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Abstract

We show that the local time of one-dimensional super-Brownian motion is locally

γ-Hölder continuous near the boundary if 0 < γ < 3 and fails to be locally γ-Hölder

continuous if γ > 3.

1 Introduction

Let MF = MF (R
d) be the space of finite measures on (Rd,B(Rd)) equipped with the topol-

ogy of weak convergence of measures, and write µ(φ) =
∫

φ(x)µ(dx) for µ ∈ MF . Let
(Ω,F , (Ft)t≥0, P ) be a filtered probability space. A super-Brownian motion (Xt, t ≥ 0)
starting at µ ∈ MF is a continuous MF -valued strong (Ft)t≥0-Markov process defined on
(Ω,F , (Ft)t≥0, P ) with X0 = µ a.s.. It is well known that super-Brownian motion is the
solution to the following martingale problem (see [Per02], II.5): For any φ ∈ C2

b (R
d),

Xt(φ) = X0(φ) +Mt(φ) +

∫ t

0

Xs(
∆

2
φ)ds, ∀t ≥ 0, (1.1)

where (Mt(φ))t≥0 is a continuous (Ft)t≥0-martingale such that M0(φ) = 0 and

[M(φ)]t =

∫ t

0

Xs(φ
2)ds, ∀t ≥ 0.

The above martingale problem uniquely characterizes the law PX0
of super-Brownian motion

X , starting from X0 ∈ MF , on C([0,∞),MF ), the space of continuous functions from [0,∞)
to MF furnished with the compact open topology. In particular, if we let X0 be the Dirac
mass δ0, then Pδ0 denotes the law of super-Brownian motion X starting from δ0.

Local times of superprocesses have been studied by many authors (cf. [Sug89], [BEP91],
[AL92], [Kro93], [Mer06]). We recall that [Sug89] has proved that for d ≤ 3, there exists a
jointly lower semi-continuous local time Lx

t , which is monotone increasing in t for all x, such
that

∫ t

0

Xs(φ)ds =

∫

Rd

φ(x)Lx
t dx, for all t ≥ 0 and non-negative measurable φ. (1.2)
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Moreover, there is a version of the local time Lx
t which is jointly continuous on the set of con-

tinuity points of X0qt(x), where qt(x) =
∫ t

0
ps(x)ds, pt(x) is the transition density of Brownian

motion, and X0qt(x) =
∫

qt(y− x)X0(dy) (see Theorem 3 in [Sug89]). Let the extinction time
ζ of X be defined as ζ = ζX = inf{t ≥ 0 : Xt(1) = 0}. We know that ζ < ∞ a.s. (see Chp.
II.5 in [Per02]). Then we have Lx = Lx

∞ = Lx
ζ is also lower semicontinuous. Note the set

{x : Lx > 0} is defined to be the range of super-Brownian motion X (see [MP17]). Theorem
2.2 of [MP17] gives that for any η > 0, with Pδ0-probability one we have Lx is C(4−d)/2−η-
Hölder continuous for x away from 0 if d ≤ 3. When d = 1, Lx is globally continuous (see
Proposition 3.1 in [Sug89]).

Definition. A function f : R → R is said to be locally γ-Hölder continuous at x ∈ R, if there
exist δ > 0 and c > 0 such that

|f(x)− f(y)| ≤ c|x− y|γ, ∀y with |y − x| < δ.

We refer to γ > 0 as the Hölder index and to c > 0 as the Hölder constant.

The problem studied in this paper was originally motivated by a heuristic calculation of
the Hausdorff dimension, df , of the boundary of {x : Lx > 0} in [MP17]. With the following
bounds given in Theorem 1.3 of [MP17],

Pδ0(0 < Lx ≤ a) ≤ Caα for a small,

and an improved γ-Hölder continuity of Lx for x near its zero set, the two authors derived the
upper bound df ≤ d − αγ by a heuristic covering lemma in Section 1 of the same reference.
Although these arguments were given for d = 3, they work in any dimension. As df and α
are known from [MP17], one can reverse engineer and find the required γ. This leads to their
conjecture [private communication] that for any η > 0, with Pδ0-probability one

x → Lx is locally Hölder continuous of index 4− d− η near the zero set of Lx. (1.3)

In [MP17] they reported that they can establish the above for d = 3 (and make the argument
for the upper bound on df work). In this paper we confirm the above conjecture for d = 1, as
stated in Theorem 1.1 below. This result also gives us confidence on the validity of the d = 2
case, which remains an interesting open problem.

