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A note on the convergence of multivariate formal
power series solutions of meromorphic Pfaffian systems

I[. V. Goryuchkina, R.R. Gontsov

Abstract

Here we present some complements to theorems of Gerard and Sibuya, on the convergence of
multivariate formal power series solutions of nonlinear meromorphic Pfaffian systems. Their the
most known results concern completely integrable systems with nondegenerate linear parts, whereas
we consider some cases of non-integrability and degeneracy.

1 Introduction

Consider a Pfaffian system

dxq dzm

dy:fl(xay)ﬁ'i_""fm(xay)ﬁu x:(xlu'-'axm)a y:(yla'-'ayn)—ra (1)
1 m
where f; : (C™™,0) — (C",0) are germs of holomorphic maps and p; > 1 are integers. Equivalently,
this system has the form

O:=dy—w=0,

where w is a (C"-valued) differential 1-form meromorphic in a neighbourhood D of 0 € C™*", with the
polar locus
Y ={(z,y) € D| h(z,y) :==z1...2m = 0}.

In the case p1 = ... = p;, = 1 we have the Pfaffian system (1) of Fuchs type, in this case w is a logarithmic
1-form in D, that is, hw and h dw are holomorphic in D.
Written in a PDEs form, () becomes

dy Ay
" =f b = =1, (x,y). 2
X7 33:1 1(x7y)7 ) Ty axm (:E y) ( )
We study a question of the convergence of a formal power series solution
p= Z cre® € Cllz]]”  (cx € C™) (3)
|k|>0

of such a system. Here, as usual in a multivariate case,

k= (kiy o k) €27, |kl =k 4. d by, aF =2k ke

m

A basic work on this subject (as well as on the analytic and asymptotic properties of such series) is that
by R.Gerard and Y. Sibuya [2], in which Pfaffian systems are assumed to be completely integrable on
D\ . This means that for any (2°,y°) € D\ ¥, there exists a unique solution y = y(z) of () such that
y(z%) = y°. Due to the Frobenius theorem, the complete integrability of () is equivalent to the relation

dO=Q N0,

for some matrix differential 1-form 2 holomorphic in D\ ¥ (see [3, Ch.1, Th. 5.1] or [7]). However, in [2]
there are obtained some assertions concerning the convergence of [B]) that don’t apply to the complete
integrability of () and thus hold for any Pfaffian system of the form (). These are the following two
theorems.

Theorem A. Any formal power series solution @Bl) of a Fuchsian system

0 dy

Yy _
1 8$1 - fl (Ji,y), sy Tm - fm({E, y) (4)

Oz,
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converges near 0 € C™.

Theorem B. If p; =1 for some j (that is, the system () is Fuchsian along the component {z; = 0}
of its polar locus) and the corresponding Jacobi matriz 0f;/0y(0,0) does not have non-negative integer
eigenvalues then any formal power series solution [Bl) of @) converges near 0 € C™ (in the case of the
complete integrability of such a system, there holds the existence and uniqueness of the solution).

We will show that the sufficient condition of convergence from Theorem B can be weakened for a fixed
formal solution ¢ in the following way (see the proof in Section 3).

Theorem 1. Let py = 1 in the system @) and let ¢ be its formal power series solution. If the matrix
of;

"
is such that det(A — jI) #£ 0 for any non-negative integer j, then ¢ converges near 0 € C™.

A= ©)|zr=0 € Mat(n, C[[za, ..., zm]])

In the following theorem from [2] the complete integrability of the Pfaffian system is required.

Theorem C. In the non-Fuchsian case with all p; > 1, if there are j # | such that the Jacobi matrices
0f;/0y(0,0), 0f;,/0y(0,0) are non-degenerate then there is a unique formal power series solution [@B) of
@) and it converges near 0 € C™.

In a more recent paper by Sibuya [6] (where m = 2) the assumption of complete integrability in the
above Theorem C is omitted and there is proved that any formal power series solution (B]) of [2]) converges
near 0 € C™, under the rest assumptions of the theorem.

In Section 2 we discuss the condition of complete integrability in more details and study the conver-
gence of formal power series solutions of (2)) in the non-integrable case (Theorems 2, 3). In Section 3 we
give the proof of Theorem 1, and in Section 4 we complement the above Gerard—Sibuya Theorem C for
the non-Fuchsian case by some sufficient condition of the convergence of ([B)) satisfying (2] with the zero
Jacobi matrices 0f;/0y(0, 0).

