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Reducibility of non-resonant transport

equation on Td with unbounded

perturbations

Dario Bambusi, Beatrice Langella, Riccardo Montalto ∗

Abstract

We prove reducibility of a transport equation on the d-dimensional

torus Td with a time quasi-periodic unbounded perturbation. As far as

we know this is the first example of a reducibility result for an equation in

more than one dimensions with unbounded perturbations. Furthermore

the unperturbed problem has eigenvalues whose differences are dense on

the real axis.

1 Introduction

In this paper we obtain reducibility for a transport equation on the d-dimensional
torus Td, T := R/(2πZ), d ≥ 1 of the form

∂tu =
(
ν + εV (ωt, x)

)
· ∇u+ εW(ωt)[u], (1.1)

where the frequencies ω ∈ Rn, and ν ∈ Rd play the role of parameters, ε > 0 is
a small parameter, V ∈ C∞(Tn × Td,Rd) is a real function and W(ϕ), ϕ ∈ Tn

is a pseudo-differential operator of order 1 − e, for some e > 0. More precisely
our aim is to show that for ε small enough and for most values of ω̃ = (ω, ν) ∈
Ω := [1, 2]n+d, there exists a bounded and invertible transformation (acting on
the scale of Sobolev spaces) which transforms the PDE (1.1) into another one
whose vector field is a time independent diagonal operator.

This is the first example of a reducibility result for unbounded perturbations
of a Hamiltonian PDE in more than one space dimension. Furthermore, the
unperturbed problem has eigenvalues whose differences are dense on the real
axis, a case which is usually considered as particular difficult to deal with.

Following [BBM14] (see also [BM16, Bam18, Bam17, Mon17a, BBHM17]),
the proof consists of two steps: first we use pseudo-differential calculus in order
to transform the original system to a system with a smoothing perturbation
(smoothing theorem) and then we apply a KAM scheme in order to actually
obtain reducibility. The smoothing theorem is obtained through a variant of
the theory developed in [BGMR17] and the KAM theory is a variant of the one
developed in [BBHM17]. The main purpose of the present paper is to show
that it is possible to glue together such tools in order to deal with a nontrivial
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higher dimensional problem. The main technical difficulty consists in showing
that the frequencies (ω, ν) can be used to tune the small divisors and to fulfill
some second Melnikov type nonresonance conditions.

A further novelty is that, in the equation (1.1), it is natural to consider
perturbations W s.t. iW is not a symmetric operator, so we consider the case
where iW is only symmetric hyperbolic (namely that W + W∗ is an operator
of order 0, see Definition 2.3 below) and, in order to get information on the
behavior of the solutions, we study also the case where it has some additional
structures, namely reality and reversibility (see Definition 2.3 below). In this
case we also get the stability, namely all the Sobolev norms of the solutions of
the equation (1.1) stay bounded for all times. Note that by Corollary 2.5, in
the non-reversible case, one can construct solutions whose Sobolev norms go to
infinity.

There is a wide literature on the dynamics of time periodic or quasiperiodic
Schrödinger type equations, starting from the pioneering works [Bel85, Com87]
(see also [DS96]). Concerning the problem of reducibility, we just mention
[Kuk93, BG01, LY10], in which the classical methods developed in KAM theory
(in particular [Kuk87, Kuk97]) have been adapted and extended in order to deal
with the case where the unperturbed equation has order n and the perturbation
is of order δ ≤ n−1. All these results are for equations in one space dimension.

The breakthrough for further developments was obtained in [BBM14], devel-
oping ideas introduced in [IPT05]. The strategy introduced in [BBM14] is based
on the usage of pseudo-differential calculus, which allows to reduce the order of
the perturbation, before applying reducibility schemes based on KAM theory.
In particular their method allows to reduce the original problem to a problem in
which the perturbation is a smoothing operator of arbitrary order. These ideas
have been applied in the field of KAM theory for one dimensional PDEs by sev-
eral authors (see [BBM16a, BBM16b, FP15, BM16, Mon17a, Bam18, Bam17])
and the extension to some particular models in more than one dimension has
also been obtained [BGMR18, Mon17a].

The idea of using pseudo-differential calculus in order to conjugate the orig-
inal system to another one with a smoothing perturbation has shown to be very
useful, also in control theory, see [ABHK18, BFH17, BHM18] and in the problem
of estimating the growth of the Sobolev norms [BGMR17, Mon18, Mon18a].

Actually, the methods developed in [BGMR17] are the starting point of the
present paper.

The second kind of ideas on which we rely were developed in [BBHM17]
(and extended in [Mon17a]) where the authors developed a reducibility scheme
for smoothing perturbation of a system whose frequencies fulfill very bad non-
resonance conditions (see eq. (1.3) below). The idea is that the smoothing
character of the nonlinearity can be used to recover a smoothness loss due to
the small denominators. In [BBHM17], the method was applied to the case
where the frequencies of the linear system grow at infinity like ωj = j1/2, j ∈ N.
Here we adapt the scheme to the case where the differences between couples of
frequencies are dense on the real axis.

We recall that previous reducibility results in higher dimensional systems
have been obtained only in cases where the frequencies of the unperturbed
system have a very particular structure [EK09, GP16] so that the more or less
standard second order Melnikov conditions can be imposed blockwise.
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The paper is organized as follows. In Section 2 we state precisely our main the-
orem. In Section 3 we conjugate the vector field of the equation (1.1) to another
one which is an arbitrarily smoothing perturbation of a diagonal operator. The
reduction to constant coefficients of the highest order is implemented in Section
3.1 (following [FGMP18]).

In Section 3.2 we reduce to constant coefficients the lower order terms up
to an arbitrarily smoothing remainder (following [BGMR17]). In the present
paper, such a procedure is implemented by assuming only that the remainders
arising at each step are symmetric hyperbolic.
In Section 4 we perform a KAM-reducibility scheme for vector fields which are
smoothing perturbations of a diagonal one, by imposing second order Melnikov
conditions with loss of derivatives in space (see Theorem 4.8). Note that the

final eigenvalues λ
(∞)
j , appearing in the definition of the set (4.54) (on which

you get the diagonalization) have an asymptotic expansion of the form

λ
(∞)
j = iν(0) · j + z(j) +O(ε〈j〉−2m) (1.2)

for some m > 0 large enough, where ν(0) is a constant vector, z is a Fourier
multiplier of order 1 − e. The fact that z is a pseudo-differential operator is
used in the measure estimate of Section 4.5, in particular, in Lemma 4.15 to
obtain the estimate |z(j)− z(j′)| . ε|j − j′| for any j, j′ ∈ Zd. In (1.2) all the
quantities at r.h.s. also depend on the parameters (ω, ν, ε).

We point out that the nonresonance condition we assume is

|iω · l + λ
(∞)
j − λ

(∞)
j′ | ≥

2γ

〈l〉τ 〈j〉τ 〈j′〉τ
, ∀(l, j, j′) 6= (0, j, j) , (1.3)

correspondingly the set of the parameters in which we are able to prove re-
ducibility is the set of the (ω, ν) s.t. (1.3) holds.
Finally, in the appendix A, we collect some properties on flows of Pseudo-PDEs,
Egorov type theorems and norms that we shall use along our reduction proce-
dure.
Acknowledgments. Dario Bambusi was supported by GNFM. Riccardo Mon-
talto was supported by the Swiss National Science Foundation, grant Hamilto-
nian systems of infinite dimension, project number: 200020–165537.
Part of this work was done while Riccardo Montalto was visiting Milano with
the support of Università degli Studi di Milano.

2 Statement of the main result

In order to state precisely the main results of the paper, we introduce some
notations.
For any s ∈ R we consider the Sobolev space Hs(Td) endowed by the norm

‖u‖Hs :=
( ∑

ξ∈Zd

〈ξ〉2s|û(ξ)|2
) 1

2

where 〈ξ〉 := (1 + |ξ|2)
1
2 and û(ξ) are the Fourier coefficients of u. Given two

Banach spacesX,Y we denote by B(X,Y ) the space of bounded linear operators
X → Y equipped by the standard operator norm. If X = Y , we simply write
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B(X) instead of B(X,X).
In the following, given α, β ∈ R, we will write α . β if there exists C > 0
(independent of all the relevant quantities) such that α ≤ Cβ. Sometimes we
will write α .s1,...,sn β if C depends on parameters s1, · · · , sn,
We will use the following classes of pseudo-differential operators:

Definition 2.1. Let m ∈ R. We say that a C∞ function a : Td × Rd → C is
a symbol of class Sm if for any multiindex α, β ∈ Nd there exists a constant
Cα,β > 0 such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉

m−|β| , ∀(x, ξ) ∈ Td × Rd . (2.1)

A symbol a defines univocally a linear operator A acting as

A[u](x) :=
∑

ξ∈Zd

a(x, ξ)û(ξ)eix·ξ , ∀u ∈ C∞(Td) ,

that we denote by A = Op
(
a
)
.

Definition 2.2. An operator A is called a pseudo-differential operator of order
m, namely A ∈ OPSm, if there exists a ∈ Sm such that

A = Op(a).

The constants Cα,β of Definition 2.1 form a family of seminorms for Sm and for
OPSm.

In the following, we will consider pseudo-differential operators depending in
a smooth way on the angles ϕ ∈ Tn and in a Lipschitz way on the frequencies
ω̃ = (ω, ν) ∈ Ω0 ⊆ Ω. We will denote them by Lip (Ω0; C

∞ (Tn;OPSm)) .
We finally state some properties that we will assume to hold on our system

(1.1):

Definition 2.3 (Structural hypotheses). (i) We say that R ∈ B(L2(Td)) is
a real operator if it maps real valued functions into real valued functions,
namely

u ∈ L2(Td;R) ⇒ R[u] ∈ L2(Td;R).

Equivalently, we can say that R is a real operator if R = R where the
operator R is defined by R[u] := R[u], u ∈ L2(Td).

(ii) Let ϕ 7→ R(ϕ),Q(ϕ) be smooth ϕ-dependent families of real operators
Tn → B

(
L2(Td)

)
; we say that R is reversible if

R(ϕ) ◦ S = −S ◦ R(−ϕ) , ∀ϕ ∈ Tn, (2.2)

where S is the involution defined by

S : L2(Td) → L2(Td) , u(x) 7→ u(−x). (2.3)

On the other hand, we say that Q is reversibility preserving if

Q(ϕ) ◦ S = S ◦ Q(−ϕ) , ∀ϕ ∈ Tn. (2.4)

4



(iii) We say that R ∈ OPS1 is symmetric hyperbolic if R+R∗ ∈ OPS0.

We will also consider the case where V is even, namely one has

V (−ϕ,−x) = V (ϕ, x) .

Define the constant
s0 :=

[
n

2

]
+ 1 . (2.5)

This paper is devoted to the proof of the following result.

Theorem 2.4. Let V ∈ C∞(Tn × Td,Rd), W ∈ C∞
(
Tn;OPS1−e

)
and assume

that W is symmetric hyperbolic. Then for any s ≥ s0, σ ≥ 0 there exists
ε∗ > 0 such that ∀ε < ε∗ there exists a closed set Ωε ⊆ Ω of asymptotically
full Lebesgue measure, i.e. limε→0 |Ω \ Ωε| = 0, such that the following holds:
∀ ω̃ = (ω, ν) ∈ Ωε there exists a linear bounded and invertible operator U(ϕ) =
U(ϕ; ω̃) ∈ B(Hσ), ϕ ∈ Tn such that, if u solves (1.1), then v defined by u =
U(ωt)v solves

∂tv = H∞v, (2.6)

where
H∞ = diag(λ

(∞)
j (ω̃, ε)) (2.7)

Furthermore, the eigenvalues {λ
(∞)
j (ω̃, ε)}j∈Zd have the structure

λ
(∞)
j (ω̃, ε) = iν(0) · j + z(j) +O(ǫj−m) , (2.8)

with z(.) ∈ S1−e which is also dependent in a Lipschitz way on ω̃, and ν(0) =
ν(0)(ω̃) which fulfills ∣∣∣ν(0) − ν

∣∣∣ ≤ Cε .

Finally, if the following assumption holds

(Sym) V is even and W is real and reversible ,

then λ
(∞)
j ∈ iR ∀ j ∈ Zd.

From the theorem above we can deduce information concerning the dynamics
of the PDE (1.1).

Corollary 2.5. Under the same assumptions of Theorem 2.4, but not (Sym)
only one of the following two possibilities occurs

(1) All the solutions of (1.1) are almost periodic and

u0 ∈ Hσ =⇒ ‖u(t, ·)‖Hσ . ‖u0‖Hσ (2.9)

uniformly w.r. to t ∈ R.