To state our main results, we first recall a result from Theorem 1.7 in [MP17].

Theorem A. ([MP17]) If d = 1 then Pδ0-a.s. there are random variables L < 0 < R such that

{x : Lx > 0} = (L,R).

As discussed above, we are interested in the decay rate of the local time Lx on the boundary,
i.e., at L and R.

Theorem 1.1. Let d = 1. If 0 < γ < 3, then Pδ0-a.s. the local time Lx is locally γ-Hölder
continuous at L and R.
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This result will be proved in Section 2 and it is optimal in the sense of the following theorem,
whose proof will be given in Section 3.

Theorem 1.2. Let d = 1. For any γ > 3, we have Pδ0-a.s. that there is some δ(γ, ω) > 0
such that Lx ≥ 2−γ/2(R− x)γ for all R− δ < x < R.

With the lower bound established above, we can get the following result immediately.

Corollary 1.3. Let d = 1. If γ > 3, then Pδ0-a.s. the local time Lx fails to be locally γ-Hölder
continuous at L and R.

Proof. By symmetry we may consider only R. For any γ > 3, define γ′ = (3+ γ)/2 such that
3 < γ′ < γ. Then Theorem 1.2 would imply that Pδ0-a.s. that there is some δ(γ′, ω) > 0 such
that Lx ≥ 2−γ′/2(R− x)γ

′

for all R− δ < x < R. For ω as above and c > 0, if x < R is chosen
close enough to R, then

Lx ≥ 2−γ′/2(R− x)γ
′

> c(R− x)γ ,

and so the local γ-Hölder continuity at R fails a.s.. �

Now we continue to study the case under the canonical measure N0. Nx0
is a σ-finite

measure on C([0,∞),MF ) which arises as the weak limit of NPN
δx0/N

(XN
· ∈ ·) as N → ∞,

where XN
· under PN

δx0/N
is the approximating branching particle system starting from a single

particle at x0 (see Theorem II.7.3(a) in [Per02]). In this way it describes the contribution of
a cluster from a single ancestor at x0, and the super-Brownian motion is then obtained by
a Poisson superposition of such clusters. In fact, if we let Ξ =

∑

i∈I δνi be a Poisson point
process on C([0,∞),MF ) with intensity Nx0

(dν), then

Xt =
∑

i∈I

νi
t =

∫

νt Ξ(dν), t > 0,

has the law, Pδx0
, of a super-Brownian motion X starting from δx0

. We refer the readers to
Theorem II.7.3(c) in [Per02] for more details. The existence of the local time Lx under Nx0

will follow from this decomposition and the existence under Pδx0
. Therefore the local time Lx

may be decomposed as

Lx =
∑

i∈I

Lx(νi) =

∫

Lx(ν)Ξ(dν). (1.4)

The continuity of local times Lx under Nx0
is given in Theorem 1.2 of [Hong18]. We first give

a version of Theorem A under the canonical measure.

Theorem 1.4. If d = 1 then N0-a.e. there are random variables L < 0 < R such that

{x : Lx > 0} = (L,R).

Theorem 1.5. Theorem 1.1, Theorem 1.2 and Corollary 1.3 hold if Pδ0 is replaced with N0.

The proofs of these analogous results under N0 will be given in Section 4.
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2 Upper bound of the local time near the boundary

Let gx(y) = |y−x|. Then d2

dy2
gx(y) = 2δx(y) holds in the distributional sense and the martingale

problem (1.1) suggests the following result.

Proposition 2.1. (Tanaka formula for d=1) Let d = 1 and fix x 6= 0 in R
1. Then we have

Pδ0-a.s. that
Lx
t + |x| = Xt(gx)−Mt(gx), ∀t ≥ 0, (2.1)

where t 7→ Xt(gx) is continuous for t ≥ 0 and (Mt(gx))t≥0 is a continuous L2 martingale which
is the stochastic integral with respect to the martingale measure associated with super-Brownian
motion.

