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MORSE-NOVIKOV COHOMOLOGY ON COMPLEX MANIFOLDS

LINGXU MENG

ABSTRACT. We view Dolbeault-Morse-Novikov cohomology H%'?(X) as the cohomol-
ogy of the sheaf Qg(’ . of n-holomorphic p-forms and give several bimeromorphic invari-
ants. Analogue to Dolbeault cohomology, we establish the Leray-Hirsch theorem and the
blow-up formula for Dolbeault-Morse-Novikov cohomology. At last, we consider the re-
lations between Morse-Novikov cohomology and Dolbeault-Morse-Novikov cohomology,
moreover, investigate stabilities of their dimensions under the deformations of complex
structures. In some aspects, Morse-Novikov and Dolbeault-Morse-Novikov cohomology
behave similarly with de Rham and Dolbeault cohomology.
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1. INTRODUCTION

Let X be a smooth manifold and 6 a real closed 1-form on X. Set AP(X) the space of
real smooth p-forms and define dg : AP(X) — APTH(X) as dga = da+ 0 A« for a € AP(X).
Clearly, dg o dg = 0, so we have a complex

dg

e AX) 2 (X)) e XY e

whose cohomology Hj(X) = HP(A*(X),dp) is called the p-th Morse-Novikov cohomology.
For a complex closed 1-form 6 on X, denote Hy(X,C) = HP(A%(X),ds), where A% (X) =
A*(X)®@rC. If 0 is real, H)(X,C) = Hj(X) ®r C. Similarly, we can define Morse-Novikov
cohomology with compact support Hy (X) and Hy (X, C).

This cohomology was originally defined by A. Lichnerowicz ([13]) and D. Sullivan ([24])
in the context of Poisson geometry and infinitesimal computations in topology, respectively.
It is well used to study the locally conformally Kéhlerian (l.c.K.) and locally conformally
symplectic (l.c.s.) structures ([2} [3, 4] 10} 12} 26]). H;(X) can be viewed as the cohomology
of a flat bundle (weight line bundle) or a local constant sheaf of R-modules with finite rank,
referring to [24) [T4, [16] (17, [29]. As we know, the two viewpoints are equivalent, whereas the
latter is much more convenient, seeing [14].

In his seminal paper [16], S. P. Novikov introduced a generalization of the classical Morse
theory to the case of circle-valued Morse functions. A. Pajitnov [2I] observed the relation
of the circle-valued Morse theory to the homology with local coefficients and perturbed de
Rham differential, see also [22], p. 414-416.

For smooth manfiolds, the Mayer-Vietoris sequence and Poincaré duality theorem were
generalized on Morse-Novikov cohomology by S. Haller and T. Rybicki [10]. M. Leén, B.
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Lépez, J. C. Marrero and E. Padrén [12] proved that a compact Riemannian manifold X
endowed with a parallel one-form 6 has trivial Morse-Novikov cohomology. By Atiyah-Singer
index theorem, G. Bande and D. Kotschick [4] found that the Euler characteristic of Morse-
Novikov cohomology coincides with the usual Euler characteristic. In [I4], we proved several
Kiinneth formulas and theorems of Leray-Hirsch type.

For complex manifolds, I. Vaisman [26] studied the classical operators twisted with a
closed one-form on l.c.K. manifolds. In [I4], we gave two explicit formulas of blow-ups of
complex manifolds for Morse-Novikov cohomology. As we know, de Rham cohomology is
closely related to Dolbeault cohomology on complex manifolds, such as Hodge decomposi-
tion theorem, hard Lefschetz theorem, Hodge’s index theorem, etc.. Inspired by these, it is
necessary to study Dolbeault-Morse-Novikov cohomology, which is a generalization of Dol-
beault cohomology. Recently, L. Ornea, M. Verbitsky, and V. Vuletescu [20] showed that,
for a locally conformally Kéhler manifold X with proper potential, H ;;;‘(X ) = 0 holds for
all @ € C but a discrete countable subset, where 7 is the (0, 1)-part of Lee form 6 of X.

L. Ornea, M. Verbitsky, and V. Vuletescu [I9] proved that the blow-up of an l.c.K.
manifold along a submanifold is l.c.K. if and only if the submanifold is globally conformally
equivalent to a Kéahler submanifold. So, it is necessary to consider the variance of the
Morse-Novikov ([14]) and Dolbeault-Morse-Novikov cohomology under blowing up.

Theorem 1.1. Let 7 : X — X be the blow-up of a connected complex manifold X along a
connected complex submanifold Z and ip : E = 7= 1(Z) — X the inclusion of the exceptional
divisor E into X. Suppose that n is a O-closed (0,1)-form on X and 7j = 7n*n. Then, for

any p, 4,

r—2
T+ (i)« o (h'U) o (x|p)"

i=0
gives an isomorphism

r—2

, —1—i,q—1—i ~ TP (T

(1) HP(X) @ @ HP 1 (2) S HE(X),

i=0

where r = codimcZ and h is defined in ().

For n =0, S. Rao, S. Yang, and X.-D. Yang [23] first proved there exists an isomorphism
(@) on a compact complex manifold X. It seems difficult to write out it explicitly using their
method. In [15], we write out an isomorphism explicitly on any (possibly noncompact) base
with a different way.

