xd)M)
>

e((xt1, . . . , x
t
d),M)

tdl(M/(xt1, . . . , x
t
d)M)

>
1

td

(
l(M/(xt1, . . . , x

t
d)M)

l(M/(xt1, . . . , x
t
d)M)

−
∑d

i=1(−1)i−1l(Hi(x
t
1, . . . , x

t
d;M))

l(M/(xt1, . . . , x
t
d)M)

)
>

1− ε

td

for all systems of parameters x := x1, . . . , xd of M , which implies n(M) < ∞ (given that R has
infinite residue field).

Remark 4.12. Evidently the results of this section rely on Theorem 2.4. However, a careful
analysis of the proofs in this section reveals an alternative proof of Theorem 2.4 by induction on
the dimension of the quasi-unmixed R-module M without explicit usage of homological degree or
unmixed degree. Without loss of generality, assume that (R,m) is complete with infinite residue field
(thus, R is a homomorphic image of a Gorenstein ring S with dim(S) = n). When dim(M) = 0, it
is clear that Theorem 4.8, Theorem 2.4, Lemma 4.1, Corollary 4.2, Lemma 4.3, and Theorem 4.7 all
hold. Now assume that all these results hold in dimension < d, and consider the case of dimension
d. Then Theorem 4.8 holds in dimension d (because the proof of Theorem 4.8 only requires the
aforementioned results in dimension< d), which implies Theorem 2.4 in dimension d as we explained
in Remark 4.11. Then we have Lemma 4.1, Corollary 4.2, Lemma 4.3 and Theorem 4.7 in dimension
d, completing the induction. Alternatively, Theorem 4.7 and Theorem 2.4 in dimension < d implies



LECH-STUCKRAD-VOGEL 17

Theorem 2.4 in dimension d as follows: It suffice to consider the case of M = R being a domain.
For an arbitrary system of parameters y := y1, . . . , yd of R, we have

l(R/(y))

e((y), R)
6

e((y), R) + l(H1(y;R))

e((y), R)
= 1 +

l(H1(y;R))

e((y), R)
.

Similar to the reasoning in the proof of Theorem 4.7 (plus taking prime cyclic filtration), it suffices

to consider R/P with 0 6= P ∈ Spec(R) and to find an upper bound for
l(Hi(y;R/P ))

e((y),R) for all systems

of parameters y. By Theorem 4.7 and Theorem 2.4 in dimension < d, it suffices to find an upper

bound for
e(y,R/P )

e((y),R) for all systems of parameters y. But this is Equation (2.3) in the proof of

Theorem 2.4.

Even though the alternative proof sketched above does not use extended degree explicitly, its
approach is very similar to that of homological degree: the alternative approach relies on Remark 4.6

to reduce the dimension from dim(M) = d to dim(Extn−j
S (M,S)) < d, 0 6 j < d, while the

homological degree involves the same modules in its definition.
The following is an easy consequence of Theorem 4.10. It says that for all systems of parameters

x = x1, . . . , xd on M , the rate of convergence of
l(M/(x

t1
1 ,...,x

td
d )M)

∏d
j=1 tj

to e((x),M) is uniformly controlled

by l(M/(x)M) and minj tj only.

Corollary 4.13. Let (R,m) be a Noetherian local ring and M be a finitely generated quasi-unmixed
R-module. Then for every constant C > 0 and every ǫ > 0, there exists t0 ∈ N such that, for all
tj > t0 with 1 6 j 6 d, all systems of parameters x = x1, . . . , xd on M such that e((x),M) 6 C,
we have

0 6
l(M/(xt11 , . . . , x

td
d )M)

∏d
j=1 tj

− e((x),M) < ǫ.

In fact, there exists a constant K such that, for all tj > 1 with 1 6 j 6 d and all systems of
parameters x = x1, . . . , xd on M , we have

0 6
l(M/(xt11 , . . . , xtdd )M)

∏d
j=1 tj

− e((x),M) 6 e((x),M)
K

minj tj
6 l(M/(x)M)

K

minj tj
.