Proof. Let (Pt)t≥0 be the Markov semigroup of one-dimensional Brownian motion. By cutoff
arguments similar to those used in the proof of Proposition 2.4 in [Hong18], we may use the
martingale problem (1.1) to see that for any ε > 0, with Pδ0-probability one we have

Xt(Pεgx) = Pεgx(0) +Mt(Pεgx) +

∫ t

0

Xs(
∆

2
Pεgx)ds, ∀t ≥ 0. (2.2)

One can check that
|Pεgx(y)− gx(y)| ≤ ε1/2, ∀x, y ∈ R, (2.3)

and so it follows that
∣

∣

∣
Pεgx(0)− |x|

∣

∣

∣
→ 0, as ε ↓ 0. (2.4)

Use (2.3) again to see that for any T > 0,

sup
t≤T

∣

∣

∣
Xt(Pεgx)−Xt(gx)

∣

∣

∣
≤ ε1/2 sup

t≤T
Xt(1) → 0, Pδ0 − a.s., (2.5)

and

Eδ0

[(

sup
t≤T

∣

∣

∣
Mt(Pεgx)−Mt(gx)

∣

∣

∣

)2]

≤ 4Eδ0

[

∫ T

0

Xs

(

(Pεgx − gx)
2
)

ds
]

→ 0. (2.6)

The last inequality follows by Doob’s inequality. Now for the convergence of last term on the
right-hand side of (2.2), we apply integration by parts to get for any ε > 0, d2

dy2
Pεgx(y) =

2pε(y − x) =: 2pxε (y). Theorem 6.1 in [BEP91] gives us that as ε → 0,

sup
t≤T

|

∫ t

0

Xs(p
x
ε )ds− Lx

t | → 0, Pδ0 − a.s., (2.7)

and hence by taking an appropriate subsequence εn ↓ 0, (2.1) would follow immediately from
(2.2), (2.4), (2.5), (2.6) and (2.7). �
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Now we discuss the differentiability of Lx
t in d = 1 . We denote, by Dxf(x) (resp. D

+
x f(x),

D−
x f(x)), the derivative (resp. right derivative, left derivative) of f(x). Then we have the

following result from Theorem 4 of [Sug89].

Theorem B. ([Sug89]) Let d = 1 and X0 = µ ∈ MF (R). Then the following (i) and (ii) hold
with Pµ-probability one.

(i) Z(t, x) = Lx
t − Eµ(L

x
t ) is differentiable with respect to x, ∀t ≥ 0;

(ii) DxZ(t, x) is jointly continuous in t ≥ 0 and x ∈ R, and we have

D+
x Eµ(L

x
t )−D−

x Eµ(L
x
t ) = −2µ({x}), t > 0, x ∈ R. (2.8)

In particular, if we let H = {x ∈ R : µ({x}) = 0}, then DxEµ(L
x
t ) is jointly continuous on

[0,∞)×H and so with Pµ-probability one we have Lx
t is differentiable with respect to x on H

and DxL
x
t is jointly continuous on [0,∞)×H.

So for the case X0 = δ0, we know from the above theorem that Lx
t is continuously differen-

tiable on {x 6= 0}. Let sgn(x) = x/|x| for x 6= 0 and sgn(0) = 0. Then Dygx(y) = sgn(y − x)
for y 6= x and we have the following Tanaka formula for DxL

x
t .

Proposition 2.2. Let d = 1 and fix x 6= 0 in R
1. Then we have Pδ0-a.s. that

DxL
x
t = −sgn(x) +Xt(sgn(x− ·))−Mt(sgn(x− ·)), ∀t ≥ 0. (2.9)

Proof. Fix any x 6= 0 and any t ≥ 0. Choose some positive sequence {hn}n≥1 such that
hn ↓ 0. Then use (2.1) to see that with Pδ0-probability one,

1

hn
(Lx+hn

t − Lx
t ) +

1

hn
(|x+ hn| − |x|) =

1

hn
(Xt(gx+hn

)−Xt(gx))−
1

hn
(Mt(gx+hn

)−Mt(gx)).

(2.10)

By Theorem B, we conclude that the left hand side converges a.s. to DxL
x
t + sgn(x) as hn ↓ 0.

For the right hand side, first note that for all x, y ∈ R, we have |(|x+ h− y| − |x− y|)/h| ≤ 1
for all h > 0. Then bounded convergence theorem implies as hn ↓ 0,

1

hn

(Xt(gx+hn
)−Xt(gxn

)) =

∫

1

hn

(|x+ hn − y| − |x− y|)Xt(dy) →

∫

sgn(x− y)Xt(dy),

and

Eδ0

[

( 1

hn
(Mt(gx+hn

)−Mt(gx))−Mt(sgn(x− ·))
)2
]

≤Eδ0

[
∫ t

0

∫
(

1

hn
(|x+ hn − y| − |x− y|)− sgn(x− y)

)2

Xs(dy)ds

]

=

∫ t

0

ds

∫

ps(y)

(

1

hn

(|x+ hn − y| − |x− y|)− sgn(x− y)

)2

dy → 0.

