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A note on the convergence of multivariate formal

power series solutions of meromorphic Pfaffian systems

I. V.Goryuchkina, R.R.Gontsov

Abstract

Here we present some complements to theorems of Gerard and Sibuya, on the convergence of

multivariate formal power series solutions of nonlinear meromorphic Pfaffian systems. Their the

most known results concern completely integrable systems with nondegenerate linear parts, whereas

we consider some cases of non-integrability and degeneracy.

1 Introduction

Consider a Pfaffian system

dy = f1(x, y)
dx1
xp1

1

+ . . .+ fm(x, y)
dxm
xpm
m

, x = (x1, . . . , xm), y = (y1, . . . , yn)
⊤, (1)

where fi : (Cm+n, 0) → (Cn, 0) are germs of holomorphic maps and pi > 1 are integers. Equivalently,
this system has the form

Θ := dy − ω = 0,

where ω is a (Cn-valued) differential 1-form meromorphic in a neighbourhood D of 0 ∈ Cm+n, with the
polar locus

Σ = {(x, y) ∈ D | h(x, y) := x1 . . . xm = 0}.

In the case p1 = . . . = pm = 1 we have the Pfaffian system (1) of Fuchs type, in this case ω is a logarithmic

1-form in D, that is, hω and h dω are holomorphic in D.
Written in a PDEs form, (1) becomes

xp1

1

∂y

∂x1
= f1(x, y), . . . , xpm

m

∂y

∂xm
= fm(x, y). (2)

We study a question of the convergence of a formal power series solution

ϕ =
∑

|k|>0

ckx
k ∈ C[[x]]n (ck ∈ C

n) (3)

of such a system. Here, as usual in a multivariate case,

k = (k1, . . . , km) ∈ Z
m
+ , |k| = k1 + . . .+ km, xk = xk1

1 . . . xkm

m .

A basic work on this subject (as well as on the analytic and asymptotic properties of such series) is that
by R.Gerard and Y. Sibuya [2], in which Pfaffian systems are assumed to be completely integrable on
D \Σ. This means that for any (x0, y0) ∈ D \Σ, there exists a unique solution y = y(x) of (1) such that
y(x0) = y0. Due to the Frobenius theorem, the complete integrability of (1) is equivalent to the relation

dΘ = Ω ∧Θ,

for some matrix differential 1-form Ω holomorphic in D \Σ (see [3, Ch.1, Th. 5.1] or [7]). However, in [2]
there are obtained some assertions concerning the convergence of (3) that don’t apply to the complete
integrability of (1) and thus hold for any Pfaffian system of the form (1). These are the following two
theorems.

Theorem A. Any formal power series solution (3) of a Fuchsian system

x1
∂y

∂x1
= f1(x, y), . . . , xm

∂y

∂xm
= fm(x, y) (4)
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converges near 0 ∈ Cm.

Theorem B. If pj = 1 for some j (that is, the system (2) is Fuchsian along the component {xj = 0}
of its polar locus) and the corresponding Jacobi matrix ∂fj/∂y(0, 0) does not have non-negative integer

eigenvalues then any formal power series solution (3) of (2) converges near 0 ∈ Cm (in the case of the

complete integrability of such a system, there holds the existence and uniqueness of the solution).

We will show that the sufficient condition of convergence from Theorem B can be weakened for a fixed
formal solution ϕ in the following way (see the proof in Section 3).

Theorem 1. Let p1 = 1 in the system (2) and let ϕ be its formal power series solution. If the matrix

A =
∂f1
∂y

(x, ϕ)|x1=0 ∈ Mat(n,C[[x2, . . . , xm]])

is such that det(A− jI) 6≡ 0 for any non-negative integer j, then ϕ converges near 0 ∈ Cm.

In the following theorem from [2] the complete integrability of the Pfaffian system is required.

Theorem C. In the non-Fuchsian case with all pi > 1, if there are j 6= l such that the Jacobi matrices

∂fj/∂y(0, 0), ∂fl/∂y(0, 0) are non-degenerate then there is a unique formal power series solution (3) of

(2) and it converges near 0 ∈ Cm.

In a more recent paper by Sibuya [6] (where m = 2) the assumption of complete integrability in the
above Theorem C is omitted and there is proved that any formal power series solution (3) of (2) converges
near 0 ∈ Cm, under the rest assumptions of the theorem.

