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TRANSLATION INVARIANT FILTERS AND

VAN DER WAERDEN’S THEOREM

MAURO DI NASSO

Abstract. We present a self-contained proof of a strong version of van der
Waerden’s Theorem. By using translation invariant filters that are maximal
with respect to inclusion, a simple inductive argument shows the existence
of “piecewise syndetically”-many monochromatic arithmetic progressions of
any length k in every finite coloring of the natural numbers. All the presented
constructions are constructive in nature, in the sense that the involved maximal
filters are defined by recurrence on suitable countable algebras of sets. No use
of the axiom of choice or of Zorn’s Lemma is needed.

Introduction

The importance of maximal objects in mathematics is well-known, starting from
the fundamental examples of maximal ideals in algebra, and of ultrafilters in certain
areas of topology and of Ramsey theory. In this paper we focus on maximal filters
on suitable countable algebras of sets which are stable under translations. By using
such maximal objects, along with ultrafilters extending it, we give a proof of a
strong version of the following classical result in Ramsey theory:

Theorem (van der Waerden - 1927) In every finite partition N = C1 ∪ . . . ∪ Cr

there exists a piece C = Ci that contains arbitrarily long arithmetic progressions,
that is, for every k there exists a progression x+ y, x+ 2y, . . . , x+ ky ∈ C.

In fact, we will prove the existence of “piecewise syndetically”-many monochro-
matic arithmetic progressions of any length k.

Usually, van der Waerden’s Theorem is proved either by double induction using
elementary, but elaborated, combinatorial arguments in the style of the original
proof [5], or by using properties of the smallest ideal K(βN,⊕) in the algebra of
ultrafilters (see [4, Ch.14]; see also [2, 1] for stronger versions). In our proof, for
any given piecewise set, we restrict to a suitable countable algebra of sets, and
explicitly construct by recursion a maximal translation invariant filter, and then
an ultrafilter extending it. The desired result is finally obtained by a short proof
by induction, that is essentially a simplified version of an argument that was used
in [3] in the framework of the compact right-topological semigroup (βN,⊕). It is
worth remarking that, contrarily to the usual ultrafilter proof, we make no explicit
use of the algebra in the space of ultrafilters; in fact, we make no use of the axiom
of choice nor of Zorn’s Lemma.

2000 Mathematics Subject Classification. Primary 05D10; Secondary 03E05, 54D80.
Key words and phrases. Arithmetic progressions, Piecewise syndetic sets, Translation invariant

filters, Algebra on βN.

1

http://arxiv.org/abs/1808.01500v2
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1. Preliminary notions

N = {1, 2, 3, . . .} denotes the set of positive integers, and N0 = N∪ {0} the set of
non-negative integers. For A ⊆ N and n ∈ N0, the leftward shift of A by n is the
set:

A− n := {m ∈ N | n+m ∈ A}

Elemental notions in combinatorics of numbers that we will use in this paper are
those of thick set, syndetic set, and piecewise syndetic set. For completeness, let
us recall them here.

A set A ⊆ N is thick if it includes arbitrarily long intervals. Equivalently, A is
thick if every finite set F = {n1, . . . , nk} ⊂ N has a rightward shift included in A,
that is, there exists x such that

F + x := {n1 + x, . . . , nk + x} ⊆ A.

Notice that such an x can be picked in A. In terms of intersections, the property
of thickness of A can be rephrased by saying that the family {A− n | n ∈ N0} has

the finite intersection property (FIP for short), that is,
⋂k

i=1(A − ni) 6= ∅ for any
n1, . . . , nk.

A set A ⊆ N is syndetic if it has “bounded gaps”, that is, there exists k ∈ N such
that Ameets every interval of length k. Equivalently, A is syndetic if a finite number

of leftward shifts of A covers all the natural numbers, that is, N =
⋃k

i=1(A − ni)
for suitable n1, . . . , nk ∈ N0.

A set is piecewise syndetic if it is the intersection of a thick set with a syndetic
set. Equivalently, A is piecewise syndetic if a finite number of leftward shifts cover

a thick set, that is,
⋃k

i=1(A− ni) is thick for suitable n1, . . . , nk ∈ N0.
Notice that the families of thick, syndetic, and piecewise syndetic sets are all

invariant with respect to shifts. A well-known relevant property of piecewise syn-
detic sets that is satisfied neither by thick sets nor by syndetic sets, is the Ramsey
property below. For the sake of completeness, we include here a proof.