In the last equality we use Eδ0Xt(dy) = pt(y)dy from Lemma 2.2 of [KS88]. So every term,
except the last term on the right-hand side, in (2.10) converges a.s. and hence the last term
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converges a.s. as well. Note we have shown that it converges in L2 to Mt(sgn(x− ·)). Then
it follows that the last term converges a.s. to Mt(sgn(x − ·)) and so (2.9) for any fix t ≥ 0
follows from (2.10) .

Now take countable union of null sets to see that with Pδ0-probability one, we have (2.9)
holds for all rational t ≥ 0. Note by Theorem B we have t 7→ DxL

x
t is continuous for all t ≥ 0

Pδ0-a.s.. For the right-hand side terms of (2.9), sinceXt({x}) = 0 for all t ≥ 0 Pδ0-a.s., the weak
continuity of t 7→ Xt for all t ≥ 0 would give us the continuity of t 7→ Xt(sgn(x−·)) for all t ≥ 0.
Next since sgn(x−·) is a bounded function andMt(sgn(x−·)) =

∫ t

0

∫

sgn(x−y)M(dyds) is an
integral with respect to the martingale measure, it follows immediately that t 7→ Mt(sgn(x−·))
is continuous for all t ≥ 0. Therefore we can upgrade the rational t ≥ 0 to all t ≥ 0 and the
proof is complete. �

Now we will turn to the proof of Theorem 1.1. By symmetry we can consider the case
x > 0. Since Xt(1) = 0 for t = ζ , Pδ0-a.s., we use Proposition 2.2 with t = ζ to see that for
any x > 0, with Pδ0-probability one we have

L′(x) := DxL
x = −1−

∫ ∞

0

∫

sgn(x− z)M(dzds).

Define Nx,y
t =

∫ t

0

∫

(sgn(y − z)− sgn(x− z))M(dzds) for x, y > 0 and t ≥ 0. Then we have

L′(x)− L′(y) = Nx,y
∞ =

∫ ∞

0

∫

(sgn(y − z)− sgn(x− z))M(dzds), (2.11)

and its quadratic variation is

[Nx,y]∞ =

∫ ∞

0

∫

(sgn(y − z)− sgn(x− z))2Xs(dz)ds

=

∫

(sgn(y − z)− sgn(x− z))2Lzdz = 4

∣

∣

∣

∣

∫ y

x

Lzdz

∣

∣

∣

∣

. (2.12)

The second equality is by (1.2) and the last follows since (sgn(y − z) − sgn(x − z))2 ≡ 4 for
z between x and y, and ≡ 0 otherwise.

The following theorem, which is a generalization of Theorem 4.1 of [MPS06], carries out
the main bootstrap idea we use to prove Theorem 1.1: we start from a lower order of Hölder
continuity, say ξ0, of the local time Lx and then upgrade to a higher order of Hölder continuity
ξ1 ≈ (3 + ξ0)/2. By iterating we can reach the highest possible order 3.

Theorem 2.3. Let ZN be the random set [R−2−N ,R]∩ (0,∞) for any positive integer N ≥ 1,
where R is the r.v. from Theorem A. Assume ξ0 ∈ (0, 3) satisfies

∃1 ≤ Nξ0(ω) < ∞ a.s. such that ∀N ≥ Nξ0(ω), x ∈ ZN ,

∀|y − x| ≤ 2−N ⇒ |Lx − Ly| ≤ 2−ξ0N . (2.13)

Then for all 0 < ξ1 < (3 + ξ0)/2,

∃1 ≤ Nξ1(ω) < ∞ a.s. such that ∀N ≥ Nξ1(ω), x ∈ ZN ,

∀|y − x| ≤ 2−N ⇒ |Lx − Ly| ≤ 2−ξ1N . (2.14)
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Proof. Note that R ∈ ZN for all N ≥ 1. By (2.13), we have

|Lz| = |Lz − LR| ≤ 2−ξ0(N−1), if z ∈ ZN−1, N ≥ Nξ0 + 1. (2.15)

Let N ≥ Nξ0 + 1. For x ∈ ZN and |y − x| ≤ 2−N , we have y ∈ ZN−1 and z ∈ ZN−1 for any z
between x and y. Therefore (2.12) implies

[Nx,y]∞ = 4 |

∫ y

x

Lzdz| ≤ 4 · 2−ξ0(N−1)|y − x| ≤ 25 · 2−ξ0N |y − x|, (2.16)

the first inequality by (2.15) with z ∈ ZN−1.

