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ASYMPTOTIC RESURGENCE VIA INTEGRAL CLOSURES

MICHAEL DIPASQUALE, CHRISTOPHER A. FRANCISCO, JEFFREY MERMIN,
AND JAY SCHWEIG

Abstract. Given an ideal in a polynomial ring, we show that the asymptotic
resurgence studied by Guardo, Harbourne, and Van Tuyl can be computed us-
ing integral closures. As a consequence, the asymptotic resurgence of an ideal
is the maximum of finitely many ratios involving Waldschmidt-like constants
(which we call skew Waldschmidt constants) defined in terms of Rees valua-
tions. We use this to prove that the asymptotic resurgence coincides with the
resurgence if the ideal is normal (that is, all its powers are integrally closed).

For a monomial ideal the skew Waldschmidt constants have an interpreta-
tion involving the symbolic polyhedron defined by Cooper, Embree, Hà, and
Hoefel. Using this intuition we provide several examples of squarefree mono-
mial ideals whose resurgence and asymptotic resurgence are different.

1. Introduction

If I is a homogeneous ideal in the polynomial ring S = K[x1, . . . , xn], there are
different notions of taking powers of I. The ordinary power Ir is algebraically
the most obvious choice, but the geometric information it contains can be quite
difficult to understand (there may be many embedded primes). On the other hand,
the symbolic power I(s) = ∩P∈Ass(I)(I

sSP ∩ S) is geometrically more natural; for

instance (if I is radical) the Zariski-Nagata theorem shows that I(s) consists of
polynomials vanishing to order s along the projective variety defined by I. However,
the algebraic properties of I(s) are much more opaque. It may be quite difficult
even to determine the minimum degree of a polynomial in I(s) (denoted α(I(s))).
For example, a famous unresolved conjecture of Nagata [Nag61] asserts that if
I ⊂ K[x, y, z] is the ideal of r > 9 very general points in the projective plane, then
α(I(s)) > s

√
r.

There is a large body of research comparing regular and symbolic powers – we
refer the reader to [DDSG+18] for a recent survey. Our focus in this paper is on
the containment problem; this is the study of the set of pairs (r, s) of integers so
that I(s) ⊂ Ir. The containment problem has attracted a great deal of attention
since the pioneering work of Swanson [Swa00] which led to the seminal papers of
Ein, Lazarsfeld, and Smith [ELS01] and Hochster and Huneke [HH02] (more on this
below). A few of the many papers written on this problem in the last ten years
are [BDRH+09, BH10b, DSTG13, GHVT13, BCH14, HS15, DHN+15, CEHH17].

For the containment problem to be interesting, one should know that for a fixed
r, I(s) ⊂ Ir for all s ≫ 0. Even more is true; a groundbreaking result of Swan-
son [Swa00] is that I(hr) ⊂ Ir for some constant h (a priori dependent on I).
This pioneering work led to the celebrated result, due to Ein, Lazarsfeld, and
Smith [ELS01] and Hochster and Huneke [HH02], that I(hr) ⊂ Ir for an ideal
I with big height h in a regular Noetherian ring (such as the polynomial ring S).
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To capture how large an h is necessary in the containment I(hr) ⊂ Ir, Bocci and
Harbourne define the resurgence of I in [BH10a] as

ρ(I) = sup
{s

r
: I(s) 6⊂ Ir

}
.

By [ELS01, HH02], ρ(I) ≤ n− 1. In [GHVT13], Guardo, Harbourne, and Van Tuyl
introduce the asymptotic resurgence of I,

ρa(I) = sup
{s

r
: I(st) 6⊂ Irt for all t ≫ 0

}
,

and study it for smooth projective schemes. Although there is an evident inequality
ρa(I) ≤ ρ(I), there are several known examples where ρa(I) 6= ρ(I) (see [DHN+15]
and the recent preprint [BDH+16]).

Since ρ(I) and ρa(I) are difficult to compute, it has been useful to study lower
bounds. One important lower bound on the (asymptotic) resurgence, introduced
in [BH10a], is defined in terms of the Waldschmidt constant α̂(I), defined as

α̂(I) = lim
s→∞

α(I(s))

s
.

Bocci and Harbourne show that 1 ≤ α(I)
α̂(I) ≤ ρa(I) ≤ ρ(I).

Bocci and Harbourne also consider upper bounds on the resurgence. They show

in [BH10a] that ρ(I) ≤ reg(I)
α̂(I) whenever I defines a zero-dimensional scheme. The

stronger inequality ρa(I) ≤ ω(I)
α̂(I) holds if I defines a smooth scheme [GHVT13]

(where ω(I) is the largest degree of a minimal generator of I). The upper bounds
in terms of ω(I) and reg(I) can fail if the ideal is not smooth or zero dimensional,
as the following example shows.

Example 1.1. Let I = (ab, ac, bc) be the ideal of a three-cycle (geometrically,
the ideal of three generic points in P

2). It is well known that ρ(I) = 4
3 . Now let

J = (abd, acd, bcd) = dI. Geometrically, J is the ideal of three generic lines with
the hyperplane at infinity in P

3. One can check that α̂(J) = 5
2 and reg(J) = 3, so

α(J)

α̂(J)
=

ω(J)

α̂(J)
=

reg(J)

α̂(J)
=

3
5
2

=
6

5

However, Jr = drIr and J (s) = dsI(s), so ρ(J) = ρ(I) = 4
3 > 6

5 .

Example 1.1 highlights the need for ways to compute and bound the resur-
gence and asymptotic resurgence of ideals defining schemes that are not smooth or
zero-dimensional. In this paper we provide a new characterization of asymptotic
resurgence that is computationally effective at least for monomial ideals. Our work
hinges on the observation that one may replace Irt by its integral closure Irt when
computing ρa(I). More precisely, we prove in Section 4 that

ρa(I) = sup
{s

r
: I(st) 6⊂ Irt for all t ≫ 0

}
= sup

{s

r
: I(s) 6⊂ Ir

}
.

It is immediate from these equalities that ρa(I) = ρ(I) if I is normal (that is, all
powers of I are integrally closed). This partially answers the question of when
ρ(I) = ρa(I), raised at the end of [GHVT13].