Proposition 1.1. In every finite partition A = C1∪. . .∪Cr of a piecewise syndetic
set A, one of the pieces Ci is piecewise syndetic.

Proof. For simplicity, let us say that an interval I is k-good for the set B if for every
sub-interval J ⊆ I of length k one has J ∩ B 6= ∅. By the hypothesis of piecewise
syndeticity of A, there exists k ∈ N and a sequence of intervals 〈In | n ∈ N〉 with
increasing length such that every In is k-good for A. It is enough to consider the
case when A = C1 ∪ C2 is partitioned into two pieces, because the general case
A = C1 ∪ . . . ∪ Cr where r ≥ 2 will then follow by induction. We distinguish two
cases.

Case # 1: There exists h such that infinitely many intervals In are h-good for
C1. In this case C1 is piecewise syndetic.

Case # 2: For every h, there are only finitely many intervals In that are h-good
for C1. So, for every h we can pick an interval Inh

of length ≥ h that is not h-good.
Let Jh ⊆ Inh

be a sub-interval of length h such that Jh ∩ C1 = ∅. The sequence
of intervals 〈Jh | h ∈ N〉 shows that C2 is piecewise syndetic. Indeed, given h, for
every sub-interval J ⊆ Jh of length k we have that J ∩ C1 ⊆ Jh ∩ C1 = ∅; and so
J ∩ C2 = J ∩A 6= ∅, since J ⊆ Inh

and Inh
is k-good for A. �
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2. Maximal translation invariant filters

In the following, by family we mean a nonempty collection of subsets of N.

Definition 2.1. A family G is translation invariant if A ∈ G ⇒ A − 1 ∈ G (and
hence, A− n ∈ G for all n ∈ N0).

An algebra of sets (on N) is a family that contains N and is closed under finite
unions, finite intersections, and complements. The [translation invariant] algebra
generated by a family G is the smallest [translation invariant] algebra of sets that
contains G.

Proposition 2.2. If the family G is countable, then one can give explicit construc-
tions of both the (countable) algebra generated by G, and the (countable) translation
invariant algebra generated by G.

Proof. Let 〈An | n ∈ N〉 be an enumeration of the sets in G, and let 〈Fn | n ∈ N〉 be
an enumeration of the nonempty finite sets of natural numbers.1 For A ⊆ N, denote
A+1 = A and A−1 = Ac. Then the following family BG is the smallest algebra of
sets that contains G:

BG :=







t
⋃

i=1

(

⋂

k∈Fni

A
σi(k)
k

)
∣

∣

∣
n1, . . . , nt ∈ N, σi : Fni

→ {+1,−1}







.

Notice that if G is translation invariant, then also BG is translation invariant. So,
the algebra BG′ generated by the family of shifts G′ := {A− n | A ∈ G, n ∈ N0} is
the smallest translation invariant algebra containing G. �

A filter on an algebra of sets B is a nonempty family F ⊆ B such that:

• F is closed under finite intersections, that is, A,B ∈ F ⇒ A ∩B ∈ F ;
• F is closed under supersets, that is, if B ∈ B and B ⊇ A ∈ F then B ∈ F .

Every family G ⊆ B with the finite intersection property (FIP for short) generates
a filter 〈G〉, namely

〈G〉 := {B ∈ B | B ⊇ A1 ∩ . . . ∩Ak for suitable A1, . . . , Ak ∈ G}.

An ultrafilter U on the algebra of sets B is a filter with the additional property
that A ∈ U whenever A ∈ B and the complement Ac /∈ U . It is easily verified that a
filter U is an ultrafilter if and only if the Ramsey property holds: If A1∪. . .∪Ak ∈ U
where all sets Ai ∈ B, then Aj ∈ U for some j. Ultrafilters can also be characterized
as those filters that are maximal under inclusion and so, by a straight application
of Zorn’s Lemma, it is proved that every filter can be extended to an ultrafilter.

The following objects are the main ingredient in our proof of van der Waerden’s
Theorem.

Definition 2.3. A translation invariant filter (TIF for short) is a filter F on a
translation invariant algebra B such that A ∈ F ⇒ A−1 ∈ F (and hence A−n ∈ F
for all n ∈ N0).