Pick 1/4 < η < 1/2 such that

η(1 + ξ0) + 1 > ξ1. (2.17)

By using the Dubins-Schwarz theorem (see [RY94], Theorem V1.6 and V1.7), with an enlarge-
ment of the underlying probability space, we can construct some Brownian motion (B(t), t ≥ 0)
in R such that L′(x)− L′(y) = Nx,y

∞ = B([Nx,y]∞). So for any N ∈ N, we have

Pδ0(|L
′(x)− L′(y)| ≥ 25 · 2−ηξ0N |y − x|η, x ∈ ZN , |y − x| ≤ 2−N , N ≥ Nξ0 + 1)

≤P ( sup
s≤25·2−ξ0N |y−x|

|B(s)| ≥ 25 · 2−ηξ0N |y − x|η) (by (2.16))

≤2 exp(−25 · 2ξ0N(1−2η)|y − x|2η−1). (2.18)

For k ≥ N , define

Mk,N = max
{

|L′(R−
i+ 1

2k
)− L′(R−

i

2k
)| : 0 ≤ i ≤ 2k−N

}

,

and
AN =

{

ω : ∃ k ≥ N s.t. Mk,N ≥ 25 · 2−ηξ0N2−ηk, N ≥ Nξ0 + 1
}

.

Note for each 0 ≤ i ≤ 2k−N , we have R− i2−k ∈ ZN . Let x = R− i2−k and y = R− (i+1)2−k

in (2.18) to get

Pδ0(|L
′(R−

i

2k
)− L′(R−

i+ 1

2k
)| ≥ 25 · 2−ηξ0N2−ηk, k ≥ N ≥ Nξ0 + 1) (2.19)

≤2 exp(−25 · 2ξ0N(1−2η)2k(1−2η)),

and hence

Pδ0

(

∞
⋃

N ′=N

AN ′

)

≤
∞
∑

N ′=N

∞
∑

k=N ′

(2k−N ′

+1)·2 exp(−25·2ξ0N
′(1−2η)2k(1−2η)) ≤ c0 exp(−c12

N(1+ξ0)(1−2η))

for some constants c0, c1 > 0. Let

N1 = min{N ∈ N : ω ∈
∞
⋂

N ′=N

Ac
N ′}.
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The above implies

Pδ0(N1 > N) = Pδ0

(

∞
⋃

N ′=N

AN ′

)

≤ c0 exp(−c12
N(1+ξ0)(1−2η)),

and so N1 is an a.s. finite random variable. Define

Nξ1 = N1 ∨ (Nξ0 + 1) ∨
12

η(1 + ξ0) + 1− ξ1
∨ 1, (2.20)

where the third one is well defined by (2.17). For all N ≥ Nξ1, k ≥ N , x ∈ ZN and
|y − x| ≤ 2−N , let xk = R − ⌊2k(R − x)⌋2−k ↓ x and yk = R − ⌊2k(R − y)⌋2−k ↓ y. Then
|xk − xk+1| ≤ 2−(k+1) and |yk − yk+1| ≤ 2−(k+1). Note xN , yN ∈ {R,R − 2−N ,R − 21−N} and
|xN − yN | ≤ 2−N since |y − x| ≤ 2−N . The continuity of L′(x) gives

L′(x) = −L′(xN) +
∞
∑

k=N

(

L′(xk)− L′(xk+1)
)

,

and

L′(y) = −L′(yN) +
∞
∑

k=N

(

L′(yk)− L′(yk+1)
)

.

So

|L′(x)− L′(y)| (2.21)

≤|L′(xN )− L′(yN)|+
∞
∑

k=N+1

(

|L′(xk)− L′(xk+1)|+ |L′(yk)− L′(yk+1)|
)

≤MN,N +
∞
∑

k=N

2Mk+1,N ≤ 25 · 2−ηξ0N2−ηN + 2
∞
∑

k=N

25 · 2−ηξ0N2−η(k+1)

≤210 · 2−ηN(ξ0+1),

where we have used the definitions of Mk,N and AN and N ≥ Nξ1 ≥ N1 ∨ (Nξ0 + 1) by (2.20)
in the third line. Let x = z ∈ ZN and y = R in above. Then use L′(R) = 0 to see that

|L′(z)| ≤ 210 · 2−Nη(1+ξ0), ∀z ∈ ZN , N ≥ Nξ1 . (2.22)

Let N ≥ Nξ1 + 1. For x ∈ ZN and |y − x| ≤ 2−N , we have y ∈ ZN−1 and z ∈ ZN−1 for any z
between x and y. Use (2.22) to get

|L(y)− L(x)| = |L′(z)||y − x| ≤ 210 · 2−(N−1)η(1+ξ0)2−N ≤ 2−ξ1N ,

the last by N > Nξ1 > 12/(η(1 + ξ0) + 1− ξ1) and (2.17). �

Theorem 1.1 follows from the following corollary of the above result.