Once we have replaced powers of I by their integral closures, we can determine
ρa(I) using valuations. Given a valuation v : S → Z, we define a Waldschmidt-like
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constant (which we call a skew Waldschmidt constant)

v̂(I) = lim
s→∞

v(I(s))

s
.

Our main result is Theorem 4.10, which computes the asymptotic resurgence in
terms of the skew Waldschmidt constants:

ρa(I) = sup

{
v(I)

v̂(I)
: v(I) > 0

}
.

In fact, we show that one only needs to consider the finitely many Rees valuations
of I in the above supremum, so the asymptotic resurgence can be characterized as
the maximum of finitely many ratios involving skew Waldschmidt constants.

While Theorem 4.10 in theory gives an algorithm for computing asymptotic
resurgence, it is usually impractical to compute the Rees valuations of an ideal.
This particular hurdle is much easier for the class of monomial ideals, where the
Rees valuations may be identified with the linear functionals corresponding to the
bounding (affine) hyperplanes of the Newton polyhedron. Our key insight is that
skew Waldschmidt constants can be obtained as the minimum value of a linear
functional on the symbolic polyhedron defined by Cooper, Embree, Hà, and Hoefel
in [CEHH17]. Consequently, computing the asymptotic resurgence of any given
monomial ideal can be reduced entirely to linear programming. In particular, since
the Newton polyhedron of a monomial ideal has rational vertices, the asymptotic
resurgence of monomial ideals is rational.

The paper is organized, for the sake of exposition, with our main results (sum-
marized above) in the final section (Section 4) while Sections 2 and 3 are devoted
to developing the intuition to our approach in the context of squarefree monomial
ideals and giving a number of examples. In Section 2 we show that the asymptotic
resurgence can be computed by solving linear programs over the symbolic polyhe-
dron, extending earlier work ([CEHH17, BCG+16]) that took a similar approach
to computing the Waldschmidt constant.

In Section 3 we exhibit several squarefree monomial ideals whose asymptotic
resurgence is strictly less than their resurgence. Prior to our work, it was shown
in [DHN+15] and in the preprint [BDH+16] that asymptotic resurgence can dif-
fer from resurgence. These examples are ideals of points for which the symbolic
cube is not contained in the regular square, violating a containment conjectured
by Harbourne [BDRH+09, Conjecture 8.4.3]. One way in which our examples are
qualitatively different is that monomial ideals satisfy Harbourne’s containment con-
jecture [BDRH+09, Example 8.4.5].

We also prove in Section 3 that the asymptotic resurgence of a squarefree mono-
mial ideal generated in degree two can be computed solely in terms of the Wald-
schmidt constant, thus confirming (asymptotically) a conjecture communicated to
us at the 2017 BIRS-CMO workshop in Oaxaca.

Acknowledgements. The content of this paper arose out of various attempts
to prove the aforementioned conjecture which we encountered at the 2017 BIRS-
CMO workshop in Oaxaca. We are grateful to BIRS-CMO and the organizers and
participants of the Oaxaca workshop and for the inspiring discussions and problems
we encountered there. We are especially indebted to Adam Van Tuyl for introducing
this conjecture in Oaxaca and for his insight into this problem.
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We also thank Alexandra Seceleanu, Tài Hà, Craig Huneke, and Elóısa Grifo for
their comments on early drafts of this paper. We are grateful to Kuei-Nuan Lin for
alerting us to the papers [OH98, SVV98], where the characterization for normality
of edge ideals is completed.

2. Asymptotic resurgence for squarefree monomial ideals

We begin by developing the intuition about asymptotic resurgence for squarefee
monomial ideals. Squarefree monomial ideals have been of considerable interest in
studying the relationship between symbolic and regular powers, and have the dual
advantages (even over monomial ideals) of being intersections of prime (rather than
primary) ideals, and of having no embedded primes. In particular, the following
result is both standard and very useful.

Theorem 2.1. Let I ⊂ S be a squarefree monomial ideal. Then all associated
primes of I are generated by a subset of the variables, and for all s we have

I(s) =
⋂

P∈Ass(I)

P s.

Remark 2.2. Although we state most of the results in this section for squarefree
monomial ideals, the major results hold in more generality. In particular, The-
orem 2.15 holds for arbitrary monomial ideals. The chief difference is that the
definition of symbolic powers is considerably easier for squarefree ideals, and so one
of our key tools, the symbolic polyhedron, requires a more complicated definition.
One can recover everything except Proposition 2.10 and Lemma 2.14 for monomial
ideals without embedded primes, at the price of some intuition and a couple extra
pages of technical work. In view of the more general results in Section 4, we have
opted to keep the intuition.

Remark 2.3. Throughout the section, we assume Corollary 4.14, which asserts
that ρa(I) = sup

{
s
r
: I(s) 6⊂ Ir

}
. We delay the proof of this statement to Section 4

because there is no special intuition in the squarefree case.

The symbolic powers, and integral closures of regular powers, of squarefree mono-
mial ideals are best understood in terms of exponent vectors and related polyhedra.
We require some notation.

Notation 2.4. Let m ∈ S be any monomial (squarefree or otherwise). Write
m =

∏
xei
i . We say that the vector v = (e1, . . . , en) is the exponent vector of m,

and write m = xv.

Observe that v is always in the (closed) first orthant of Rn. The geometry of
the space of exponent vectors is central to the rest of the section. We begin by
recalling two important polyhedra.

Definition 2.5. Let I be a monomial ideal. The Newton polyhedron of I is the
convex hull of the exponent vectors occuring in I,

NP(I) = conv{v : m = xv ∈ I}.
Remark 2.6. The Newton polyhedron is the convex hull of all monomials in I,
not merely the minimal generators. The convex hull of the (exponent vectors of)
minimal generators is much smaller, and some texts distinguish the two objects by
calling the smaller one the Newton polytope of I. Using this language the Newton
polyhedron is the Minkowski sum of the Newton polytope and the first orthant.
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The Newton polyhedron characterizes the integral closures of powers of the ideal.

Proposition 2.7. Suppose that NP is the Newton polyhedron of I, and fix a mono-
mial m = xv. Then m ∈ Ir if and only if v

r
∈ NP.