Notice that if the algebra B is translation invariant, and the family G ⊆ B is
translation invariant, then the generated filter 〈G〉 is a TIF.

The notions of TIF and thick set are closely related.

1E.g., if n =
∑

∞

k=1
ank2

k−1 is written in binary expansion where ank ∈ {0, 1}, then we can

let Fn := {k | ank = 1}.
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Proposition 2.4. A set A is thick if and only if it belongs to a TIF F .

Proof. Recall that A is thick if and only if the family G = {A−n | n ∈ N0} has the
FIP. Since G is translation invariant, the generated filter 〈G〉 is a TIF that contains
A.

Conversely, assume that A ∈ F for some TIF F . Then trivially the family
G = {A− n | n ∈ N0} has the FIP because G ⊆ F . �

Similarly to ultrafilters, by a straightforward application of Zorn’s Lemma it
can be shown that every TIF can be extended to a maximal TIF. However, in
the countable case, recursive constructions suffice to produce both ultrafilters and
maximal TIFs, which are thus obtained in a constructive manner, without any use
of the axiom of choice.

Proposition 2.5. Let B = {Bn | n ∈ N} be a countable algebra of sets.

(1) Given a family G ⊆ B with the FIP, inductively define G0 = G; Gn+1 =
Gn ∪{Bn} in case Bn ∩A 6= ∅ for every A ∈ Gn; and Gn+1 = Gn otherwise.
Then U :=

⋃

n Gn is an ultrafilter on B that extends G.
(2) Assume that the algebra B is translation invariant. Given a translation

invariant family G ⊆ B with the FIP, inductively define G0 = G; Gn+1 =
Gn ∪ {Bn − k | k ∈ N0} in case that union has the FIP; and Gn+1 = Gn

otherwise. Then M :=
⋃

n Gn is a maximal TIF that extends G.

Proof. (1). By the definition, it is clear that all families Gn have the FIP, and so
also their increasing union U has the FIP. Now assume by contradiction that A ∈ B
is such that both A,Ac /∈ U . If A = Bn and Ac = Bm then, by the definition of
U , there exist U ∈ Gn and U ′ ∈ Gm such that A ∩ U = Ac ∩ U ′ = ∅, and hence
U ∩ U ′ = ∅, against the FIP of U . Finally, if B ⊇ A where B ∈ B and A ∈ U then
B ∈ U , as otherwise, by what just proved, Bc ∈ U , and hence ∅ = Bc ∩ A ∈ U , a
contradiction.

(2). By induction, it directly follows from the definition that all families Gn have
the FIP and are translation invariant; so, the same properties hold for M. Now let
B ⊇ A where A ∈ M and B ∈ B, say B = Bn. Notice that Gn ∪ {B − k | k ∈ N0}
has the FIP because A − k ⊆ B − k for all k and Gn ∪ {A − k | k ∈ N0} ⊆ M
has the FIP. Then B ∈ Gn+1 ⊆ M, and we can conclude that M is a TIF. As for
the maximality, let M′ ⊇ M be a TIF. Given A ∈ M′, pick n with A = Bn. The
family Gn ∪ {A− n | n ∈ N0} has the FIP, since it is included in the filter M′, and
so A ∈ Gn+1. This shows that M′ ⊆ M, and hence the two TIFs are equal. �

Two properties of maximal TIFs that will be relevant to our purposes are the
following.

Proposition 2.6. Let B be a translation invariant algebra, and let U be an ultra-
filter on B that includes a maximal TIF M. Then:

(1) Every B ∈ U is piecewise syndetic.
(2) For every B ∈ U , the set BU := {n ∈ N | B − n ∈ U} is syndetic.2

Proof. Notice first that for every B ∈ U there exist n1, . . . , nk such that the union
⋃k

i=1(B − ni) ∈ M. Indeed, if Λ := {Bc − n | n ∈ N0} then the union M ∪ Λ
does not have the FIP, as otherwise M ∪ Λ would generate a TIF that properly

2 We remark that in general the set BU does not belong to the algebra of sets B.
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extends M (since it would contain Bc while Bc /∈ M), against the maximality. So,

there exist A ∈ M and n1, . . . , nk such that A ∩
⋂k

i=1(B
c − ni) = ∅. But then

⋃k
i=1(B − ni) ∈ M, because it is a superset of A ∈ M.