Corollary 2.4. Let γ ∈ (0, 3). Then Pδ0-a.s. there is a random variable δ(γ, ω) > 0 such that
for any 0 < R− x < δ, we have Lx ≤ 2γ(R− x)γ.

8



Proof. By Theorem 2.2 in [MP17], for any 0 < ξ0 < 1, with Pδ0-probability one, there is some
0 < ρ(ω) ≤ 1 such that

|Ly − Lx| < |y − x|ξ0 , for x, y > 0 with |y − x| < ρ. (2.23)

Note we may set ε0 = 0 in Theorem 2.2 of [MP17] due to the global continuity of Lx in d = 1.
Pick ξ0 = 1/2, then (2.13) in Theorem 2.3 holds for N ≥ Nξ0(ω) = 1 ∨ log2(ρ(ω)

−1). Induc-
tively, define ξn+1 =

1
2
(3 + ξn)(1 −

1
n+3

) so that ξn+1 ↑ 3. Pick n0 such that ξn0
≥ γ > ξn0−1.

Apply Theorem 2.3 inductively n0 times to get (2.13) for ξ0 = ξn0−1 and hence, (2.14) with
ξ1 = ξn0

.

Consider 0 < R − x ≤ 2−Nξn0 . Choose N ≥ Nξn0
such that 2−(N+1) < R − x ≤ 2−N . Then

x ∈ ZN and (2.14) with ξ1 = ξn0
implies

|Lx| = |Lx − LR| ≤ 2−Nξn0 ≤ 2−Nγ ≤ (2(R− x))γ = 2γ(R− x)γ. (2.24)

The proof is completed by choosing δ = 2−Nξn0 > 0. �

3 Lower bound of the local time near the boundary

Proof of Theorem 1.2. The proof of the lower bound on the local time near the boundary
requires an application of Dynkin’s exit measures of super-Brownian motion X . The exit
measure of X from an open set G under PX0

is denoted by XG (see Chp. V of [Leg99a] for
the construction of the exit measure). Intuitively XG is a random finite measure supported
on ∂G, which corresponds to the mass started at X0 which is stopped at the instant it leaves
G. The Laplace functional of XG is given by

EX0
(exp(−XG(g)) = exp

(

−

∫

Ug(x)X0(dx)
)

, (3.1)

where g : ∂G → [0,∞) is continuous and Ug ≥ 0 is the unique continuous function on G which
is C2 on G and solves

∆Ug = (Ug)2 on G, Ug = g on ∂G. (3.2)

Now we work with a one-dimensional super-Brownian motion X with initial condition y0δ0.
For r > 0 we let Yrδr denote the exit measure X(−∞,r) from (−∞, r) and set Y0 = y0. Then
Proposition 4.1 of [MP17] implies under Py0δ0 there is a cadlag version of Y which is a stable
continuous state branching process (SCSBP) starting at y0 with parameter 3/2, and so is an
(FY

r )r≥0-martingale with FY
r = σ(Ys, s ≤ r) (see Section II.1 of [Leg99a] for the definition of

(SCSBP)). In particular (4.6) in [MP17] gives

Ey0δ0(exp(−λYr)) = exp(−6y0(r +
√

6/λ)−2), ∀λ ≥ 0, r ≥ 0.

Let λ ↑ ∞, we have

Py0δ0(Yr = 0) = exp(−6y0r
−2), ∀r ≥ 0. (3.3)

9



Let Rn = inf{r ≥ 0 : Yr ≤ 2−n} ↑ R = inf{r ≥ 0 : Yr = 0} as n → ∞. Note the R defined
here will give the same R in Theorem A. By repeating the arguments in the proof of Theorem
1.7 in [MP17], for any β > 3/2, we have

w.p.1 ∃N0(ω) < ∞, so that inf
0<x<Rn

Lx > 2−nβ, ∀n > N0. (3.4)