2 The relations of complete integrability

If the system (2]) is completely integrable, for any its solution y(z) the equality of the second partial
derivatives 8%y/0z;0x; and 9*y/dx;0x; implies
1 0 1 0
——f; = —f;
o7 O (z,y()) 7 o, (z, y(x)),

whence
1 of; 1 of; I S # _ 1 of; _
s )~ gL (0) = S S 0(0) — e ) o)

i

Since in the case of complete integrability for any (z°,y°) € D\ ¥ there exists a unique solution y = y(z)
of (@) such that y(2°) = 4, one has

i=1,...,m, (5)

in D\ . Or, equivalently, all the (Vector) functions

. Of; of;  0Of; of;
Fi- = P]—Z — PI—J f _in g =1,...
J(xvy) IJ 655_] [3 6551' + 6y ay ) Zv] 9 , 1,
are equal to zero identically. Conversely, let us show that if all the functions F;;(z,y), 4,5 = 1,...,m,

equal Z€ero identically then the system () is completely integrable. Indeed, in this case (B holds and for
=dy — Zz 1 fi(x, y)dfz/ilfpl we have

- 1 Of; L1 of; 1 of, 1 Of
o = ;; e i A (Zﬁa—ydm)/\dy—;(ﬁia%—x? S e nda +

(06, Of
Z} = ( ayf)da:mda:JJrQAdy_QA@



where

is a matrix differential 1-form holomorphic in D \ ¥. Hence, the Frobenius integrability condition is
fulfilled.

Thus we see that the complete integrability of the system (2)) is described by at most m(m — 1)/2
vector (nm(m — 1)/2 scalar) relations (since F;; = —F ;). Further we use the two results by A. Ploski [4]
(a version with the detailed proof is [5]) following from his sharpened version of Artin’s Approximation
Theorem [1]. These are:

1) if f(@1,...,%Tm,y) is a non-zero germ of a holomorphic function (C™*1 0) — (C,0) and ¢ €
Cl[z1,...,2m]] is a formal power series without constant term such that f(x1,...,Tm,p) = 0, then ¢
converges near 0 € C™;

2) if £(z1,...,%Tm,y) is a germ of a holomorphic map (C™*" 0) — (C"*,0), v € C[[z1,...,2Zm]]" is a
(vector) formal power series without constant term such that £(x1,...,Zm,p) =0, and

of
det%(:zrl,...,:zrm,g)) #0,

then ¢ converges near 0 € C™.

Theorem 2. In the case of the scalar unknown y (i.e., n = 1), if the system (@) is not completely
integrable then any its formal power series solution ¢ converges near 0 € C™.

Proof. Non-integrability implies that at least one of the (scalar in this case) functions F;;(z,y) is
not identically zero (say, F12), while Fi2(z,¢) = 0. Thus the assertion follows from the first result by
Ploski.

Theorem 3. Let the system ([2)) be non-completely integrable and have a formal power series solution

¢ € Cl[z1,. .., zm]|" If among all the vectors F;;(x,y) there are n non-zero components g1, .., gn Such
that 9
9i
det 2L (ar . am 0) # 0,

then ¢ converges near 0 € C™.

Proof. Follows from the second result by Ploski.

3 Proof of Theorem 1

Clearly, the formal solution ¢ is represented in the form

o= ch(acg, sz Tl ey e Cllzg, ..., zm]]™
=0

Let us prove the convergence of all ¢; in some common polydisc A C C™~! centered at the origin.
From the equality

0
g =hig) (6)

it follows that
fl(O, L2y eeeysLym, CQ) =0.

Since by the theorem assumption
of
det A = det 8—1(0,:102, N T E A
Y

the series ¢y converges near 0 € C™~! due to the second result by Ploski and thus the matrix A is
holomorphic in some polydisc A € C™~! centered at the origin.



Further we represent ¢ = cg + 9 :=cg + E;’il C; :1:{ in the equality () and obtain

O (v~
1 8—3;1(;% J,'Jl) = fl(x,co +'¢)7

that is,
. — Ofy j 2
Z]Cj ] :fl(:v,co)—i—za—(:c,co)cj x] + O(v?), (7)
i=1 = Y
whence ot
(A—1I)c; = —8—:;1(0,1'2, ey Tm, Cp)-
More generally, if we already have that co,...,c;_1 are holomorphic in A then (7)) implies

(A —jI)Cj = hj(l‘g,...,wm,CQ,...,Cj_l),

where the right-hand side is holomorphic in A. To prove the holomorphicity of c; in A, let us consider
a polynomial (in A)

P29,y Tm, A) i=det(A — M) = (=A)" + (tr A)(=\)""" + ... +det A, (w2,...,Zm) € A.

Since its coefficients are holomorphic in A, for any (xa,...,2Z,) € A the roots of P(za,...,%m, )
are close to those of P(0,...,0,)\). Hence, there exists jo € N such that det(A — jI) # 0 for any
J > jo, (x2,...,2m) € A. Therefore c; is holomorphic in A except, maybe (if j < jo), along a complex
hypersurface

{P(za,...,2m,j) =0} C A.

But c; is represented by a (formal) Taylor series at the origin, thus it is holomorphic in A (in fact, maybe
in some smaller polydisc, however this sequence of polydiscs of holomorphicity is stabilized for j > jo).
Now we can regard the (vector) formal series ¢ as a formal solution of an ODEs system of Fuchs type

dy
— =f y %, C + )
71 g, = hil@ 2 c0(z) +y)
depending on the parameter z = (za,...,7,,) € C™ 71 ¢ = Z;’;l c;(z) ], where the coefficients c;

are holomorphic in the common polydisc A. As ¢(0) = 0, the convergence of ¢ follows from a natural
generalization (for the multidimensional parameter z) of the lemma we present below.