In Section 2 we discuss the condition of complete integrability in more details and study the conver-
gence of formal power series solutions of (2) in the non-integrable case (Theorems 2, 3). In Section 3 we
give the proof of Theorem 1, and in Section 4 we complement the above Gerard–Sibuya Theorem C for
the non-Fuchsian case by some sufficient condition of the convergence of (3) satisfying (2) with the zero
Jacobi matrices ∂fi/∂y(0, 0).

2 The relations of complete integrability

If the system (2) is completely integrable, for any its solution y(x) the equality of the second partial
derivatives ∂2y/∂xi∂xj and ∂2y/∂xj∂xi implies

1

xpi

i

∂

∂xj
fi(x, y(x)) =

1

x
pj

j

∂

∂xi
fj(x, y(x)),

whence

1

xpi

i

∂fi
∂xj

(x, y(x)) −
1

x
pj

j

∂fj
∂xi

(x, y(x)) =
1

xpi

i x
pj

j

∂fj
∂y

(x, y(x))fi(x, y(x)) −
1

xpi

i x
pj

j

∂fi
∂y

(x, y(x))fj(x, y(x)).

Since in the case of complete integrability for any (x0, y0) ∈ D \Σ there exists a unique solution y = y(x)
of (2) such that y(x0) = y0, one has

1

xpi

i

∂fi
∂xj

−
1

x
pj

j

∂fj
∂xi

≡
1

xpi

i x
pj

j

(∂fj
∂y

fi −
∂fi
∂y

fj

)

, i, j = 1, . . . ,m, (5)

in D \ Σ. Or, equivalently, all the (vector) functions

Fij(x, y) = x
pj

j

∂fi
∂xj

− xpi

i

∂fj
∂xi

+
∂fi
∂y

fj −
∂fj
∂y

fi, i, j = 1, . . . ,m,

are equal to zero identically. Conversely, let us show that if all the functions Fij(x, y), i, j = 1, . . . ,m,
equal zero identically then the system (2) is completely integrable. Indeed, in this case (5) holds and for
Θ = dy −

∑m

i=1
fi(x, y)dxi/x

pi

i we have

dΘ =

m
∑

i=1

m
∑

j=1

1

xpi

i

∂fi
∂xj

dxi ∧ dxj +
(

m
∑

i=1

1

xpi

i

∂fi
∂y
dxi

)

∧ dy =
∑

i<j

( 1

xpi

i

∂fi
∂xj

−
1

x
pj

j

∂fj
∂xi

)

dxi ∧ dxj +

+Ω ∧ dy =
∑

i<j

1

xpi

i x
pj

j

(∂fj
∂y

fi −
∂fi
∂y

fj

)

dxi ∧ dxj +Ω ∧ dy = Ω ∧Θ,
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where

Ω =

m
∑

i=1

1

xpi

i

∂fi
∂y

dxi

is a matrix differential 1-form holomorphic in D \ Σ. Hence, the Frobenius integrability condition is
fulfilled.

Thus we see that the complete integrability of the system (2) is described by at most m(m − 1)/2
vector (nm(m− 1)/2 scalar) relations (since Fij = −Fji). Further we use the two results by A.Ploski [4]
(a version with the detailed proof is [5]) following from his sharpened version of Artin’s Approximation
Theorem [1]. These are:

1) if f(x1, . . . , xm, y) is a non-zero germ of a holomorphic function (Cm+1, 0) → (C, 0) and ϕ ∈
C[[x1, . . . , xm]] is a formal power series without constant term such that f(x1, . . . , xm, ϕ) = 0, then ϕ
converges near 0 ∈ Cm;

2) if f(x1, . . . , xm,y) is a germ of a holomorphic map (Cm+n, 0) → (Cn, 0), ϕ ∈ C[[x1, . . . , xm]]n is a

(vector) formal power series without constant term such that f(x1, . . . , xm, ϕ) = 0, and

det
∂f

∂y
(x1, . . . , xm, ϕ) 6= 0,

then ϕ converges near 0 ∈ C
m.

Theorem 2. In the case of the scalar unknown y (i.e., n = 1), if the system (2) is not completely

integrable then any its formal power series solution ϕ converges near 0 ∈ Cm.

Proof. Non-integrability implies that at least one of the (scalar in this case) functions Fij(x, y) is
not identically zero (say, F12), while F12(x, ϕ) = 0. Thus the assertion follows from the first result by
Ploski.

Theorem 3. Let the system (2) be non-completely integrable and have a formal power series solution

ϕ ∈ C[[x1, . . . , xm]]n. If among all the vectors Fij(x, y) there are n non-zero components g1, . . . , gn such

that

det
∂gi
∂yj

(x1, . . . , xm, ϕ) 6= 0,

then ϕ converges near 0 ∈ Cm.

