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Reducibility of non-resonant transport
equation on T¢ with unbounded
perturbations
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Abstract

We prove reducibility of a transport equation on the d-dimensional
torus T? with a time quasi-periodic unbounded perturbation. As far as
we know this is the first example of a reducibility result for an equation in
more than one dimensions with unbounded perturbations. Furthermore
the unperturbed problem has eigenvalues whose differences are dense on
the real axis.

1 Introduction

In this paper we obtain reducibility for a transport equation on the d-dimensional
torus T¢, T := R/(27Z), d > 1 of the form

deu = (V+€V(wt,:c)) V4 eW(wt)[ul, (1.1)

where the frequencies w € R", and v € R? play the role of parameters, € > 0 is
a small parameter, V € C®(T" x T, R?) is a real function and W(y), ¢ € T"
is a pseudo-differential operator of order 1 — e, for some ¢ > 0. More precisely
our aim is to show that for € small enough and for most values of & = (w,v) €
Q := [1,2]"*9, there exists a bounded and invertible transformation (acting on
the scale of Sobolev spaces) which transforms the PDE (L)) into another one
whose vector field is a time independent diagonal operator.

This is the first example of a reducibility result for unbounded perturbations
of a Hamiltonian PDE in more than one space dimension. Furthermore, the
unperturbed problem has eigenvalues whose differences are dense on the real
axis, a case which is usually considered as particular difficult to deal with.

Following [BBM14] (see also [BM16l Bamls| BBHMIT),
the proof consists of two steps: first we use pseudo-differential calculus in order
to transform the original system to a system with a smoothing perturbation
(smoothing theorem) and then we apply a KAM scheme in order to actually
obtain reducibility. The smoothing theorem is obtained through a variant of
the theory developed in [BGMRI7] and the KAM theory is a variant of the one
developed in [BBHMI7]. The main purpose of the present paper is to show
that it is possible to glue together such tools in order to deal with a nontrivial
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higher dimensional problem. The main technical difficulty consists in showing
that the frequencies (w,v) can be used to tune the small divisors and to fulfill
some second Melnikov type nonresonance conditions.

A further novelty is that, in the equation (L)), it is natural to consider
perturbations W s.t. iW is not a symmetric operator, so we consider the case
where iW is only symmetric hyperbolic (namely that YW + W* is an operator
of order 0, see Definition 23] below) and, in order to get information on the
behavior of the solutions, we study also the case where it has some additional
structures, namely reality and reversibility (see Definition [Z3] below). In this
case we also get the stability, namely all the Sobolev norms of the solutions of
the equation (L)) stay bounded for all times. Note that by Corollary 2 in
the non-reversible case, one can construct solutions whose Sobolev norms go to
infinity.

There is a wide literature on the dynamics of time periodic or quasiperiodic
Schrodinger type equations, starting from the pioneering works [Bel85) [Com8&7]
(see also [DS96]). Concerning the problem of reducibility, we just mention
[Kuk93l, [BGOIL [LYT0], in which the classical methods developed in KAM theory
(in particular [Kuk87, [Kuk97]) have been adapted and extended in order to deal
with the case where the unperturbed equation has order n and the perturbation
is of order 6 < n—1. All these results are for equations in one space dimension.

The breakthrough for further developments was obtained in [BBM14], devel-
oping ideas introduced in [IPT05]. The strategy introduced in [BBM14] is based
on the usage of pseudo-differential calculus, which allows to reduce the order of
the perturbation, before applying reducibility schemes based on KAM theory.
In particular their method allows to reduce the original problem to a problem in
which the perturbation is a smoothing operator of arbitrary order. These ideas
have been applied in the field of KAM theory for one dimensional PDEs by sev-
eral authors (see [BBM16a, [BBM16b, (P15, [BMT6, Mon17al [Bam18, Bam17])
and the extension to some particular models in more than one dimension has
also been obtained [BGMR18, MonlT7a).

The idea of using pseudo-differential calculus in order to conjugate the orig-
inal system to another one with a smoothing perturbation has shown to be very
useful, also in control theory, see [ABHKI1S| [BFHI7,[BHMI8] and in the problem
of estimating the growth of the Sobolev norms [BGMRI17, Mon18| [Mon18a].

Actually, the methods developed in [BGMR17] are the starting point of the
present paper.

The second kind of ideas on which we rely were developed in [BBHMI17]
(and extended in [Monl7a]) where the authors developed a reducibility scheme
for smoothing perturbation of a system whose frequencies fulfill very bad non-
resonance conditions (see eq. ([[3) below). The idea is that the smoothing
character of the nonlinearity can be used to recover a smoothness loss due to
the small denominators. In [BBHMI7], the method was applied to the case
where the frequencies of the linear system grow at infinity like w; = Y% jeN.
Here we adapt the scheme to the case where the differences between couples of
frequencies are dense on the real axis.

We recall that previous reducibility results in higher dimensional systems
have been obtained only in cases where the frequencies of the unperturbed
system have a very particular structure [EK09, [GP16] so that the more or less
standard second order Melnikov conditions can be imposed blockwise.



The paper is organized as follows. In Section [2] we state precisely our main the-
orem. In SectionBlwe conjugate the vector field of the equation (ILI)) to another
one which is an arbitrarily smoothing perturbation of a diagonal operator. The
reduction to constant coefficients of the highest order is implemented in Section
B (following [FGMP18]).

In Section we reduce to constant coefficients the lower order terms up

to an arbitrarily smoothing remainder (following [BGMR17]). In the present
paper, such a procedure is implemented by assuming only that the remainders
arising at each step are symmetric hyperbolic.
In Section Fl we perform a KAM-reducibility scheme for vector fields which are
smoothing perturbations of a diagonal one, by imposing second order Melnikov
conditions with loss of derivatives in space (see Theorem [£])). Note that the
final eigenvalues )\goo), appearing in the definition of the set (£54]) (on which
you get the diagonalization) have an asymptotic expansion of the form

A§OO) =i® .4 2(4) + O(e(4)~2™) (1.2)

for some m > 0 large enough, where v(°) is a constant vector, z is a Fourier
multiplier of order 1 —¢. The fact that z is a pseudo-differential operator is
used in the measure estimate of Section [£5] in particular, in Lemma to
obtain the estimate |z(j) — z(j')| < €|j — j'| for any j,7’ € Z¢. In ([L2) all the
quantities at r.h.s. also depend on the parameters (w, v, ¢).

We point out that the nonresonance condition we assume is

2y
iw - 14 M) p\le0)) >
w1+ A b = )y

Gy
correspondingly the set of the parameters in which we are able to prove re-
ducibility is the set of the (w,v) s.t. (I3) holds.

Finally, in the appendix[Al we collect some properties on flows of Pseudo-PDEs,
Egorov type theorems and norms that we shall use along our reduction proce-
dure.
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2 Statement of the main result

In order to state precisely the main results of the paper, we introduce some
notations.
For any s € R we consider the Sobolev space H*(T¢) endowed by the norm

W=

Julles = (3 ©*1a(€)?)

gezd

where (€) := (1 + [€]2)2 and @(€) are the Fourier coefficients of u. Given two
Banach spaces X, Y we denote by B(X,Y") the space of bounded linear operators
X — Y equipped by the standard operator norm. If X =Y, we simply write



B(X) instead of B(X, X).

In the following, given «, € R, we will write o < S if there exists C' > 0
(independent of all the relevant quantities) such that o« < C'8. Sometimes we
will write & Ss,,..s, B if C depends on parameters si, - - , Sp,

We will use the following classes of pseudo-differential operators:

Definition 2.1. Let m € R. We say that a C* function a : T4 x R* — C is
a symbol of class S™ if for any multiindex o, f € N there erists a constant
Ca.p > 0 such that

10207 a(x,€)] < Cap(©™ 11, V(x,&) € T? x RY. (2.1)

A symbol a defines univocally a linear operator A acting as

Alu](z) == Z a(z, £)u(&)e™s Yu € C*°(T?),

gezd
that we denote by A = Op (a).

Definition 2.2. An operator A is called a pseudo-differential operator of order
m, namely A € OPS™, if there exists a € S™ such that

A = Op(a).

The constants Cy g of Definition 2] form a family of seminorms for S™ and for
OPS™.

In the following, we will consider pseudo-differential operators depending in
a smooth way on the angles ¢ € T" and in a Lipschitz way on the frequencies
W= (w,v) € Qy C Q. We will denote them by Lip (Qg;C> (T"; OPS™)).

We finally state some properties that we will assume to hold on our system

(CI):

Definition 2.3 (Structural hypotheses). (i) We say that R € B(L*(T%)) is
a real operator if it maps real valued functions into real valued functions,

namely
u € L*(T% R) = R[u] € L*(T%R).

Equivalently, we can say that R _is a real operator if R = R where the
operator R is defined by Ru] := R[u], u € L*(T?).