Lemma 1 (|2], Ch. III, Lemme 1.1). Consider an ODEs system

dy

1 d—xl = f($1727y)7

where z € C is a parameter and £ : (C x C x C",0) — (C",0) is a germ of a holomorphic map. Then its
any formal solution E;io a;(z) x], where all a; are holomorphic in some common disc centered at the
origin and ap(0) = 0, is convergent.
4 Complement to Theorem C. The bivariate case
For any f from C[[z]] (respectively, from C[[z]]™ or Mat(n, C[[z]])) we will say that

ord,, f 2 p € Zy,

if f=a%g, with g from C[[z]] (respectively, from C[[z]]" or Mat(n, C[[z]])).
In this section we will consider the case of two independent variables x1, 2 (that is, m = 2).



Theorem 4. If the Jacobi matrices 0f; /Oy on the formal solution @) of @) satisfy

o,

dy

ordy, —(z1,22,0) 2 pi—1, i=1,2,

then the series @ converges near 0 € C2.

We start the proof of Theorem 4 with a lemma for an ODEs system

)" (®)

dy
xlljd—xl:f(xluzuy)a y:(ylu"'ayn

depending on the parameter z € C, where f : (C x C x C",0) — (C™,0) is a germ of a holomorphic map
and p > 1 is an integer.

Lemma 2. Let

p=1 aj(z)a},  a(0) =0,
§=0

be a formal power series solution of ) with the vector coefficients a; holomorphic in some common disc
A C C of the parameter space centered at the origin. If

of
OrdOg_y(xlazago) = p—= 17

then @ converges in a neighbourhood of zero.

Proof. Let us represent ¢ in the form

N
p=> a;(z)a] + a7 (an1 ()1 +...) = on + 2] ¥,
=0

with N > p — 1. Then the formal power series ¢ will satisfy

d d _ of
b 2PN +$§V+p_w + N2y PN = £, 2, 0n) + 2 - (1, 2,080 + 23N O (), (9)
d,Tl dLL'l ay

Since o8 o8
8_y(x1727§0): a—y(.’I]l,Z,QON)‘Fx{VO(w), 0fd0¢> 17

the assumption of the lemma also implies

of
Ordoa_y(xl7Z7SON) 2 p—- 17
hence due to (@), the order of f(z1, 2, on) — 2§ dpn/dz; is not less than N + p — 1. This means that we
can devide the relation (@) by xivﬂ) ~! and obtain the ODEs system of Fuchs type satisfied by the formal

power series :
d
1 d_;bl = h(x1727w)7

where h: (C x C x C",0) — (C™,0) is a germ of a holomorphic map. Since 1(0) = 0, the convergence
of ¥, as in Theorem 1, again follows from Lemma 1. This proves Lemma 2.

Let us show that the formal power series solution ¢ can be represented in the form

o0
v= ZCJ(IQ) 7,
=0



where ¢; € C{z2}" are holomorphic vector functions in some common disc A C C centered at the origin.
As in Theorem 1, ¢ is represented in such a form with ¢; € C[[z2]]"”, and the main task is to prove the
holomorphicity (convergence) of ¢;. First one represents ¢ as

o0
p=cotv, =Y cjz)ai.
j=1
Then, in view of ([2)), co satisfies the relation
dCQ
P2 — =1£5(0
Ty diZ?Q 2( ,JIQ,CQ),

moreover, one has

ofy

ordy, —
dy

8f2 af2
(0,22, ¢) = ordy, — (21, T2, )|z, =0 = orde, — (21,22, ¢) = p2 — 1.
dy dy
Thus, by Lemma 2, the formal power series ¢y converges near the origin.
Further, making the change of variable y = ¢y + u in the system (2)) we obtain an ODEs system for
the unknown wu:

d of.
b 8—52 = fo(x1,29,¢0) + a—;(xl,xg, co)u + O(u?).

This has the formal power series solution ¢ = E;’;l cj(z2) x{, which implies the relations for each
coefficient c;, j > 1:

dc; 8f2

b d_:v; = a—y((), T2,€0)c;j + gj(z2,¢Co,...,Cj—1).
As shown above,
of,
Ordxza—y(oﬂfz, co) = p2 — 1,

hence by Lemma 2, all the c¢; converge near 0 € C. Since they satisfy the linear ODEs systems with
the same homogeneous part, they are also holomorphic in A C C, where A is a common disc of the
holomorphicity for dfs/dy(0, z2,co), g1(z2,co) centered at 0 € C (1 = 2,...,m).

We have that the series

o0
p=> cjlws) ]
=0

with the coeflicients c; holomorphically depending on the parameter z = xo € A, satisfies the ODEs

system
dy

P1 — f
1 d(El 1(I1,Z,y),
furthermore o8
1
ordxl—ay (x1,2,0) =2 p1 — L.

Applying Lemma 2 one proves the convergence of ¢ near 0 € C2.
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