The symbolic powers of the squarefree ideal I may also be described in terms of
a polyhedron. Let m =

∏
xei
i be a monomial and P a monomial prime. Then we

have m ∈ P if and only if
∑

xi∈P

ei ≥ 1 and m ∈ P s if and only if
∑

xi∈P

ei ≥ s. This

motivates the definition of the symbolic polyhedron:

Definition 2.8. Let I be a squarefree monomial ideal, and write I = ∩P∈Ass(I)P .
The symbolic polyhedron associated to I is the intersection of the half-spaces coming
from the associated primes:

SP(I) =
⋂

P∈Ass(I)

{(e1, . . . , en) :
∑

xi∈P

ei ≥ 1}.

Remark 2.9. Like the Newton polyhedron, the symbolic polyhedron of I is un-
bounded and contained in the first orthant. Unlike the Newton polyhedron, our
definition works only for squarefree ideals. For the definition of the symbolic poly-
hedron in the general monomial case, see the paper of Cooper, Embree, Hà, and
Hoefel [CEHH17].

The following characterization of symbolic powers in terms of the symbolic poly-
hedron is immediate.

Proposition 2.10. Suppose that SP is the symbolic polyhedron of I, and fix a
monomial m. Then m = xv ∈ I(s) if and only if v

s
∈ SP.

Every convex polyhedron may be presented either as the convex hull of some
collection of points or as the intersection of some collection of half-spaces. Unfor-
tunately, translating between the two presentations requires solving a linear pro-
gramming problem. Since the Newton polyhedron is presented as a convex hull
and the symbolic polyhedron is presented as an intersection, the difference between
the two is unavoidably somewhat opaque. The difficulty of the general linear pro-
gramming problem likely accounts for the difficulty of the questions involving these
relationships.

Example 2.11. Let I = (ab, ac, bc), the standard example of a squarefree ideal
whose symbolic and regular powers are different. We have I = (a, b)∩ (a, c)∩ (b, c).

The symbolic polyhedron of I is defined as the intersection of the three half-
spaces SP = {(a, b, c) : a + b ≥ 1, a + c ≥ 1, b + c ≥ 1}. Observe that SP contains
the point

(
1
2 ,

1
2 ,

1
2

)
. This corresponds to the fact that abc ∈ I(2).

The Newton polyhedron of I is defined as the convex hull of the points cor-
responding to the monomials ab, ac, and bc (together with infinitely many other
points deeper in the first orthant). It does not contain the point

(
1
2 ,

1
2 ,

1
2

)
since the

three generators cut out the affine hyperplane a + b + c = 2. In fact, the Newton
polyhedron is the intersection of the four half-spaces a+ b ≥ 1, a+ c ≥ 1, b+ c ≥ 1,
and a+ b+ c ≥ 2.

We may usefully view the symbolic polyhedron as the intersection of four half-
spaces as well: a + b ≥ 1, a + c ≥ 1, b + c ≥ 1, and the redundant a + b + c ≥ 3

2 .
The distinction is that the Newton polyhedron uses a+ b + c ≥ 2 because 2 is the
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solution to the integer linear program “minimize a+b+c subject to the other three
inequalities” while the symbolic polyhedron uses a + b + c ≥ 3

2 because 3
2 is the

solution to the corresponding rational linear program.

We introduce some notation to deal with half-spaces and their defining equations.

Notation 2.12. Let v : R
n → R be a (positive semidefinite) linear functional

on the space of exponent vectors. We refer to v as a skew valuation on S. For
every skew valuation and every positive c, we define an associated hyperplane and
half-space,

Pv,c = {v : v(v) = c} and Hv,c = {v : v(v) ≥ c}.
The hyperplane Pv,c is thus the boundary of the half-space Hv,c. For a polyhedron
C in the first orthant, we say that Hv,c is a supporting half-space of C if Hv,c

contains C and Pv,c has nontrivial intersection with C. We say that Hv,c is a
defining half-space of C if in addition C ∩ Pv,c has codimension one.

Now fix a skew valuation v and a monomial ideal I, and set v(I) = min{v(v) :
m = xv ∈ I}. Since v is positive semi-definite, v(I) ≥ 0. If v(I) > 0, we say that v
is supported on I.

The skew Waldschmidt constant v̂(I) is the limit

v̂(I) = lim
s→∞

v(I(s))

s
,

which exists because {v
(
I(s)

)
} is subadditive. If v is supported on I, then v̂(I) > 0

(this is true quite generally from Swanson’s result that I(sh) ⊂ Is for some constant
h — see Lemma 4.8). If v is supported on I, the skew resurgence of I with respect
to v is

va(I) =
v(I)

v̂(I)
.

Remark 2.13. We use the term valuation in Notation 2.12 because linear function-
als v : Zn → Z are naturally identified with monomial valuations on S (see [SH06,
Definition 6.14]). We abuse notation somewhat by considering linear functionals
on R

n instead of Zn, but this is harmless and helps to preserve geometric intuition.

Note that when v = α is defined by α(v) = deg xv, the skew Waldschmidt
constant coincides with the standard Waldschmidt constant α̂.

Our main result will be that the asymptotic resurgence of I is equal to the
maximum of its skew resurgences. We begin with a technical lemma whose proof
is straightforward.

Lemma 2.14. Let I be a squarefree monomial ideal with Newton and symbolic
polyhedrons NP and SP respectively, and write I as an intersection of its associated

primes, I =
⋂

P∈Ass(I)

P . For each P ∈ Ass(I), set vP =
∑

xi∈P

ei. Then:

(1) The defining half-spaces of SP are precisely the half-spaces HvP ,1 for P ∈
Ass(I).

(2) Every half-space of the form HvP ,1 is a defining half-space of NP.
Furthermore, for an arbitary skew valuation v with integer coefficients,

let zv be the solution to the integer linear programming problem “minimize
v, subject to the constraints HvP ,1 for all P .” Then the half-space Hv,zv

contains NP, and every defining half-space of NP arises in this way.
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(3) For an arbitrary skew valuation v with integer coefficients, let qv be the
solution to the rational linear programming problem “minimize v, subject to
the constraints HvP ,1 for all P .” Then the half-space Hv,qv is a supporting
half-space of SP.

(4) For an arbitrary skew valuation v with integer coefficients, define qv as
above. Then qv is equal to the skew Waldschmidt constant, and we have

v̂(I) = qv = min

{
v(I(s))

s

}
.

(5) Fix a monomial m = xv. Then m ∈ I(s) if and only if v(v) ≥ sv̂(I) for all
skew valuations v.