(2) There exist a, C > 0 and some initial data u0 s.t.

‖u(t, ·)‖Hσ ≥ Cea|t|‖u0‖Hσ (2.10)

either for t > 0 or for t < 0 or for t ∈ R.

We remark that under the assumption (Sym) only possibility (1) occurs.
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3 Regularization up to smoothing remainders

In this section we conjugate the vector field

H(ϕ) :=
(
ν + εV (ϕ, x)

)
· ∇+ εW(0)(ϕ) , W ∈ OPS1−e (3.1)

to another one which is a smoothing perturbation of a time independent diagonal
operator.
First remark that a time dependent linear invertible transformation u = Φ(ωt)u′

transforms the equation u̇ = Hu into the equation u̇′ = H ′u′, where

H ′ = Φω∗H := Φ(ϕ)−1[HΦ(ϕ)− ω · ∂ϕΦ(ϕ)] .

Definition 3.1 (Lipschitz norm). Given a Banach space (X, ‖ · ‖X), a set
Ω0 ⊂ Ω = [1, 2]n+d, γ > 0 and a Lipschitz function f : Ω0 → X, we denote by

‖ · ‖
Lip(γ)
X the Lipschitz norm defined by

‖f‖
Lip(γ)
X := ‖f‖supX + γ‖f‖lipX ,

‖f‖sup := sup
ω̃∈Ω0

‖f(ω̃)‖X , ‖f‖lipX := sup
ω̃1,ω̃2∈Ω0

ω̃1 6=ω̃2

‖f(ω̃1)− f(ω̃2)‖X
|ω̃1 − ω̃2|

. (3.2)

In the case where γ = 1, we simply write ‖ · ‖LipX for ‖ · ‖
Lip(1)
X . If X = C we

write | · |Lip(γ), | · |sup, | · |lip for ‖ · ‖
Lip(γ)
C

, ‖ · ‖sup
C
, ‖ · ‖lip

C
.

3.1 Reduction to constant coefficients of the highest order

term

We consider a diffeomorphism of the torus Td of the form

Td → Td, x 7→ x+ α(ϕ, x)

where α ∈ C∞(Tn × Td,Rd) is a function to be determined. It is well known
that for ‖α‖C1 small enough such a diffeomorphism is invertible and its inverse
has the form

Td → Td, y 7→ y + α̃(ϕ, y)

with α̃ ∈ C∞(Tn × Td,Rd). We then consider the transformation

A(ϕ) : u(x) 7→ u(x+ α(ϕ, x)) , ϕ ∈ Tn (3.3)

whose inverse is given by

A(ϕ)−1 : u(y) 7→ u(y + α̃(ϕ, y)) , ϕ ∈ Tn . (3.4)

A direct calculation shows that the quasi-periodic push-forward of the vector
field H(ϕ) is given by

H(0)(ϕ) = Aω∗H(ϕ) = V (0)(ϕ, x) · ∇+ εW(0)(ϕ) (3.5)

where

V (0)(ϕ, x) := A(ϕ)−1
(
ω · ∂ϕα+ ν + εV +

(
ν + εV

)
· ∇α

)

W(0)(ϕ) := A(ϕ)−1W(ϕ)A(ϕ) .
(3.6)
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The following proposition is a direct consequence of Proposition 3.4 in [FGMP18]
to which we refer for the proof. It allows to choose the function α(ϕ, x) so that
the highest order term V (0)(ϕ, x) · ∇ in (3.5) is reduced to constant coefficients.

Proposition 3.2. Let γ ∈ (0, 1) and τ > n+d. There exists a Lipschitz function
ν(0) : Ω → Rd, ω̃ 7→ ν(0)(ω̃) (where we recall that Ω := [1, 2]n+d) such that

|ν(0)(ω̃)− ν|Lip(γ) . ε, (3.7)

and, in the set

Ω0,γ :=
{
ω̃ ∈ Ω : |ω · l+ ν(0)(ω̃) · j| >

γ

〈l, j〉τ
, ∀(l, j) ∈ Zν+d \ {0}

}
, (3.8)

the following holds. There exists a map

α : Tν+d × Ω0,γ → Rd , (3.9)

so that the map Tn+d → Tn+d, (ϕ, x) 7→ (ϕ, x + α(ϕ, x)) is a diffeomorphism
with inverse given by (ϕ, y) 7→ (ϕ, y + α̃(ϕ, y)), furthermore

‖α‖Lip(γ)s .s εγ
−1, ‖α̃‖Lip(γ)s .s εγ

−1 , ∀s ≥ 0 . (3.10)

Moreover for any ω̃ ∈ Ω0,γ V (0) reduces to a constant (as a function of x and
ϕ), namely

V (0) = A−1(ϕ)
(
ω · ∂ϕα+ ν + εV +

(
ν + εV

)
· ∇α

)
= ν(0)(ω̃). (3.11)

Finally, if V is even, then α and α̃ are odd.

Remark 3.3. By standard arguments one has |Ω \ Ω0,γ | . γ. More precisely,
on the one side one has that vectors which are Diophantine with constant γ have
complement with measure of order γ, and on the other, Lipschitz maps preserve
the order of magnitude of the measure of sets.

Remark 3.4. Using the definitions (3.3), (3.4) and the estimates (3.9), (3.10),
a direct calculation shows that the map Tn 7→ B(Hs), ϕ 7→ A(ϕ)±1 is bounded
for any s ≥ 0 and

sup
ϕ∈Tn

‖A(ϕ)±1 − Id‖B(Hs+1,Hs) .s εγ
−1, ∀s ≥ 0 ,

sup
ϕ∈Tn

‖∂αϕA(ϕ)±1‖B(Hs+|α|,Hs) .s,α εγ
−1, ∀s ≥ 0, ∀α ∈ Nn .

Recalling (3.5), (3.6) and applying Proposition 3.2 one gets that the vector
field H(0)(ϕ) takes the form

H(0)(ϕ) = ν(0) · ∇+ εW(0)(ϕ) (3.12)

We now study the properties of W(0).

Lemma 3.5. One has that W(0) ∈ Lip
(
Ω0,γ , C

∞
(
Tn, OPS1−e

))
. Moreover

W(0) is symmetric hyperbolic. Furthermore, if V is even and W real and re-
versible, then W(0) is real and reversible.
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Proof. Let Φ(ϕ) := A(ϕ)−1, i.e. Φ(ϕ)[u](y) = u(y + α̃(ϕ, y)) and for any
τ ∈ [0, 1] we consider Φ(τ, ϕ)[u](y) := u(y + τα̃(ϕ, y)). Let ψ(τ, ϕ, y) :=
Φ(τ, ϕ)[u](y), then ψ(0, ϕ, y) = u(y) and

∂τψ = a(τ, ϕ, y) · ∇ψ , a(τ, ϕ, y) :=
(
Id + τ∇α̃(ϕ, y)

)−1
α̃(ϕ, y) . (3.13)

Then by the Egorov theorem (see Theorem A.0.9 in [Tay91]) it follows that

W(0) ∈ Lip
(
Ω0,γ , C

∞
(
Tn, OPS1−e

))
.

We now show that W(0) is symmetric hyperbolic. Since by (3.9), (3.10) the
functions α, α̃ = O(εγ−1) one has that

det
(
Id +∇α

)
, det

(
Id +∇α̃

)
> 0

for εγ−1 small enough. Moreover, using that y 7→ y + α̃(y) is the inverse
diffeomorphism of x 7→ x+ α(x) one gets that

det
(
Id +∇α̃(y)

)
=

1

det
(
Id +∇α

)
|x=y+α̃(y)

. (3.14)

A direct calculation shows that

A∗ = det
(
Id +∇α̃

)
A−1 , (A−1)∗ = det

(
Id +∇α

)
A .

Then

(W(0))∗ = (A−1WA)∗ = A∗W∗(A−1)∗

= det
(
Id +∇α̃

)
A−1W∗det

(
Id +∇α

)
A

= det
(
Id +∇α̃

)
A−1det

(
Id +∇α

)
W∗A

+ det
(
Id +∇α̃

)
A−1[W∗ , det

(
Id +∇α

)
]A . (3.15)

Since W∗ ∈ OPS1−e one has that the commutator [W∗ , det
(
Id + ∇α

)
] ∈

OPS−e ⊂ OPS0. Using that A(ϕ)−1 = Φ(ϕ) is the time 1 flow map of the
PDE (3.13), by applying the Egorov Theorem A.0.9 in [Tay91], one gets that
det
(
Id +∇α̃

)
A−1[W∗ , det

(
Id +∇α

)
]A ∈ OPS0. hence

(W(0))∗ = det
(
Id +∇α̃

)
A−1det

(
Id +∇α

)
W∗A+OPS0

= det
(
Id +∇α̃

)
det
(
Id +∇α

)
|x=y+α̃(y)A

−1W∗A+ OPS0

(3.14)
= A−1W∗A+OPS0 . (3.16)

Finally, using that W is symmetric hyperbolic, i.e. W + W∗ ∈ OPS0, by
(3.14) and applying again the Egorov Theorem A.0.9 in [Tay91] to deduce that
A−1(W + W∗)A ∈ OPS0 one gets that W(0) + (W(0))∗ ∈ OPS0. In the real
and reversible case, one has that W is a reversible operator. By Proposition
3.2, one has that α, α̃ are odd functions, implying that A, A−1 are reversibility
preserving operators. Hence one concludes that W(0) = A−1WA is a reversible
operator.
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3.2 Reduction of the lower order terms

The reduction of the lower order terms is contained in the following result,
which is an adaptation of Theorem 3.8 of [BGMR17] to a symmetric hyperbolic
context.

Theorem 3.6. ∀ M > 0 there exists a sequence of symmetric hyperbolic maps
{Gj(ϕ, ω̃)}

M
j=1 with Gj(ϕ, ω̃) ∈ Lip

(
Ω0,γ ; C

∞
(
Tn;OPS1−je

))
such that the change

of variables ψ = e−εG1(ϕ,ω̃) · · · e−εGM (ϕ,ω̃)φ transforms H0 + εW(0)(ϕ) into the
operator

H(M)(ϕ) = H0 + εZ(M)(ω̃) + εW(M)(ϕ, ω̃), (3.17)

where Z(M) is a time independent Fourier multiplier, which in particular fulfills

[Z(M),Km] = 0, m = 1 . . . , d, (3.18)

and
Z(M)(ω̃) ∈ Lip

(
Ω0,γ ;OPS

1−e
)
,

W(M)(ϕ, ω̃) ∈ Lip
(
Ω0,γ ; C

∞(Tn;OPS1−Me)
)
.

(3.19)

Furthermore, if W(0) is real and reversible, then Z(M), W(M) are real and
reversible too.

We now prove such theorem.
DenoteKj = i∂j , j = 1, . . . , d, thenK1, . . . ,Kd are self-adjoint commuting

operators such that Km ∈ OPS1 ∀m = 1, . . . , d. Define K = (K1, . . . ,Kd) . The
main step for the proof of Theorem 3.6 is the following lemma, which is a variant
of Lemma 3.7 of [BGMR17]:

Lemma 3.7. Let W ∈ Lip (Ω0,γ ; C
∞ (Tn;OPSη)) , be given and consider the

homological equation

ω · ∂ϕG+ [H0, G] =W − 〈W 〉 (3.20)

with

〈W 〉 :=
1

(2π)n+d

∫

Td

∫

Tn

eiτ ·KWe−iτ ·K dϕ dτ ;

then (3.20) has a solution G ∈ Lip (Ω0,γ ; C
∞ (Tn;OPSη)) .

If W is symmetric hyperbolic, G is symmetric hyperbolic. Moreover, if W is real
and reversible, G is real and reversibility preserving; if W is anti self-adjoint,
G is anti self-adjoint.

Proof. Define ∀τ ∈ Td

W (τ) := eiτ ·KWe−iτ ·K ,

then we look for G s.t.
G(τ) := eiτ ·KGe−iτ ·K

solves
ω · ∂ϕG(τ) + [H0, G(τ)] =W (τ) − 〈W 〉 ∀ τ ∈ Td, (3.21)

observing that since G = G(0), W =W (0), solving equation (3.21) ∀ τ implies
having solved (3.20).
Note that ∀ η ∈ R, ∀ A ∈ OPSη the map

[−1, 1] ∋ τ 7→ e−iτ ·KAeiτ ·K ∈ C∞
(
Td;OPSη

)
(3.22)
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(see Remark A.5 of the appendix). We make a Fourier expansion both in ϕ and
τ variables, namely

Wω̃(ϕ, τ) =
∑

k∈Zd

∑

l∈Zn

Ŵkl(ω̃)e
iϕ·leiτ ·k, (3.23)

and similarly for G. A direct calculation shows that

[H0, G(τ)] =
∑

k, l

i
(
ν(0) · k

)
Ĝkle

iτ ·keiϕ·l .