Deformations of complex structures play a significant role in studying Kéahlerian, bal-
anced, strongly Gauduchon and d9-manifolds. For l.c.K. geometry, we have known the
facts that a deformation of a l.c.K. manifold is generally not Lc.K. ([5]) and the class of
compact 1.c.K. manifolds with potential is stable under small deformations ([I8]). These
results inspire us to investigate behaviors of Dolbeault-Morse-Novikov cohomology under
deformations.

Lemma 1.2. Let f : X — Y be a proper surjective submersion of connected smooth man-
ifolds and 6 a real (resp. complex) closed 1-form on X. Then, for any k, the higher direct
image R¥ f,R x o (resp. R f.Cyx o) is a local system of R (resp. C)-modules with finite rank.
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Using above lemma and the relation between Morse-Novikov and Dolbeault-Morse-Novikov
cohomologies, we get the theorem of stability of n-hodge numbers under the deformation.

Theorem 1.3. Let f : X — Y be a family of complex manifolds and 0 a complex closed
1-form on X. Assume by(Xo,0|x,) = >, ok hf}’&o (X,) for some k and some point o €Y,
where 1 is the (0,1)-part of . Then, for any t near o, hf?iit (Xy) = hf}’&o (Xo), where n is
the (0,1)-part of 8 and p+ q = k.

In this article, we investigate the Dolbeault-Morse-Novikov cohomology via the theory of
sheaves. In Sec. 2 and 3, we recall the Morse-Novikov cohomology and define the Dolbeault-
Morse-Novikov cohomology, respectively. In Sec. 4, we study the properties of the sheaf
Ox,,y of n-holomorphic functions and show that H2*(X), H»?(X), H)?(X) and H)?(X)
are all bimeromorphic invariants. In particular, we prove Leray-Hirsch theorem and Theorem
[[1l In Sec. 5, Lemma and Theorem [[.3] are proved.

2. MORSE-NOVIKOV COHOMOLOGY

We first recall the weight 6-sheaf, refering to [14]. Let A% be the sheaf of germs of real
smooth k-forms and Ry, Cyx be constant sheaves with coefficient R, C on X, respectively.
Set A% o = A% ®g  Cy. Define dg : A% o — AL as dga =da+ 0 A q, for a € A% (.

Definition 2.1. The kernel of dg : AQQC — Aﬁ(y(c is called a weight 0-sheaf, denoted by
Cx.o-

“odoe" and

Locally, § = du for a smooth complex-valued function u, so dg = e~
Cx o= Ce™". Hence, the weight f-sheaf Cy , is a local system of C-modules with rank 1.
We have a resolution of soft sheaves of Cy 4

7 de dg de
0 Cxo Axe—=Axe— —= Axc—>0,

where ¢ is the natural inclusion. So
Hg(XaC)gH*(ngX,G)a Hg,c(XaC)gH:(XaQXﬂ)'

For dy-closed o € AL(X), denote by [a]s (resp. [a]g,.) the class in Hj(X,C) (resp.
H (X, C)).

Assume X is also oriented. Let D% be the sheaf of germs of real k-currents and D%C =
DY @r, Cy. Similarly, define dg : Dl)’?,«: — D;jél as dgT' =dT'+ 0 AT for T € Dl)’?,«:- We
have another resolution

dg dg dg

i 0 1 /
DX,C—>DX,<C‘ > ’D)?,C >0,

0 Cx

)

of soft sheaves of Cy 4, where i is the natural inclusion. By [6], p. 213 (6.3) (6.4) and p.
217 (7.8), the natural morphism Ak c = ’D%C of resolutions induces isomorphisms

Hy(X,C)»H*(DE(X),dg), Hj (X,C)5H™ (D (X)), do).

For dg-closed T' € D (X), denote by [T]s (resp. [T]g,. ) the class in Hy(X,C) (resp.
H; (X, C)).
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Lemma 2.2 ([14]). Let X be a connected smooth manifold and 6 a complex closed 1-form
on X.

(1) Cx.p = Cx if and only if 0 is exact. More precisely, if 0 = du for u € AX(X), then
h s e" - h gives an isomorphism Cy y—Cy of sheaves.

(2) If p is a closed 1-form on X, then Cx g ®c, Cx , =Cx gy,

(3) Suppose f 1Y — X is a smooth map between connected smooth manifolds. Then
inverse image sheaf f~'Cx g = Cy f-q.

Proof. (1) If Cxy = Cx, H§(X) = H°(X,Cy,) = C. By [10], Example 1.6, 6 is exact.
Inversely, if = du, Cy y = Ce™™, which implies the conclusion.

(2) Locally, § = du and g = dv. Then, Cxy = Ce™, Cx , = Ce™ and Cx 4, =
Ce 7", locally. Clearly, the products of functions give an isomorphism Cy o ®r, Cy , —

QX,GJr,u'
(3) Locally, 0 = du, Cy y = Ce™ and Cy 4.y = Ce~/"*. The pullbacks of functions give
an isomorphism f~'Cy ,=>Cy j-p - O

Let X be a smooth manifold and 6, u complex closed 1-forms on X. The wedge product
a A B defines a cup product

U: HJ(X,C) x HY(X,C) — Hy (X, C).