Proof. For all all systems of parameters x = x1, . . . , xd on M , we have (with x[t] := xt11 , . . . , x
td
d )

0 6
l(M/(x[t])M)
∏d

j=1 tj
− e((x),M) =

l(M/(x[t])M)− e((x[t]),M)
∏d

j=1 tj

=
l(M/(x[t])M)
∏d

j=1 tj

∑d
i=1(−1)i−1l(Hi(x

[t];M))

l(M/(x[t])M)

6
e((x[t]),M)n(M)

∏d
j=1 tj

∑d
i=1(−1)i−1l(Hi(x

[t];M))

l(M/(x[t])M)

= e((x),M)n(M)

∑d
i=1(−1)i−1l(Hi(x

[t];M))

l(M/(x[t])M)

6 e((x),M)

(
n(M)

d∑

i=1

(−1)i−1 l(Hi(x
[t];M))

l(M/(x[t])M)

)
.
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Now Theorem 4.10 completes the proof. �

Finally, we remark that even though n(M) could tend to ∞ as M varies (see Example 1.2), n(M)
µ(M)

has an upper bound that depends only on R/Ann(M) (and not on M). We would like to thank
the referee for pointing out this question.

Remark 4.14. Let (R,m) be a Noetherian local ring, and let M be a finitely generated quasi-
unmixed R-module. Set R = R/Ann(M), which is quasi-unmixed by assumption and we have
Assh(M) = Assh(R). Let c = maxP∈Assh(R) lRP

(RP ). Clearly l(M/IM) 6 µ(M)l(R/IR), and by

the associativity formula for multiplicities e(I,R) 6 ce(I,M). Now for all m-primary ideals I we
have

l(M/IM)

e(I,M)µ(M)
=

l(M/IM)

µ(M)l(R/IR)
· l(R/IR)

e(I,R)
· e(I,R)

e(I,M)
6 cn(R).

Therefore n(M)
µ(M) 6 cn(R), and the latter depends only on R = R/Ann(M). Also note that if we

take R = k[[x, y]], It = (x) ∩ (x, y)n. Then R/It is quasi-unmixed and n(R/It) > t: the ideal (y)
has multiplicity 1 and colength t in R/It. Therefore, in general the n(R) (as M varies) are not
bounded in terms of invariants of R.

Appendix A. Global version of the results

In this appendix we briefly explain that our results and methods in Section 4 work globally.
Most of the results rely on sup{e(RP ) | P ∈ Spec(R)} < ∞, with R = R/Ann(M), and rely on
the uniform Artin-Rees property (cf. [8]). We observe that sup{e(RP ) | P ∈ Spec(R)} < ∞ if the
regular loci of all quotient domains of R are open (e.g., R is excellent). By [8, Theorem 4.12], the
uniform Artin-Rees property holds for R (hence holds for all its localizations RP with the same
constant) if R is essentially of finite type over a Noetherian local ring or Z, or if R is an F-finite
Noetherian ring of prime characteristic p. We will also use the fact that a homomorphic image of
a Cohen-Macaulay local ring is quasi-unmixed if and only if it is equidimensional.

We start with the global version of 4.1–4.4.

Lemma A.1. Let R be a Noetherian ring that is a homomorphic image of a Noetherian Gorenstein
ring S with dim(S) < ∞, and let M be a finitely generated R-module such that R = R/Ann(M)
is locally equidimensional and satisfies the uniform Artin-Rees property with sup{e(RP ) | P ∈
Spec(R)} < ∞. Suppose the residue field of RP is infinite for all P ∈ Supp(M). Then there exists
a constant C such that, for every h ∈ R and every P ∈ Supp(M),

h

C
6 inf√

I=
√
J=PP

e(I,MP )>he(J,MP )

{
l(MP /IMP )

l(MP /JMP )

}
and sup√

I=
√
J=PP

e(I,MP )6he(J,MP )

{
l(MP /IMP )

l(MP /JMP )

}
6 hC.

By
√
I =

√
J = PP , we regard I and J as (PP -primary) ideals of RP .