Note again we may set ε0 = 0 in Theorem 2.2 of [MP17] due to the global continuity of Lx in
d = 1 to get the above. The definition of Rn implies Y (Rn) = 2−n,Pδ0-a.s. as Y is a SCSBP
and hence it only has positive jumps, i.e. it is spectrally positive (see [CLB09]). So for any
0 < ξ < 1/2, recalling that the non-negative martingale Y stops at 0 when it hits 0 at time
R, we see that

Pδ0(|Rn − R| > (2−n)ξ) =Pδ0(R > Rn + (2−n)ξ) ≤ Pδ0(YRn+2−nξ > 0)

=Eδ0(Pδ0(YRn+2−nξ > 0|FY
Rn
)) = Eδ0(PYRnδ0

(Y2−nξ > 0))

=Eδ0(1− exp(−6YRn
22nξ))

≤Eδ0(6YRn
22nξ) = 6(

1

2n
)1−2ξ,

where the second line holds by the strong Markov property of Y , and the third line uses (3.3).
By Borel-Cantelli Lemma, w.p.1 there is some N1(ω) < ∞ such that

|Rn − R| ≤ (
1

2n
)ξ, ∀n ≥ N1. (3.5)

For any fixed γ > 3, pick 0 < ξ < 1/2 such that γξ > 3/2. Let β = γξ > 3/2 in (3.4) and
define N(ω) = N0(ω) ∨N1(ω) < ∞. Then it follows from (3.5) that

|Rn − R|γ ≤ (
1

2n
)γξ, ∀n ≥ N ≥ N1. (3.6)

For all RN ≤ x < R, there is some n ≥ N such that Rn ≤ x < Rn+1. Now use (3.4) with
n ≥ N ≥ (N0 ∨N1) to get

|Lx − LR| = Lx ≥ inf
0<y<Rn+1

Ly > 2−γξ(n+1) ≥ 2−γ/2(
1

2n
)γξ

≥ 2−γ/2|Rn − R|γ ≥ 2−γ/2|x− R|γ,

where the second last inequality is by (3.6). The proof is completed by choosing δ = R−RN >
0. �

4 The case under the canonical measure

In this paper we use Le Gall’s Brownian snake approach to study super-Brownian motion
under the canonical measure. Define W = ∪t≥0C([0, t],Rd), equipped with the metric given
in Chp IV.1 of [Leg99a], and denote by ζ(w) = t the lifetime of w ∈ C([0, t],Rd) ⊂ W. The
Brownian snake W = (Wt, t ≥ 0) constructed in Ch. IV of [Leg99a] is a W-valued continuous
strong Markov process and we denote by Nx0

the excursion measure of W away from the trivial
path x0 for x0 ∈ R

d with zero lifetime. The law of X = X(W ) under Nx0
, constructed in
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Theorem IV.4 of [Leg99a], is the canonical measure of super-Brownian motion described in the
introduction (also denoted by Nx0

). For our purpose it suffices to note that if Ξ =
∑

i∈I δWi
is

a Poisson point process on the space of continuous W-valued paths with intensity Nx0
(dW ),

then

Xt(W ) =
∑

i∈I

Xt(Wi) =

∫

Xt(W )Ξ(dW ), t > 0,

has the law, Pδx0
, of a super-Brownian motion X starting from δx0

. Compared to (1.4), (2.19)
of [MP17] implies that the local time Lx may also be decomposed as

Lx(W ) =
∑

i∈I

Lx(Wi) =

∫

Lx(W )Ξ(dW ). (4.1)

Under the excursion measure Nx0
, let σ(W ) = inf{t ≥ 0 : ζt = 0} > 0 be the length of the

excursion path where ζt = ζ(Wt) is the life time of Wt and Ŵt = Wt(ζt) be the “tip” of the
snake at time t. Then (2.20) of [MP17] implies that for any measurable function φ ≥ 0 ,

∫ ∞

0

Xs(φ)ds =

∫

Lxφ(x)dx =

∫ σ

0

φ(Ŵs)ds. (4.2)

Proof of Theorem 1.4. Let R = sup{x ≥ 0 : Lx > 0} and L = inf{x ≤ 0 : Lx > 0}. First
we show that L0 > 0, N0-a.e., and then by Theorem 1.2 of [Hong18], the continuity of local
times under N0 in d = 1 would imply that L < 0 < R, N0-a.e..