Similarly, we can define cup products between Hy(X,C) or Hy .(X,C) and Hl(X,C) or
Hf{’c(X ,C).

Let f: X — Y be a smooth map between connected smooth manifolds and 6 a complex
closed 1-form on Y. Set = f*0 and r = dimX — dimY'.

(i) Define pullback f* : Hy(Y,C) — H;(X,C) as [a]g — [f*alg. If f is proper, we can
also define f*: Hy (Y,C) — Hg,c(X’ C) in the same way.

(i4) If X and Y are oriented, define pushout fi : H;{AX7 C) — Hy "(Y,C) as [T]p,c —
[fT .. Moreover, if f is proper, f. : H3(X,C) — Hy~"(Y,C) is defined well similarly.

Let f: X — Y be a proper smooth map between connected oriented smooth manifolds.
If pis a closed 1-forms on Y and 6 = f*6, we have the projection formula

fuloU f*1) = fu(lo)UT
for o € H;(X,C) or Hg,c(Xv(C) and 7 € H;(Y,C) or H}; (Y,C). We get it easily by
f(T N f*B) = fT A B, where T € D'™*(X) and g € A*(Y).
Recall that a complex manifold X is called p-Kdhlerian, if it admits a closed strictly
positive (p,p)-form Q ([I], Definition 1.1, 1.2). For any p-dimensional connected complex
submanifold Z of a p-Kéahler manifold X, Q|7 is a volume form on Z. We have

Proposition 2.3. Let f : X — Y be a proper surjective holomorphic map between connected
complex manifolds, and 0 a complex closed 1-form on Y. Set r = dimcX — dimcY and
0 = f*0. Assume that X is r-Kdihlerian. Then, for any p, f* : H(Y,C) — Hg(X, C) is
injective and f, : Hg(X, C) — HgiQT(Y, C) is surjective. They also hold for the cases of
compact supports.

Proof. Let Q be a strictly positive closed (r,r)-form on X. Then ¢ = f.Q is a closed
current of degree 0, hence a constant. By Sard’s theorem, the set U of regular values of f is
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nonempty. For any y € U, X, = f~*(y) is a r-dimensional compact complex submanifold,
S0 ¢ = ny Qlx, > 0 on U. By the projection formula, f.([?] U f*7) = c- 7, where
(] € H*"(X,C) and 7 € H{(Y,C) or Hy (Y,C). It is easily to deduce the conclusion. [

Clearly, any complex manifold is 0-Kahlerian and any Kéahler manifold X is p-K&hlerian
for every p < dimc X, so we get

Corollary 2.4. Let f : X — Y be a proper surjective holomorphic map between connected
complex manifolds with the same dimensions. Let 8 be a complex closed 1-form on Y and
0 = f*0. Then, for any p, f* : HY(Y,C) — Hg(X,(C) is injective and f : Hg(X,(C) —
HY(Y,C) is surjective. They also hold for the cases of compact supports.

Corollary 2.5. Let f : X — Y be a proper surjective holomorphic map between connected
complex manifolds and 0 a complex closed 1-form on Y. Set r = dimcX — dimcY and
0 = f*0. Assume that X is a Kihler manifold. Then, for any p, f* : HJ(Y,C) — Hg(X, C)
is injective and f : Hg(X, C) — Hg_2T(Y, C) is surjective. They also hold for the cases of
compact Supports.

3. DOLBEAULT-MORSE-NOVIKOV COHOMOLOGY

Let X be a n-dimensional complex manifold and 7 a d-closed (0, 1)-form on X. Suppose
AP4(X) is the space of smooth (p,q)-forms on X. Define 9, : AP9(X) — AP9T1(X) as
follows:

('?),704 =Ja + nAaQ,

for every o € AP4(X). Clearly, 9, 0 9, = 0, so we have a complex

57] 577
~-~—>AP*‘1*1(X) _>.AZD7‘1(X)_>AP»¢1+1(X)..._>.....

We call its cohomology H}4(X) = HI(AP*(X),0,) Dolbeault-Morse-Novikov cohomology.
Similarly, we can define Dolbeault-Morse-Novikov cohomology with compact support H}:2 (X).
If n = 0, HP9(X) is the classical Dolbeault cohomology H¢(X). Suppose AR is the sheaf
of germs of smooth (p, g)-forms on X. We naturally get a morphism 9, : AR? — A’;{’qﬂ of
sheaves.

Definition 3.1. We call the kernel of 5,, : A’;(’O — ’;(’1 a weight n-sheaf of holomorphic
p-forms, denoted by Q’;(m. In particular, Ox , = Qg{m 18 called a weight n-sheaf of holo-
morphic functions.