Theorem 2.15. Let I be a squarefree ideal. The asymptotic resurgence of I is
equal to the maximum of its skew resurgences. That is,

ρa(I) = sup{va(I) : v is a skew valuation supported on I}.

Proof. Recall from Remark 2.3 that we are using the characterization ρa(I) =
sup

{
s
r
: I(s) 6⊂ Ir

}
which is proved in Section 4.

To prove ρa(I) is at most the maximum of the skew resurgences, it suffices to
show that, whenever s

r
is greater than any skew resurgence, we have I(s) ⊂ Ir. Fix

such an r and s (meaning s > rva(I) for all v), and let m = xv ∈ I(s). Then for
every v we have v(v) ≥ sv̂(I) > rva(I)v̂(I) = rv(I), so m ∈ Ir.

To prove ρa(I) is at least the maximum of the skew resurgences, suppose to the
contrary that ρa(I) < va for some v. Choose r and s such that

ρa(I) <
s

r
< va =

v(I)

v̂(I)
.

Since the inequality is strict, we have

s

r
<

v(I)
v(I(st))

st

for sufficiently large t. Rearranging, v(I(st)) < rtv(I) = v(Irt). Consequently,

I(st) 6⊆ Irt, so st
rt

≤ ρa(I), a contradiction. �

Corollary 2.16. Let I be a squarefree ideal. The asymptotic resurgence of I is
equal to the maximum of its skew resurgences, taken over the (finitely many) skew
valuations supported on I that correspond to defining half-spaces of the Newton
polyhedron. In particular, ρa(I) is rational.

Remark 2.17. Theorem 2.15 and Corollary 2.16 both follow immediately from
Theorem 4.10; we need only recognize that the Rees valuations of a monomial
ideal are precisely the skew valuations that correspond to defining half-spaces of
the Newton polyhedron. For a proof of this fact, see [SH06, Theorem 10.3.5].
The proofs given above emphasize the geometric intuition at hand for squarefree
monomial ideals, which is not available in general.

The rest of the section describes an inductive approach to the asymptotic resur-
gence of a squarefree monomial ideal. While it is not clear that Theorem 2.21
would yield a more efficient algorithm for computing asymptotic resurgence, it is
of theoretical and practical use (as we will see in Section 3).
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Proposition 2.18. Let I be a squarefree monomial ideal with Newton polyhedron
NP. If I is equigenerated in degree d, then NP has at most one facet not parallel
to a coordinate axis, namely Pα,d ∩NP, where α is the valuation α(v) = degxv.

More generally, suppose that the exponent vectors of all generators of I are con-
tained in some hyperplane Pv,c. Then NP has at most one facet not parallel to a
coordinate axis, namely Pv,c ∩ NP.

Proof. We prove the first statement; the general case is similar. Suppose NP has
some other facet F not parallel to a coordinate axis, and choose v and c such
that F ⊆ Pv,c. Let m = xv ∈ I be such that v ∈ F . We claim that m is a
minimal generator for I. Indeed, suppose not. Then m = xim

′ for some m′ ∈ I. It
follows that both m′ and x2

im
′ are contained in I, so (abusing notation) v(m′) ≥ c

(so v(xi) ≤ 0) and v(x2
im

′) ≥ c (so v(xi) ≥ 0). Consequently, v(xi) = 0, a
contradiction.

Therefore F is the convex hull of minimal generators, each of which has degree d.
Hence F is contained in the two distinct hyperplanes Pv,c and Pα,d, contradicting
the assumption that it is a facet of NP. �

Lemma 2.19. The symbolic and Newton polyhedra commute with localization.
More precisely, let I ⊆ S = k[x1, . . . , xn] be a squarefree monomial ideal with
symbolic and Newton polyhedra SP and NP respectively. Set S′ = k[x1, . . . , xn−1],
and let π : S → S′ be the map that evaluates xn to 1. Denote by I ′, SP′, and NP′

the ideal π(I) and its associated polyhedra. Then if π∗ : Rn → R
n−1 is the natural

projection, we have:

(1) I ′ = (I : x∞
n ).

(2) π∗(SP) = SP′.
(3) π∗(NP) = NP′.

Proof. Statement (1) is standard, and (3) follows immediately from (1). For (2), it
suffices to show that (I(s) : x∞

n ) = (I ′)(s). Take a monomial m ∈ S′. Then:

m ∈ (I ′)(s) ⇐⇒ m ∈ P s for all P ∈ Ass(I ′)

⇐⇒ m ∈ P s for all P ∈ {Q ∈ Ass(I) : xn 6∈ Q}
⇐⇒ for large t,mxt

n ∈ P s for all P ∈ {Q ∈ Ass(I) : xn 6∈ Q}(†)
⇐⇒ for large t,mxt

n ∈ P s for all P ∈ {Q ∈ Ass(I) : xn 6∈ Q}(‡)
and mxt

n ∈ P s for all P ∈ {R ∈ Ass(I) : xn ∈ R}
⇐⇒ for large t,mxt

n ∈ P s for all P ∈ Ass(I)

⇐⇒ m ∈ (I(s) : x∞
n ),

where the equivalence between (†) and (‡) follows from the fact that xs
n ∈ Rs. �

Notation 2.20. Fix a monomial ideal I and a collection of variables U . Set
xU =

∏

xi∈U

xi and IU = (I : x∞
U ). We call IU the saturation of I at U , or (because

it can be attained by setting xi = 1 for all xi ∈ U) the contraction of I at U .

Theorem 2.21. Suppose I is a squarefree monomial ideal. Then we may compute
the asymptotic resurgence of I as

ρa(I) = max

{
max
U

{ρa(IU )} ,max
v∈V

{va(I)}
}
,
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where U runs over all subsets of variables and V consists of the positive definite
skew valuations that support defining half-spaces of the Newton polyhedron. (That
is, V = {v : v(xi) > 0 for all i and Pv,c ∩ NP has dimension n− 1}.)

Proof. Let R be the value on the right-hand side. Recall that ρa(I) is the maximum,
over all skew valuations, of va(I).