Thus, taking the (k, l)−th Fourier coefficient of equation (3.21), one has

i
(
ω · l+ ν(0) · k

)
Ĝkl = Ŵkl if (k, l) 6= (0, 0), Ĝ00 = 0.

For |k|+ |l| 6= 0, define

Ĝkl :=
Ŵkl

i(ω · l + ν(0) · k)
,

then, by regularity of the map (ϕ, τ) 7→ W (ϕ, τ) all the seminorms of the op-

erator Ŵkl decay faster than any power of (|k|+ |l|), and since the frequencies

belong to Ω0,γ (cf. (3.8)), it follows that the seminorms of the operator Ĝkl

exhibit the same decay; hence the series defining G(τ) converges absolutely and
G = G(0) ∈ C∞ (Tn;OPSη) .
Lipschitz regularity with respect to ω̃ = (ω, ν) ∈ Ω0,γ follows observing that
given (ω1, ν1), (ω2, ν2) ∈ Ω0,γ , one has that

Ĝkl(ω1)− Ĝkl(ω2) = Ĝkl(ω1)
(ω1 − ω2) · l +

(
ν(0)(ω1, ν1)− ν(0)(ω2, ν2)

)
· k

(ω1 · l+ ν(0)(ω1, ν1) · k)(ω2 · l + ν(0)(ω2, ν2) · k)

+
Ĝkl(ω1)− Ĝkl(ω2)

i(ω2 · l + ν(0)(ω2, ν2) · k)

using the fact that the map (ω, ν) 7→ ν(0)(ω, ν) is Lipschitz (see Proposition 3.2)
and the diophantine estimate required in (3.8).
Symmetric hyperbolicity: We observe that

W+W ∗ = e−iτ ·K (W (τ) +W ∗(τ)) eiτ ·K , G+G∗ = e−iτ ·K (G(τ) +G∗(τ)) eiτ ·K .

Hence W (resp., G) is symmetric hyperbolic if and only if W (τ) (resp., G(τ))
is symmetric hyperbolic.
Thus, arguing as before and being

(̂W ∗)k,l = Ŵ−k,−l ∀ k ∈ Zd, l ∈ Zn,

it follows that if ∀ k ∈ Zd, l ∈ Zn Ŵk,l + Ŵ−k,−l are the Fourier coefficients of
an operator in OPS0, then

Ĝk,l + Ĝ−k,−l =
Ŵk,l + Ŵ−k,−l

i (ω · l + ν · k)
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are again Fourier coefficients of an operator in OPS0.
Reversibility: We apply Lemma A.6 of the Appendix to deduce reversibility
of W and we observe that an operator A(τ, ϕ) is reversible (resp. reversibility
preserving) if and only if, developing in Fourier series as in (3.23), its coefficients
satisfy

Âkl ◦ S = −S ◦ Â−k−l

(
resp. Âkl ◦ S = S ◦ Â−k−l

)
,

so that ∀ k ∈ Zd, l ∈ Zn,

Ĝkl ◦ S =
Ŵkl ◦ S

i(ω · l + ν · k)
=

−S ◦ Ŵ−k−l

−(ω · (−l) + ν · (−k))
= S ◦ Ĝ−k−l.

Hence G, and thus G, is reversibility preserving. (See Lemma A.6.)
Reality: Reality condition in Fourier coefficients reads

Âlk = Â−l−k.

We apply Lemma A.6 again to deduce that reality of W (resp, G) is equivalent
to reality of W (resp, G) and we compute

Ĝkl =
Ŵkl

i(ω · l + ν · k)
=

Ŵ−k−l

−i(ω · (−l) + ν · (−k))
= Ĝ−k−l.

Proof of Theorem 3.6. FixM > 0.We prove by induction that ∀j = 0, . . . , N−1

H(j)(ϕ) = H0 + εZ(j)(ω̃) + εW(j)(ϕ, ω̃)

is mapped by the change of variables

u = e−εGj(ϕ,ω̃)v (3.24)

into
H(j+1)(ϕ) = H0 + εZ(j+1)(ω̃) + εW(j+1)(ϕ, ω̃),

with

Z(j+1)(ω̃) ∈ Lip
(
Ω0,γ ; C

∞(Tn;OPS1−e)
)
,

W(j+1) ∈ Lip
(
Ω0,γ ; C

∞
(
Tn;OPS1−(j+1)e

))
,

(3.25)

W(j+1) symmetric hyperbolic and Z(j+1)(ω̃) a Fourier multiplier commuting
with all the Km.
If j = 0, the hypotheses are satisfied for Z(0) = 0, W(0) = W ∈ Lip

(
Ω0,γ ; C

∞(Tn;OPS1−e)
)
.

Suppose now that H(j) satisfies the required hypotheses; the change of coordi-
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nates (3.24) maps H(j) into

H(j+1)(ϕ, ω̃) = H0 + εZ(j)(ω̃) + ε〈W(j)〉 (3.26)

+ ε
(
−ω · ∂ϕGj + [H0, Gj ] +W(j)(ϕ, ω̃)− 〈W(j)〉

)
(3.27)

+ eεGj(ϕ,ω̃)H0e
−εGj(ϕ,ω̃) −H0 − ε[H0, Gj ] (3.28)

+ εeεGj(ϕ,ω̃)Z(j)(ω̃)e−εGj(ϕ,ω̃) − εZ(j)(ω̃) (3.29)

+ εeεGj(ϕ,ω̃)W(j)(ϕ, ω̃)e−εGj(ϕ,ω̃) − εW(j)(ϕ, ω̃) (3.30)

− ε

∫ 1

0

e−εsGj(ϕ,ω̃)ω · ∂ϕGj(ϕ, ω̃)e
εsGj(ϕ,ω̃) ds+ εω · ∂ϕGj .

(3.31)

From Lemma 3.7 it is possible to find an operatorGj ∈ Lip
(
Ω0,γ ; C

∞(Tn;OPS1−je)
)

such that Gj is symmetric hyperbolic and (3.27) equals zero. Since Lemma A.4
of the Appendix entails that

(3.28) ∈ Lip
(
Ω0,γ ; C

∞
(
Tn;OPS1−2je

))
,

(3.29) ∈ Lip
(
Ω0,γ ; C

∞
(
Tn;OPS1−(j+1)e

))
,

(3.30) ∈ Lip
(
Ω0,γ ; C

∞
(
Tn;OPS1−2je

))
,

(3.31) ∈ Lip
(
Ω0,γ ; C

∞
(
Tn;OPS1−2je

))
,

if we define

Z(j+1)(ω̃) := Z(j)(ω̃) + 〈W(j)〉,

εW(j+1)(ϕ, ω̃) = (3.28) + (3.29) + (3.30) + (3.31),
(3.32)

we have W(j+1)(ϕ, ω̃) ∈ Lip
(
Ω0,γ ; C

∞
(
Tn;OPS1−(j+1)e

))
.

We observe that (3.28) is of order ε, as can be seen performing a Taylor expan-
sion of the operator e−εGj(ϕ,ω̃)H0e

εGj(ϕ,ω̃) as in Lemma A.4 of the Appendix.
Reality and reversibility of W(j+1)(ϕ, ω̃) follow from Lemma A.1, whereas sym-
metric hyperbolicity of W(j+1)(ϕ, ω̃) follows from Lemma A.7.

Remark 3.8. For all j = 1, . . . , M we have eεGj ∈ B (Hσ) ∀ σ, and

‖eεGj − Id‖B(Hσ ,Hσ−(1−je)) . ε‖Gj‖B(Hσ ,Hσ−(1−je)).

Furthermore, from Lemma A.1, ∀ α ∈ N we have

∂αϕe
εGj ∈ B

(
Hσ,Hσ−(1−je)|α|

)
.

Note that, since Z(M) ∈ Lip
(
Ω0,γ ; C

∞(Tn;OPS1−e)
)
then Z(M) = Op(z(ξ))

with z ∈ Lip
(
Ω0,γ ; C

∞(Tn;S1−e)
)
. Hence ∂ξz ∈ Lip

(
Ω0,γ ; C

∞(Tn;S−e)
)
and

the following estimate holds

sup
ξ∈Rd

〈ξ〉e−1|z|Lip , sup
ξ∈Rd

〈ξ〉1−e|∂ξz(ξ, ·)|
Lip . ε; (3.33)

Concerning the second of (3.33), we remark that we will only use the fact that
|∂ξz(ξ, ·)|

Lip is bounded.
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4 Reducibility

4.1 Functional Setting

Given a linear operator R : L2(Td) → L2(Td), we denote by Rj′

j its matrix

elements with respect to the exponential basis {eij·x : j ∈ Zd}, namely

Rj′

j :=

∫

Td

R[eij
′·x] e−ij·x dx , ∀j, j′ ∈ Zd .

We define some families of operators related to R ∈ B(L2(Td)) that will be
useful in our estimates:

Definition 4.1. Given β ≥ 0 and R ∈ B(L2(Td)), we define the operator 〈∇〉βR
as

(〈∇〉βR)j
′

j := 〈j − j′〉βRj′

j .

We remark that this operator is useful since, for any operator R and any
function u, one has

∇Ru = R∇u+ [R;∇]u ,

and
[R;∇] ≃ 〈∇〉R .

Definition 4.2. We consider the space

BHS(Hσ1 ,Hσ2) :=
{
R ∈ B (Hσ1 ,Hσ2)

∣∣ ‖R‖HS
σ1,σ2

< +∞
}
,

with (
‖R‖HS

σ1,σ2

)2
:=
∑

k∈Zd

∑

k′∈Zd

〈k〉2σ2 |Rk′

k |2〈k′〉−2σ1 .

We consider operators R(ϕ) depending on the angles ϕ ∈ Tn, with R ∈
Hs
(
Tn; BHS(Hσ1 ,Hσ2)

)
. Thus we define the time Fourier coefficients of R :

∀ l ∈ Zn R̂(l) is the operator with matrix elements

(R̂(l))j
′

j :=
1

(2π)n

∫

Tn

Rj′

j e
−ilϕ dϕ. (4.1)

Definition 4.3 (Class of operators). Given s, σ ≥ 0, we consider the space

Ms
σ1,σ2

:= Hs
(
Tn; BHS(Hσ1 ,Hσ2)

)
, (4.2)

endowed with the norm

‖R‖Ms
σ1,σ2

:=
( ∑

l∈Zn

〈l〉2s
(
‖R̂(l)‖HS

σ1,σ2

)2) 1
2

. (4.3)

Definition 4.4 (Higher regularity norm). Let Ω0 ⊆ Ω and R ∈ Lip
(
Ω0;M

s
σ1,σ2

)
.

Given β > 0, if R(ω̃) is such that

R(ω̃) ∈ Lip
(
Ω0;M

s+β
σ1,σ2

)
, 〈∇〉βR(ω̃) ∈ Lip

(
Ω0;M

s
σ1,σ2

)
,

we define
‖R‖Lip

Ws,β
σ1,σ2

:= ‖R‖Lip
Ms+β

σ1,σ2

+ ‖〈∇〉βR‖LipMs
σ1,σ2

. (4.4)
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Definition 4.5 (Cutoffs). Given an operator R : L2(Td) → L2(Td), for any
N ∈ N, we define the projector πNR as

(πNR)
j′

j :=

{
Rj′

j if |j − j′| < N

0 if |j − j′| ≥ N
(4.5)

and we set π⊥
NR := R − πNR. For R : Tn → B(L2(Td)), ϕ 7→ R(ϕ), we define

ΠNR as

ΠNR(ϕ) :=
∑

|l|≤N

πN R̂(l) e
il·ϕ . (4.6)

We then set Π⊥
NR := R−ΠNR.