Locally, by Grothendieck-Poincaré lemma, n = Ou for a smooth complex-valued function
u, and then, 0, = e " 0 J o e. Hence, locally, Q’;(m = e "%, where Q% is the sheaf of
germs of holomorphic p-forms. So Ox,, is a locally free sheaf of Ox-modules with rank 1
and

(2) ngﬂl = Q& ®ox OX,n-

Moreover, we have a soft resolution of QX "

O AP O
X

Qi

n

P i p,0
0——s QX777 A%

AR" —— 0.
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Similarly, we can define d, on the sheaf D;’("’q of germs of (p,q)-currents and have a soft
resolution
0 QP i ppo Oy p'pl Oy Oy P
X,n X = Px > = Px >0
So
HI(DP*(X), 8,) = HP9(X) = HI(X, %)
and

HY(DP*(X),0p) = Hp#(X) = HI(X, Q% ).
Similarly with Morse-Novikov cohomology, we can define pullback f*, pushout f., cup
product U and have projection formulas on Dolbeault-Morse-Novikov cohomology. Moreover,
by the similar proofs of Proposition 2.3] Corollary 2.4 and 2.5, we have

Proposition 3.2. Let f: X = Y be a proper surjetive holomorphic map between complex
manifolds and 1 a O-closed (0,1)-forms on Y. Set r = dimcX — dimcY and 7 = f*n.
Assume that X is a r-Kdhler manifold. Then, for any p, q, f* : HP4(Y) — Hg’q(X) is
injective and fi : Hg’q(X) — Hp=7977(Y') is surjective. They also hold for the cases of
compact supports.

Corollary 3.3. Let f : X — Y be a proper surjetive holomorphic map between complex
manifolds with the same dimensions. Let n be a O-closed (0,1)-forms on'Y and 7j = f*n.
Then, for any p, q, f* : HPU(Y) — HPY(X) is injective and f, : HPY(X) — HP(Y) is
surjective. They also hold for the cases of compact supports.

Corollary 3.4. Let f : X — Y be a proper surjetive holomorphic map between complex
manifolds and 1 a 0-closed (0,1)-forms on Y. Set r = dimcX — dimcY and 77 = f*n.
If X is a Kdhler manifold. Then, for any p, q, f* : HPI(Y) — Hg’q(X) is injective and
e Hg’q(X) — HP=797"(Y') is surjective. They also hold for the cases of compact supports.

Remark 3.5. On de Rham and Dolbeault cohomologies, several particular cases were proved
in [28].

4. DOLBEAULT-MORSE-NOVIKOV COHOMOLOGY VIA SHEAF THEORY

4.1. weight n-sheaf. First, we give several properties of weight n-sheaves of holomorphic
functions.

Lemma 4.1. Let X be a complex manifold and 6 a complex closed 1-form on X. Assume
0 = ¢ +n, where ¢ and 1 are the (0,1)-forms on X. Then

(1) Ox.p = Ox @c, Cxp;

(2) Ox,y, Ox ¢ and Cx 4 are subsheaves of Ag{,@' Moreover, Ox ,NOx ¢ = Cx g, where
Ox ¢ is the sheaf of complex conjugation of Ox ¢ in Ag()(c.

Proof. Locally, # = du, ( = 0u, n = Ou, hence, Cxp =Ce™, Oxy =e" Ox and
Ox¢ = e " Ox. Clearly, Ox, N Ox¢ = Cx p, and the products of functions give an
isomorphism Ox ®c, Cx g = Oxy - O
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Lemma 4.2. Let X be a complex manifold and 1 a 0-closed (0,1)-form on X.
(1) Suppose 1 is O-ezact, i.e., there exists u € AL(X), such that n = Ou . Then

Oxm—>(9x,h»—>h-eu

is an isomorphism of sheaves of Ox-modules.
(2) Suppose ¢ is a O-closed (0,1)-form on X. Then Ox ¢ ®oy Ox,y = Ox,c4y. So
(Ox,y)Y = Ox,—y, where (Ox )Y = Homo, (Ox,y, Ox) is the dual of Ox,,, of Ox-modules.
(3) If f: Y — X is a holomorphic map of complex manifolds, then

f*Oxn = Oy o,
where f*Ox .y = f1O0xy @10, Oy is the inverse image sheaf of Oy -modules.

Proof. We can get (1) (2) immediately with the similar proof of Lemma
(3) For any presheaf G, denote by G* the sheaf associated to G. Define presheaves F and
RonY as
FU) = lm Ox,(W)
WO f(U)
and
RWU)= lmy Ox(W),
W2 f(U)
for any open subset U of Y. Then F© = f~'Ox,, R" = f!Ox and (F ®@r Oy)" =
frOx .

Define o(U) : F(U) @rw) Oy (U) = Oy, p+y(U) as [h] @ g = g - (f*h)|y, for every open
subset U of Y, where [h] is the class of the n-holomorphic function h under the direct limit.
We get a morphism ¢ : F@r Oy — Oy, s+, of presheaves, and moreover, induce a morphism
ot f*Ox,, — Oy, py of sheaves.

We claim that ¢ is an isomorphism. Actually, for any y € Y, choose a open ball V near
f(y), such that n = du on V for some u € AX(V). The elements of F, = (Ox.y)¢(y
(Oy,f+y)y can be written as [pe "] and [qe=f"*] respectively, where p, ¢ are holomorphic
functions near f(y), y respectively, where [a] denote the the class of a under direct limit. At
the stalk over y, ¢ ([pe™"] ® [g]) = [g- f*p- e~/ "¥], which is isomorphic. We complete the
proof. O

) and

Remark 4.3. If 5 is the (0, 1)-part of a closed 1-form, Lemma [£2] (3) can be proved simply
by Lemma FT] (1).