Proof. Follows from the second result by Ploski.

3 Proof of Theorem 1

Clearly, the formal solution ϕ is represented in the form

ϕ =
∞
∑

j=0

cj(x2, . . . , xm)xj
1
, cj ∈ C[[x2, . . . , xm]]n.

Let us prove the convergence of all cj in some common polydisc ∆ ⊂ Cm−1 centered at the origin.
From the equality

x1
∂ϕ

∂x1
= f1(x, ϕ) (6)

it follows that
f1(0, x2, . . . , xm, c0) = 0.

Since by the theorem assumption

detA = det
∂f1
∂y

(0, x2, . . . , xm, c0) 6= 0,

the series c0 converges near 0 ∈ Cm−1 due to the second result by Ploski and thus the matrix A is
holomorphic in some polydisc ∆ ⊂ C

m−1 centered at the origin.
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Further we represent ϕ = c0 + ψ := c0 +
∑∞

j=1
cj x

j
1
in the equality (6) and obtain

x1
∂

∂x1

(

∞
∑

j=1

cj x
j
1

)

= f1(x, c0 + ψ),

that is,
∞
∑

j=1

jcj x
j
1 = f1(x, c0) +

∞
∑

j=1

∂f1
∂y

(x, c0)cj x
j
1 +O(ψ2), (7)

whence

(A− I)c1 = −
∂f1
∂x1

(0, x2, . . . , xm, c0).

More generally, if we already have that c0, . . . , cj−1 are holomorphic in ∆ then (7) implies

(A− jI)cj = hj(x2, . . . , xm, c0, . . . , cj−1),

where the right-hand side is holomorphic in ∆. To prove the holomorphicity of cj in ∆, let us consider
a polynomial (in λ)

P (x2, . . . , xm, λ) := det(A− λI) = (−λ)n + (trA)(−λ)n−1 + . . .+ detA, (x2, . . . , xm) ∈ ∆.

Since its coefficients are holomorphic in ∆, for any (x2, . . . , xm) ∈ ∆ the roots of P (x2, . . . , xm, λ)
are close to those of P (0, . . . , 0, λ). Hence, there exists j0 ∈ N such that det(A − jI) 6= 0 for any
j > j0, (x2, . . . , xm) ∈ ∆. Therefore cj is holomorphic in ∆ except, maybe (if j 6 j0), along a complex
hypersurface

{P (x2, . . . , xm, j) = 0} ⊂ ∆.

But cj is represented by a (formal) Taylor series at the origin, thus it is holomorphic in ∆ (in fact, maybe
in some smaller polydisc, however this sequence of polydiscs of holomorphicity is stabilized for j > j0).

Now we can regard the (vector) formal series ψ as a formal solution of an ODEs system of Fuchs type

x1
dy

dx1
= f1(x1, z, c0(z) + y),

depending on the parameter z = (x2, . . . , xm) ∈ Cm−1: ψ =
∑∞

j=1
cj(z)x

j
1, where the coefficients cj

are holomorphic in the common polydisc ∆. As ψ(0) = 0, the convergence of ψ follows from a natural
generalization (for the multidimensional parameter z) of the lemma we present below.

Lemma 1 ([2], Ch. III, Lemme 1.1). Consider an ODEs system

x1
dy

dx1
= f(x1, z, y),

where z ∈ C is a parameter and f : (C×C×Cn, 0) → (Cn, 0) is a germ of a holomorphic map. Then its

any formal solution
∑∞

j=0
aj(z)x

j
1, where all aj are holomorphic in some common disc centered at the

origin and a0(0) = 0, is convergent.

4 Complement to Theorem C. The bivariate case

For any f from C[[x]] (respectively, from C[[x]]n or Mat(n,C[[x]])) we will say that

ordxi
f > p ∈ Z+,

if f = xpi g, with g from C[[x]] (respectively, from C[[x]]n or Mat(n,C[[x]])).
In this section we will consider the case of two independent variables x1, x2 (that is, m = 2).

4



Theorem 4. If the Jacobi matrices ∂fi/∂y on the formal solution (3) of (2) satisfy

ordxi

∂fi
∂y

(x1, x2, ϕ) > pi − 1, i = 1, 2,

then the series ϕ converges near 0 ∈ C2.