In the following lemma we point out a key estimate for the remainder Π⊥
NR

of an operator R :

Lemma 4.6. Let R(ω̃) ∈ Ms
σ1,σ2

, ω̃ ∈ Ω0 ⊆ Ω. Then for any N > 0,

‖ΠNR‖
Lip
Ms

σ1,σ2

, ‖Π⊥
NR‖

Lip
Ms

σ1,σ2

≤ ‖R‖LipMs
σ1,σ2

. (4.7)

Moreover, let β > 0 and assume that R(ω̃) ∈ Ms+β
σ1,σ2

, 〈∇〉βR(ω̃) ∈ Ms
σ1,σ2

,

ω̃ ∈ Ω̃. Then, for any N ∈ N, one has Π⊥
NR(ω̃) ∈ Ms

σ1,σ2
and

‖Π⊥
NR‖

Lip
Ms

σ1,σ2

≤ N−β‖R‖Lip
Ws,β

σ1,σ2

(4.8)

Proof. Estimate (4.7) is a direct consequence of the definitions (4.3)-(4.6). We
prove estimate (4.8). By (4.5), (4.6), one has

Π⊥
NR(ϕ) = R1,N (ϕ) + R2,N(ϕ) ,

R1,N (ϕ) :=
∑

|l|≤N

π⊥
N R̂(l)e

il·ϕ , R2,N(ϕ) :=
∑

|l|>N

R̂(l)eil·ϕ . (4.9)

We estimate separately the two terms in the above formula.
Estimate of R1,N . For any ℓ ∈ Zn, one has

(
‖π⊥

N R̂(l)‖
HS
σ1,σ2

)2
=

∑

k,k′∈Z
d

|k−k′|>N

|R̂(l)k
′

k |2〈k〉2σ2〈k′〉−2σ1

≤ N−2β
∑

k,k′∈Zd

〈k − k′〉2β |R̂(l)k
′

k |2〈k〉2σ2 〈k′〉−2σ1

= N−2β
(
‖〈∇〉βR̂(l)‖HS

σ1,σ2

)2
.

Therefore, recalling (4.3), one gets the estimate

‖R1,N‖Ms
σ1,σ2

≤ N−β‖〈∇〉βR‖Ms
σ1,σ2

. (4.10)

Estimate of R2,N . The operator R2,N can be estimated as
(
‖R2,N‖Ms

σ1,σ2

)2
=
∑

|l|>N

〈l〉2s
(
‖ R̂(l)‖HS

σ1,σ2

)2

≤ N−2β
∑

l∈Zn

〈l〉2(s+β)
(
‖ R̂(l)‖HS

σ1,σ2

)2

= N−2β
(
‖R‖Ms+β

σ1,σ2

)2
,
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implying that
‖R2,N‖Ms

σ1,σ2
≤ N−β‖R‖Ms+β

σ1,σ2
. (4.11)

The claimed inequality then follows by (4.4), (4.9), (4.10) and (4.11).

4.2 Diagonalization

Fix M > 0 and consider the matrix representation of the regularized operator
H(M) of Theorem 3.6, namely

A0 + P0(ϕ), A0 := D0 + Z (4.12)

where D0, Z and P0 are the matrix representations of ν(0)(ω̃) · ∇, εZ(M) and
W(M) respectively.
Since ν(0) · ∇ and Z(M) depend only on ∇ and not on the x variable, their
associated operators D0 and Z remain diagonal if we pass to Fourier variables,
so that we deal with the sum of a diagonal operator A0 = D0 + Z and a
perturbative term P0(ϕ) whose dependence on the angle ϕ we want to eliminate.
More precisely

A0 = diagj∈Zdλ
(0)
j , λ

(0)
j := iν(0) · j + z(j) (4.13)

where we recall that z ∈ Lip(Ω0,γ ;OPS
1−e). Before to state the reducibility

theorem, we fix some constants. Given τ > 0 we define

α := 12τ + 7 , β := α+ 1 , m := 2τ + 2 (4.14)

Moreover, we fix the scale on which we perform the reducibility scheme as

Nk = N
( 3

2 )
k

0 ∀k ∈ N, N−1 := 1 (4.15)

where for convenience we link N0 and γ as

N0 = γ−1 (4.16)

where γ is the constant appearing in the definition (3.8) of the set Ω0,γ (see also
(4.22) in the theorem below). We also fix the number M of regularization steps
in Theorem 3.6 as

M := 2m+ 2β + [d/2] + 1 . (4.17)

Remark 4.7. By Theorem 3.6 one has that P0 = εW(M) ∈ C∞(Tn;OPS−M ).
Since by (4.17), M > 2m+ 2β + d

2 , by applying Lemma A.14, one has that

‖P0‖
Lip
Ms

σ−m,σ+m
, ‖P0‖

Lip

Ws,β
σ−m,σ+m

.s,σ ε , ∀s ≥ 0 , ∀σ > 0 . (4.18)

Theorem 4.8. (KAM reducibility) Consider the system (3.17). Let γ ∈
(0, 1), τ > 0. Then for any s > [n/2] + 1, σ ≥ 0 there exist constants C0 =
C0(s, σ, τ) > 0 large enough and δ = δ(s, σ, τ) ∈ (0, 1) small enough such that,
if

NC0
0 ε ≤ δ (4.19)

then, for all k ≥ 0:
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(S1)k There exists a vector field

Hk(ϕ) := Ak + Pk(ϕ) , ϕ ∈ Tν , (4.20)

Ak = diagj∈Zdλ
(k)
j , λ

(k)
j (ω̃) = λ

(0)
j (ω̃) + ρ

(k)
j (ω̃) (4.21)

defined for all ω̃ ∈ Ok,γ , where we set O0,γ := Ω0,γ (see (3.8)) and for
k ≥ 1,

Ok,γ :=
{
ω̃ = (ω, ν) ∈ Ok−1,γ : |iω · l + λ

(k−1)
j (ω̃)− λ

(k−1)
j′ (ω̃)| ≥

γ

〈l〉τ 〈j〉τ 〈j′〉τ

∀(l, j, j′) 6= (0, j, j), |l|, |j − j′| ≤ Nk−1

}
. (4.22)

For k ≥ 0, the Lipschitz functions Ok,γ → C, ω̃ 7→ ρ
(k)
j (ω̃), j ∈ Zd satisfy

sup
j∈Zd

〈j〉2m|ρ
(k)
j |Lip .s,σ ε . (4.23)

There exist a constant C∗ = C∗(s, σ, β, τ,m) > 0 such that

‖Pk‖
Lip
Ms

σ−m,σ+m
≤ C∗N

−α
k−1ε, ‖Pk‖

Lip

Ws,β

σ−m,σ+m

≤ C∗Nk−1ε . (4.24)

Moreover, for k ≥ 1,

Hk(ϕ) = (Φk−1)ω∗Hk−1(ϕ) , Φk−1 := Id +Xk−1 (4.25)

where the map Xk−1 satisfies the estimates

‖Xk−1‖
Lip
Ms

σ±m,σ±m
.s N

4τ+2
k N−α

k−1ε . (4.26)

Moreover, if P0(ϕ) is real and reversible, for any k ≥ 1, Pk(ϕ) is real and
reversible and

λ
(k)
j ∈ iR ∀j ∈ Zd. (4.27)

(S2)k For all j ∈ Zd, there exists a Lipschitz extension to the set Ω0,γ defined

in (3.8), that we denote by λ̃
(k)
j : Ω0,γ → C of λ

(k)
j : Ok,γ → C satisfying,

for k ≥ 1,

|λ̃
(k)
j − λ̃

(k−1)
j |Lip . 〈j〉−2m‖Pk−1‖

Lip
Ms

σ−m,σ+m
.s,σ 〈j〉−2mN−α

k−2ε . (4.28)

We remark that (S2)k will be used to construct the final eigenvalues λ
(∞)
j .

The procedure will be to show that as k → ∞, the sequence λ
(k)
j admits a limit

on Ω0,γ and then to use the final value λ
(∞)
j in order to define the set in which

reducibility holds (c.f. eq. (4.54)).

4.3 Proof of Theorem 4.8

Proof of (Si)0, i = 1, 2. Properties (4.20)-(4.24) hold by setting ρ
(0)
j = 0 for

any j ∈ Zd, N−1 := 1 and recalling the estimate (4.18).

(S2)0 holds, since the constant λ
(0)
j is already defined for all ω̃ ∈ Ω0,γ and

in the real and reversible case it satisfies λ
(0)
j ∈ iR in force of Proposition 3.2.

Thus we simply set ρ
(0)
j = 0 for any j ∈ Zd.
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4.3.1 The reducibility step: proof of (Si)k+1, i = 1, 2.

Proof of (S1)k+1.
We now describe the inductive step, showing how to define a transformation
Φk := Id + Xk so that the transformed vector field Hk+1(ϕ) = (Φk)ω∗Hk(ϕ)
has the desired properties. If we perform a change of coordinates of the form
u′ := Φk(ϕ)u, Φk(ϕ) = Id+Xk(ϕ) one has that Hk+1(ϕ) = (Φk)ω∗Hk(ϕ) takes
the form

Hk+1(ϕ) = Ak +Φk(ϕ)
−1
(
ΠNk

Pk(ϕ) + [Xk(ϕ), Ak]− ω · ∂ϕXk(ϕ)
)

+Φk(ϕ)
−1
(
Π⊥

Nk
Pk(ϕ) + Pk(ϕ)Xk(ϕ)

)

We look for a transformation Xk(ϕ) solving the homological equation

ΠNk
Pk(ϕ) + [Xk(ϕ), Ak]− ω · ∂ϕXk(ϕ) = Pk (4.29)

where Pk is a diagonal operator. Then we set

Ak+1 = Ak + Pk, P k+1 = Π⊥
Nk
Pk + PkXk + (Φ−1

k − Id)
(
P k +Π⊥

Nk
Pk + PkXk

)
,

P k := diagj∈Z(P̂k)
j
j(0) .

(4.30)
By formula (4.30) one obtains that

Ak+1 := diagj∈Zdλ
(k+1)
j

where for any j ∈ Zd

λ
(k+1)
j := λ

(k)
j + P̂k(0)

j
j = iν(0) · j + εz(j) + ρ

(k+1)
j

ρ
(k+1)
j := ρ

(k)
j + P̂k(0)

j
j .

(4.31)

In the real and reversible case, since Pk is real and reversible, by Lemma A.8 one

has P̂k(0)
j
j ∈ iR, and since λ

(k)
j , ρ

(k)
j ∈ iR then one has that λ

(k+1)
j , ρ

(k+1)
j ∈ iR.

By the definition (4.31), applying Lemma A.15 and using the estimate (4.24),
one gets that for any j ∈ Zd for any i ∈ {0, 1, . . . , k}

|λ
(i+1)
j − λ

(i)
j |Lip = |ρ

(i+1)
j − ρ

(i)
j |Lip = |(P̂i)jj(0)|

Lip

. 〈j〉−2m‖Pi‖
Lip
Ms

σ−m,σ+m
.s,σ 〈j〉−2mN−α

i−1ε . (4.32)

We now verify the estimate (4.23) at the step k + 1. By using a telescoping

argument, recalling that ρ
(0)
j = 0 for any j ∈ Zd, one gets that

|ρ
(k+1)
j |Lip ≤

k∑

i=0

|ρ
(i+1)
j − ρ

(i)
j |Lip

(4.32)

.s,σ 〈j〉−2mε

∞∑

i=0

N−α
i−1 . 〈j〉−2mε (4.33)

since the series
∑∞

i=0N
−α
i−1 is convergent (see (4.15)). Hence (4.23) is verified at

the step k + 1.

In the next lemma we will show how to solve the homological equation (4.29).
This is the main lemma of the section.
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Lemma 4.9. Let m > 2τ + 1. Then for any ω̃ ∈ Ok+1,γ (recall (4.22)), the
homological equation

[Ak, Xk] + ω · ∂ϕXk = ΠNk
Pk − P k, (4.34)

with
P k = diagj∈Zd P̂k(0)

j
j (4.35)

has a solution Xk defined on Ok,γ and satisfying the estimates

‖Xk‖
Lip
Ms

σ±m,σ±m
. N4τ+2

k ‖Pk‖
Lip
Ms

σ−m,σ+m
, (4.36)

‖〈∇〉βXk‖
Lip
Ms

σ±m,σ±m
. N4τ+2

k ‖〈∇〉βPk‖
Lip
Ms

σ−m,σ+m
. (4.37)

Furthermore, if Pk is real and reversible then Xk is real and reversibility pre-
serving.