(1). Pick a finite union of shifts
⋃k

i=1(B − ni) ∈ M. By Proposition 2.4, that
union is thick because it is as an element of a TIF, and hence B is piecewise syndetic.

(2). As above, pick a finite union of shifts
⋃k

i=1(B − ni) ∈ M. By translation

invariance, for every m ∈ N one has that
⋃k

i=1(B − ni −m) ∈ M ⊆ U and so, by
the Ramsey property of ultrafilters, there exists i such that B − ni −m ∈ U , that

is, m ∈ BU − ni. This shows that N =
⋃k

i=1(BU − ni) is a finite union of shifts of
BU , and hence BU is syndetic. �

3. A strong version of van der Waerden’s Theorem

The following property of piecewise syndetic sets was first proved by exploiting
the properties of ultrafilters in the smallest ideal of the right-topological semigroup
(βN,⊕) (see [2, 1]).

Theorem 3.1. Let A be a piecewise syndetic set. Then for every k ∈ N, the set
APk(A) := {x ∈ A | ∃y ∈ N s.t. x+ iy ∈ A for i = 1, . . . , k} is piecewise syndetic.

Notice that, as a straight consequence, one obtains the following strong version
of van der Waerden’s Theorem.

Theorem 3.2. In every finite partition N = C1 ∪ . . . ∪ Cr there exists a piece
C = Ci such that, for every k ∈ N, the set APk(C) is piecewise syndetic.

Proof. By the Ramsey property of piecewise syndetic sets (see Proposition 1.1), we
can pick a color Ci which is piecewise syndetic. �

In this section we will give a new proof of the above theorem which relies on
the existence of an ultrafilter U on the appropriate translation invariant algebra B,
which extends a maximal TIF and contains a shift of A.

of Theorem 3.1. Let B be the (countable) translation invariant algebra of sets gen-
erated by the translation invariant family {A − n | n ∈ N0}. By the property of
piecewise syndeticity, a finite union of shifts T =

⋃m

j=1(A − nj) is thick. Then

the translation invariant family G := {T − n | n ∈ N0} ⊆ B has the FIP, and by
Proposition 2.5 we can pick a maximal TIF M on B with M ⊇ G, and an ultrafilter
U on B with U ⊇ M. The desired result is a consequence of the following general
property.

Claim. Let U be an ultrafilter that extends a maximal TIF. If a shift B − ℓ ∈ U
for some ℓ ∈ N0, then BU − ℓ contains arbitrarily long arithmetic progressions.

Indeed, since the finite union T =
⋃m

j=1(A − nj) ∈ G ⊆ U , by the Ramsey
property of ultrafilters there exists nj such that A−nj ∈ U . By the Claim, for every
k ∈ N there exist x and y such that x + iy ∈ AU − nj for i = 0, 1, . . . , k. But then

B :=
⋂k

i=0(A−nj −x− iy) ∈ U , and hence also the superset APk(A)−nj −x ⊇ B
belongs to U , as one can easily verify. Now recall that all sets in U are piecewise
syndetic by Proposition 2.6, and so we can conclude that APk(A) is piecewise
syndetic because it is a shift of a member of U .
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We are left to prove the Claim. We proceed by induction on k, and prove that if
B − ℓ ∈ U for some ℓ ∈ N0, then BU − ℓ contains a k-term arithmetic progression.3

If B − ℓ ∈ U , then the set (B − ℓ)U = BU − ℓ is syndetic by Proposition 2.6. In
particular, BU − ℓ 6= ∅, and this proves the induction base k = 1.

Let us turn to the inductive step k+1, and assume that B−ℓ ∈ U . Let ℓ0 = ℓ. By
syndeticity of BU − ℓ0, there exists a finite F ⊂ N0 such that for every n ∈ N there
exists x ∈ F with ℓ0 + n+ x ∈ BU . For convenience, let us assume that 0 ∈ F . By
the inductive hypothesis, there exist ℓ1 ∈ N0 and y1 ∈ N such that ℓ1+iy1 ∈ BU−ℓ0
for i = 1, . . . , k, that is, ℓ0 + ℓ1 + x0 + iy1 ∈ BU where x0 = 0 ∈ F . Pick x1 ∈ F
with ℓ0+ ℓ1+x1 ∈ BU . If x1 = x0 then we already found a (k+1)-term arithmetic
progression in BU − ℓ0, as desired. Otherwise, let us consider the intersection

B1 := (B − x1) ∩
k
⋂

i=1

(B − x0 − iy1).