(ii) Let ¢ — R(p), Q(p) be smooth p-dependent families of real operators
™ — B(L2(']Td)); we say that R is reversible if

R(p)oS=-=SoR(—p), VepeT" (2.2)
where S is the involution defined by
S LA(TY) — LT,  u(x) — u(—2). (2.3)
On the other hand, we say that Q is reversibility preserving if

Qp)oS=509(—yp), VeeT". (2.4)



(iii) We say that R € OPS! is symmetric hyperbolic if R + R* € OPS°.

We will also consider the case where V is even, namely one has

V(*% 71‘) = V(‘Paz) .

Define the constant n
80 i= [5} Tl (2.5)

This paper is devoted to the proof of the following result.

Theorem 2.4. Let V € C®(T" x T4, R%), W € C*® ('H‘“;OPSl_e) and assume
that W is symmetric hyperbolic. Then for any s > sg, o > 0 there exists
e* > 0 such that Ve < e* there exists a closed set Q2. C Q of asymptotically
full Lebesgue measure, i.e. limg_o|Q\ Q| = 0, such that the following holds:
V@ = (w,v) € Q. there exists a linear bounded and invertible operator U(p) =
U(p;w) € B(H?), ¢ € T" such that, if u solves ([III), then v defined by u =
U(wt)v solves

O = Hoov, (2.6)

where
Hoo = diag(\™ (@,¢)) (2.7)

Furthermore, the eigenvalues {A§w)(®,5)}jezd have the structure
(00) / ~ _ (0 . . .—m
A @,6) = ) 4 2() + O™ 2.3

with z(.) € S1=¢ which is also dependent in a Lipschitz way on &, and v(©) =
O (&) which fulfills
‘y(o) - 1/‘ <Ce.

Finally, if the following assumption holds
(Sym) V is even and W is real and reversible ,
then A\ € iR ¥ j € Z°.

From the theorem above we can deduce information concerning the dynamics
of the PDE (I).

Corollary 2.5. Under the same assumptions of Theorem but not (Sym)
only one of the following two possibilities occurs

(1) All the solutions of (1)) are almost periodic and
uo € 17 = Ju(t,)ne S uollwe (2.9)
uniformly w.r. tot € R.
(2) There exist a,C > 0 and some initial data ug s.t.
lu(t, Yoo > Ceflug|lao (2.10)
either fort > 0 or fort <0 or fort € R.

We remark that under the assumption (Sym) only possibility (1) occurs.



3 Regularization up to smoothing remainders

In this section we conjugate the vector field
H(p) == (v+eV(p,a)) - V+eWO(p), Wweops'— (3.1)

to another one which is a smoothing perturbation of a time independent diagonal
operator.

First remark that a time dependent linear invertible transformation u = ®(wt)u’
transforms the equation 4 = Hu into the equation @' = H'u/, where

H' = @ H = () [HB(p) — - 0,9(p)] -

Definition 3.1 (Lipschitz norm). Given a Banach space (X,| - |x), a set
Qo C Q= [1,2]"" ~ >0 and a Lipschitz function f : Qy — X, we denote by
I| - ||];(lp(7) the Lipschitz norm defined by

Li 1i
FISPO) = | FlI5e ) £,

~ li Hf@l) *f@2)”X 3.2
1P 2= sup [F@)x, [FI1P = sup L =\ N CE)
WEN w1,w02E€R0 |W1 _W2|
(:I175£1§2
In the case where v = 1, we simply write || - |'X° for || - ||];(ip(1). If X = C we
. s s Li 1i
write | - [WPO [ [s9P | (1D for || - | EPOY ) jsee i,

3.1 Reduction to constant coefficients of the highest order
term

We consider a diffeomorphism of the torus T¢ of the form
T 5T 2+ a(p,z)

where a € C®°(T" x T4 R?) is a function to be determined. It is well known
that for ||a||c1 small enough such a diffeomorphism is invertible and its inverse
has the form

T - T,y y+ale,y)

with & € C>°(T" x T4, R%). We then consider the transformation
A(p) s u(z) = ulz + a(p,z)), @eT" (3.3)
whose inverse is given by
Al) ™ ruly) = uly +ale,y), T (34)

A direct calculation shows that the quasi-periodic push-forward of the vector
field H () is given by

HO(p) = AuH(p) = VO(p,2) - V + WO (p) (3.5)

where

VO (p,2) = A(p) " (w- pa v +2V + (v+eV) - Va)

(3.6)
WO (p) = Alp) " W(p)A(p) .



The following proposition is a direct consequence of Proposition 3.4 in [FGMP18)]
to which we refer for the proof. It allows to choose the function a(yp, x) so that
the highest order term V() (g, z) -V in (@.3) is reduced to constant coefficients.

Proposition 3.2. Letvy € (0,1) and 7 > n+d. There exists a Lipschitz function
00 = RYE G vO(Q) (where we recall that Q := [1,2]"9) such that

(@) — [P e, (3.7)

and, in the set

Qo = {w €Q: |w-l+v0®@)j| > 7 Z‘V V(1 4) € ZvH\ {o}} . (3.8)
the following holds. There exists a map
a: T x Qp ., — R?, (3.9)

so0 that the map T4 — T (o, 1) = (p,2 + alp,x)) is a diffeomorphism
with inverse given by (p,y) — (v,y + a(e,y)), furthermore

lalls®™ S el llallsP?) So et Vs> 0. (3.10)

Moreover for any & € Qg VO reduces to a constant (as a function of x and
), namely

VO = A-1(y) (w Dpa+v+eV+ (vteV)- Va) =O0@).  (3.11)

Finally, if V is even, then a and a are odd.

Remark 3.3. By standard arguments one has |Q\ Qo~| S v. More precisely,
on the one side one has that vectors which are Diophantine with constant v have
complement with measure of order vy, and on the other, Lipschitz maps preserve
the order of magnitude of the measure of sets.

Remark 3.4. Using the definitions B3), B4) and the estimates (39), BI0),
a direct calculation shows that the map T" — B(H?®), ¢ +— A(p)T! is bounded
for any s > 0 and

sup [A(P) ™ = 1d|| s 200y Ss 715 Vs >0,
e

suﬂp ||8$A(<p)i1||3(ﬂs+\a\ﬂs) Ssa €YY, Vs>0, VaeN".
e

Recalling (33), (3:6) and applying Proposition one gets that the vector
field H(® () takes the form
HO (@) = .V 4 WO () (3.12)
We now study the properties of W(©),

Lemma 3.5. One has that W ¢ Eip(ﬂomcm ('IF“,OPSl’°)). Moreover

WO s symmetric hyperbolic. Furthermore, if V is even and W real and re-
versible, then W is real and reversible.



Proof. Let ®(p) := A(p)~!, ie. ®(p)[ul(y) = u(y + a(p,y)) and for any
7 € [0,1] we consider ®(7,p)[ul(y) = u(y + 7a(p,y)). Let ¥(1,¢,y) =
®(7, ¢)[u](y), then (0, ¢, y) = u(y) and

~ 1~

O =a(r,0,y)- V¢, a(r,¢,y) = (Id+7Valp,y) ale,y). (3.13)
Then by the Egorov theorem (see Theorem A.0.9 in [Tay91]) it follows that
WO ¢ Eip(Qoﬁ, c> (T", OPSH)).
We now show that W is symmetric hyperbolic. Since by @), @I0) the
functions o, @ = O(ey~1) one has that

det(Id + Vo), det(Id + Va) >0

1

for ey~! small enough. Moreover, using that y — y + @(y) is the inverse
diffeomorphism of z — x + a(x) one gets that

1

det(Id a = . 3.14
¢ ( * va(y)) det (Id + Va) |m:y+&(y) ( )
A direct calculation shows that
A* =det(Id+Va)A™", (A7")* =det(ld+ Va)A.
Then
(W(O))* — (A71WA)* — A*W*(Afl)*
= det(Id + Va) A~ '"W*det (Id + Va) A
= det(Id + V&) A~ 'det (Id + Vo) W* A
+ det(Id + Va) A~ [W*, det(Id + Va)A. (3.15)

Since W* € OPS'~¢ one has that the commutator [W*, det(Id + Va)] €
OPS~ C OPS°. Using that A(p)~! = ®(p) is the time 1 flow map of the
PDE ([BI3), by applying the Egorov Theorem A.0.9 in [Tay91], one gets that
det(Id + Va) A= W* | det(Id + Va)]A € OPS°. hence

W) = det(Id + Va). A~ det (Id + Va)W* A + OPS°

= det(Id + Va)det (Id + Va) [,y a0, A~ W A+ OPS°

GBI 41w A 1+ oPs°. (3.16)
Finally, using that W is symmetric hyperbolic, i.e. W + W* € OPS°, by
BI4) and applying again the Egorov Theorem A.0.9 in [Tay91] to deduce that
AW + W*)A € OPS° one gets that W(© 4 (W(©)* € OPS°. In the real
and reversible case, one has that WV is a reversible operator. By Proposition
B2 one has that «, & are odd functions, implying that A, A~ are reversibility
preserving operators. Hence one concludes that W(® = A=1W.A is a reversible
operator. O



3.2 Reduction of the lower order terms

The reduction of the lower order terms is contained in the following result,
which is an adaptation of Theorem 3.8 of [BGMRI17] to a symmetric hyperbolic
context.