Proof. To simplify notations, here we drop the index k, namely we write A, P ,

X , λj , ρj instead of Ak, Pk, Xk, λ
(k)
j , ρ

(k)
j . Taking the (j, j′) matrix element

and the l−th Fourier coefficient of (4.34) we get:

(iω · l + λj − λj′ ) X̂(l)j
′

j = P̂ (l)j
′

j if 0 < |j − j′| < N, 0 < |l| < N

X̂(l)j
′

j = 0 otherwise

Since ω̃ ∈ Ok+1,γ one has

|X̂(l)j
′

j | ≤
|P̂ (l)j

′

j ||j|
τ |j′|τ |l|τ

γ
, (4.38)

hence

|X̂(l)j
′

j | . γ−1|P̂ (l)j
′

j ||l|
τ 〈j′〉τ

(
〈j′〉τ + |j − j′|τ

)

≤ γ−1|P̂ (l)j
′

j |N
τ 〈j′〉τ

(
〈j′〉τ +N τ

)

. γ−1|P̂ (l)j
′

j |N
2τ 〈j′〉2τ ,

(4.39)

Similarly, one gets

|X̂(l)j
′

j | . γ−1|P̂ (l)j
′

j |N
2τ 〈j〉2τ . (4.40)

Thus, recalling that τ < m, (see (4.14)) the norm ‖X‖Ms
σ+m,σ+m

is estimated
by:

(
‖X‖Ms

σ+m,σ+m

)2
=
∑

l∈Zn

〈l〉2s
∑

j,j′∈Zd

〈j〉2(σ+m)|X̂(l)j
′

j (l)|
2〈j′〉−2(σ+m)

. γ−2N4τ
∑

l∈Zn

〈l〉2s
∑

j,j′∈Zd

〈j〉2(σ+m)|P̂ (l)j
′

j |
2〈j′〉4τ 〈j′〉−2(σ+m)

≤ γ−2N4τ
∑

l∈Zn

〈l〉2s
∑

j,j′∈Zd

〈j〉2(σ+m)|P̂ (l)j
′

j |
2〈j′〉−2(σ−m)

= γ−2N4τ
(
‖P‖Ms

σ−m,σ+m

)2
.

(4.41)
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Similarly, one obtains

(
‖X‖Ms

σ−m,σ−m

)2
. γ−2N4τ

(
‖P‖Ms

σ−m,σ+m

)2
. (4.42)

To estimate the norm of the operator 〈∇〉βX, we argue as in (4.39), (4.40) to
get

〈j − j′〉β |X̂(l)j
′

j | . N2τ 〈j〉2τ 〈j − j′〉β |P̂ (l)j
′

j |,

〈j − j′〉β |X̂(l)j
′

j | . N2τ 〈j′〉2τ 〈j − j′〉β |P̂ (l)j
′

j |;
(4.43)

hence we repeat the same argument of (4.41), (4.42) to get (4.37). Concerning
Lipschitz estimates, recall that the eigenvalues λj , j ∈ Zd have the expansion

λj(ω̃) = λ
(0)
j (ω̃) + ρj(ω̃) = iν(0)(ω̃) · j + z(ω̃, j) + ρj(ω̃) .

By (3.7), (3.33) and the induction hypotheses (4.23) one has that for any
ω̃1, ω̃2 ∈ Ωγ and any j, j′ ∈ Zd, one has

|(λj − λj′ )(ω̃1)− (λj − λj′ )(ω̃2)| . εγ−1〈j − j′〉|ω̃1 − ω̃2| . (4.44)

Hence, one uses |l|, |j − j′| ≤ N , (4.38), (4.44) and the inequality

|l|2τ+1|j|2τ |j′|2τ .τ N
2τ+1|j|2τ

(
|j|2τ +N2τ

)
. N4τ+1〈j〉4τ

to deduce the Lipschitz estimates as usual. By Lemma A.8 of the Appendix, if
A = diagj∈Zdλj and P are real and reversible one easily get that X is real and
reversible too.

The estimate (4.26) follows from (4.36) and (4.24). Moreover, using that by
(4.14), α > 6τ + 3 and by using the smallness condition (4.19), one gets that

‖Xk‖
Lip
Ms

σ±m,σ±m
≤ δ(s) (4.45)

for some δ(s) ∈ (0, 1) small enough. Therefore, one can apply Lemma A.11
implying that

‖Φ−1
k − Id‖LipMs

σ±m,σ±m
.s,σ ‖Xk‖

Lip
Ms

σ±m,σ±m

(4.36)

.s N4τ+2
k ‖Pk‖

Lip
Ms

σ−m,σ+m

‖〈∇〉β(Φ−1
k − Id)‖LipMs

σ±m,σ±m
.s,β ‖〈∇〉βXk‖

Lip
Ms

σ±m,σ±m

(4.37)

.s,β N
4τ+2
k ‖〈∇〉βPk‖

Lip
Ms

σ−m,σ+m

(4.46)
In the next lemma, we obtain key estimates for the remainder term Pk+1 defined
in (4.30).

Lemma 4.10. There exists a constant C = C(s, σ, τ) > 0 such that the operator
Pk+1(ϕ) defined in (4.30) fulfills

‖Pk+1‖
Lip
Ms

σ−m,σ+m
≤ C

(
N4τ+2

k

(
‖Pk‖

Lip
Ms

σ−m,σ+m

)2
+N−β

k ‖Pk‖
Lip

Ws,β
σ−m,σ+m

)
,

‖Pk+1‖
Lip

Ws,β
σ−m,σ+m

≤ C‖Pk‖
Lip

Ws,β
σ−m,σ+m

.

(4.47)
Furthermore, if Pk(ϕ) is real and reversible then Pk+1(ϕ) is real and reversible
too.
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Proof. By recalling the definition of Pk+1 given in (4.30), using the inductive
estimates (4.36), (4.37), and the estimate (4.46), by applying Lemma 4.6 and
Lemma A.10 in the appendix, which gives an estimate of the product of opera-
tors, we get

‖Pk+1‖
Lip
Ms

σ−m,σ+m
.s,σ N

4τ+2
k

(
‖Pk‖

Lip
Ms

σ−m,σ+m

)2

+N−β
k

(
‖Pk‖

Lip

Ms+β
σ−m,σ+m

+ ‖〈∇〉βPk‖
Lip
Ms

σ−m,σ+m

)
,

(4.48)

‖Pk+1‖
Lip

Ms+β
σ−m,σ+m

.s,σ N
4τ+2
k ‖Pk‖

Lip
Ms

σ−m,σ+m
‖Pk‖

Lip

Ms+β
σ−m,σ+m

+ ‖Pk‖
Lip

Ms+β
σ−m,σ+m

,

(4.49)

‖〈∇〉βPk+1‖
Lip
Ms

σ−m,σ+m
.s,σ ‖〈∇〉βPk‖

Lip
Ms

σ−m,σ+m

+N4τ+2
k ‖Pk‖

Lip
Ms

σ−m,σ+m
‖〈∇〉βPk‖

Lip
Ms

σ−m,σ+m
. (4.50)

Recalling that ‖·‖Lip
Ws,β

σ−m,σ+m

= ‖ · ‖Lip
Ms+β

σ−m,σ+m

+ ‖〈∇〉β ·‖LipMs
σ−m,σ+m

and summing

up the contribution of (4.49), (4.50), we get

‖Pk+1‖
Lip
Ms

σ−m,σ+m
. N4τ+2

k

(
‖Pk‖

Lip
Ms

σ−m,σ+m

)2
+N−β

k ‖Pk‖
Lip

Ws,β
σ−m,σ+m

,

‖Pk+1‖
Lip

Ws,β
σ−m,σ+m

. N4τ+2
k ‖Pk‖

Lip
Ms

σ−m,σ+m
‖Pk‖

Lip

Ws,β
σ−m,σ+m

+ ‖Pk‖
Lip

Ws,β
σ−m,σ+m

.

(4.51)
Furthermore, by using the smallness condition (4.19), recalling the definition
(4.15), using that α > 6τ + 3, taking N0 large enough and ε small enough one
gets that

N4τ+2
k ‖Pk‖

Lip
Ms

σ−m,σ+m
. N4τ+2

k N−α
k−1ε ≤ 1

and then (4.51) implies the claimed estimate (4.47).
Finally, if Pk is real and reversible, then by Lemma 4.9, the operator Xk (and
hence Φk = Id + Xk and Φ−1

k ) is real and reversibility preserving. By the
definition (4.30), one concludes that Pk+1 is real and reversible.

By Lemma 4.10 one has

‖Pk+1‖
Lip

Ws,β
σ−m,σ+m

≤ C‖Pk‖
Lip

Ws,β
σ−m,σ+m

(4.24)

≤ CC∗εNk−1 ≤ C∗εNk

provided CNk−1 ≤ Nk for any k ≥ 0. This latter condition is verified by taking
N0 > 0 large enough. Furthermore

‖Pk+1‖
Lip
Ms

σ−m,σ+m
≤ CN4τ+2

k

(
‖Pk‖

Lip
Ms

σ−m,σ+m

)2
+ CN−β

k ‖Pk‖
Lip

Ws,β
σ−m,σ+m

(4.24)

≤ CN4τ+2
k C2

∗ε
2N−2α

k−1 + CN−β
k C∗Nk−1ε ≤ C∗εN

−α
k

provided

2CNα+4τ+2
k N−2α

k−1 ε ≤ 1 , , 2CNα−β
k Nk−1 ≤ 1 ∀k ≥ 0 .

The above conditions are verified by (4.14), the smallness condition (4.19), re-
calling the definition (4.15) and taking ε small enough and N0 large enough.
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Hence the estimate (4.24) is proved at the step k + 1. The proof of (S1)k+1 is
then concluded.

Proof of (S2)k+1. By the estimate (4.32), on the set Ok,γ , δ
(k)
j := ρ

(k+1)
j −

ρ
(k)
j satisfies |δ

(k)
j |Lip . 〈j〉−2m‖Pk‖

Lip
Ms

σ−m,σ+m
.s,σ 〈j〉−2mN−α

k−1ε for any j ∈

Zd. By the Kirszbraun Theorem (see Lemma M.5 in [KP03]), we extend the

function δ
(k)
j : Ok,γ → C to a function δ̃

(k)
j : Ω0,γ → C which still satisfies

the estimate |δ̃
(k)
j |Lip . 〈j〉−2m‖Pk‖

Lip
Ms

σ−m,σ+m
.s,σ 〈j〉−2mN−α

k−1ε. Therefore,

(S2)k+1 follows by defining ρ̃
(k+1)
j := ρ̃

(k)
j + δ̃

(k)
j and λ̃

(k+1)
j = λ

(0)
j + ρ̃

(k+1)
j (note

that λ
(0)
j is already defined on Ω0,γ). Note that in the real and reversible case,

one has that ρ
(k)
j , λ

(k)
j : Oγ,k−1 → iR, ρ̃

(k)
j , λ̃

(k)
j : Ω0,γ → iR, δ

(k)
j : Ok,γ → iR

and hence λ̃
(k+1)
j , ρ̃

(k+1)
j : Ω0,γ → iR.

4.4 Passing to the limit and completing the diagonaliza-

tion procedure

By Theorem 4.8-(S2)k, using a telescoping argument, for any j ∈ Zd, the se-

quence (ρ̃
(k)
j )k≥0 is a Cauchy sequence w.r. to the norm | · |Lip in Ω0,γ , and

hence it converges to ρ
(∞)
j . The following estimates hold:

|ρ̃
(k)
j − ρ

(∞)
j |Lip .s,σ 〈j〉−2mN−α

k−1ε , |ρ
(∞)
j |Lip .s,σ 〈j〉−2mε . (4.52)

Note that in the real and reversible case, ρ
(∞)
j : Ω0,γ → iR for any j ∈ Zd.

We then define the final eigenvalues λ
(∞)
j : Ω0,γ → C as

λ
(∞)
j := λ

(0)
j + ρ

(∞)
j

(4.13)
= iν(0) · j + z(j) + ρ

(∞)
j , j ∈ Zd . (4.53)

We then define

O∞,γ :=
{
ω̃ = (ω, ν) ∈ Ω0,γ : |iω · l+ λ

(∞)
j (ω̃)− λ

(∞)
j′ (ω̃)| ≥

2γ

〈l〉τ 〈j〉τ 〈j′〉τ

∀(l, j, j′) 6= (0, j, j)
}
.

(4.54)
The following lemma holds.

Lemma 4.11. One has O∞,γ ⊆ ∩k≥0Ok,γ .