Proof. For each P , do the same proof for MP over RP as in Lemma 4.1, and note that n(MP ),
dim(MP ) and e(RP ) have global upper bounds (see Remark 2.6). �

Corollary A.2. With notation and assumptions as in Lemma A.1, we have

sup
P∈Supp(M)√

I=PP

I⊆J⊆I

{
l(MP /IMP )

l(MP /JMP )

}
< ∞.
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Proof. Apply Lemma A.1 with h = 1 to get the desired claim. �

Lemma A.3. Let R be a Noetherian ring that is a homomorphic image of a Noetherian Gorenstein
ring S with dim(S) < ∞, and let N be a finitely generated R-module such that R/Ann(N) is locally
equidimensional and satisfies the uniform Artin-Rees property with sup{e(RP ) | P ∈ Spec(R)} <
∞. Suppose the residue field of RP is infinite for all P ∈ Supp(N). Then there exists a constant
CN > 0 depending only on N such that

sup√
I=PP

{
l(NP /INP )

l(MP /IMP )

}
6 CN

for all P ∈ Supp(N), all PP -primary ideals I, and all finitely generated R-modules M such that
Supp(MP ) ⊇ Supp(NP ). (Note that such MP covers all finitely generated RP -modules whose
supports contain the support of NP .)

Proof. For each P , do the same proof for NP over RP as in Lemma 4.3, and note that the
constant n(NP )cdim(NP )!e(RP ) has a global upper bound (see Remark 2.6): we can take c =
maxP∈Min(N) lRP

(NP ), which is enough for each local consideration. �

Theorem A.4. Let R be a Noetherian ring that is a homomorphic image of a Noetherian Goren-
stein ring S with dim(S) < ∞. Suppose R is locally equidimensional and satisfies the uniform
Artin-Rees property and that sup{e(RP ) | P ∈ Spec(R)} < ∞. Suppose the residue field of RP is
infinite for all P ∈ Supp(R). Then, for all finitely generated R-modules M and N , we have

(1) sup√I=PP

{
l(NP /INP )
l(MP /IMP )

}
< ∞ for all P ∈ Supp(N) ⇐⇒ Supp(M) ⊇ Supp(N).

(2) There exists a constant C > 0 depending only on N such that

1/C 6 inf√
I=PP

{
l(MP /IMP )

l(NP /INP )

}
and, equivalently, sup√

I=PP

{
l(NP /INP )

l(MP /IMP )

}
6 C

for all P ∈ Supp(N) and all (finitely generated R-modules) M with Supp(MP ) ⊇ Supp(NP ).

(3) 0 < inf√I=PP

{
l(MP /IMP )
l(NP /INP )

}
6 sup√I=PP

{
l(MP /IMP )
l(NP /INP )

}
< ∞ ⇐⇒ Supp(M) = Supp(N).

Proof. For each P , do the same proof as in Theorem 4.4, replacing Lemma 4.3 by Lemma A.3. �

The next lemma is the same as the local version; we record it here only to preserve the numbering.

Lemma A.5. Let (R,m) be a Noetherian local ring and M a finitely generated R-module. If
(y1, . . . , yd) ⊆ (x1, . . . , xk) are m-primary ideals of R, then for all 0 6 i 6 k,

l(Hi(x1, . . . , xk;M)) 6
k∑

j=0

(
k

j

)
l(Hi−j(y1, . . . , yd;M)) 6 2k max

06j6k
l(Hi−j(y1, . . . , yd;M)),

with the convention that H<0(y1, . . . , yd;M) = 0.

The next remark follows immediately from the local version.

Remark A.6 ([19] or [2]). Let R be a Noetherian ring that is a homomorphic image of a Noetherian
Gorenstein ring S. Then, for every finitely generated R-module M , every P ∈ Spec(R), every
system of parameters x = x1, . . . , xdim(RP ) of RP , and every i = 1, . . . ,dim(RP ), we have

l(Hi(x1, . . . , xdim(RP );MP )) 6

dim(RP )−i∑

j=0

l(Hdim(RP )−i−j(x1, . . . , xdim(RP ); Ext
dim(SP )−j
SP

(MP , SP ))).
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Note that dim((Ext
dim(SP )−j
S (M,S))P ) 6 dim(RP ) − i for each j = 0, . . . ,dim(RP ) − i. Here, by

abuse of notation, SP stands for SQ where Q is the pre-image of P under the onto map S → R.