For a complex closed 1-form 6 on a complex manifold X, we write § = ¢ + 7, where ¢
and 7 are both (0,1)-forms. Let O =0+ CA. Then dg = O + 5,7, 842 =0, 5% =0, and
00y + 0,0z = 0. Locally, 6 = du, for a smooth complex-valued function u. Then n = Ju,
¢ =0uand 9 = e " odoe" locally. By the holomorphic de Rham resolution of C, there
exists a resolution of Cy 4

i % . 9% % .
O QX,G OXJ]%QX?]%"'%QX?]%O.

So we can compute Morse-Novikov cohomology by the hypercohomology H} (X, C) = HP(X, Q“Xn)
If X satisfies that H}*4(X) =0 for any p > 1,4 > 0, then

Hy(X,C) = HP(D(X, Q% ), 9)-
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In this case, Hy (X,C) = 0 for p > dimcX.

4.2. Kiinneth formula and Serre’s duality. If 7 and G are sheaves of Ox and Oy-
modules on complex manifolds X and Y respectively. The cartesian product sheaf of F and
G is defined as

FRG= pT‘T]: QOxxy p'f‘;g,
where pri; and pro are projections from X x Y onto X, Y, respectively. Assume that ¢ and
n are O-closed forms on complex manifolds X and Y respectively. By the formula (2) and
Lemma (3),
pri% - = priQ% ®ox.y Oxxvpric
and
pT;Q()I/,n = pT;Q({/ ®OX><Y OXXYvP""S”’

hence Q% . K QF = (% K Q) ®oy .y Oxxvw, Where w = pri¢ + pr3n. So

k ey
DX xyw =Py ®ox.y Oxxvw

(3) = @ QZ))( X Q()I/ ®0xxy Oxxvw
ptg=k

P ok . =0i, .
pt+q=Fk
If X or Y is compact, by @) and [6], Chap. IX, (5.23) (5.24), we have an isomorphism

P HY(X)ecHP(Y) = HENX xY)
p+q=k,r+s=l

for any k, [. We call it Kunneth formula for Dolbeault-Morse-Novikov cohomology.
Let X be a connected compact complex manifold of dimension n and 7 a 0-closed (0, 1)-
form on X. By Lemma [41] (2) and Serre duality theorem,

U: HP(X) x Hf;p’"_q(X) —C
is a nondegenerate pair, for 0 < p,q < n.

4.3. Bimeromorphic invariants. We give several bimeromorphic invariants by Dolbeault-
Morse-Novikov cohomology.

Proposition 4.4. Let f : X --+» Y be a bimeromorphic map of complex manifolds and
nx,ny O-closed (0,1)-forms on X, Y respectively. Assume that there exist nowhere dense
analytic subsets E C X and F C Y, such that f : X — E — Y — F is biholomorphic and
[y ly-r) =nx|x-g. Then, for any p,

(1) HyP(X) = HYP(Y) and HY? (X) = H)P (Y);

nx,C Ny ,C
(2) H};;?(X) = H};;/O(Y) and Hf;;?yc(X) &~ Hg;OVC(Y).

Proof. We choose two proper modifications g : Z — X and h : Z — Y such that there is
nowhere dense analytic subset S in Z, E C g(S) and F C h(S), g: Z - S — X — g(9),
h:Z -5 —Y — h(S) are biholomorphic and fg|z_s = h|z_s. Obviously,

(@ nx —hny)lz—s = g ((nx|x-6 = Ty Iv-F))|x —g(s)) = 0.



MORSE-NOVIKOV COHOMOLOGY ON COMPLEX MANIFOLDS 9

By the continuity, g*nx = h*ny. Hence, we need only to prove the propostion for the case
that f is a proper modification and f*ny = nx. By [9], page 215, we assume E = f~1(F),
codimy F' > 2 and codimx F = 1.

(1) By Lemma [£2] (3) and [25], Proposition 1.13, 2.14,

OY,nyu q= 0;
qu*OX,nx = qu*OX ®Oy OY,’I]Y =

0, otherwise.

Consider Leray spectral sequences,
EyY = HP(Y,R"f.Oxy) = H"™ = H'" (X, Ox nx )

and
Bt = HE(Y, R1f.Ox yy) = H'™ = HITU(X, Ox ).
Then EZ? = 0 for ¢ > 0. Hence EZ? = HP. We get (1).
(2)Set U=X—E, V=Y —-Fand jy:U — X, jy: V =Y are inclusions. We have a
commutative diagram

£
HO(Ya Q{’,ny) - HO(Xa Qz))(,nx) )

|5 |5

(flv)”
HO(V7 Qg’,ny) - HO(U7 QI;(,UX)

By the continuity, the restriction jf; is injective. By the second Riemann continuation
theorem ([8], p. 133), ji, is isomorphic. Since f|y is biholomorphic, jj; is surjective, and
then, an isomorphism. So f* is an isomorphism.