Proof. We prove by induction that for any k ≥ 0 one has O∞,γ ⊆ Ok,γ . For
k = 0, it follows by definition that O∞,γ ⊆ O0,γ since O0,γ = Ω0,γ . Then assume
that O∞,γ ⊆ Ok,γ for some k ≥ 0 and let us show that O∞,γ ⊆ Ok+1,γ . Let
ω̃ = (ω, ν) ∈ O∞,γ . Since by the induction hypothesis ω̃ ∈ Ok,γ one has that by

Theorem 4.8-(S1)k, λ
(k)
j (ω̃) is well defined and by Theorem 4.8-(S2)k one has

that λ̃
(k)
j (ω̃) = λ

(k)
j (ω̃) and ρ̃

(k)
j (ω̃) = ρ

(k)
j (ω̃) (recall that λ

(k)
j = λ

(0)
j + ρ

(k)
j and
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λ̃
(k)
j = λ

(0)
j +ρ̃

(k)
j ). We then have that for any (l, j, j′) 6= (0, j, j), |l|, |j−j′| ≤ Nk,

|iω · l + λ
(k)
j (ω̃)− λ

(k)
j′ (ω̃)| ≥ |iω · l+ λ

(∞)
j (ω̃)− λ

(∞)
j′ (ω̃)| − |ρ̃

(k)
j (ω̃)− ρ

(∞)
j (ω̃)|

− |ρ̃
(k)
j′ (ω̃)− ρ

(∞)
j′ (ω̃)|

(4.52)

≥
2γ

〈l〉τ 〈j〉τ 〈j′〉τ
−

Cε

Nα
k−1min{〈j〉, 〈j′〉}2m

≥
γ

〈l〉τ 〈j〉τ 〈j′〉τ

provided
Cε〈l〉τ 〈j〉τ 〈j′〉τ

γNα
k−1min{〈j〉, 〈j′〉}2m

≤ 1 . (4.55)

Using that |l|, |j − j′| ≤ Nk, m > τ and since

〈j〉〈j′〉 ≤
(
〈j−j′〉+min{〈j〉, 〈j′〉}

)2
. 〈j−j′〉2+min{〈j〉, 〈j′〉}2 . N2

k+min{〈j〉, 〈j′〉}2

one gets that

〈l〉τ 〈j〉τ 〈j′〉τ

min{〈j〉, 〈j′〉}2m
. N3τ

k . (4.56)

Therefore
Cε〈l〉τ 〈j〉τ 〈j′〉τ

γNα
k−1min{〈j〉, 〈j′〉}2m

≤ C′εγ−1N3τ
k N−α

k−1 ≤ 1

since α > 9
2τ (see (4.14)) and by taking ε small enough (see the smallness

condition (4.19) and recall that γ−1 = N0). Condition (4.55) is then verified
and hence ω̃ ∈ Ok+1,γ . This concludes the proof of the lemma.

For any k ≥ 0, ω̃ ∈ O∞,γ we define the map

Vk(ϕ, ω̃) ≡ Vk(ϕ) := Φ0(ϕ) ◦ Φ1(ϕ) ◦ . . . ◦ Φk(ϕ) . (4.57)

Note that by Lemma 4.11 and Theorem 4.8 all the maps Φk(ϕ) are well defined
for ω̃ ∈ O∞,γ .
The following lemma holds

Lemma 4.12. The sequence (Vk)k≥0 converges to an invertible operator V∞

in Lip
(
O∞,γ ;H

s
(
Tn;B(Hσ±m,Hσ±m

))
and the operator V±1

∞ − Id satisfies the

estimate
‖V±1

∞ − Id‖Lip
Hs

(
Tn,B(Hσ±m,Hσ±m

) .s,σ N
4τ+2
0 ε .

Moreover in the real and reversible case, V±1
∞ is real and reversibility preserving.

Proof. The proof is based on standard arguments and therefore it is omitted (see
for instance the proof of Corollary 4.1 in [Mon17a]). The presence of N4τ+2

0 in
front of ε in the claimed inequality is due to the fact that (4.26) for k = 0 gives

‖Φ0 − Id‖LipMs
σ±m,σ±m

.s,σ N
4τ+2
0 ε.

Lemma 4.13. For any ω̃ ∈ O∞,γ , one has that (V∞)ω∗(A0 +P0) = H∞ (recall

(4.12)) where the operator H∞ is given by H∞ = diagj∈Zdλ
(∞)
j . Furthermore

in the real and reversible case, the eigenvalues λ
(∞)
j are purely imaginary.
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Proof. By (4.25) and recalling the definition (4.57), one gets that for any k ≥ 1

(Vk−1)ω∗(A0 + P0(ϕ)) = Hk(ϕ) = Ak + Pk(ϕ) .

The claimed statement then follows by passing to the limit in the above identity,
recalling the definition of Ak given in (4.21), the definition (4.53), the estimates
(4.24), (4.52) and Lemma 4.12.

4.5 Measure Estimates

In this section we show that the set O∞,γ defined in (4.54) has large Lebesgue
measure. We prove the following

Proposition 4.14. One has |Ω \ O∞,γ | . γ.

Since Ω \O∞,γ = (Ω \Ω0,γ)∪ (Ω0,γ \O∞,γ) and by Remark 3.3 one has that
|Ω \ Ω0,γ | . γ, it is enough to estimate the measure of the set Ω0,γ \ O∞,γ . By
the definition (4.54), one has that

Ω0,γ \ O∞,γ =
⋃

(l,j,j′)∈Z
n×Z

d×Z
d

(l,j−j′) 6=(0,0)

Rljj′ (γ)

Rljj′ (γ) :=
{
ω̃ = (ω, ν) ∈ Ω0,γ : |iω · l+ λ

(∞)
j (ω, ν)− λ

(∞)
j′ (ω, ν)| <

2γ

〈l〉τ 〈j〉τ 〈j′〉τ

}

(4.58)

Lemma 4.15. One has |Rljj′ (γ)| . γ〈l〉−τ 〈j〉−τ 〈j′〉−τ

Proof. By (4.53), one has that for any j ∈ Zd

λ
(∞)
j (ω, ν) = iν(0)(ω, ν) · j + z(j, ω, ν) + ρ

(∞)
j (ω, ν)

where by the estimates (3.7), (3.33), one has |ν(0)−ν|Lip(γ) . ε, supj∈Zd |∂ξz(j)|
lip .

ε. Then the map

Ψ : Ω0,γ → Ψ(Ω0,γ), (ω, ν) 7→ (ω, ν(0)(ω, ν))

is a Lipschitz homeomorphism with inverse given by Ψ−1 : Ψ(Ω0,γ) → Ω0,γ , (ω, ζ) 7→
Ψ−1(ω, ζ) and satisfying

|Ψ−1 − Id|sup . ε , |Ψ−1 − Id|lip . εγ−1 . (4.59)

Defining

a
(∞)
j (ω, ζ) := λ

(∞)
j (Ψ−1(ω, ζ)), j ∈ Zd

and

R̃ljj′ (γ) :=
{
(ω, ζ) ∈ Ψ(Ω0,γ) : |iω · l+a

(∞)
j (ω, ζ)−a

(∞)
j′ (ω, ζ)| <

2γ

〈l〉τ 〈j〉τ 〈j′〉τ

}

one has that
|Rljj′ (γ)| ≃ |R̃ljj′ (γ)|, (4.60)

then we estimate the measure of the set R̃ljj′ (γ). The functions a
(∞)
j admit the

expansion

a
(∞)
j (ω, ζ) = iζ · j + zΨ(j, ω, ζ) + r

(∞)
j (ω, ζ)
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where

zΨ(j, ω, ζ) := z(j,Ψ−1(ω, ζ)), r
(∞)
j (ω, ζ) := ρ

(∞)
j (Ψ−1(ω, ζ)) .

By the estimate (4.59) and using the estimates (3.33), (4.52) on z and ρ
(∞)
j , for

εγ−1 small enough, one can easily deduce that

sup
j∈Zd

|∂ξzΨ(j, ·)|
Lip . ε, sup

j∈Zd

〈j〉2m|r
(∞)
j |Lip . ε . (4.61)

Since (l, j − j′) 6= (0, 0), we write

(ω, ζ) = (ω(s), ζ(s))) =
(l, j − j′)

|(l, j − j′)|
s+ w, w ∈ Rn+d, w · (l, j − j′) = 0

and we consider

fljj′ (s) := iω(s) · l+ a
(∞)
j (ω(s), ζ(s)) − a

(∞)
j′ (ω(s), ζ(s))

= i|(l, j − j′)|s+ zΨ(j, ω(s), ζ(s)) − zΨ(j
′, ω(s), ζ(s)) + r

(∞)
j (ω(s), ζ(s)) − r

(∞)
j′ (ω(s), ζ(s)) .

Using the estimates (4.61) one obtains that

|fljj′ (s1)− fljj′ (s2)| ≥
(
|(l, j − j′)| − Cε|j − j′| − Cε

)
|s1 − s2|

|j−j′|≤|(l,j−j′)|

≥
(
(1− Cε)|(l, j − j′)| − Cε

)
|s1 − s2| ≥

1

2
|s1 − s2|

(4.62)

by taking ε small enough. This implies that

∣∣∣
{
s : |fljj′ (s)| <

2γ

〈l〉τ 〈j〉τ 〈j′〉τ
}∣∣∣ . γ

〈l〉τ 〈j〉τ 〈j′〉τ
.

By a Fubini argument one gets that |R̃ljj′ (γ)| . γ〈l〉−τ 〈j〉−τ 〈j′〉−τ . The claimed
statement then follows by recalling (4.60).

Proof of Proposition 4.14. By (4.58) and Lemma 4.15 one gets that

|Ω0,γ \ O∞,γ | . γ
∑

l∈Zn,j,j′∈Zd

〈l〉−τ 〈j〉−τ 〈j′〉−τ . γ

since τ > max{n , d}. The claimed statement then follows by recalling that
|Ω \ Ω0,γ | . γ and that Ω \ O∞,γ = (Ω \Ω0,γ) ∪ (Ω0,γ \ O∞,γ).

4.6 Proof of Theorem 2.4

We consider the composition

U(ϕ) = V(ϕ) ◦ V∞(ϕ), V(ϕ) := A(ϕ) ◦ e−εG1(ϕ,ω̃) ◦ · · · ◦ e−εGM (ϕ,ω̃),

where A(ϕ) is defined in Section 3.1, the maps e−εGK are constructed in Section
3.2 (see Theorem 3.6) and V∞ is given in Lemma 4.12. By Section 3.1, Theorem
3.6 and Lemma 4.13, for any ω̃ ∈ O∞,γ , the map U(ϕ) conjugates the equation
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(1.1) to the equation ∂tu = H∞u where H∞ is the diagonal operator with

eigenvalues (λ
(∞)
j )j∈Zd . Let 0 < a < 1

C0
and N0 := 1

εa so that the smallness

condition (4.19), i.e. NC0
0 ε ≤ δ becomes

NC0
0 ε = ε1−C0a ≤ δ ,

which is satisfied for ε small enough. Since γ = N−1
0 = εa, setting Ωε :=

O∞,γ , Proposition 4.14 implies that limε→0 |Ω \Ωε| = 0. The proof is therefore
concluded.

4.7 Proof of Corollary 2.5

By Theorem 2.4, for any ω̃ = (ω, ν) ∈ Ωε under the change of coordinates
u = U(ωt)v, the Cauchy problem

{
∂tu =

(
ν + εV (ωt, x)

)
· ∇u+ εW(ωt)[u]

u(0, x) = u0(x),
u0 ∈ Hσ(Td) (4.63)

is transformed into
{
∂tv = H∞v

v(0) = v0,
v0 := U(0)−1u0 . (4.64)

Using that for any ω̃ = (ω, ν) ∈ Ωε, U(ϕ) is bounded and invertible on Hσ one
gets that

‖ψ‖Hσ .σ ‖U(ϕ)±1ψ‖Hσ .σ ‖ψ‖Hσ , ∀ψ ∈ Hσ(Td) (4.65)

uniformly w.r. to ϕ ∈ Tn.

Case (1). If all the eigenvalues λ
(∞)
j , j ∈ Zd of the operator H∞ are purely

imaginary, the solution of the Cauchy problem (4.64) satisfies ‖v(t, ·)‖Hσ =
‖v0‖Hσ for any t ∈ R. By the estimate (4.65) and recalling that u = U(ωt)v one
obtains the desired bound on the solution u(t, x) of (4.63).

Case (2) Let j ∈ Zd so that Re(λ
(∞)
j ) 6= 0. Then for any α ∈ C, the solution v

of the Cauchy problem (4.64) with initial datum v0(x) = αeij·x is given by

v(t, x) = αeλ
(∞)
j teij·x .

Hence, setting u0 := U(0)[αeij·x] = αU(0)[eij·x], one has that the solution of the
Cauchy problem (4.63) with such an initial datum u0 is given by

u(t, x) = U(ωt)[αeλ
(∞)
j teij·x] = αeλ

(∞)
j tU(ωt)[eij·x] .