Theorem A.7. Let notation and assumptions be as in Lemma A.1. Then there exists C depending
on M such that, for every P ∈ Supp(M) and every k > dim(MP ), we have

sup√
(x1,...,xk)+Ann(MP )=PP

06i6k

{
l(Hi(x1, . . . , xk;MP ))

l(MP /(x1, . . . , xk)MP )

}
6 2kC.

By
√

(x1, . . . , xk) + Ann(M)P = PP , the understanding is that xi ∈ PP .

Proof. We use induction on d to prove the following claim: For every d > 0, there exists CM,d

depending on M and d such that, for every P ∈ Supp(M) with dim(MP ) = d, every k > d, we have

sup√
(x1,...,xk)+Ann(MP )=PP

06i6k

{
l(Hi(x1, . . . , xk;MP ))

l(MP /(x1, . . . , xk)MP )

}
6 2kCM,d.

As dim(M) < ∞, we can take C = max06i6dim(M) Ci to complete the proof of the theorem. We
can replace R by R/Ann(M), so M is a faithful R-module. In this sense, we are doing induction
on the height of P .

When d = 0, CM,0 = maxP∈Min(M) lRP
(MP ) works. Now let d > 0, and assume that the claim

holds for 6 d−1. We fix a prime cyclic filtration of M over R (which is independent of the choice of
P at which we are localizing). Localizing this prime cyclic filtration of M at P , applying a similar
argument as in the proof of Theorem 4.7 in light of Lemma A.3 or Theorem A.4, we may further
assume that M = R and that R is a domain.

Now we prove the claim for d. By Corollary A.2 and Lemma A.5, it suffices to find a constant
D such that

l(Hi(y1, . . . , yd;RP ))

l(RP /(y1, . . . , yd))
6 D

for all P ∈ Spec(R) such that dim(RP ) = d, all systems of parameters y := y1, . . . , yd of RP , and all
i = 0, . . . , d. Now by Remark A.6, it suffices to show that, for any fixed finitely generated R-module
L satisfying dim(LP ) < d whenever dim(RP ) = d (think of L as one of those (finitely many) global
Ext modules over R), there exists a constant DL such that

l(Hi(y1, . . . , yd;LP ))

l(RP /(y1, . . . , yd))
6 DL

independent of y, i, and P ∈ Spec(R) such that dim(RP ) = d. Indeed, as l(LP /(y1, . . . , yd)LP ) 6
µR(L)l(RP /(y1, . . . , yd)), we have

l(Hi(y1, . . . , yd;LP ))

l(RP /(y1, . . . , yd))
6 µ(L)

l(Hi(y1, . . . , yd;LP ))

l(LP /(y1, . . . , yd)LP )
.

Since dim(LP ) < d when dim(RP ) = d, the right hand side of the above inequality is bounded
above (independent of P ∈ Spec(R) such that dim(RP ) = d, y and i) by the inductive hypothesis

(noting that 2d is a constant as well). �

Theorem A.8. Let notation and assumptions be as in Lemma A.1. Then for every ε > 0, there
exists t0 such that, for all t > t0, all P ∈ Supp(M), all systems of parameters x := x1, . . . , xdim(MP )
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of MP , and all 1 6 i 6 dim(MP ),

l(Hi(x
t
1, . . . , x

t
dim(MP );MP ))

l(MP /(xt1, . . . , x
t
dim(MP ))MP )

< ε.

In fact, there exists a constant K such that for all t > 1, all P ∈ Supp(M), all systems of parameters
x := x1, . . . , xdim(MP ) of MP , and all 1 6 i 6 dim(MP ),

l(Hi(x
t
1, . . . , x

t
dim(MP );MP ))

l(MP /(x
t
1, . . . , x

t
dim(MP ))MP )

6
K

ti
.