Consider the commutative diagram

I+
Hg(Xa Qz))(,nx) - HS(Y’ Qf’,ny) :

| |

I
HO(X, QS’(WX) —— HO(Y, Qf,my)
The two vertical maps are inclusions, hence are both injective. We have proven that f* :
HPO(Y) — HP?(X) is an isomorphism. By the projection formula, f.f* =id on HE(Y).
So the map at the bottom is an isomorphism. Then the map at the top is injective. By the
projection formula again, f.f* = id on H?:" .(Y), hence f, is isomorphic on H? .(X). O

ny e nx ¢
Remark 4.5. H}(X,C) and H;" '(X,C) are also bimeromorphic invariants, referring to
[14], Corollary 4.8.

4.4. Leray-Hirsch theorem. Now we establish the Leray-Hirsch theorem for the Dolbeault-
Morse-Novikov cohomology.

Theorem 4.6. Let 7w : E — X be a holomorphic fiber bundle over a connected complex man-
ifold X whose general fiber F is compact and 1 a O-closed (0,1)-form on X. Assume there
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exist classes e1, ..., e, of pure degrees in H**(E), such that, for every x € X, their restric-
tions e1|g,, - - ., er|m, freely linearly generate H**(E,). Then, 7*(e) U e gives isomorphisms
of bigraded vector spaces

Hy*(X) ®c spanc{er, ..., e, } > H:* (E),
where 1) = 7.

Proof. If X is a Stein manifold, the theorem holds. Actually, since H%!(X) = 0, n is d-exact.
By @) and Lemma 2] (1), we may assume n = 0. It is exactly [15], Theorem 1.2.

Go back to the general case. Let t1,...,t, be forms of pure degrees in A**(F), such that
e; = [t;] for 1 < i <. Set L** = spanc{ti, ..., t, }, which is a bigraded vector spaces and
isomorphic to spang{es, ..., e, }. For any open set U in X, set

)= @  AU)®c LM

k+l=p,ut+v=q

and Op = 577 ® 1. For any p, (BP*(U), 0p) is a complex, whose cohomology is
DPUU) = (H}*(U) @c spang{e1, ..., e, })"!

= @ Hf;’“(U) ®c (spanc{e, ..., e .
k+l=p,u+v=q
Clearly, the morphism 7*(e) A e : BP*(U) — CP*(U) := AP*(Ey) of complexes induces a
morphism on the cohomological level

7 () Us s DP(U) = EVI(U) := HE(Ey),

denoted by ®;. We need to prove ®x is an isomorphism.
Given p, for any open subsets U, V in X, there is a commutative diagram of complexes

(pg"V .oy ")
_—

U _ Vv
0——= BP*(UUV) Bre(U) @ BP*(V) "V pre(r A V) ——=0 |

lﬂ*(.)/\o l(fr*(.)/\o,ﬂ'*(.)/\o) lfr*(o)/\.
. GoVavy) oo JUAVTIUaY
0——=CP(UUV)  —= "CPU)pCP*(V) —="CPr(UNV)——=0

where p, j are restrictions and the differentials of complexes in the first, second rows are
all Op, 0, respectively. The two rows are both exact sequences of complexes. Therefore, we
have a commutative diagram of long exact sequences

.. — pPa~ (U NV) — DPY(U UV) —> DP9(U) @ DP4(V) — DP4(UNV) —> ...

l‘f’unv l‘l’qu l/(@U,‘PV) l‘f’unv

L — Ep’qfl(UﬂV) — EPY(UUV) —> EPY(U)@ EPY(V) —> EPI(UUV) —> ... .

If &y, &y and Pyny are isomorphisms, then @y is an isomorphism by Five Lemma
(seeing [I1], p. 6). We claim that:

(x) For open subsets Uy,...,Us C X, if (I)Uilm~~~mUik is an isomorphism for any 1 < k < s
and 1 <i; <...<i <s, then (I)Ule U, is an isomorphism.

We prove this conclusion by induction. For r = 1, the conclusion holds clearly. Sup-
pose it holds for s. For s + 1, set U] = Uy,...,U._; = Us_1,U. = Us UUsy1. Then
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Py A = (I)Uilm»»»mUik is isomorphic for any 1 < i1 < ... < i < s — 1. More-
I i
over, Py A Ay’ Ao 18 also isomorphic for any 1 < i3 < ... < i1 < s — 1, since
i1 i1 s
¢Uilm...ﬂUik71mUsa ¢Ui1ﬂ...ﬂUik71ﬂUs+1 and ¢Uilm~~~mUikilmUsmUs+1 are isomorphic. By in-
ductive hypothesis, fIJU:»;l v, = ®ys_, 7 is an isomorphism. We proved (x).
For a disjoint union U = |J U, of open subsets U, in X, &y is exactly the direct product

[I®v. : [[ PP (U) = [ ] HE(Eu.).

If @y, are all isomorphic, then @y is also an isomorphism.

Let U be a basis for topology of X such that every U € U is Stein and let U; be the
collection of the finite unions of open sets in U.