Recalling (4.65) one gets that

‖u(t, ·)‖Hσ ≃σ Cje
Re(λ

(∞)
j )t .

This gives the growth for t > 0 if Reλ
(∞)
j > 0 or for t < 0 if Reλ

(∞)
j > 0. If

there exists λ
(∞)
j with Reλ

(∞)
j > 0 and λ

(∞)
j′ with Reλ

(∞)
j′ < 0 then the solution

with initial datum αeij·x + βeij
′·x grows both as t > 0 and as t < 0.
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A Appendix

To regularize (1.1), we make use of operators that are the flow at time τ ∈ [−1, 1]
of the PDE

∂τu = G(ϕ)u

for a given pseudo differential operator G(ϕ) ∈ OPSη, η ≤ 1. An operator of
this sort is denoted by eτG. Thus, we state some of its main properties. The
proof is a variant of Proposition A.2 of [MR17].

Lemma A.1. Let η < 1 and G ∈ C∞ (Tn;OPSη) be such that G(ϕ) +G(ϕ)∗ ∈
OPS0 and let eτG be the flow of the autonomous PDE ∂τu = G(ϕ)u, τ ∈
[−1, 1].
(i) Then eτG(ϕ) ∈ B (Hσ,Hσ) ∀σ > 0.
(ii) ∀σ > 0, ∀ α ∈ Nn, ∂αϕe

τG(ϕ) ∈ B
(
Hσ,Hσ−η|α|

)
.

(iii) If G ∈ Lip (Ω; C∞ (Tn;OPSη)) , ∂αϕe
τG(ϕ, ω) ∈ Lip

(
Ω; B

(
Hσ,Hσ−η|α|−η

))
∀σ >

0, ∀ α ∈ Nn.
Furthermore, if G is reversibility preserving (or real), eτG is reversibility pre-
serving (resp. real) too.

Proof. Item (i) is a well known result. It is proved trough a Galerkin type ap-
proximation on the subspace EN of the compact supported sequences {ûk}k∈Zd

such that ûk = 0 if |k| > N. See [Tay91], Section 0.8, for details.
Items (ii) and (iii) follow as in Lemma A.3 in [BM16].
Reversibility preserving property: We remark that since

S ◦ ∂τ = ∂τ ◦ S,

one both has

∂τ [S ◦ eτG(ϕ)]u = S ◦ ∂τ ◦ eτG(ϕ)u = S ◦G(ϕ)eτG(ϕ)u = Gλ(−ϕ) ◦ S u

and

∂τ [e
τG(−ϕ) ◦ S]u = G(−ϕ) ◦ S u.

Since S ◦ eτG(ϕ) and eτG(−ϕ) ◦ S solve the same initial value problem for all
the functions u(x), they must coincide. Thus we can deduce the reversibility
preserving property for eτG(ϕ).
Reality: the proof of the reality can be done arguing similarly, using that

since G = G, then eτG(ϕ) and eτG(ϕ) solve the same initial value problem.

Let a : [−1, 1]× Tn × Td → Rd, (τ, ϕ, x) 7→ a(τ, ϕ, x) be a C∞ function and
let us consider the transport equation

∂τu = a(τ, ϕ, x) · ∇u . (A.1)

We denote by Φ(τ0, τ, ϕ) the flow of the above PDE. For convenience, we set
Φ(τ, ϕ) ≡ Φ(0, τ, ϕ). The following lemma holds:

Lemma A.2. (i) For any τ0, τ ∈ [0, 1] the flow Φ(τ0, τ, ϕ) of the equation
(A.1) is a bounded linear operator on the Sobolev space Hs(Td) for any s ≥ 0.
Moreover the map ϕ 7→ Φ(τ0, τ, ϕ) is differentiable and for any α ∈ Nn, the map
Tn → B(Hs+|α|,Hs), ϕ 7→ ∂αϕΦ(τ0, τ, ϕ) is bounded.
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(ii) Assume that a = a(ω̃, τ, ϕ, x), (ω̃, τ, ϕ, x) ∈ Ω × [0, 1] × Tn × Td is in

Lip
(
Ω , C∞([0, 1]× Tn × Td,Rd)

)
. Then for any α ∈ Nn the map

Tn → Lip
(
Ω,B(Hs+|α|+1,Hs)

)
, ϕ 7→ ∂αϕΦ(τ0, τ, ω̃, ϕ)

is bounded.

Remark A.3. Let A(ϕ) ∈ Lip (Ω; C∞(Tn;OPSm)) and G ∈ Lip (Ω; C∞(Tn;OPSη)) ,
with η < 1. If ∀ j ∈ N we define

Ad0GA = A, Adj+1
G A = [G,AdjGA], (A.2)

then
AdjGA ∈ Lip

(
Ω; C∞

(
Tn;OPSm−j(1−η)

))
∀ j ∈ N.

The following simpler version of the Egorov theorem holds.

Lemma A.4. Let A(ϕ) ∈ Lip (Ω; C∞(Tn;OPSm)) and G ∈ Lip (Ω; C∞(Tn;OPSη)) ,
with η < 1 and G such that G(ϕ) +G(ϕ)∗ ∈ OPS0. Then

eτGAe−τG ∈ Lip (Ω; C∞(Tn;OPSm)) .

Proof. This version of the Egorov theorem is actually simpler than the one
stated in Theorem A.0.9 in [Tay91]. The reason is that the order of G is strictly
smaller than one and hence one has the asymptotic expansion

eτGAe−τG ∼
∞∑

j=0

Aj

with Aj ∈ OPSm−j(1−η) (see remark A.3).

Remark A.5. Note that by Theorem A.0.9 in [Tay91] one has that if A ∈
Lip (Ω; C∞(Tn;OPSm)) , then eiτ ·KAe−iτ ·K , ∂ατ

(
eiτ ·KAe−iτ ·K

)
∈ Lip (Ω; C∞(Tn;OPSm))

∀α ∈ Nd.

Lemma A.6. Given S acting as S : u(x) 7→ u(−x), a linear operator A(ϕ)
satisfies the reversibility condition

A(ϕ) ◦ S = −S ◦A(−ϕ)

if and only if A(τ, ϕ) := eiτ ·KA(ϕ)e−iτ ·K satisfies the reversibility condition

A(τ, ϕ) ◦ S = −S ◦A(−τ,−ϕ).

Analogously, A(ϕ) satisfies the reversibility preserving condition

A(ϕ) ◦ S = S ◦A(−ϕ)

if and only if A(τ, ϕ) := eiτ ·KA(ϕ)e−iτ ·K satisfies the reversibility preserving
condition

A(τ, ϕ) ◦ S = S ◦A(−τ,−ϕ).

Furthermore, A(ϕ) is real if and only if A(τ, ϕ) is real.
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Proof. We only prove the statement concerning the reversibility. The statement
on reality can be proved similarly.
A direct calculation shows that eiτ ·K ◦ S = S ◦ e−iτ ·K , hence, if A(ϕ) is ϕ-
reversible, one immediately gets

A(τ, ϕ)S = −SA(−τ,−ϕ).

Vice versa, A(τ, ϕ) ◦ S = −S ◦ A(−τ,−ϕ) implies (for τ = 0)

A(ϕ) ◦ S = A(0, ϕ) ◦ S = −S ◦ A(0,−ϕ) = −S ◦A(−ϕ).

Lemma A.7. Let η < 1, G ∈ C∞(Tn;OPSη) with G + G∗ ∈ OPS0 and
A ∈ C∞(Tn;OPS1). Then

(i)
AdkGA+ (AdkGA)

∗ ∈ OPS−(k−1)(1−η) ∀ k ≥ 1;

(ii) In particular,

(
eGAe−G −A

)
+
(
eGAe−G −A

)∗
∈ OPS0.

Proof. Proof of (i).We argue by induction: if k = 1, one has

[G,A]− [G∗, A∗] = [G,A] + [A∗, G∗]

= [G,A+A∗] + [A∗, G+G∗] ∈ OPS0.

Assume that for some k ≥ 1

AdkGA+ (AdkGA)
∗ ∈ OPS−(k−1)(1−η) .

A direct calculation shows that

Adk+1
G A+ (Adk+1

G A)∗ = [G+G∗, AdkGA]− [G∗, AdkGA+ (AdkGA)
∗] .

Since by Remark A.3 AdkGA, (Ad
k
GA)

∗ ∈ OPS1−k(1−η) and using the induction
hypothesis and that G∗ ∈ OPSη, G+G∗ ∈ OPS0, one obtains that Adk+1

G A+

(Adk+1
G A)∗ ∈ OPS−k(1−η).

Proof of (ii). ∀ M > 0 one computes

e−GAeG −A =

M∑

k=1

AdkGA

k!
+

∫ 1

0

(1− s)M+1

(M + 1)!
e−sGAdM+1

G AesG.

By applying Remark A.3, choosingM large enough such that η − (1−M)(1− η) < 0,
one gets that

e−GAeG −A+
(
e−GAeG −A

)∗
=

M∑

k=1

AdkGA+ (AdkGA)
∗

k!
+OPS0

item(i)
∈ OPS0 .
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Lemma A.8. Let P ∈ Ms
σ1,σ2

and ∀ k, k′ ∈ Zd, ∀ l ∈ Zn let [P̂ (l)]k
′

k be

the (k, k′)−th matrix element with respect to the basis {eik·x | k ∈ Zd} of the

operator P̂ (l) defined as in (4.1). The following conditions hold:

(a) P (ϕ) is real if and only if

[P̂ (l)]k
′

k =
(
[P̂ (−l)]−k′

−k

)∗
;

(b) P (ϕ) is reversible if and only if

[P̂ (l)]k
′

k = −[P̂ (−l)]−k′

−k ;

(c) P (ϕ) is reversibility preserving if and only if

[P̂ (l)]k
′

k = [P̂ (−l)]−k′

−k .

A.1 Tame estimates in Ms

σ1,σ2

Lemma A.9. (i) Let σ1, σ2, σ3 ∈ R and let us assume that R, P are linear
operators such that
P ∈ BHS(Hσ1 ,Hσ2), R ∈ BHS(Hσ2 ,Hσ3), Then RP ∈ BHS(Hσ1 ,Hσ3) with

‖RP‖HS
σ1,σ3

≤ ‖R‖HS
σ2,σ3

‖P‖HS
σ1,σ2

.

(ii) Let σ1, σ2, σ3 ∈ R, β ≥ 0 and assume that 〈∇〉βP ,P ∈ BHS(Hσ1 ,Hσ2).,
〈∇〉βR,R ∈ BHS(Hσ2 ,Hσ3), Then 〈∇〉βRP ∈ BHS(Hσ1 ,Hσ3) with

‖〈∇〉βRP‖HS
σ1,σ3

.β ‖〈∇〉βR‖HS
σ2,σ3

‖P‖HS
σ1,σ2

+ ‖R‖HS
σ2,σ3

‖〈∇〉βP‖HS
σ1,σ2

Proof. We prove the estimate (ii). The estimate (i) can be proved by similar
arguments (and it is actually simpler). We have that

(
‖〈∇〉βRP‖HS

σ1,σ3

)2
=

∑

k,k′,∈Zd

〈k〉2σ3〈k′〉−2σ1
∣∣ ∑

j∈Zd

〈k − k′〉βRj
kP

k′

j

∣∣2

.β

∑

k,k′,∈Zd

〈k〉2σ3〈k′〉−2σ1
[ ∑

j∈Zd

(
〈k − j〉β + 〈j − k′〉β

)
|Rj

kP
k′

j |
]2

.β

∑

k,k′,∈Zd

〈k〉2σ3〈k′〉−2σ1
[ ∑

j∈Zd

|
(
〈∇〉βR

)j
k
| |Pk′

j |
]2

+
∑

k,k′,∈Zd

〈k〉2σ3〈k′〉−2σ1
[ ∑

j∈Zd

|Rj
k| |
(
〈∇〉βP

)k′

j
|
]2

.β

∑

k,j∈Zd

〈k〉2σ3 |
(
〈∇〉βR

)j
k
|2〈j〉−2σ2

∑

j,k′∈Zd

〈j〉2σ2 |Pk′

j |2〈k′〉−2σ1

+
∑

k,j∈Zd

〈k〉2σ3 |Rj
k|

2〈j〉−2σ2

∑

j,k′∈Zd

〈j〉2σ2 |
(
〈∇〉βP

)k′

j
|2〈k′〉−2σ1

.β

(
‖〈∇〉βR‖HS

σ2,σ3

)2 (
‖P‖HS

σ1,σ2

)2
+
(
‖R‖HS

σ2,σ3

)2 (
‖〈∇〉βP‖HS

σ1,σ2

)2
.
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Lemma A.10.
(i) Let s ≥ s0, σ1, σ2, σ3 ∈ R, P(λ) ∈ Ms

σ1,σ2
, R(λ) ∈ Ms

σ2,σ3
. Then RP(λ) ∈

Ms
σ1,σ3

and

‖RP‖LipMs
σ1,σ3

.s ‖R‖LipMs
σ2,σ3

‖P‖Lip
M

s0
σ1,σ2

+ ‖R‖Lip
M

s0
σ2,σ3

‖P‖LipMs
σ1,σ2

.