Proof. As usual, we replace R by R = R/Ann(M) to assume that M is faithful over R. Our
hypothesis then implies that both M and R are locally equidimensional.

Denote L = {ExtjS(M,S) | 0 6 j 6 dim(S)}, which is a finite set. For each L ∈ L, fix a prime
cyclic filtration FL of L, and denote D = {all the R/a appearing as a factor of FL for some L ∈ L},
which is finite.

Fix ε > 0. Because we consider only finitely many i, it is sufficient to fix some 1 6 i 6 dim(R).
By Remark A.6, it suffices to show that there exists a constant K such that, for all P ∈ Supp(M),
for all L ∈ L satisfying dim(LP ) 6 dim(RP ) − i, for all t > 1, for all systems of parameters x of
RP , and for all j = 0, . . . ,dim(RP )− 1,

l(Hj(x
t
1, . . . , x

t
dim(RP );LP ))

l(MP /(xt1, . . . , x
t
dim(RP )

)MP )
6

K

ti
.

Then, via FL, it suffices to show that there exists a constant K such that, for all P ∈ Supp(M),
for all D ∈ L satisfying dim(DP ) 6 dim(RP ) − i, for all t > 1, for all systems of parameters x of
RP , and for all j = 0, . . . ,dim(RP )− 1,

(†)
l(Hj(x

t
1, . . . , x

t
dim(RP );DP ))

l(MP /(xt1, . . . , x
t
dim(RP ))MP )

6
K

ti
.

By Theorem A.7 and noting that D is finite, we fix

C = sup
D∈D, P∈Supp(D)√

(x1,...,xd)=PP

{
l(Hj(x1, . . . , xd;DP ))

l(DP /(x1, . . . , xd)DP )

}
< ∞.

According to Remark 2.6 (i.e., the global version of Theorem 2.4), we let

B = sup
D∈D, P∈Supp(D)√

I=PP

{
l(DP /IDP )

e(I,DP )

}
< ∞.

Moreover, for every D = R/a ∈ D, fix Q(D) ∈ Min(R) = Min(M) such that Q(D) ⊆ a, so that
D = R/a is a homomorphic image of R/Q(D). Note that e(I,RP /Q(D)P ) 6 e(I,MP ) for all
PP -primary ideals I of RP because R is locally equidimensional (remember we already reduced to
the case R = R/Ann(M)). In light of the global version of Equation (2.3) (since we assume that
R/Ann(M) satisfies the uniform Artin-Rees property, this equation holds by the same argument
as in Lemma 2.5), we set

A = sup
D∈D, P∈Supp(D)√

I=PP

{
e(I,DP )

e(I, (R/Q(D))P )

}
< ∞.
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At this point we see that, for all P ∈ Supp(M), for all D ∈ L satisfying dim(DP ) = d′ 6 d− i =
dim(RP ) − i = dim((R/Q(D))P ) − i, for all t > 1, for all systems of parameters x of RP , and for
all j = 0, . . . ,dim(RP )− 1, we have (denoting d := dim((R/Q(D))P ))

l(Hj(x
t
1, . . . , x

t
d;DP ))

l(M/(xt1, . . . , x
t
d)MP )

6
l(Hj(x

t
1, . . . , x

t
d;DP ))

e((xt1, . . . , x
t
d),MP )

6 C
l(DP /(x

t
1, . . . , x

t
d)DP )

e((xt1, . . . , x
t
d),MP )

6 BC
e((xt1, . . . , x

t
d),DP )

e((xt1, . . . , x
t
d),MP )

= BC
td

′
e((x1, . . . , xd),DP )

tde((x1, . . . , xd),MP )

6
BC

td−d′
e((x1, . . . , xd),DP )

e((x1, . . . , xd), (R/Q(D))P )
6

ABC

td−d′
6

ABC

ti
,

whose convergence to 0, as t → ∞, gives what we need in (†) to complete the proof. �

Similarly, we can generalize Theorem A.8 as follows:

Theorem A.9. Let notation and assumptions be as in Lemma A.1. Then there exists a constant
K such that, for all P ∈ Supp(M), all tj > 1 with 1 6 j 6 dim(MP ), all systems of parameters
x := x1, . . . , xdim(MP ) of MP , and all 1 6 i 6 dim(MP ),

l(Hi(x
t1
1 , . . . , x

tdim(MP )

dim(MP );MP ))

l(MP /(x
t1
1 , . . . , x

tdim(MP )

dim(MP ))MP )
6

K

(minj tj)i
.