To show that ρa(I) ≤ R, let w be a skew valuation with wa(I) = ρa(I). If w
is positive definite, we have w ∈ V so ρa(I) ≤ R. If w is not positive definite,
set U equal to the set of all xi with w(xi) = 0. Let π be the projection map on
exponent vectors as in Lemma 2.19. Then we have w(v) = w(π(v)) for all v. It
follows that w(IU ) = w(I), ŵ(IU ) = ŵ(I), and wa(IU ) = wa(I). Consequently,
ρa(IU ) ≥ wa(IU ) = ρa(I) and so R ≥ ρa(I).

To show that ρa(I) ≥ R, we must show that ρa(IU ) ≤ ρa(I) for all U . Fix a
U and a skew valuation w such that wa(IU ) = ρa(IU ). Without loss of generality,
we may assume that w(xi) = 0 for all xi ∈ U . Consequently, w(v) = w(π(v)) for
all exponent vectors v, so wa(I) = wa(IU ). We conclude that ρa(IU ) = wa(IU ) =
wa(I) ≤ ρa(I) as desired. �

Corollary 2.22. Let I be a squarefree monomial ideal. Set ρc(I) equal to the
maximum of the asymptotic resurgences of its contractions, ρc(I) = max{ρa(IU ) :
U 6= ∅}. Denote by L the affine span of the (exponent vectors of the) generators of
I. Then

(1) Suppose dimL = n − 1. Let v be a nonzero valuation that is constant on
L. Then ρa(I) = max{va(I), ρc(I)}.

(2) If dimL < n − 1 or, more generally, all facets of NP (I) are parallel to a
coordinate axis, then ρa(I) = ρc(I).

Remark 2.23. It can certainly happen that many facets of the Newton polyhedron
of I are not parallel to any coordinate axis, in which case Corollary 2.22 tells
us nothing. However, there are many cases of interest which satisfy one of the
hypotheses of Corollary 2.22, as we will see in the examples.

Proof. We use Proposition 2.18.
For statement (1), observe that V consists of the single valuation v.
For statement (2), observe that V is empty. �

Example 2.24. Let I = (x0xn, x1xn, . . . , xn−1xn, x0x1 · · ·xn−1). To illustrate the

utility of Corollary 2.22, we prove that ρa(I) =
n2

n2−n+1 . (In fact, it is straightfor-

ward to prove that I is normal (that is, Ir = Ir for all r), so by Corollary 4.14, we

have ρ(I) = n2

n2−n+1 as well.) This was proven in [BCG+16, Theorem 7.14].
Any contraction of I will yield a monomial complete intersection, so the maxi-

mum of ρ(IU ) taken over nonempty subsets of the variables is 1. Notice that the
Newton polytope of I is (n− 1)-dimensional, lying in the plane with equation

x0 + · · ·+ xn−1 + (n− 1)xn = n.

Let v = x0 + · · ·+ xn−1 + (n− 1)xn. By Corollary 2.22, ρa(I) = ρv(I).
Clearly v(I) = n. We compute v̂(I). By Lemma 2.14, v̂(I) = min{v(x) : x ∈

SP(I)}. I has primary decomposition

I = (x0, xn) ∩ (x1, xn) ∩ · · · ∩ (xn−1, xn) ∩ (x0, . . . , xn−1).
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So we must minimize v̂ = x0 + · · · + xn−1 + (n − 1)xn subject to the defining
inequalities of SP(I), namely xi+xn ≥ 1 for all i 6= n and x0+ · · ·+xn−1 ≥ 1. The

skew Waldschmidt constant v̂(I) is this minimum, namely n2−n+1
n

, attained at the

point ( 1
n
, . . . , 1

n
, n−1

n
).

Corollary 2.22 computes the asymptotic resurgence of I,

ρa(I) =
v(I)

v̂(I)
=

n2

n2 − n+ 1
.

Remark 2.25. Although we have proven Theorem 2.21 and Corollary 2.22 for
squarefree monomial ideals, we remark that these results also hold for arbitrary
monomial ideals without embedded primes. The following example illustrates this
for a geometrically meaningful ideal.

Example 2.26. Let I = (xd, xd−1y, yd−1z). This is the base ideal of a degree d

Cremona map from P
2 to P

2; symbolic powers of such ideals are studied in [CSR14].
It satisfies Ii = I(i) for all i < d but Id 6= I(d) (see [Asg16, Example 5.3] for details).
I is Cohen-Macaulay with primary decomposition

I = (xd, xd−1y, yd−1) ∩ (xd−1, z).

The Newton polytope of I lies in the plane x+ y + z = d (with the obvious abuse
of notation), and the contractions of I are either (x, y)-primary or (x, z)-primary
(hence ρa(IU ) = 1 for every U ⊂ {x, y, z}). Hence by Corollary 2.22, ρa(I) = αa(I).

The symbolic polyhedron SP(I) is given by the coordinate inequalities x ≥ 0,
y ≥ 0, z ≥ 0 and the more interesting inequalities

(d− 1)x+ dy ≥ d(d− 1)
x+ (d− 1)z ≥ d− 1.

Observe that these inequalities correspond in a natural way to the primary compo-
nents, but the specifics are somewhat opaque. For example, xd−1y is a generator of
the (x, y)-primary component but is on the interior of the corresponding inequality.

By Lemma 2.14, α̂(I) is the minimum value of x+ y+ z on SP. Some arithmetic

yields α̂(I) = d2−1
d

, so

ρa(I) =
α(I)

α̂(I)
=

d2

d2 − 1
.

Notice that 1 < ρa(I), but we must take t ≥ d before we see the containment

failure I(t) 6⊂ It guaranteed by Lemma 4.12. Computational experiments suggest
that t = d usually suffices.

3. Counterexamples and special cases

We begin this section with three examples of squarefree monomial ideals whose
resurgence and asymptotic resurgence are not equal. We then study the asymptotic
resurgence of edge ideals (that is, squarefree monomial ideals generated by quadrics)
and show that in this special case it depends only on the Waldschmidt constant.

Example 3.1. Let I = (abd, bce, cdf, aef, acg, deg, bfg) be the ideal whose gener-
ators correspond to the lines of the Fano plane.

We compute that ρa(IU ) = 1 for all nontrivial U ⊆ {a, b, c, d, e, f, g} (this also fol-
lows because I is minimally non-Fulkersonian; see Remark 3.4). Since I is equigen-

erated, Corollary 2.22 tells us ρa(I) = αa(I) = α(I)
α̂(I) . We compute α̂(I) = 7

3 and
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α(I) = 3, so ρa(I) = 9
7 . On the other hand, we have abcdefg ∈ I(3) r I2, so

ρ(I) ≥ 3
2 .