(ii) Let β ≥ 0, s ≥ s0, σ1, σ2, σ3 ∈ R. Assume that 〈∇〉βP(λ) ∈ Ms
σ1,σ2

,

〈∇〉βR(λ) ∈ Ms
σ2,σ3

. Then 〈∇〉βRP(λ) ∈ Ms
σ1,σ3

, and

‖〈∇〉βRP‖LipMs
σ1,σ3

.s,β ‖〈∇〉βR‖LipMs
σ2,σ3

‖P‖LipMs
σ1,σ2

+ ‖R‖LipMs
σ2,σ3

‖〈∇〉βP‖LipMs
σ1,σ2

.

Proof. Estimate (i). By applying Lemma A.9-(i), one computes

(
‖(RP)‖Ms

σ1,σ3

)2
≤
∑

l∈Zn

〈l〉2s

[∑

l′∈Zn

‖R̂(l − l′)‖HS
σ2,σ2

‖P̂(l′)‖HS
σ1,σ2

]2

.s

∑

l∈Zn

[∑

l′∈Zn

〈l′〉s‖R̂(l − l′)‖HS
σ2,σ3

‖P̂(l′)‖HS
σ1,σ2

]2

+
∑

l∈Zn

[∑

l′∈Zn

〈l − l′〉s‖R̂(l − l′)‖HS
σ2,σ3

‖P̂(l′)‖HS
σ1,σ2

]2

≤
∑

l,l′∈Zn

〈l′〉2s〈l − l′〉2s0
(
‖R̂(l − l′)‖HS

σ2,σ3

)2 (
‖P̂(l′)‖HS

σ1,σ2

)2

+
∑

l,l′∈Zn

〈l′〉2s0〈l − l′〉2s
(
‖R̂(l − l′)‖HS

σ2,σ3

)2 (
‖P̂(l′)‖HS

σ1,σ2

)2

=
(
‖R‖Ms0

σ2,σ3

)2 (
‖P‖Ms

σ1,σ2

)2
+
(
‖R‖Ms

σ2,σ3

)2 (
‖P‖Ms0

σ1,σ2

)2
.

To get the required estimate in Lipschitz norm, it is sufficient to decompose

(RP) (λ2)− (RP) (λ1) = R(λ2) (P(λ2)− P(λ1)) + (R(λ2)−R(λ1))P(λ1)

and to apply the above inequality to both the terms of the right-hand side,
taking respectively

R(λ2) as R, P(λ2)− P(λ1) as P

and
R(λ2)−R(λ1) as R, P(λ1) as P .

Estimate (ii). Arguing as before, one has

(
‖〈∇〉β(RP)‖Ms

σ1,σ3

)2
=
∑

l∈Zp

〈l〉2s
(
‖〈∇〉β (̂RP)(l)‖HS

σ1,σ3

)2

≤
∑

l∈Zn

〈l〉2s

(∑

l′∈Zp

‖〈∇〉βR̂(l − l′)P̂(l′)‖HS
σ1,σ3

)2

.s

∑

l,l′∈Zp

〈l′〉2s〈l − l′〉2s
(
‖〈∇〉βR̂(l − l′)P̂(l′)‖HS

σ1,σ3

)2

(A.3)
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where in the last inequality, we have used that

〈l〉2s .s 〈l
′〉2s + 〈l − l′〉2s .s 〈l

′〉2s〈l − l′〉2s .

By applying Lemma A.9-(ii) (to estimate ‖〈∇〉βR̂(l − l′)P̂(l′)‖HS
σ1,σ3

) one obtains
that

(
‖〈∇〉β(RP)‖Ms

σ1,σ3

)2
.s,β

∑

l,l′∈Zp

〈l′〉2s〈l − l′〉2s
(
‖〈∇〉βR̂(l − l′)‖HS

σ2,σ3

)2 (
‖P̂(l′)‖HS

σ1,σ2

)2

+
∑

l,l′∈Zp

〈l′〉2s〈l − l′〉2s
(
‖R̂(l − l′)‖HS

σ2,σ3

)2 (
‖〈∇〉βP̂(l′)‖HS

σ1,σ2

)2

.s,β

(
‖〈∇〉βR‖Ms

σ2,σ3

)2 (
‖P‖Ms

σ1,σ2

)2

+
(
‖R‖Ms

σ2,σ3

)2 (
‖〈∇〉βP‖Ms

σ1,σ2

)2
.

Concerning the Lipschitz estimates, as in the proof of (i) we write

〈∇〉β (RP(λ2)−RP(λ1)) = 〈∇〉βR(λ2) (P(λ2)− P(λ1)) + 〈∇〉β (R(λ2)−R(λ1))P(λ1)

and we repeat the same argument with

R(λ2) as R, P(λ2)− P(λ1) as P

and
R(λ2)−R(λ1) as R, P(λ1) as P .

Iterating the estimates of Lemma A.10, one gets for any s ≥ s0, σ ∈ R,
n ≥ 1

‖Rn‖LipMs
σ,σ

≤ C(s)n‖R‖LipMs
σ,σ

(
‖R‖Lip

M
s0
σ,σ

)n−1
,

‖〈∇〉β(Rn)‖LipMs
σ,σ

≤ C(s, β)n‖〈∇〉βR‖LipMs
σ,σ

(
‖R‖LipMs

σ,σ

)n−1
.

(A.4)

The following lemma holds:

Lemma A.11. Let s ≥ s0, σ ∈ R, β ≥ 0 and X(λ), 〈∇〉βX(λ) ∈ Ms
σ,σ. Then

there exists δ(s, β) ∈ (0, 1) such that if ‖X‖LipMs
σ,σ

≤ δ(s, β), then Φ := Id +X is

invertible and its inverse Φ−1 satisfies the estimates

‖Φ−1 − Id‖LipMs
σ,σ

.s ‖X‖LipMs
σ,σ
, ‖〈∇〉β(Φ−1 − Id)‖LipMs

σ,σ
.s ‖〈∇〉βX‖LipMs

σ,σ
.

Proof. By the Neumann series one has Φ−1 − Id =
∑

n≥1(−1)nXn. Then,
applying the estimates (A.4) to each term Xn, the claimed statement follows.
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A.2 Other estimates in Ms

σ1,σ2

Lemma A.12. (i) Let σ1, σ2 ∈ R and A ∈ B (Hσ1−η,Hσ2) , η > d
2 , then

‖A‖HS
σ1,σ2

.η ‖A‖B(Hσ1−η ,Hσ2),

(ii) Let σ1, σ2 ∈ R, β ≥ 0, η > d
2 . Then if A ∈ B(Hσ1−β−η,Hσ2+β), one has

‖〈∇〉βA‖HS
σ1,σ2

.β ‖A‖B(Hσ1−β−η,Hσ2+β) .

Proof. Proof of (i). Let us consider ∀ k′ ∈ Zd u(k
′) ∈ Hσ1 defined by

û
(k′)
h =

{
〈k′〉−(σ1−η) if h = k′

0 if h 6= k′;

We have that
∑

k

〈k〉2σ2 |Ak′

k |2〈k′〉−2(σ1−η) = ‖Au(k
′)‖2Hσ2

≤ ‖A‖2B(Hσ1−η ,Hσ2)‖u
(k′)‖2Hσ1−η

= ‖A‖2B(Hσ1−η ,Hσ2),

since ‖u(k
′)‖Hσ1−η = 1. Thus we deduce that ∀ k′

∑

k

〈k〉2σ2 |Ak′

k |2 ≤ ‖A‖2B(Hσ1−η ,Hσ2)〈k
′〉2(σ1−η). (A.5)

Let now u be a generic function in Hσ1 : from (A.5) it follows that

(
‖A‖HS

σ1,σ2

)2
=

∑

k,k′∈Zd

〈k〉2σ2 |Ak′

k |2〈k′〉−2σ1

≤
∑

k′∈Zd

〈k′〉2(σ1−η)‖A‖2B(Hσ1−η,Hσ2)〈k
′〉−2σ1

.σ0 ‖A‖2B(Hσ1−η,Hσ2).

Proof of (ii). Using that for any j, j′ ∈ Zd, 〈j − j′〉2β .β 〈j〉2β+〉j′〉2β .β

〈j〉2β〈j′〉2β , one gets that

(
‖〈∇〉βA‖HS

σ1,σ2

)2
=

∑

j,j′∈Zd

〈j〉2σ2 〈j − j′〉2β |Aj′

j |
2〈j′〉−2σ1

.β

∑

j,j′∈Zd

〈j〉2(σ2+β)|Aj′

j |
2〈j′〉−2(σ1−β) =

(
‖A‖HS

σ1−β,σ2+β

)2
.

(A.6)

The claimed statement follows by applying item (i) (replacing σ1 with σ1 − β
and σ2 with σ2 + β).

Lemma A.13. (i) Let A ∈ Cs
(
Tn;B (Hσ1−η, Hσ2)

)
, σ1, σ2 ∈ R, η > d

2 and

s ≥ 0. Then
‖A‖Ms

σ1,σ2
. ‖A‖

Cs

(
Tn;B(Hσ1−η, Hσ2)

).
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(ii) Let s ≥ 0, σ1, σ2 ∈ R, β ≥ 0, η > d
2 and A ∈ Cs

(
Tn;B(Hσ1−β−η,Hσ2+β)

)
.

Then
‖〈∇〉βA‖Ms

σ1,σ2
.β ‖A‖

Cs

(
Tn;B(Hσ1−β−η,Hσ2+β)

)

Proof. The claimed statement follows recalling thatMs
σ1,σ2

= Hs
(
Tn;BHS(Hσ1 ,Hσ2)

)
,

by applying Lemma A.12 and using that for every Banach space X one has that
‖ · ‖Hs(Tn;X) ≤ ‖ · ‖Cs(Tn;X).

Lemma A.14. (i) Let m ≥ 0, A ∈ C∞(Tn, OPS−κ), κ > 2m + d
2 . Then for

any σ ∈ R,
A ∈ C∞(Tn;B (Hσ+m−κ,Hσ+m)) and for any s ≥ 0

‖A‖Ms
σ−m,σ+m

. ‖A‖Cs(Tn;B(Hσ+m−κ,Hσ+m))

(ii) Let m,β ≥ 0 and A ∈ C∞(Tn;OPS−κ), κ > 2m + 2β + d
2 . Then for any

σ ∈ R,

A ∈ C∞
(
Tn;B

(
Hσ+m+β−κ,Hσ+m+β

))
and for any s ≥ 0

‖〈∇〉βA‖Ms
σ−m,σ+m

.β ‖A‖Cs(Tn;B(Hσ+m+β−κ,Hσ+m+β)) .

Proof. The statement (i) follows by applying Lemma A.13-(i) with σ1 = σ −
m, σ2 = σ +m, η = κ− 2m.
The statement (ii) follows by applying Lemma A.13-(ii) with σ1 = σ−m, σ2 =
σ +m, η = κ− 2m− 2β.

Lemma A.15. Let σ ∈ R, κ ≥ 0, P (λ) ∈ BHS(Hσ,Hσ+κ), λ ∈ Ωo ⊆ Rn+d.
Then ∀j ∈ Zd its matrix elements P j

j satisfy

|P j
j | ≤ ‖P‖HS

σ,σ+κ〈j〉
−κ, |P j

j |
Lip ≤ ‖P‖HS,Lip

σ,σ+κ 〈j〉−κ.

Proof. For any j ∈ Zd, one has

(‖P‖HS
σ,σ+κ)

2 =
∑

k,k′∈Zd

〈k〉2(σ+κ)|P k′

k |〈k′〉−2σ ≥ 〈j〉2(σ+κ)|P j
j |〈j〉

−2σ = 〈j〉κ|P j
j | .

The Lipschitz estimate follows arguing similarly by estimating
‖P (λ1)−P (λ2‖

HS
σ,σ+κ

|λ1−λ2|

for any λ1, λ2 ∈ Ωo, λ1 6= λ2.
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