For any finite intersection V' of open sets in U;, ®y is an isomorphism. Actually, V =
Ni_, Ui, where U; = U;;l Uyj and Ujj € U. Then V = (J;c, Uy, where A = {J =
(jl,...,js)ll <hn<ry,...,1 <5< TS} and Uy = U1j1 ﬂ...ﬂUst. For any Jy,...,J; € A,
Ujs,N...NUy, is a Stein manifold, so @y, n..nv,, i isomorphic. By (x), @y =@y _ v, is
an isomorphism.

By [7], p. 16, Prop. II, X = V; U ... UV}, where V; is a countable disjoint union of
open sets in ;. Forany 1 <43 < ... <1 <[, V3, N...NV;, is a disjoint union of the
finite intersection of open sets in U;. Hence, ®v; n..nv;, is isomorphic, so is ®x by (). We
complete the proof. (I

In particular, we can calculate the Dolbeault-Morse-Novikov cohomology of projectivized
bundles.

Corollary 4.7. Let w : P(E) — X be the projectivization of a holomorphic vector bundle
E on a connected complexr manifold X. Assume n is a O-closed (0,1)-form on X and
h = [=0(0pg)(—1))] is in H-'(P(E)), where Opg)(—1) is the universal line bundle on
P(E) and ©(Opgy(—1)) is the Chern curvature of a hermitian metric on Opgy(—1). Then
7*(e) U e gives an isomorphism of graded vector spaces

H}»*(X) ®c spanc{1, ..., h’“*l};H;**(P(E)),
where rankcE = r and n = w*n.
4.5. A blow-up formula. We have the following lemma by definition.

Lemma 4.8 ([I5], Proposition 3.1). Let X be a complex manifold and Z, U closed, open
complex submanifolds of X, respectively. Assumei:7Z — X, j:U — X, ¢ :ZNU = U
and j' : ZNU — Z are inclusions. Then i.,j"™ = j*i, on D"**(Z).

Let 7 : X — X be the blow-up of a connected complex manifold X along a connected
complex submanifold Z. We know n|g : E = n~Y(Z) — Z is the projectivization E =
P(Nz,x) of the normal bundle Nz, x. Set

Q) h=15-0(0p(~1))

in Hé’l (E), where ©(Og(—1)) is the curvature of the Chern connection of a hermitian metric
of the universal line bundle Og(—1) on E.
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Theorem 4.9. With above notations, let ig : E — X be the inclusion and r = codimc Z.
Suppose that 1 is a d-closed (0,1)-form on X and §) = ©*n. Then, for any p, q,

r—2

(5) T+ Y (ip)s o (V) o (n]p)”

=0

gives an isomorphism

r—2
HP(X) e @ HE T (2)S HP(X).
=0

nlz

Proof. For a Stein manifold X, we may assume n = 0 with the same reason with the proof
of Theorem [6, so the theorem holds by [15], Theorem 1.3.
For the general complex manifold X, set

r—2
g _ AP ; p—1—t,q—1—1
Fri = A o PizAY :

=0

for any p, q. Define 0 : FP* — FP*+L as (a, Bo, ..., Br_2) (5na,5n|zﬁo, ...,5,7|ZBT_2). For
any p, (FP*,0) is a complex of sheaves. Let t = =20(Op(—1)) € A“(E). For any open

subset U in X, define FP1(U) — D'P1(U) as

(W|[7)* + Z::_()Q(zEmﬁ)* © (ti|Em[7/\) © (WlEmﬁ)*v zZNu 7& 0
Yu =
(ml&)", ZnU =40,

where U = 7' (U) and igy 5 : EN U — U is the inclusion. Clearly, d5 o pu = pu o 0.
Hence, ¢y induces a morphism of vector spaces

r—2
by HPU(U) & @@ HY 4 (20 U) — HEY(D).
=0

We need to prove that ®x is an isomorphism.
For open sets V C U, denote by p¥ : FP4(U) — FP4(V) the restriction of the sheaf FP+4

and jJ : D'P9(U) — D'P4(V) the restriction of currents. By LemmaL8] j7 o oy = py 0 pY.
Given p, for any open subsets U, V in X, there is a commutative diagram of complexes

Uuv UuUV U v
(PUu vaU ) Punv —Punv
—_— ) _—

0—— FPe(UUV) Fre(U) @ Fro(V

lsauuv l(V’UWV) l“"U“V
-UUV UUV

0 D/p’.(ﬁ U ‘7) Go="sav") o~ ~ . JGnv—itnv

DPe(U) @ DP(V) "L pre(U N V) —=0

FPeUNV) —=0.

The two rows are both exact sequences of complexes. For convenience, denote

nlz

r—2
LPIU) = HPY(U) e @ HY T (Z2n).
1=0
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Therefore, we have a commutative diagram of long exact sequences

L — prqfl(Un V) —— LP9(UUuV) — LPI(U) @ LPI(V) —> LPI(UNV) —> Lp‘q+1(UU V) —— ...

l‘I’UﬁV l‘f’uuv l(‘f’uﬁl’v) l‘f’unv l‘f’uuv

=m0 N V) —— BP0 UV) — HDYO) @ HYY(V) —>= HDU(T V) —= HDTN (T u V) — ..