Computing the resurgence is more delicate and requires results from Section 4.
We can verify computationally that the integral closure of the Rees algebra, R[It] =

S ⊕ I ⊕ I2 ⊕ · · · , is generated as a module over R[It] by I2. Hence Ir+1 = Ir−1I2

for r ≥ 1. Since I is integrally closed, I2 ⊂ I, hence Ir+1 = Ir−1I2 ⊆ Ir for r ≥ 2.
Using Proposition 4.19, we see that

ρ(I) ≤ max
r≥1

{⌈ρa(I)(r + 1)⌉ − 1

r

}
= max

r≥1

{⌈ 9
7 (r + 1)⌉ − 1

r

}
,

which is at most 3
2 except when r = 3. However, we can check directly that

I(5) ⊂ I3. It follows that ρ(I) = 3
2 .

Example 3.2. Let G be the hypergraph with vertices corresponding to the edges
of the complete graph K5 and hypergraph edges corresponding to the triangles in
K5. The edge ideal of G is T = (abc, ade, bdf, cef, agh, bgi, chi, dgj, ehj, fij).

Reasoning as in Example 3.1, we compute ρa(T ) = αa(T ) =
6
5 , but ρ(T ) ≥ 4

3 .

(In this case, the product of the variables abcdefghij is contained in T (4) but not
T 3.)

Example 3.3. Let G be the hypergraph with vertices corresponding to the edges
of the complete graph K5 and hypergraph edges corresponding to the triangles in
K5, as in Example 3.2, let G∨ be its Alexander dual. Let

T ∗ = (cefg, bdfh, afgh, adei, begi, cdhi, abcj, cdgj, behj, afij).

This is the ideal generated by the degree four generators of the edge ideal of G∨.
Reasoning once again as in Example 3.1, we compute ρa(T

∗) = 6
5 and ρ(T ∗) ≥ 3

2 .

Remark 3.4. The three ideals of Examples 3.1, 3.2, and 3.3 are known pathologies
in the combinatorial optimization literature. See [Cor01] for details; we explain very
briefly, abusing some notation, below.

A squarefree monomial ideal I (or more precisely its corresponding hypergraph)
satisfies the max flow-min cut (MFMC) property if I(s) = Is for all s, and it
satisfies the Fulkersonian property (or rounding up property) if I(s) = Is for all
s. By Corollary 4.16, a squarefree monomial ideal is Fulkersonian if and only if its
asymptotic resurgence is equal to 1.

The MFMC property is conjectured to be equivalent to another property, the
packing property, which is defined in terms of minors (that is, an ideal satisfies
the packing property if it satisfies certain conditions after arbitrary subsets of the
variables are set to zero or one); see [Cor01] for more discussion of the packing
property and the conjectured equivalence. We say that an ideal is minimally non-
packing if it is not packed but every proper minor is. Analogously, we say that
an ideal is minimally non-Fulkersonian if it is not Fulkersonian but every proper
minor is.

According to the remarks preceding [Cor01, Theorem 4.18], every known hyper-
graph which is minimally non-Fulkersonian but not minimally non-packing contains
one of the three hypergraphs from Examples 3.1, 3.2, and 3.3 as a sub-hypergraph.

In view of the strong relationship between asymptotic resurgence and combina-
torial optimization described in Lemma 2.14, we speculate that the two types of
pathologies may be closely related.
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Question 3.5. Suppose I is minimally non-Fulkersonian but not minimally non-
packing. Is it the case that ρ(I) 6= ρa(I)?

The converse to Question 3.5 is false; the edge ideal of the finite projective plane
P
2(F3) also has asymptotic resurgence not equal to its resurgence. In view of this,

we ask the following question.

Question 3.6. Is the asymptotic resurgence of the edge ideal of a finite projective
plane always different from its resurgence?

Remark 3.7. Let Iq be the edge ideal of the finite projective plane P
2(Fq), where

q is a prime power. One can show that the product of the variables is in I
(q+1)
q but

not in I2q , so ρ(Iq) ≥ q+1
2 . It is also straightforward to show that α̂(Iq) =

q2+q+1
q+1 , so

αa(Iq) =
(q+1)2

q2+q+1 . However, the Waldschmidt constant does not always determine

the asymptotic resurgence (for example, if q = 3). In any case, it seems reasonable
to conjecture that ρ(Iq)− ρa(Iq) → ∞ as q → ∞.

The above examples show that the asymptotic resurgence can be strictly smaller
than the resurgence even for very well-behaved ideals. A natural question is whether
there is any large class of ideals (for instance, edge ideals of graphs) for which the
asymptotic resurgence is equal to the resurgence. The best result we can currently
prove, even for edge ideals, is Corollary 4.14 (which holds for arbitrary ideals); if
an ideal is normal then the asymptotic resurgence and resurgence are equal.

The normality of edge ideals of graphs has been completely classified in [OH98,
SVV98]. We say a simple graph G satisfies the odd cycle condition if G has no
induced subgraph which consists of two disjoint cycles of odd length. Then the
edge ideal I = I(G) is normal if and only if G satisfies the odd cycle condition.
Hence, by Corollary 4.14, ρa(I) = ρ(I) if G satisfies the odd cycle condition.

Remark 3.8. Normality for more general squarefree ideals is quite difficult; see [HL15]
for a discussion of this problem.

We now show that the asymptotic resurgence of the edge ideal of a graph can be
computed from the Waldschmidt constant. We require some combinatorial tools,
and a lemma relating containment of ideals to their symbolic powers.

Definition 3.9. For a (hyper)graph G and a collection of vertices U , recall that
the link of U is link(U) = {xi 6∈ U : xixj is an edge for some xj ∈ U}, and the star
of U is star(U) = U ∪ link(U). Finally, a set of vertices V is called a vertex cover
for G if it intersects every edge. The minimal vertex covers of G are precisely the
associated primes of the edge ideal I(G).

Lemma 3.10. If I and J are squarefree monomial ideals and I ⊂ J , then I(s) ⊂
J (s). In particular, α̂(I) ≥ α̂(J).