Since ℓ0 + ℓ1 + x1 ∈ BU and ℓ0 + ℓ1 + x0 + iy1 ∈ BU for all i = 1, . . . , k, the
shift B1 − ℓ0 − ℓ1 ∈ U and so, by the inductive hypothesis, there exist ℓ2 ∈ N0

and y2 ∈ N such that ℓ2 + iy2 ∈ (B1)U − ℓ0 − ℓ1 for i = 1, . . . , k. In consequence,
ℓ0 + ℓ1 + ℓ2 + x0 + i(y1 + y2) ∈ BU and ℓ0 + ℓ1 + ℓ2 + x1 + iy2 ∈ BU for every
i = 1, . . . , k. Pick x2 ∈ F such that ℓ0+ℓ1+ℓ2+x2 ∈ BU . Notice that if x2 = x0 or
x2 = x1 then we have a (k+1)-term arithmetic progression in BU − ℓ0. Otherwise,
let us consider the intersection

B2 := (B − x2) ∩
k
⋂

i=1

(B − x1 − iy2) ∩
k
⋂

i=1

(B − x0 − i(y1 + y2)).

Similarly as above, one can easily verify that B2 − ℓ0 − ℓ1 − ℓ2 ∈ U and so, by the
inductive hypothesis, we can pick an arithmetic progression in BU − ℓ0 − ℓ1 − ℓ2
of length k. We iterate the procedure. As the set F is finite, after finitely many
steps we will find elements xn = xm where n > m, and finally obtain the following
arithmetic progression of length k + 1:

ℓ0 + ℓ1 + . . .+ ℓn + xn + i(ym+1 + . . .+ yn) i = 0, 1, . . . , k.

�

4. TIFs and left ideals in the space of ultrafilters

The usual ultrafilter proof of van der Waerden’s Theorem (see [4, §14.1]) is
grounded on the existence of minimal ultrafilters, that is, on those ultrafilters
that belong to some minimal left ideals of the compact right-topological semigroup
(βN,⊕). In this final section, we show how (maximal) translation invariant filters
are in fact related to the closed (minimal) left ideals of (βN,⊕). Let us recall here
the involved notions.

The space βN is the topological space of all ultrafilters U over the full algebra of
sets B = P(N) where a base of (cl)open sets is given by the family {OA | A ⊆ N},
with OA := {U ∈ βN | A ∈ U}. The space βN is Hausdorff and compact, and
coincides with the Stone-Cĕch compactification of the discrete space N.

The pseudosum U ⊕ V of ultrafilters U ,V ∈ βN is defined by letting:

A ∈ U ⊕ V ⇐⇒ {n ∈ N | A− n ∈ V} ∈ U .

3 This inductive construction uses a simplified version of an argument in [3].
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The operation ⊕ is associative (but not commutative), and for every V the map
U 7→ U ⊕ V is continuous. This makes (βN,⊕) a right-topological semigroup.

A left ideal L ⊆ βN is a nonempty set such that V ∈ L implies U ⊕ V ∈ L
for all U ∈ βN. The notion of right ideal is defined similarly. Left ideals that are
minimal with respect to inclusion are particularly relevant objects, as they satisfy
special properties. For instance, their union K(βN,⊕) is shown to be the smallest
bilater ideal (i.e. it is both a left and a right ideal). Moreover, all ultrafilters U
in K(βN,⊕), named minimal ultrafilters, have the property that every set A ∈ U
includes arbitrarily long arithmetic progressions.4

It is well-known that there are natural correspondences between families with the
finite intersection property on the full algebra P(N), and closed nonempty subsets
of βN. Indeed, the following properties are directly verified from the definitions.

• If G ⊆ P(N) is a family with the FIP then C(G) := {V ∈ βN | V ⊇ G} is a
nonempty closed subspace.