Theorem 3.6. ¥V M > 0 there exists a sequence of symmetric hyperbolic maps
{G(@, @)}, with Gj(p, @) € Lip (Q,,;C> (T OPS'~3%)) such that the change
of variables ¢ = e~ ¢C1(¥:9) ... =G (9D ¢ transforms Hy + W) () into the
operator

HM () = Hy +eZ™M (@) + W™ (p, ), (3.17)

where ZM) is a time independent Fourier multiplier, which in particular fulfills
ZM K,]=0, m=1...,d, (3.18)

and
ZM\(@) € Lip (Q,,; OPST™*),

W(]M)(gp,(:j> S E’Lp (QOW;COO(T“; Opsl—]\/fe)) .

Furthermore, if W) is real and reversible, then ZM) W) gre real and
reversible too.

(3.19)

We now prove such theorem.

Denote K; =i0;, j=1,...,d,then Ky,..., K, are self-adjoint commuting
operators such that K,,, € OPS* ¥m = 1,...,d. Define K = (Ki,...,K;). The
main step for the proof of TheoremB.Glis the following lemma, which is a variant
of Lemma 3.7 of [BGMR17]:

Lemma 3.7. Let W € Lip(Qg ;C® (T*; OPS™)), be given and consider the
homological equation

w-0,G+ [Hy, G] =W — (W) (3.20)
with )
o T K —ir-K .
(W) = @r)rrd /W/ne We dp dr ;

then B20) has a solution G € Lip (Qo,;C> (T OPS™)).

If W is symmetric hyperbolic, G is symmetric hyperbolic. Moreover, if W is real
and reversible, G is real and reversibility preserving; if W is anti self-adjoint,
G is anti self-adjoint.

Proof. Define V7 € T¢ . .
W(r) =T EKWe im K
then we look for G s.t. _ _
G(T) = ez‘r-KGefz'r-K

solves

w - 0,G(1) + [Ho, G(1)] = W(r) — (W) VTeT (3.21)
observing that since G = G(0), W = W (0), solving equation (3.21)) V 7 implies
having solved ([B.20).
Note that Vn e R, V A € OPS" the map

[-1, 1] > 7 e T KA € ¢ (T? 0PS") (3.22)



(see Remark [A5] of the appendix). We make a Fourier expansion both in ¢ and
T variables, namely

Wa(p,7) = Z Z Wia(@)e'# ™", (3.23)

kezZd lezZ

and similarly for G. A direct calculation shows that

) = T (0 8) G
k, 1

Thus, taking the (k,!)—th Fourier coefficient of equation ([21]), one has
i (w NEON k:) Gu =W if (k1) # (0,0), Goo = 0.
For |k| + |I| # 0, define

Wi

O T R

then, by regularity of the map (¢,7) — W(p, 7) all the seminorms of the op-
erator Wy, decay faster than any power of (Ik| + |I]), and since the frequencies
belong to Qg (cf. @), it follows that the seminorms of the operator G
exhibit the same decay; hence the series defining G(7) converges absolutely and
G =G(0) € C= (T"; OPS").

Lipschitz regularity with respect to @ = (w,v) € Qg follows observing that
given (w1, 1), (w2, v2) € Qg 4, one has that

(w1 —wa) -1+ (Z/(O)(wl, V) — v(0) (wa, 1/2)) -k
(w1 - 14+ O (wy,v1) - k) (w2 - 1+ O (wa, 1) - k)
Gri(wr) — Gri(w2)
i(wa - L+ v (we, 1) - k)

Gri(w1) — Gri(wz) = Gr(wi)

using the fact that the map (w,v) — v(©)(w, v) is Lipschitz (see Proposition B.2))
and the diophantine estimate required in (3.8).
SYMMETRIC HYPERBOLICITY: We observe that

WAW* = e WKW (r) + W* (1) ™K, G+G* = e ™K (G(r) + G*(1)) K.
Hence W (resp., () is symmetric hyperbolic if and only if W(r) (resp., G(7))

is symmetric hyperbolic.
Thus, arguing as before and being

—

W)y = W—kﬁz Vkez lezn,

it follows that if V k € Z¢, | € Z" /Wk,l + /W,kﬁ,l are the Fourier coefficients of
an operator in OPS°, then

Wit + Wk

Gra+Gopog =~ ol
kit Gk -1 iwitv-k)

10



are again Fourier coefficients of an operator in OPS°.

REVERSIBILITY: We apply Lemma of the Appendix to deduce reversibility
of W and we observe that an operator A(r, ) is reversible (resp. reversibility
preserving) if and only if, developing in Fourier series as in (8:23)), its coefficients
satisty

A\kl oS=-So A\_k_l (resp. A\kl oS=3S8o A\_k_l) ,
sothat V k € Z4, 1 € Z*,
- Wi 0 8 —SoW__ ~
leOS: il = ° ol :SOGfkfl.

iw-l+v-k)  —(w- (=) +v-(=k)

Hence G, and thus G, is reversibility preserving. (See Lemma [A6])
REALITY: Reality condition in Fourier coeflicients reads

—~

Ap=A_1 4

We apply Lemma [A.6] again to deduce that reality of W (resp, G) is equivalent
to reality of W (resp, G) and we compute

G = Wi _ Wi =
le - i(w -l—l—l/-k?) - —i(w- (—l) Y- (—k)) = G—k—l-

O
Proof of Theorem[3.6l Fix M > 0. We prove by induction that Vj = 0,..., N—1
HY(p) = Hy +eZD(@) + eWD (p, )
is mapped by the change of variables
u = e eGP0y (3.24)
into
HYUY(p) = Hy 4 eZUD(@) + eWUHD (0, @),

with
20D (5) e Kip(QON;COO(T“; OPSH)),
(3.25)
WU € Lip (50 (T OPS'=UTD9) )

WU+ symmetric hyperbolic and ZU+1) (%) a Fourier multiplier commuting

with all the K,,.

If j = 0, the hypotheses are satisfied for Z(*0) = 0, WO =W € Lip (Qq,,;C=(T"; OPS*~*)).
Suppose now that HU) satisfies the required hypotheses; the change of coordi-

11



nates (324) maps HY) into

HUY (0. @) = Hy + 29 (@) + e(WW)) (3.26)
te (—w-awcj + [Ho, Gj] + WY (p, &) — <W(”>) (3.27)
165G (0@ [ e—eCile:®) _ e[Ho, G} (3.28)
+ £e°Gi(#0) 70) (5)e G (# @) _ 70 () (3.29)
+ gefGi (@0 (9) (p, d))eiEGi(”":’) —ewli) (o, @) ( )

_ e /1 e~ 90Dy 9,G (9, 0)e P9 ds + ew - 8,G.
0 (3.31)

From Lemma[37it is possible to find an operator G; € Lip (Qo,w; C>(T™; OPSlfje))
such that G; is symmetric hyperbolic and ([3.27) equals zero. Since Lemma [A7]
of the Appendix entails that

B23) € Lip (Q,4;C> (T 0PS'~2°)),
B29) € Lip (Q0:C (T O0PS!-UTD9) ),
B30) € Lip (Q,4;C> (T 0PS'~2°)),
B31) € Lip (Q,4;C> (T 0PS'~2°))
if we define
ZUT)(@) .= 29 (@) + (W)Y,
WU (p,@) = BZ8) + BZI) + B30) + B30,

we have WU (o, &) € Lip (QON;C"O (']T"; OPSl—(j+1)E)) .

We observe that [328)) is of order €, as can be seen performing a Taylor expan-
sion of the operator e=¢%i(®:®) FefGi(#:¥) a5 in Lemma [A4] of the Appendix.
Reality and reversibility of WU (p, &) follow from Lemma [AT] whereas sym-
metric hyperbolicity of WU+ (p, &) follows from Lemma A7l O

(3.32)

Remark 3.8. Forall j =1, ..., M we have e%i € B(H?) V o, and
€57 = 1d|| 510, o500y S ellGjllseaze mo-a-s)-

Furthermore, from Lemmald 1, V o € N we have
8368Gj cB (Ha, ’Hﬂf(lfﬁﬂa‘) .