Lemma 3.10 seems obvious, but does not hold in general. However, for squarefree
monomial ideals it follows from careful consideration of the symbolic polyhedron.

Proof of Lemma 3.10. Let G and H be the hypergraphs associated to I and J

respectively. We first note that any vertex cover of H is also a vertex cover of
G. This follows from the fact that every edge of G contains an edge of H . For

an arbitrary vertex cover C of H , define the skew valuation vC by vC(
∏

xei
i ) =
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∑

xi∈C

ei. The defining half-spaces of the symbolic polyhedron of J all have the form

HvC,1 for some C, and each such half-space contains the symbolic polyhedron of I.
Consequently, the symbolic polyhedron of I is contained in the symbolic polyhedron
of J . �

Theorem 3.11. Suppose I = I(G) is the edge ideal of a graph G. Then the
asymptotic resurgence of I is given by ρa(I) =

2
α̂(I) , where α̂(I) is the Waldschmidt

constant.

Proof. We induct on the number of edges. If there is only one edge, I is principal
and has ρa(I) = 1 and Waldschmidt constant α̂(I) = 2 as desired.

In general, observe that the exponent vectors of the generators of I all satisfy
α(v) = 2, where α is the degree valuation. Consequently, by Corollary 2.22 we have

either ρa(I) = αa(I) =
α(I)
α̂(I) or ρa(I) = ρa(IU ) for some proper subset of variables

U . We must show that αa(I) ≥ ρa(IU ) for all proper U .
Observe that IU = J+I(G′), where J = link(U) and G′ is the induced subgraph

on V = {xi : xi 6∈ star(U)}. Since J is generated by variables, we may conclude
from [BCG+16, Lemma 7.4] that ρa(IU ) = ρa(I(G

′)), which is equal to αa(I(G
′))

by induction. Since I(G′) ⊂ I, we have α̂(I(G′)) ≥ α̂(I) by Lemma 3.10, so

ρa(IU ) = ρa(I(G
′)) =

2

α̂(I(G′))
≤ 2

α̂(I)
,

which was what we wanted. �

Remark 3.12. It is possible to prove that the defining half-spaces for the New-
ton polyhedron of I all arise from a skew valuation of the form vU (

∏
xei
i ) =

2
∑

xi∈link(U) ei+
∑

xj 6∈star(U) ej for some subset U . This allows us to prove Theorem

3.11 using Corollary 2.16 instead of Corollary 2.22.

In [BCG+16] a nice relationship is shown between the fractional chromatic num-
ber and the Waldschmidt constant. We briefly recall here the definition of the
fractional chromatic number of a graph G. If I is the set of independent sets of
G and R≥0 the set of nonnegative real numbers, a fractional coloring is a function
f : I → R≥0 satisfying, for every vertex v of G,

∑

v∈A∈I

f(A) ≥ 1.

The fractional chromatic number χf (G) is then defined by

χf (G) = inf

{
∑

A∈I

f(A) : f is a fractional coloring of G

}
.

There is another (possibly more intuitive) description of the fractional chromatic
number involving graph maps and the class of Kneser graphs KGn,k. For details,
see Chapter 17 in [Koz08].

The fractional chromatic number is bounded above by the classical chromatic
number. For an example in which they are unequal, consider the 5-cycle C5. The
function f which takes the value of 1

2 on an independent set of size 2 and 0 on

an independent set of size 1 is a fractional coloring. Thus, χf (C5) ≤ 5
2 , whereas

χ(C5) = 3.
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If I = I(G) is the edge ideal of a graph, then it is shown in [BCG+16, The-

orem 4.6] that α̂(I) =
χf (G)

χf (G)−1 (this is shown more generally for any hypergraph

but we will only need the statement for graphs). Combining this result with The-
orem 3.11, we obtain:

Corollary 3.13. If I = I(G) is the edge ideal of a graph, then ρa(I) =
2(χf (G)−1)

χf (G) .

Remark 3.14. There are many graphs for which the fractional chromatic number
is known (and hence by [BCG+16], the Waldschmidt constant of the corresponding
edge ideal). These include Kneser graphs, complete k-partite graphs, cycles, and
wheels. See [BCG+16, Section 6] for further discussion. By Theorem 3.11 or
Corollary 3.13, we automatically get the asymptotic resurgence of any such ideal.

It is natural to ask whether Theorem 3.11 and Corollary 3.13 can be extended
to the resurgence. Van Tuyl asked the following question in Oaxaca in May 2017,
which inspired the work in this paper.

Question 3.15. If I = I(G) is the edge ideal of a graph, is it true that ρ(I) =
2(χf (G)−1)

χf (G) ?

From the discussion prior to Theorem 3.11, we can answer Question 3.15 in
the affirmative if I is normal (equivalently, G satisfies the odd cycle condition).
If I is not normal our methods do not appear strong enough to prove equality of
the resurgence and asymptotic resurgence. For instance, the following proposition
shows that the resurgence does coincide with the asymptotic resurgence for the edge
ideal of the disjoint union of two odd cycles. However, we need better containment
results for the ideal of each individual cycle than those afforded by Lemma 4.12;
for these we rely on the preprint [GHOS18].

Proposition 3.16. Suppose G is a simple graph obtained as a disjoint union of two
odd cycles C1 and C2, of lengths n and m respectively, where n = 2k+1 < 2ℓ+l = m.
Then ρ(I(G)) = ρa(I(G)) = ρ(I(C1)) =

n+1
n

.

Proof. By Corollary 2.22, ρa(I) = αa(I) = 2
α̂(I) . By [BCG+16, Corollary 4.7],

α̂(I) = min{α̂(I1), α̂(I2)}. By [BCG+16, Theorem 6.7], α̂(I1) =
n

k+1 and α̂(I2) =
m
ℓ+1 , hence ρa(I) =

2(k+1)
n

= n+1
n

.

Since ρa(I) ≤ ρ(I), we need to prove that ρ(I) ≤ n+1
n

. It suffices to show that if
s
r
> n+1

n
, then I(s) ⊂ Ir. Set I1 = I(C1) and I2 = I(C2). We will use the following

two results:

(1) (I1 + I2)
(s) =

∑s
j=0 I

(s−j)
1 I

(j)
2 ([BCG+16, Theorem 7.8])

(2) If J = I(C) is the edge ideal of a cycle of length n = 2k+1, J (s) ⊂ Jr if and

only if r < s−⌊ s−(k+1)
n+1 ⌋ (this can be deduced from [GHOS18, Theorem 3.4])

From (1) it suffices to show that I
(u)
1 I

(v)
2 ⊂ Ir when u + v = s and s

r
> n+1

n
.