Define the occupation measure Z by Z(A) =
∫ σ

0
1A(Ŵs)ds for all Borel measurable set A

on R. Then (4.2) implies that under Nx0
, the local time Lx coincides with the density function

of the occupation measure Z, which we denote by Lx(Z). By the Palm measure formula for
Z (see Proposition 16.2.1 of [Leg99b]) with F (y,Z) = exp(−λL0(Z)) for any λ > 0, we see
that

N0

(

Z(1)1(L0 = 0)
)

= lim
λ→∞

N0

(

Z(1) exp(−λL0(Z))
)

(4.3)

= lim
λ→∞

∫ ∞

0

da

∫

P a
0 (dw)E

(w)
(

exp(−λ

∫

L0(Z(ω))N (dtdω)
)

= lim
λ→∞

∫ ∞

0

da

∫

P a
0 (dw) exp

(

−

∫ ζ(w)

0

Nw(t)

(

1− exp(−λL0)
)

dt
)

,

where P a
0 is the law of Brownian motion in R started at 0 and stopped at time a and for each

w under P a
0 , the probability measure P (w) is defined on an auxiliary probability space and

such that under P (w), N (dtdω) is a Poisson point measure with intensity 1[0,ζ(w)](t)dtNw(t)(dω).
Note here we have taken our branching rate for X to be one and so our constants will differ
from those in [Leg99b]. For each w under P a

0 , we have ζ(w) = a. Therefore the left-hand side
of (4.3) is equal to
∫ ∞

0

da

∫

P a
0 (dw) exp

(

−

∫ a

0

Nw(t)

(

L0 > 0
)

dt
)

=

∫ ∞

0

da

∫

P a
0 (dw) exp

(

−

∫ a

0

6

|w(t)|2
dt
)

,

the last by (2.12) of [MP17]. By Levy’s modulus of continuity, we have
∫ a

0
6/|w(t)|2dt = ∞, P a

0 -

a.s. for each a > 0 and hence the above implies N0

(

Z(1)1(L0 = 0)
)

= 0. Since Z(1) = σ > 0,

N0-a.e., we have

L0 > 0, N0 − a.e.. (4.4)
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Now we will show that Lx is strictly positive on (L,R). Fix ε > 0 and let L = (Lx, x > ε).
Note that R ≤ ε implies Lx ≡ 0 for all x > ε by definition. Then the canonical decomposition
(4.1) implies that under Pδ0, (L,Nε) is equal in law to (

∑Nε

i=1 Li, Nε), where Nε is a Poisson
random variable with parameter N0(R > ε) < ∞ and given Nε, (Li = (Lx

i , x > ε))i∈N are i.i.d.
with law N0(L ∈ ·

∣

∣R > ε). Theorem A implies that

0 = Pδ0(Nε = 1; ∃ε < x < R, Lx = 0) = Pδ0(Nε = 1)N0(∃ε < x < R, Lx = 0
∣

∣R > ε).

Therefore we have N0(∃ε < x < R, Lx = 0;R > ε) = 0 for all ε > 0. Let ε ↓ 0 to see that
N0(∃0 < x < R, Lx = 0;R > 0) = 0. Since R > 0, N0-a.e., we have Lx > 0, ∀0 < x < R,
N0-a.e.. Use symmetry to conclude for L. �

Proof of Theorem 1.5. Fix ε > 0 and let L = (Lx, x > ε). Use the same canonical decom-
position above to see that under Pδ0 , (L,Nε) is equal in law to (

∑Nε

i=1 Li, Nε), where Nε and
(Li = (Lx

i , x > ε))i∈N are as above. For any γ ∈ (0, 3), use Corollary 2.4 to see that

0 = Pδ0(Nε = 1; ∃xn > ε, xn ↑ R, s.t. Lxn > 23(R− xn)
γ i.o.)

= Pδ0(Nε = 1)N0(∃xn > ε, xn ↑ R, s.t. Lxn > 23(R− xn)
γ i.o.

∣

∣R > ε),

where i.o. represents infinitely often. Therefore we have N0(∃xn > ε, xn ↑ R, s.t. Lxn >
23(R − xn)

γ i.o. ;R > ε) = 0 for all ε > 0. Let ε ↓ 0 to see that N0(∃xn > 0, xn ↑
R, s.t. Lxn > 23(R − xn)

γ i.o. ;R > 0) = 0. Since R > 0, N0-a.e., we have N0-a.e. that
∃δ > 0, s.t. ∀0 < R − x < δ, Lx ≤ 23(R − x)γ . Use symmetry to conclude for L and hence
Theorem 1.1 holds if Pδ0 is replaced with N0. The proof of Theorem 1.2 under N0 follows by
similar arguments and Corollary 1.3 under N0 follows immediately from Theorem 1.2 under
N0. �
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