Following the steps in the proof of Theorem [£.6] we proved that ® x is an isomorphism. [

5. STABILITY OF #-BETTI AND 7-HODGE NUMBERS

For a compact smooth manifold X and a real (resp. complex) closed 1-form 6 on X,
bi(X,0) :=dimgH}(X) (resp. dimcH}(X,C)) is called k-th @-betti number of X. Simi-
larly, for a compact complex manifold X and a d-closed (0,1)-form 7 on X, R (X)) =
dimc H}»9(X) is called (p, ¢)-th n-hodge number of X.

Lemma 5.1. Let f : X — Y be a proper surjective submersion of connected smooth man-
ifolds and 6 a real (resp. complex) closed 1-form on X. Then, for any k, the higher direct
image R* f,.Rx o (resp. R¥f.Cx 4) is a local system of R (resp. C)-modules with finite rank.
In particular,
Y — bk(Xy, 9|Xy)

is a constant function, where X, = f~(y) for anyy €Y.

Proof. We may assume Y is an open ball and only prove the real case.

Let o be the center of Y. By Ehresmann’s trivialization theorem, there exists a diffeo-
morphism T : X, X Y — X, such that pro = foT, where pry is the projection from X, x Y
to Y. By Lemma [22] (3),

ka*Rxﬁ ngf* (T*KXO ><Y,T*0)
~RF (pr2)«Rx, xy. 170

Set pry the projection from X, xY to X,. By Kiinneth formula, pri : H'(X,) - H'(X,xY)
is an isomorphism, where we use the fact that H°(Y) = R and H*(Y) = 0. So, T*6 can
be written as prif, + du for a closed 1-form 6, on X, and a smooth function v on X, x Y.
Consider the cartesian diagram

(6)

pr2

X, xY Y
lpﬁ lpy
Pxo
Xo ——2> {pt},

where {pt} is a single point space and px,, py are constant map. Evidently, pro and px,
are proper. By Lemma 22 and [T1], p. 316, Corollary 1.5,

RF(pra).Ry, XY, T*0 ~R¥(pra) Ry, XY,prif,
~RF(pry).(pry IRXO,HO)
~py' R (px,)«(Rx, 0,)
=Ry, xy ®r Heko (Xo)-

(7)
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Combined (@) and (1), ka*RX,O is constant on the open ball Y. Moreover, the stalk
(RFf.Rx g)y = HF(Xy, Ry olx,) = Hek\x (X,). We complete the proof. O

Let X be a compact complex manifold and # = ¢ + n a complex closed 1-form on X,
where ¢ and 7 are both (0, 1)-forms. For the double complex (A**(X), 8z, dy), the associated
simple complex is (A$(X), dp), which has a natural filtration

FPAEX)= P A (X).
r>p,r+s==k
We get a spectral sequence (Ef*,d,, H*), where E"! = HP9(X) and HY = HF(X,C). If
0 = 0, this is Frélicher spectral sequence. Clearly, for p < 0, or p > n, or ¢ < 0, or q¢ > n,
EP9 = 0. So, for given p, g, if r is enough large,

EP9=FEPY = .. = EPS =FPH}(X,C)/FPT HET(X, C).

Since dimc B}, < dimcEP? for any r,

be(X,0) = Z EPT < Z EPT = Z hP9(X),

p+q=k p+q=k p+q=k
The degeneration of this spectral sequence at F; on compact locally conformally Kahler
manifold is proved in some conditions in [20].
We say that f : X — Y is a family of complex manifolds, if f is a proper surjective
holomorphic submersion.

Theorem 5.2. Let f : X — Y be a family of complex manifolds and 6 a complex closed
1-form on X. Assume be(Xo,0(x,) =3, & hf;"q (X,) for some k and some point 0 € Y,
where n is the (0,1)-part of 6. Then, for any t near o, hz"i (X;) = P! (XO), where 1 s

nlx
the (0,1)-part of 6 and p+ q = k.

Proof. Let QX/Y = QL /f*Q3 be the sheaf of the relative holomorphic 1-forms and Q’;{/Y =
N’ QX/Y Set 4; : X¢ — X the inclusion. Then ifQ’)’(/Y = OF , seeing [27], p. 234-235. For
the locally free sheaf Q’)’(/Y ®ox Ox,y, we have

if(ng/Y ®ox Oxn) = iiﬁé’(/y ®ox, itOxn = Qg(t nlx, "

By the semi-continuity theorem, hp"q (Xy) < hp"q (X,) for any ¢ near o. So

br(Xo,6lx,) = D hDL (Xo) 2 D A (Xe) = bx(Xe,lx,)-
pt+q=k p+q=k
By Lemma 511 hf]’& (Xy) = hf}’li (X,) for any p+ q = k. 0

By Hodge decomposition of complex manifolds in Fujiki class C, we get the following
corollary immediately.

Corollary 5.3. Let f : X — Y be a family of complex manifolds and 6 a complex closed
1-form on X. Assume, for a point o € Y, X, is in the Fujiki class C and 0|x, = 0. Then,
for any t near o, hf}’l‘i (Xt) = W1(X,), for any p, q, where i is the (0,1)-part of 6.
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