Proof. We carry out the same proof as in Theorem 4.10 for each MP , using the fact that dim(MP ),
e(RP ), and n(MP ) have global upper bounds for all P ∈ Supp(M) (see Remark 2.6 or Remark A.11).

�

Remark A.10. We would like to mention that, in Theorem A.8, the assumption that M is locally
equidimensional is necessary. Localized at each P , it is the same argument as Remark 4.11. More-
over, the conclusion of Theorem A.8 implies the conclusion of Remark 2.6 (i.e., the global version
of Theorem 2.4) following the same argument as in Remark 4.11 applied to MP for all P .

Remark A.11. Evidently the results of this section rely on the global version of Theorem 2.4
(i.e., Remark 2.6). However, a careful analysis of the proofs in this section reveals an alternative
proof of the global version of Theorem 2.4 by induction on dimension of the R-module M . We
use notation as in Lemma A.1. When dim(M) = 0, it is clear that Theorem A.8, Remark 2.6,
Lemma A.1, Corollary A.2, Lemma A.3 and Theorem A.7 all hold. Now assume that all these
results hold in dimension < d; and consider the case of dimension d. Then Theorem A.8 holds
in dimension d (because the proof of Theorem A.8 only requires the aforementioned results in
dimension < d), which implies Remark 2.6 in dimension d as we explained in Remark A.10. Then
we have Lemma A.1, Corollary A.2, Lemma A.3 and Theorem A.7 in dimension d, completing the
induction.

The following is an easy consequence of Theorem A.9.

Corollary A.12. Let notation and assumptions be as in Lemma A.1. Then, for every constant
C > 0 and every ǫ > 0, there exists t0 ∈ N such that, for all P ∈ Supp(M), all tj > t0 with 1 6 j 6
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dim(MP ), and all systems of parameters x = x1, . . . , xdim(MP ) on MP such that e((x),MP ) 6 C,
we have

0 6
l(MP /(x

t1
1 , . . . , x

tdim(MP )

dim(MP ))MP )
∏dim(MP )

j=1 tj
− e((x),MP ) < ǫ.

In fact, there exists a constant K such that for all P ∈ Supp(M), all tj > 1 with 1 6 j 6 dim(MP ),
and all systems of parameters x = x1, . . . , xdim(MP ) on MP , we have

0 6
l(MP /(x

t1
1 , . . . , x

tdim(MP )

dim(MP ))MP )
∏dim(MP )

j=1 tj
− e((x),MP ) 6 e((x),MP )

K

minj tj
6 l(MP /(x)MP )

K

minj tj
.

Proof. We carry out the same proof as in Corollary 4.13 for each MP , replacing Theorem 4.10 by
Theorem A.9. �

For example, (the first part of) Corollary A.12 applies to all minimal reductions of PP /Ann(MP )
in RP/Ann(MP ) for all P ∈ Supp(M), since there is an upper bound for {e(MP ) | P ∈ Supp(M)}
under the assumption of Corollary A.12.

Finally, similar to Remark 4.14, we have the following

Remark A.13. Let notation and assumptions be as in Lemma A.1 and let c = maxP∈Min(R) lRP
(RP ).

By Remark 4.14 and Remark 2.6 (or Remark A.11), we have

supP∈Supp(M) n(MP )

µ(M)
6 sup

P∈Supp(M)

n(MP )

µ(MP )
6 c sup

P∈Supp(M)
n(RP ) < ∞,

in which c supP∈Supp(M) n(RP ) depends only on R = R/Ann(M).
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