Note that, since ZM) € Lip (QM; oo (T™ OPSH)) then Z(M) = Op(2(€))
with 2 € ,cz‘p(Qoﬁ;COO(T“;Slfe)). Hence dz € Eip(QO,W;COO(’]T“;S*e)) and

the following estimate holds

sup (€)7 [z, sup (€)' ¢[dez (€, )P S e (3.33)
£ERY £ERE

Concerning the second of ([B.33]), we remark that we will only use the fact that
|0c2(€, )| is bounded.
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4 Reducibility

4.1 Functional Setting

Given a linear operator R : L%(T%) — L%(T%), we denote by Rgl its matrix
elements with respect to the exponential basis {e¥/'* : j € Z9}, namely

R’ ::/ R[eV"*) e V" dx . V5 €27,
Td

J

We define some families of operators related to R € B(L?(T9)) that will be
useful in our estimates:

Definition 4.1. Given 8 > 0 and R € B(L%*(T?)), we define the operator (V)? R
as

(V)’R)} = {j - §)°R].

We remark that this operator is useful since, for any operator R and any
function u, one has
VRu = RVu+ [R; V]u

and
[R; V]~ (V)R .

Definition 4.2. We consider the space
B (H 1) == {R € B(H™, H)| |R|ES,, < +oo},

(IRIZS,)? =3 S (k)2 | RE 2(k) 2.

kezd k' eZ?

with

We consider operators R(y) depending on the angles ¢ € T", with R €
H? (']T"; BHS(H‘”,H”?)) . Thus we define the time Fourier coefficients of R :

viez" R(l) is the operator with matrix elements

Ao L i’ il
(R = (%)n/“}zj do. (4.1)

Definition 4.3 (Class of operators). Given s,o > 0, we consider the space
MG, 5, = H (T BIS(HT H?)), (4.2)
endowed with the norm
IRla, = (Do 0= (IROIZS,)?) (4.3)
lezn

Definition 4.4 (Higher regularity norm). Let Qo C Q and R € Lip (Qo, M
Given 8 > 0, if R(®) is such that

R(@) € Lip (Q; ML), (V)P R(@) € Lip (Qo; M

01,02

01, 02)'

o1, 02) )
we define

Li Li Li
IRIGE, = IRILE,, +I(VRIL, . (4.4)

13



Definition 4.5 (Cutoffs). Given an operator R : L*(T¢) — L2(T%), for any
N € N, we define the projector ty R as
{R;?' iflj— ' <N

(nvR)] = (4.5)

0 fli-JI=N
and we set iR := R —nnxR. For R: T" — B(L*(T%)), ¢ — R(p), we define
IINR as
INR(p) = Y wnR(l)e’?. (4.6)
l1I<N
We then set H R:=R—-1IINR.

In the following lemma we point out a key estimate for the remainder Iy R
of an operator R :

Lemma 4.6. Let R(®) € MS @ e Qo C Q. Then for any N > 0,

01,027
IMNRIRE o IINRISE  <IRIRE - (4.7)
T2 1
Moreover, let 8 > 0 and assume that R(~) e M5, (V>BR(JJ) € M .,
& € Q. Then, for any N € N, one has IIx R(&) € M3, 5, and
N RIRE < N- ﬁHRHLlp (4.8)

Proof. Estimate (£1) is a direct consequence of the definitions [@3)-(L6). We
prove estimate ([AL8)). By (&), [@G]), one has
Iy R(p ) = Rin(p) + Ran(0),
Rin(p) = > 7hRWE™, Ron(p):= Y R)ele.  (49)
[1|<N |t|>N

We estimate separately the two terms in the above formula.
ESTIMATE OF R n. For any ¢ € Z", one has

2 ~ .
(% ROIZS,) = > 1RO PRy ()2
kK ezt
|k—K'|>N

< NS (e KPP RO PR )
kK eZd
= N (9P ROIES,,)
Therefore, recalling (€3], one gets the estimate
< N2V Rl|am;

01,02

Ry, [l at (4.10)

71,92

ESTIMATE OF R n. The operator Ry n can be estimated as

(IRenlne,..) = 3 @2 (I RIS,

|l|>N

< N7 ) (1| RJES,,)

lezn

2
_ N2 .
N (IRlegs,)

14



implying that
|Revliang, ., < NPURI ugsrn - (4.11)

The claimed inequality then follows by (£4), (£9), (£I0) and (@IT). O

4.2 Diagonalization

Fix M > 0 and consider the matrix representation of the regularized operator
HM) of Theorem 3.6 namely

AO + Po(gﬁ), AO = DO +Z (412)

where Dy, Z and P, are the matrix representations of v(*)(@) - V, eZ() and
W) respectively.

Since v .V and Z(M) depend only on V and not on the x variable, their
associated operators Dy and Z remain diagonal if we pass to Fourier variables,
so that we deal with the sum of a diagonal operator Ay = Dy + Z and a
perturbative term Py () whose dependence on the angle ¢ we want to eliminate.
More precisely

Ao = diag;eza )V, A =@ 542 ()) (4.13)

where we recall that z € Lip(Qg,; OPS'~%). Before to state the reducibility
theorem, we fix some constants. Given 7 > 0 we define

a:=121+7, pf=a+1l, m:=21+2 (4.14)

Moreover, we fix the scale on which we perform the reducibility scheme as

3 k
Ny, = NO(Z) VkEeN, N_;:=1 (4.15)
where for convenience we link Ny and ~ as
No =71 (4.16)

where + is the constant appearing in the definition ([B.8)) of the set {2  (see also
(#£22) in the theorem below). We also fix the number M of regularization steps
in Theorem [3.6] as

M :=2m+28+[d/2]+1. (4.17)

Remark 4.7. By Theorem[38 one has that Py = eWM) € C>(T"; OPS~—M).
Since by @IT), M > 2m+ 28+ 2, by applying Lemma[A-1j, one has that

||P0||§;%7m,”m : ||P0||$sz . Sso €, Vs>0, Yo>0. (4.18)

Theorem 4.8. (KAM reducibility) Consider the system BIT). Let v €
(0,1), 7 > 0. Then for any s > [n/2] + 1,0 > 0 there exist constants Cy =
Co(s,0,7) > 0 large enough and § = §(s,0,7) € (0,1) small enough such that,
if

N{e <6 (4.19)

then, for all k > 0:
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(S1), There exists a vector field

Hi(p) == Ax + Prlep), €T, (4.20)

Ay, = diagjez A", AP (@) =2 @) + 0P (@) (4.21)
defined for all @ € Oy, where we set Op = Qo (see BI)) and for
k> 1,

Opryi=qw = (w,v) € Of_ i - 1+ AR Y (@) — AED (g 2%
b = {8 = @,1) € Opmry 1| F@) - XTV@N 2
V(l,5,7) # (0.4 5), 15 = < Nt (4.22)

For k >0, the Lipschitz functions O~ — C, @ — pg»k)((b), j € 74 satisfy

-\ 2m k i
sup (j)2" S |HP S, 0 e (4.23)
JjEZ4

There ezist a constant Cy, = Ci(s,0,8,7,m) > 0 such that

IPlRE S ONZfe Pl < CuNj_1e.  (4.24)

o—m,c+m

Moreover, for k > 1,
Hk(cp) = ((I)kfl)w*kal(gD) s Gp_q1:=1d+ Xp_1 (425)
where the map Xi_1 satisfies the estimates

Li 42 -0
||Xk_1||M%im,gim s NN e (4.26)
Moreover, if Py(p) is real and reversible, for any k > 1, Px(p) is real and
reversible and

AP eiR ) ezl (4.27)

(S2), Forall j € 74, there exists a Lipschitz extension to the set Qo,~ defined
in (B8], that we denote by )\;k) : Qo = C of )\;k) : O,y — C satisfying,
fork>1,

N (k N (k—1)|Li -\ —2m Li N\ —2m AT—a
N = XTI S G PallRL See (DTN Ge L (4.28)

()
J
admits a limit

We remark that (S2), will be used to construct the final eigenvalues A
(k)
J
on )y 4 and then to use the final value /\SOO) in order to define the set in which
reducibility holds (c.f. eq. (£54).

The procedure will be to show that as k — oo, the sequence A

4.3 Proof of Theorem [4.8

PRrROOF OF (Si),, i = 1,2. Properties {{20)-(@.24) hold by setting p§0) =0 for
any j € Z% N_; := 1 and recalling the estimate (ZIS).
(S82), holds, since the constant )\5-0) is already defined for all @ € Qg and

in the real and reversible case it satisfies )\5-0) € iR in force of Proposition

Thus we simply set pgo) =0 for any j € Z%.
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4.3.1 The reducibility step: proof of (Si), ,,i=1,2.