• If X ⊆ βN is nonempty then F(X) :=
⋂

{V | V ∈ X} is a filter on P(N).
• C(F(X)) = X (the topological closure of X) for every nonempty X ⊆ βN.
• F(C(G)) = 〈G〉 (the filter generated by G) for every family G ⊆ P(N) with
the FIP.

Proposition 4.1. If F is a TIF on P(N) then C(F) is a closed left ideal of (βN,⊕);
and conversely, if L is a left ideal of (βN,⊕) then F(L) is a TIF on P(N). Moreover,
M is a maximal TIF on P(N) if and only if C(M) is a minimal left ideal of (βN,⊕);
and L is a minimal left ideal of (βN,⊕) if and only if F(L) is a maximal TIF on
P(N).

Proof. Let V ∈ C(F) and let U ∈ βN be any ultrafilter. For every A ∈ F , by
translation invariance we know that A− n ∈ F for all n, and so {n | A− n ∈ V} =
N ∈ U . This shows that A ∈ U ⊕ V . As this is true for every A ∈ F , we conclude
that U ⊕ V ∈ C(F), and so C(F) is a closed left ideal.

Now let L be a left ideal, and let A ∈ F(L) be in the filter determined by L.
For every V ∈ L, we have that U1 ⊕ V ∈ L, where U1 := {B ⊆ N | 1 ∈ B} is
the principal ultrafilter generated by 1. Then A ∈ U1 ⊕ V , which is equivalent to
A− 1 ∈ V . As this holds for every V ∈ L, we have proved that A − 1 ∈ F(L), and
so F(L) is a TIF, as desired.

Let F be a TIF. If the left ideal C(F) is not minimal, pick a minimal L ( C(F).
Then F ( F(L), and hence F is not maximal. Indeed, L ⊆ C(F) ⇒ F(L) ⊇
F(C(F)) = F ; moreover, F 6= F(L), as otherwise C(F) = C(F(L)) = L = L, against
our assumptions. (Recall that a minimal left ideal L is necessarily closed because,
by minimality, L = βN⊕V := {U ⊕V | U ∈ βN} for every given V ∈ L, and βN⊕V
is closed as it the image of the compact Hausdorff space βN under the continuous
function U 7→ U ⊕ V .) In a similar way, one shows the converse implication: If the
TIF F is not maximal then the left ideal C(F) is not minimal. In consequence,
L = C(F(L)) is minimal if and only if F(L) is maximal, and also the last equivalence
is proved. �

As a straight consequence, we obtain the desired characterization.

4 For all notions and basic results on the space of ultrafilters βN and on its algebraic structure,
including properties of the smallest ideal K(βN,⊕), we refer the reader to the book [4].
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Proposition 4.2. An ultrafilter U on P(N) includes a maximal TIF if and only if
U belongs to the smallest ideal K(βN,⊕).

Proof. Recall that U ∈ K(βN,⊕) if and only if U belongs to some minimal left
ideal. Now let U ⊇ M where M is a maximal TIF. Since M = F(C(M)), we
have that U ∈ C(M), where C(M) is a minimal left ideal. Conversely, let U ∈ L
where L is a minimal left ideal. Then F(L) is a maximal TIF and U ⊇ F(L), since
U ∈ L = C(F(L)). �

Remark 4.3. One can generalize the contents of this paper from the natural numbers
to arbitrary countable semigroups (S, ·). Indeed, the notion of translation invariant
filter also makes sense in that more general framework.5 Precisely, for A ⊆ S and
s ∈ S, denote by s−1A := {t ∈ S | s · t ∈ A}. We say that an algebra B of subsets
of S is translation invariant if B ∈ B ⇒ s−1B ∈ B for all s ∈ S. Then one defines a
TIF on a translation invariant algebra B as a filter F such that A ∈ F ⇒ s−1A ∈ F
for all s ∈ S. By the same arguments as the ones used in this paper, one can prove
that a reformulation of Theorem 3.1 holds, provided one adopts the appropriate
generalization of the notion of piecewise syndetic set.6

Acknowledgement. I would like to thank the anonymous referee for carefully
reading the first version of this paper and for giving comments that were helpful
for the final revision.
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union
⋃

k

i=1
s−1

i
A = S covers the whole semigroup; and finally a set A ⊆ S is piecewise syndetic

if a suitable finite union
⋃

k

i=1
s−1

i
A is thick (see [4, §4.4 and §4.5]).
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