We start the proof of Theorem 4 with a lemma for an ODEs system

xp1
dy

dx1
= f(x1, z, y), y = (y1, . . . , yn)

⊤, (8)

depending on the parameter z ∈ C, where f : (C×C×Cn, 0) → (Cn, 0) is a germ of a holomorphic map
and p > 1 is an integer.

Lemma 2. Let

ϕ =

∞
∑

j=0

aj(z)x
j
1, a0(0) = 0,

be a formal power series solution of (8) with the vector coefficients aj holomorphic in some common disc

∆ ⊂ C of the parameter space centered at the origin. If

ord0
∂f

∂y
(x1, z, ϕ) > p− 1,

then ϕ converges in a neighbourhood of zero.

Proof. Let us represent ϕ in the form

ϕ =

N
∑

j=0

aj(z)x
j
1 + xN1 (aN+1(z)x1 + . . .) =: ϕN + xN1 ψ,

with N > p− 1. Then the formal power series ψ will satisfy

xp1
dϕN

dx1
+ xN+p

1

dψ

dx1
+NxN+p−1

1 ψ = f(x1, z, ϕN) + xN1
∂f

∂y
(x1, z, ϕN)ψ + x2N1 O(ψ2). (9)

Since
∂f

∂y
(x1, z, ϕ) =

∂f

∂y
(x1, z, ϕN ) + xN1 O(ψ), ord0ψ > 1,

the assumption of the lemma also implies

ord0
∂f

∂y
(x1, z, ϕN ) > p− 1,

hence due to (9), the order of f(x1, z, ϕN )− xp1 dϕN/dx1 is not less than N + p− 1. This means that we

can devide the relation (9) by xN+p−1

1 and obtain the ODEs system of Fuchs type satisfied by the formal
power series ψ:

x1
dψ

dx1
= h(x1, z, ψ),

where h : (C × C × Cn, 0) → (Cn, 0) is a germ of a holomorphic map. Since ψ(0) = 0, the convergence
of ψ, as in Theorem 1, again follows from Lemma 1. This proves Lemma 2.

Let us show that the formal power series solution ϕ can be represented in the form

ϕ =

∞
∑

j=0

cj(x2)x
j
1,

5



where cj ∈ C{x2}
n are holomorphic vector functions in some common disc ∆ ⊂ C centered at the origin.

As in Theorem 1, ϕ is represented in such a form with cj ∈ C[[x2]]
n, and the main task is to prove the

holomorphicity (convergence) of cj . First one represents ϕ as

ϕ = c0 + ψ, ψ =
∞
∑

j=1

cj(x2)x
j
1.

Then, in view of (2), c0 satisfies the relation

xp2

2

dc0
dx2

= f2(0, x2, c0),

moreover, one has

ordx2

∂f2
∂y

(0, x2, c0) = ordx2

∂f2
∂y

(x1, x2, ϕ)|x1=0 > ordx2

∂f2
∂y

(x1, x2, ϕ) > p2 − 1.

Thus, by Lemma 2, the formal power series c0 converges near the origin.
Further, making the change of variable y = c0 + u in the system (2) we obtain an ODEs system for

the unknown u:

xp2

2

du

∂x2
= f2(x1, x2, c0) +

∂f2
∂y

(x1, x2, c0)u+O(u2).

This has the formal power series solution ψ =
∑∞

j=1
cj(x2)x

j
1, which implies the relations for each

coefficient cj , j > 1:

xp2

2

dcj
dx2

=
∂f2
∂y

(0, x2, c0)cj + gj(x2, c0, . . . , cj−1).

As shown above,

ordx2

∂f2
∂y

(0, x2, c0) > p2 − 1,

hence by Lemma 2, all the cj converge near 0 ∈ C. Since they satisfy the linear ODEs systems with
the same homogeneous part, they are also holomorphic in ∆ ⊂ C, where ∆ is a common disc of the
holomorphicity for ∂f2/∂y(0, x2, c0), g1(x2, c0) centered at 0 ∈ C (i = 2, . . . ,m).

We have that the series

ϕ =

∞
∑

j=0

cj(x2)x
j
1

with the coefficients cj holomorphically depending on the parameter z = x2 ∈ ∆, satisfies the ODEs
system

xp1

1

dy

dx1
= f1(x1, z, y),

furthermore

ordx1

∂f1
∂y

(x1, z, ϕ) > p1 − 1.

Applying Lemma 2 one proves the convergence of ϕ near 0 ∈ C2.
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Mathematics and its Applications’ under grant PRAS-18-01.
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