PROOF OF (S1); ;.
We now describe the inductive step, showing how to define a transformation
@y, := Id + X}, so that the transformed vector field Hy11(¢) = (Pk)wsHr ()
has the desired properties. If we perform a change of coordinates of the form
u' = Op(p)u, Pr(p) = Id + Xi(p) one has that Hi11(p) = (Pr)wsHi(p) takes
the form

Hy1(9) = Ar + Pu(0) ™" (In, Pr() + [Xi(9), Ar] = w - 9, X1 ()

+ @5 () (I, Pu(p) + Pu(0) Xk ()

We look for a transformation Xj(p) solving the homological equation
TN, Pi(p) + [Xi (), Ak] — w - 0, X1 () = Pi (4.29)

where P, is a diagonal operator. Then we set

AR = Ay + Pp,  PM =TIy Po + PuXe + (9" — 1d) (P + 1y, P + P Xk)
Py := ding;cz(Pe) (0).
(4.30)
By formula (£30) one obtains that
Ak‘-‘rl = diagjezd)\;kJrl)
where for any j € Z¢
)\(-kH) = )\(k) —|—P 0 =i . j+ez(j) + (k+1)
(O = - j +22(7) + 1 )

k k j
p§ e —p§)+P(O) .

In the real and reversible case, since Py is real and reversible, by Lemma [A.8 one

has ﬁk(O) € iR, and since )\(k),pg ) € iR then one has that )\(kH) p(.k“) € iR.

By the definition ([@31]), applying Lemma [AT5 and using the estimate (@24,
one gets that for any j € Z4 for any i € {0, 1, ook}

il )L i+1 i) |Li D i
A = AP = [ = g = |(By)5(0) M

m Li N\ —2m AT—
S 7Bt Sso (1) 2N e (4.32)

~
—m,c+m

We now verify the estimate (@23 at the step k + 1. By using a telescoping

(0)

argument, recalling that p;”’ =0 for any j € Z%, one gets that

(m) >
DL < Z |l — plD i < §)7*me» NG T2Me (4.33)

i—
=0

since the series > N,_9 is convergent (see (£15)). Hence ([@.23) is verified at
the step k + 1.

In the next lemma we will show how to solve the homological equation ([£.29).
This is the main lemma of the section.
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Lemma 4.9. Let m > 27 + 1. Then for any & € Ogy1, (recall @22)), the
homological equation

[Ag, Xi] + w - 0, Xy, = 1IN, Py — Py, (4.34)
with . o
Py, = diag;eza Pi(0)] (4.35)
has a solution X defined on Oy~ and satisfying the estimates
Xl SNETRIRE (4:36)
VPXalEe, S NTRIPRIER (437)

Furthermore, if Pi is real and reversible then Xy is real and reversibility pre-
serving.

Proof. To simplify notations, here we drop the index k, namely we write A, P,

X, Aj, p; instead of Ay, Py, Xy, A§k), pgk). Taking the (j,j’) matrix element

and the [—th Fourier coefficient of (£34]) we get:
(iw-1+ A —Ay) X =P #0<|j—j| <N, 0<[[|[<N
)A((l)gl =0 otherwise

Since @ € Og41,, one has

PO T
|X(l);|g| ()jIIJVI 31711 | (4.38)

hence o, o,
ROT LSy P31 Gy (6 +15 = 17)

<P INTGYT (6T N7) (4.39)
SR INT G

Similarly, one gets

T —11 B\ | N2T [ 5\ 27
(X (D5 [ S A7 P@7 INTT(G) (4.40)
Thus, recalling that 7 < m, (see (.14)) the norm || X[z, . - is estimated
by: 7
2 v i’ \—2(c+m
(Xt ) = D@2 30 X ()24
lezn 7,5’ €zd
SN SR G B P e
lezn j,jIEZd
<IN YYD G P [ e
lezn j,jIEZd

2
= ’}/_2N4T (”PHMifnL,d#»WL)
(4.41)
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Similarly, one obtains

2 2
(1 0as ) 272N (1P ) (4.42)

o—m,oc—m

To estimate the norm of the operator (V)% X, we argue as in ([E39), [@40) to
get

G =PIXWF S NTGTG -0 PW |,

G=3PIXDT S NG G = 0P ;
hence we repeat the same argument of (£41]), [@.42)) to get (A37). Concerning
Lipschitz estimates, recall that the eigenvalues A;, j € 7% have the expansion

(4.43)

X(@) = M@) + (@) = WO @) - j + 2(&,§) + ps(@) -

By 1), B33) and the induction hypotheses ([£23)) one has that for any
@1,ws € Q and any j, j' € Z4, one has

(A = M) (@1) = (N = Aj)(@2)] S ey~ 1(j = §") @ — @ (4.44)
Hence, one uses |l],]j — j'| < N, (£3])), (£44) and the inequality
|l|27—+1|j|27—|j/|27— S‘r N27—+1|j|27— (|J|2T +N27—) 5 N4T+1<j>4T

to deduce the Lipschitz estimates as usual. By Lemma [A.§ of the Appendix, if
A = diag;cza\j and P are real and reversible one easily get that X is real and
reversible too. O

The estimate ([@26]) follows from (@36) and ([@.24]). Moreover, using that by
{I4), o > 67 + 3 and by using the smallness condition [@I9]), one gets that
X <és) (4.45)
for some §(s) € (0,1) small enough. Therefore, one can apply Lemma [AT]]
implying that

@=m)
S 1Xl3E, Ss NP e

S
m,oxm

[Eram Cllrvil)

m,octm ,o+m

(V) (@t — 1) So V)P XklIRE:

m,otm m,otm N‘S”ﬁ

(4.46)
In the next lemma, we obtain key estimates for the remainder term Py defined

in (Z30).
Lemma 4.10. There exists a constant C = C(s,o0,7) > 0 such that the operator
Pi11(p) defined in [E30) fulfills

||Pk+1||%ps o < C(N4T+2(||Pk”L1P .

1P 1l0s < Ol s

o mo+m o mo+m

,ot+m ,o+m

)+ NCIRE, ),
afma«#m

(4.47)
Furthermore, if Px(p) is real and reversible then Pyi1(p) is real and reversible
too.
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Proof. By recalling the definition of Pyy; given in (£30]), using the inductive
estimates (£36]), (£37), and the estimate ([£40), by applying Lemma and
Lemma in the appendix, which gives an estimate of the product of opera-
tors, we get

Seo NITE2 (PR )’

y
|Pesa i

,o+m —m,oc+m
— Li Li
ol (R - S R
(4.48)
4742 Llp Lip Lip
1Pa I aets o Seo NN Bl PG PG
(4.49)
Li Li
V) Peallit_ . Seo VPR L
Li Li
+ N2 Byl lpa o P PRE L (450)
Recalling that |- ||Llp =|- ”I/Clszrﬁ + (V)21 5k, ,,, and summing
mo+ ,o+m o—m,oc+m
up the contribution “of #Z9), [@E50), we get
Li Li 2 - L
1Pl SNTP(IRNRE ) +Nk"||Pk||v;2fm+m,
Li Li Li Li
||Pk+1|| e SNTIRRE Pl i L M
(4.51)

Furthermore, by using the smallness condition (£I9]), recalling the definition
(#I3), using that a > 67 + 3, taking Ny large enough and e small enough one
gets that

N47-+2||P HLlp N47-+2N 15 <1

—m,o4m

and then ([A5]) implies the claimed estimate (L.47]).

Finally, if Py is real and reversible, then by Lemma [£9] the operator X (and
hence ¢, = Id + X and @;1) is real and reversibility preserving. By the
definition ([£30]), one concludes that Py41 is real and reversible. O

By Lemma [4.10] one has

. ; @z
1Pesrll50 5 < C| P52 s < CC.eNp_y < C.eNy,

o mo+m a m,oc+m

provided CNg_1 < Nj, for any k > 0. This latter condition is verified by taking
Npy > 0 large enough. Furthermore

Li T Li Li
1 P15 SONTP(IRRE ) +CONPIPE

—m,atm Wi aim
= CNF+2C22 N2 4 ON P CNy_1e < CheNg©
provided
QONPHTHIN2e <1, 20NY PN,1 <1 Yk >0.
The above conditions are verified by ([@I4]), the smallness condition ([@I9), re-
calling the definition ([@IH) and taking e small enough and Ny large enough.
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Hence the estimate (£24)) is proved at the step k + 1. The proof of (S1), , is
then concluded.

PROOF OF (S2), ;. By the estimate ([£32)), on the set O , 5<k) pgkﬂ) —

py satisfies |57 1P < (NT2IBIRE  See ()7 N for any j €
Z%. By the Kirszbraun Theorem (see Lemma M.5 in [KP03]), we extend the
function 6](-k) : O,y — C to a function 5§k) : Qo4 — C which still satisfies
the estimate |5~J(‘k)|Lip < ()72 Py ||Llp o Ssio (j)~*™ N, %e. Therefore,
(82),,,, follows by defining /3§ D= pj +g§k) and )\;kﬂ) = )\( ) A{kﬂ) (note
that )\(O) is already defined on g ). Note that in the real and revers1b1e case,
one has that p" X"+ 0,1 — iR, B AW Qo iR, 8 2 Op, — iR
and hence )\;kﬂ) , A{jkﬂ) 1 Qo4 — iR,

4.4 Passing to the limit and completing the diagonaliza-

tion procedure

By Theorem E8(S2),, using a telescoping argument, for any j € Z<, the se-

quence (A{ ))k>0 is a Cauchy sequence w.r. to the norm |- |[“P in € ., and

hence it converges to p§ ). The following estimates hold:
7 = o See DTN 0T S0 ()P (452)

(o0)

Note that in the real and reversible case, p; ™ : {9, — iR for any j € 74,

We then define the final eigenvalues )\;Oo) : Qo — C as
A= A0y ) BID 0 4 2() + P ez (4.53)
We then define
~ 00 00 2
Oy 1= {8 = (w,0) € oy ¢ liw 14 A (@) = XX @) 2 ol

V(5.5 # 0.5.4) |-

The following lemma holds.
Lemma 4.11. One has Oy € Ni>0O0k -

Proof. We prove by induction that for any £ > 0 one has Oy € O . For
k = 0, it follows by definition that O, C Qo 4 since Oy, = g . Then assume
that O,y C O,y for some & > 0 and let us show that O, € Ogt1,,. Let
W= (w,v) € O . Since by the induction hypothesis & € O, one has that by
Theorem E8(S1),, )\(k) (w) is well defined and by Theorem .8 (S2), one has

Y (k k k k 0 k
that A% (@) = AP (@ )and“§>( ) = p{ (@) (recall that A" = AP 4 %) and
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A = A9 59) . We then have that for any (1, 4, 5) # (0,4, 5), |I], |5 —4'] < N,
. k)~ k)~ . 00) [~ 00) [~ k)~ 00) /1~
fiw - 1+ A @) = AP @) > fiw - 14+ 27 @) = 2 @) - 177 @) - o @)
k)~ 00) f~
-7 @ -7 @)
() 2y B Ce
T WO N min{(), )P

provided
Ce®)™ ()" U")"
YN min{(7), (") 3>
Using that ||, |7 — j'| < Nk, m > 7 and since

(4.55)

GYG') < (G- min{(5), (7)) S (=52 +min{(j), (')}? < NE+min{(j), (')}

one gets that

TG s
— e SNET 4.56
minf(j), (e~ (120
Therefore e
Ce)™ ()"
YN min{ (), (7°) 1>
since @ > 97 (see ([I4)) and by taking ¢ small enough (see the smallness
condition ([IJ) and recall that y~1 = Np). Condition 5H) is then verified
and hence & € Op1,4. This concludes the proof of the lemma. O

<C'ey 'NYN <1

For any k > 0, W € O, we define the map

Vi, @) = Vi(p) := Po(p) 0 Pa(p) 0. 0 Pi(p) - (4.57)
Note that by Lemma [T and Theorem .8 all the maps ®x () are well defined

for & € Oug 5.

The following lemma holds

Lemma 4.12. The sequence (Vi)p>0 converges to an invertible operator Voo
in Lip (O(xw; H? (']I‘“; B(HoE™, /H"im)) and the operator VE! —1d satisfies the

estimate

+1 Lip 4142
||V°O a IdHHs (T|\7B(Haim17{aim) ’SS’U NO €

Moreover in the real and reversible case, Voﬁél is real and reversibility preserving.
Proof. The proof is based on standard arguments and therefore it is omitted (see
for instance the proof of Corollary 4.1 in [Mon17a]). The presence of N§T+2 in

front of € in the claimed inequality is due to the fact that (£28]) for k = 0 gives
@0 — Id||f\%im’aim S NJTH2e, 0
Lemma 4.13. For any @ € O, one has that Voo )w« (Ao + Po) = Hoo (recall
([AI2)) where the operator Hu, is given by Hoo = diagjezd)\g-oo). Furthermore

in the real and reversible case, the eigenvalues /\Soo) are purely imaginary.
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Proof. By ([&28]) and recalling the definition ([{X71), one gets that for any k& > 1

Vi—1)wx (Ao + Po(p)) = Hi(p) = Ax + Pi() -

The claimed statement then follows by passing to the limit in the above identity,
recalling the definition of A given in ([@2T]), the definition [£53)), the estimates

([@24), @E52) and Lemma 0

4.5 Measure Estimates

In this section we show that the set O defined in ([54) has large Lebesgue
measure. We prove the following

Proposition 4.14. One has |2\ Oco~| S 7.

Since 2\ Oco,y = (2\ Q0,4) U (20,4 \ Oco,~) and by Remark B3] one has that
I\ Qo,4| <7, it is enough to estimate the measure of the set Qg \ Os . By
the definition (£.54)), one has that

Q07 \ Ocoy = U Ry ()
(1,5,5")€Z™ x 24 x 2.2
(1,5—3")#(0,0)

Rujjr () = {&J = (w,v) € Qo : liw -1+ A§°°)(w,y) - )\;?O) (w,v)| < W&#}
(4.58)

Lemma 4.15. One has [Ry;;(7)] S (07 ()~ (')~

Proof. By (&E53), one has that for any j € Z¢

(o0) _:(0) . . (o0)
A (@, ) = 00w, ) - j + 20,0, v) + o™ (w, )

where by the estimates .7), 333), one has [(©) —|MP0) < & sup;ya [9e2(5)[P <
€. Then the map

oy — U(Qs), (w,v) = (w,vO(w,v))

is a Lipschitz homeomorphism with inverse given by U= : ¥(Qg ) = Qo.,, (w,() —
U~1(w, () and satisfying

[Tt —TdPf™ < e, U —Id|'P <eyt. (4.59)
Defining
af™ (w,Q) == A (@ w, (), jez!
and
= . o0 o0 2/7
Rijjr(v) =9 (w, () € ¥(o ) : 1w-l+a( )w,C —a'>) w, ()| < ————
30 (1) = {(@,0) € W(Q01) i 1+, 0 =, < s |
one has that _
[Rujir (V] = [Rajjr ()] (4.60)

then we estimate the measure of the set ﬁljj/ (7). The functions agoo) admit the
expansion

%) (w,Q) =1¢ - j + 20y w, Q) + % (w, ©)
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where
20(j,w,¢) = 2(, 0 w,Q)y ™ (w, Q) = (T (w, ().

By the estimate (£59)) and using the estimates ([B.33]), (£52) on z and p§°°), for

ey~ ! small enough, one can easily deduce that

sup |9 20 (G, )P Sen sup ()27 S e (4.61)
jJEZA JEZA

Since (I,j — j') # (0,0), we write

(lvj 7]‘/)

it weR™L w-(l,j-j)=0

(@,0) = (@(),¢(5)) =
and we consider
Fuigr(s) = iw(s) - 1+ a5 (w(s),¢(5)) — al (w(s), C(s))

=il(L,5 = )5 + 20, w(s),C(5)) = 2 (5", w(s), C(5)) + 77 (w(s), ¢ (5)) = 75 (w(s), (5)) -
Using the estimates (£61]) one obtains that

i (1) = fuig (2)] = (1015 = )] = Celj = | = Ce ) s1 = o

li=4"I<I(5=5")] o, 1
>0 (W=t = 3 = Ce) st = sa] 2 Gls1 = sa]

(4.62)
by taking € small enough. This implies that
’{S N ()| < o T}\ S T
OG0 OG0
By a Fubini argument one gets that |7€ljj/ WM <A~ 7(G)"7(5') 7. The claimed
statement then follows by recalling (d.60). O

PROOF OF PROPOSITION .14l By ([{58) and Lemma F.T5 one gets that

0,\Oxcr| Sy D>, OT7THTE)T Sy
lezn,j,5' €2

since 7 > max{n, d}. The claimed statement then follows by recalling that
|2\ Qo 4| S v and that Q\ Os v = (2\ Qo) U Q04 \ Oco ).

4.6 Proof of Theorem [2.4]

We consider the composition
U(SD) = V(SD) f¢) VOO(SD)) V((p) = A(QD) o e_Egl(va) 0---0 e_Egkf(l,D7ﬁ:1)’

where A(¢p) is defined in Section B.I] the maps e 9% are constructed in Section
(see Theorem [B.6]) and V. is given in Lemma T2l By Section 31l Theorem
and Lemma T3 for any & € O ~, the map U(y) conjugates the equation
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(CI) to the equation dyu = Hoou where Hy, is the diagonal operator with

eigenvalues (Agm))jezd. Let 0 < a < CLO and No := - so that the smallness

condition @IJ), i.e. N§°e < § becomes

N§oe =el=C0 <5,
which is satisfied for ¢ small enough. Since v = (;1 = €, setting Q. :=
Oco,, Proposition [4.14] implies that lim._,¢ |2\ Q.| = 0. The proof is therefore
concluded.

4.7 Proof of Corollary

By Theorem 241 for any @ = (w,v) € Q. under the change of coordinates
u = U(wt)v, the Cauchy problem

{atu — (1/ + eV (wt, z)) -Vu + eW(wt) ] uo € H7 (T (4.63)

(0, z) = up(x),

is transformed into

vo = U(0) " ug . (4.64)

O = Hoow
v(0) = o,

Using that for any & = (w,v) € ., U(p) is bounded and invertible on H? one
gets that

[ll2e So lU() Plle So I9llmes Vo € HO(TY) (4.65)

uniformly w.r. to ¢ € T".

CASE (1). If all the eigenvalues A§-°°), j € Z% of the operator H, are purely
imaginary, the solution of the Cauchy problem ([@64) satisfies ||v(t,)|lxs =
||vo||#~ for any t € R. By the estimate (£65]) and recalling that « = U(wt)v one
obtains the desired bound on the solution u(¢, ) of (EG3).

CASE (2) Let j € Z4 so that Re(A§°°)) # 0. Then for any « € C, the solution v
of the Cauchy problem (£64) with initial datum vg(z) = ae'"® is given by

(c0), .
o(t, ) = et eI

Hence, setting ug := U(0)[e'®] = ald(0)[e"*], one has that the solution of the
Cauchy problem (£.63) with such an initial datum wg is given by

ult,@) = Ulwt)ae® ™ 6] = aeh ™ U]
Recalling (£863]) one gets that

(o0)
u(t, )||le o CjeRes™ It

This gives the growth for ¢ > 0 if Re)éoo) > 0 or for t < 0 if ReA§°O) > 0. If
there exists A™ with ReA’™ > 0 and A" with ReA(™ < 0 then the solution
with initial datum ae* + Bel7* grows both as ¢ > 0 and as ¢ < 0.
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A Appendix

To regularize (L.1]), we make use of operators that are the flow at time 7 € [—1, 1]
of the PDE
Oru = G(p)u

for a given pseudo differential operator G(¢) € OPS", n < 1. An operator of
this sort is denoted by ™. Thus, we state some of its main properties. The
proof is a variant of Proposition A.2 of [MR17].

Lemma A.1. Let n <1 and G € C™ (T"; OPS") be such that G(p) + G(p)* €

OPS® and let €™ be the flow of the autonomous PDE 0,u = G(¢)u, T €

[-1,1].

(i) Then e™C(p) € B(H,H) Vo > 0.

(ii) Vo > 0, YV a € N*, 92e7%(p) € B (M, Ho~lel) .

(iii) If G € Lip (Q; C= (T™;0PS")), 0%e™%(p,w) € Lip (Q; B (K7, Ho~el=m)) Vo >
0, VaeN".

Furthermore, if G is reversibility preserving (or real), €™ is reversibility pre-

serving (resp. real) too.

Proof. Ttem (i) is a well known result. It is proved trough a Galerkin type ap-
proximation on the subspace En of the compact supported sequences {iy, }reza
such that 4, =0 if |k| > N. See [Tay91], Section 0.8, for details.

Ttems (i¢) and (i29) follow as in Lemma A.3 in [BMI6].

REVERSIBILITY PRESERVING PROPERTY: We remark that since

So0d,=0,008,
one both has
0:[S0e™ PNy =800, 0™y =80G(p)e™Pu=G\(—p)oSu
and
9:1e7¢ ) 6 Slu = G(—p) 0 S u.

Since S 0 e™%(®) and e"¢(=%) o S solve the same initial value problem for all
the functions u(z), they must coincide. Thus we can deduce the reversibility
preserving property for e7¢ (%),

REALITY: the proof of the reality can be done arguing similarly, using that

since G = G, then e7%(®) and e7G(¥) solve the same initial value problem. [

Let a:[-1,1] x T" x T? = R%, (7,9, 2) > a(7, ¢, ) be a C* function and
let us consider the transport equation

O-u=a(r,¢,z) - Vu. (A1)

We denote by ®(79,7, ) the flow of the above PDE. For convenience, we set
O(7,¢) = (0,7, ¢). The following lemma holds:

Lemma A.2. (i) For any 19,7 € [0,1] the flow ®(79,7,%) of the equation
(A1) is a bounded linear operator on the Sobolev space H*(T%) for any s > 0.
Moreover the map ¢ — ®(19, 7, ) is differentiable and for any o € N, the map
T — B(HHL H2), o 02® (70,7, @) is bounded.
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(ii) Assume that a = a(@,T,¢,x), (@,7,¢,7) € Q x [0,1] x T" x T? is in
Eip(Q, C>(]0,1] x T x ']Td,Rd)). Then for any a € N* the map

™ Eip(ﬂ, B Hal+L, Hs)), o > 82D(10, 7, &, )

18 bounded.

Remark A.3. Let A(p) € Lip(Q; C®(T";OPS™)) and G € Lip (; C=(T"; OPSM)),
withm < 1. IfV 7 € N we define

AdLA=A, AdSTA =[G, AdL Al (A.2)

then
AdjzA € Lip (9 €= (T OPS™100)) ¥ jeN.
The following simpler version of the Egorov theorem holds.

Lemma A.4. Let A(p) € Lip(Q; C®(T*;OPS™)) and G € Lip (; C=(T";OPSM)),
with n < 1 and G such that G(p) + G(¢)* € OPS°. Then

eTYAe7Y € Lip (Q; C°(T";0OPS™)).

Proof. This version of the Egorov theorem is actually simpler than the one
stated in Theorem A.0.9 in [Tay91]. The reason is that the order of G is strictly
smaller than one and hence one has the asymptotic expansion

eTGAe—TG ~ ZAJ
j=0
with A; € OPS™~ 7= (see remark [A.3)). O
Remark A.5. Note that by Theorem A.0.9 in [Tay91] one has that if A €
Lip (Q; C®(T";OPS™)), then e™ K Ae="m K 92 ('K Ae™"mK) € Lip (Q; C=(T";OPS™))
Va € N4

Lemma A.6. Given S acting as S : u(x) — u(—2x), a linear operator A(p)
satisfies the reversibility condition

A(p)o§=—=50A(-y)
if and only if A(T, ) = T K A(p)e K satisfies the reversibility condition
A(r,0) 0 S = —So0 A(—1,—).
Analogously, A(p) satisfies the reversibility preserving condition
A(p)o S =50A(-yp)
if and only if A(T,¢) = e K A(p)e™ ™K satisfies the reversibility preserving

condition

A(Ta 50) oS=S5o A(iTa 790)
Furthermore, A(p) is real if and only if A(T, ) is real.
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Proof. We only prove the statement concerning the reversibility. The statement
on reality can be proved similarly.

A direct calculation shows that €™ % 0§ = S oe K hence, if A(p) is ¢-
reversible, one immediately gets

A(Tv QO)S = 75“4(77—5 790)
Vice versa, A(T, ) 0o S = —S o A(—7, —¢) implies (for 7 = 0)
A(p) oS = A(0,p) 05 = =50 A0, —p) = =50 A(—¢).
g

Lemma A.7. Let n < 1, G € C®(T*;OPS") with G + G* € OPS° and
A € C>®(T";OPS'). Then

(1)
AdE A+ (AdEA) e OPS~R=D0=m) g | >

(ii) In particular,

(eGA67G - A)+ (eGA67G — A)* € oPSs°.

Proof. PROOF OF (i).We argue by induction: if k¥ = 1, one has
G, A] — [G*, A"] =[G, A] + [A*, G7]
=[G, A+ A*]+[A*, G+ G*| € OPS".

Assume that for some k > 1

Adi. A + (AdEA)* e opS—th=10=m)
A direct calculation shows that

AdET A+ (AdET A) =[G+ G, AdEA] — [G*, AdE A + (AdEA)Y].

Since by Remark [A.3] Adk A, (Adk A)* € OPS'~*(1=m) and using the induction
hypothesis and that G* € OPS’7 G + G* € OPSY, one obtains that Adk+1A +
(AdEtt A)* € OPS—FO—m),

PROOF OF (i7). V M > 0 one computes

Adk A (1 —s)MHL
e —sG A gM+1 4 _sG
e CAeC — A= E /0 O+ 1) e Adge ™ Ae®™.

By applying Remark[A 3] choosing M large enough such that n — (1 — M)(1 — n)
one gets that

M
Ly AdbA + (AdE,A)*

o OPSO OPSO

e CAeC — A+ (e_GAeG — A)
k=1

O

28

<0,



Lemma A.8. Let P € M5 ,, andV kK € Z*, V| € Z" let [P(O]E be

the (k,k')—th matriz element with respect to the basis {e?** | k € Z} of the
operator P(l) defined as in [@Tl). The following conditions hold:

(a) P(p) is real if and only if

(b) P(p) is reversible if and only if

[P = —[P(-1)=F;

PO = [P(-1) =% .

A.1 Tame estimates in M;

Lemma A.9. (i) Let 01,032,035 € R and let us assume that R, P are linear
operators such that
P e BHS(H™, 1?), R € BYS (12, H®), Then RP € BH5(H ', 1) with

||R,PHG‘1 g3 < HRHUQ 0‘3”7)”0‘1 o2"

(ii) Let 01,09,03 € R, 3 > 0 and assume that (V)PP P € BHS (171 H?).,
(VPR, R € BES(H72 H3), Then (V)PRP € BES(H, H3) with

V) RPIZ ., 6 VY RIS P25, + RIS o (V) PIZ,,

Proof. We prove the estimate (i7). The estimate (i) can be proved by similar
arguments (and it is actually simpler). We have that

(IKVPRPIES, V2 = 37 (k)25 (k)27 | Sk — K)PRIPE |

k,k', €74 JEZA

Spo 2 (RPN (=) + G- K IRLPE )
k.k', €24 jEZA

So D RPEE) LY L(VPR) P
k.k' €74 jezd

+ Z 203 k’ 201 Z |Rg| | )k’ |]2
k.k' €74 gezd

So D0 RPEL(V)PRY, PG Y0 )PPy PGk T
k,]EZd j,k’eZd

Y RPRLEG) R S G (VP )
,]ezd j7k—/eZd

<o (K9P RIZS,)” (IP1Z5,)" + (IRIZS,)° (K9P PIZS,)".

O
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Lemma A.10.
(i) Let s > s0, 01,02,03 € R, P(A) € M5, ,,, R(A) € Mg, ;.. Then RP(A) €
M and

01,03

Li Li Li Li Li
IRPILE <o IRIGE IPIR,  +IRISE, |IPISE

(ii) Let B > 0, s > sg, 01,02,03 € R. Assume that <V>ﬁ77(>\) € M3, 5,
(VYPR(N) € M3 Then (VYPRP(N\) € M and

02,03 " 01,03
IVPRPIGE,  Ses IVRIGE IPIGE  +IRIKE,  I9PIRE
Proof. ESTIMATE (¢). By applying Lemma M(z), one computes
5 2
(IRP)Ins, ., ) < S 02 [Z IR~ 1)1E5,, 1P >|,,1,,,2]
leZu l/eZu
2
Y lz W IR = 1) IES,, P >||0.1,,,2]
leZu l/eZu
2
+> [Z VIR =) IES, P ||01,02]
leZn l/eZu
2
< 3 - (1Re- 012, (IB)ES,,)
L'ezn
£ e (IRa-0Es) (1IP@)1ES,)
Li'ezn

= (IRlresg..,)’ (||7>HM§W)2 (IRl ) (1Pl )

To get the required estimate in Lipschitz norm, it is sufficient to decompose
(RP) (A2) = (RP) (A1) = R(A2) (P(A2) — P(A1)) + (R(A2) — R(A1)) P(A1)

and to apply the above inequality to both the terms of the right-hand side,
taking respectively

R(A2) as R, P(A2) —P(\) asP

and
R(A2) —R(M) asR, P(M)asP.

ESTIMATE (4¢). Arguing as before, one has

(9P ®RP)lnes, ) = 3 @ (L9 RPIDIES,,)?

lezr

S <Z| f’nzw(zniﬁm)

lezn l'ezp

<o X @ a- v (00PRA - 1PW)IES,)
Li'eZp

(A.3)
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where in the last inequality, we have used that

<l>23 Ss <ll>2s + <l _ l/>2s Ss <l/>23<l _ ll>2s-

By applying Lemma[A3L (i4) (to estimate ||(V)?R(I — I)P(l NIES,,) one obtains
that
(K9P RPY s, ., ) Sew 3o @2 =10 (I00PRA-1ES,) (IB@IES,,)
LI'eZp
Y - (IR 012 (1P Pw)Es,,)”
L'eZp

Sos (19 Rlses,.., ) (IPlsws, )
(IRl ) (9Pl L)
Concerning the Lipschitz estimates, as in the proof of (i) we write
(V)7 (RP(2) — RP(M)) = (V)*R(%) (P(h2) — PA) + (9)° (R(h) ~ R(M)) P(A)
and we repeat the same argument with
R(A2) as R, P(A2) —P(\1) as P

and
R(A2) —R(M) as R, P(M\)asP.
O

Iterating the estimates of Lemma [A 10l one gets for any s > sg, 0 € R,
n>1

n | L1 i i n—1
IR™ISE < Cl)"IRIXE (IIRIIL"SU) ,

Li Li Li n—1 (A'4)
V)P (RO%t,, < Cls.B)" IV RIZE (IRI%E )™

The following lemma holds:

Lemma A.11. Let s > so, 0 € R, >0 and X(\), (V)P X(\) € M5 ,. Then
there exists (s, 8) € (0,1) such that if ||X||LllD <4(s,B), then ® :=I1d+ X is

invertible and its inverse ®~1 satisfies the estimates

1ot — Tl Ss IXIRE . KW@ —I)IRE <o INV)PXIIRE
Proof. By the Neumann series one has ' —Id = Y . (~1)"X™. Then,

applying the estimates (A4 to each term X™, the claimed statement follows.
[l
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A.2 Other estimates in M?

01,02

Lemma A.12. (i) Let 01,02 € R and A € B(H7 ", H2), n > g, then

AN, Sn 1 Allseer—n 2102),

(i) Let 01,00 €R, >0, 1> %. Then if A € B(HO == H72+P) one has

V)P AN, <6 1 Allsim—a-n peaay -

Proof. PROOF OF (i). Let us consider V k' € Z¢ u(*) € 1 defined by

) KDY i b=k
u =
h 0 ifh#k:;

We have that
S (B AY PR 2 = [ Ao,
k
S HAH%S(HH*TI,HUZ)HU(]C )H’HUI*TI

= HAH%(’H‘H*W’?%Q))

since ||u*)||3yo1-» = 1. Thus we deduce that ¥V &’

D B2 AL P < (Al g e (KT, (A.5)
k

Let now u be a generic function in H* : from ([AJ5) it follows that

(IAIES,)" = 37 k2o Al P~

k,k' €74

< Z 2(01 77)||A||B(H°'l "H°2)<kl>_201
k'€zd

oo A1 rior 4o

PROOF OF (ii). Using that for any j,j' € Z4, (j — /)27 <g (j)%°+)i")?F <p
(7)28(5")28 | one gets that

(V) PANES, )" = D ()27 (5 — )20 147 Py 2

7, j/ezd

g2 01— 2
Se D PORAL PG T = (| AEE )
j,j €2

(A.6)

The claimed statement follows by applying item () (replacing o1 with o1 — S
and o9 with o9 + ). O

Lemma A.13. (i) Let A € CS(']T";B(H‘”_”, ”H"Z)), 01,020 €R, > ¢ and
s>0. Then
1Al

71,92

s (TrsB(HoL -, Ho2))

32



(i) Let s > 0, 01,020 €R, >0, n> % and A € C® (']T";B(H"l_ﬂ_",H‘72+ﬂ)).
Then

VA  <sllA
1) ”M"l” < HCS(T“;B(HN*B*”,H"Z*B))

01,02

Proof. The claimed statement follows recalling that M3 =H?* (']T"; BHS(Hor HO2 )) ,
by applying Lemma[A 12 and using that for every Banach space X one has that
Il s crosxy < - lles e x)- O
Lemma A.14. (i) Let m > 0, A € C®(T",OPS™"), k > 2m+ . Then for

any o € R,
A€ C®(T™; B(HT™=% Ht™)) and for any s > 0

| Al 2 S N Alles (on ;8o +m—r pgotmy)

oc—m,oc+m "~

(i1) Let m, > 0 and A € C®(T*;OPS™"), k > 2m + 28 + %. Then for any
o €R,

AeC™ (T";B(H”erJrﬁ*“,'H"erJrﬁ)) and for any s > 0

V)P Al Se [ Alles (rngpaesmes—x agotmesy) -

Proof. The statement () follows by applying Lemma [AT3}(7) with o1 = o —
m, 0o =0 +m, n=kK—2m.

The statement (i7) follows by applying Lemma [A13} (i) with o1 = 0 —m, o3 =
oc+m, n=k-—2m—20. [l

Lemma A.15. Let 0 € R, k > 0, P(\) € BHS(H7, H TF), X € Q, C R4,
Then Vj € Z¢ its matriz elements Pf satisfy

; Nk i Li HS,Lip ;-\ —r
P < PSS G) 7, 1P < PR ().

o, 0+kK 0, 0+kK

Proof. For any j € Z¢, one has

(7]

0 = 3 (R2EIPE (k)72 > ()20 | PI(5) 72 = (5)<| P
k,k'€zd

[P —Pall23

o, 04+kK

[A1—Az2]

The Lipschitz estimate follows arguing similarly by estimating
for any )\1, AQ € QO, Al 7é )\2.
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