If r < u − ⌊u−(k+1)
n+1 ⌋, then by (2) I

(u)
1 ⊂ Ir1 hence I

(u)
1 I

(v)
2 ⊂ Ir. So we assume

r ≥ u − ⌊u−(k+1)
n+1 ⌋. Put h = u − ⌊u−(k+1)

n+1 ⌋ − 1. Then r = h+ c, where c > 0. By

(2), I
(u)
1 ⊂ Ih. It suffices to show that I

(v)
2 ⊂ Ic, since then I

(u)
1 I

(v)
2 ⊂ IhIc = Ir.

A straightforward but tedious computation starting with the inequality s
r
= u+v

h+c
>

n+1
n

yields that c < v − ⌊ v−(ℓ+1)
m+1 ⌋ (remember n ≤ m = 2ℓ+ 1); by (2) this proves

that I
(v)
2 ⊂ Ic. �
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We proved in Section 2 that the resurgence and asymptotic resurgence of square-
free ideals are bounded below in terms of the degrees of generators. We close the
current section with a (generally very coarse) upper bound, also in terms of the
degrees of generators.

Theorem 3.17. Let I be a squarefree ideal. Then ρ(I) ≤ ω(I), where ω(I) is the
maximum degree of a minimal generator of I.

Proof. It suffices to show that I(s) ⊆ Ir whenever r ≤ s
ω
. To this end, fix any such

r and s, and suppose m ∈ I(s). Write m = m′β with β 6∈ I and m′ ∈ Ik r Ik+1.
We will show k ≥ r.

Let H be the hypergraph whose edges are the generators of I. Since β 6∈ I, the
support of β cannot contain any edge of H, so V = {x1, . . . , xn} r supp(β) must
be a vertex cover of H. Writing m′ = xv =

∏
xei
i , we conclude

∑
xi∈V ei ≥ s. This

yields the inequality

s ≤
∑

xi∈V

ei ≤ degm′ ≤ ωk,

where the final inequality follows since m′ ∈ Ik. So k ≥ s
ω
≥ r as desired. �

We learned in personal communication that Hà and Trung have recently inde-
pendently proven a result stronger than Theorem 3.17, recovering the theorem as
a corollary.

Remark 3.18. Suppose I = I(G) is the edge ideal of a graph. Using Corollary 3.13
and Theorem 3.17, we have the following bounds on ρ(I):

2(χf (G)− 1)

χf (G)
≤ ρ(I) ≤ 2,

with equality on the left if I is normal.

4. Asymptotic resurgence and integral closure

In this section we prove our main results, showing that the asymptotic resur-
gence of an ideal in the polynomial ring may be computed using integral closures.
From this we will derive the fact that asymptotic resurgence is the maximum of
finitely many Waldschmidt-like constants; as in the monomial case we call these
skew Waldschmidt constants.

We will assume throughout that I is a homogeneous ideal in the polynomial ring
S = K[x1, . . . , xn]. We begin with a lemma which provides upper bounds on ρa(I).

Lemma 4.1. Suppose {si} and {ri} are sequences of positive integers such that
lim si = lim ri = ∞, I(si) ⊆ Iri for all i, and

lim
si

ri
= h

for some h ∈ R. Then ρa(I) ≤ h.

Proof. We proceed by contradiction. Suppose ρa(I) > h. Then there exists a
rational number s

r
, h < s

r
< ρa, such that I(st) 6⊂ Irt for all t ≫ 0.

Now, for all i large enough, si
ri

< s
r
, so sri−rsi > 0. Also, we claim lim sri−rsi =

∞: if not we would have s
r
−h = lim s

r
− si

ri
= lim sri−rsi

rri
= 0 (since the denominator

goes to infinity). It would follow that s
r
= h, contradicting the construction of

s
r
> h.
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Let t0 be such that for all t ≥ t0, we have I(st) 6⊂ Irt. Choose i with ri ≥ rt0
and sri − rsi > rs. Now let t be maximal such that ri ≥ rt, and observe t ≥ t0.
By the choice of t we have ri < r(t + 1), so sri < srt + sr. By the choice of i we
have sri > rsi + rs. Combining these inequalities yields rsi < rst, so si < st. We
conclude

I(st) ⊆ I(si) ⊆ Iri ⊆ Irt

(the first containment by the inequality derived above, the second by the assump-
tions on {si} and {ri}, and the third by the choice of t). In particular, I(st) ⊆ Irt,
so (by construction of t0) we must have t < t0, a contradiction. �

If I ⊂ S is an ideal we denote by I the integral closure of I, which is the set of
all elements r ∈ S which satisfy an equation of integral dependence over I. That is

rn + a1r
n−1 + a2r

n−2 + · · ·+ an = 0,

where n is a positive integer and ai ∈ Ii for i = 1, . . . , n. Our reference for this topic
is the book of Swanson and Huneke [SH06]. We introduce two statistics related to
resurgence and integral closure as follows:

ρ(I) := sup
{s

r
: I(s) 6⊂ Ir

}
and ρa(I) := sup

{s

r
: I(st) 6⊂ Irt for all t ≫ 0

}
.

A primary result of this section is that both of these statistics are equal to the
asymptotic resurgence. Clearly ρa(I) ≤ ρa(I) and ρ(I) ≤ ρ(I), with equality if all
powers of I are integrally closed (equivalently, if the Rees algebra of I is integrally
closed).

Proposition 4.2. Let I be an ideal. Then ρa(I) = ρa(I).

Proof. It is clear that ρa(I) ≤ ρa(I), so it suffices to show ρa(I) ≤ ρa(I). To this
end, choose a rational h = s

r
> ρa(I). We will show that ρa(I) ≤ h.

By construction, I(st) ⊂ Irt for infinitely many t. By [SH06, Proposition 5.3.4]
the integral closure of the Rees algebra of I is finitely generated over the Rees

algebra of I, so there is some integer k such that In = In−kIk ⊂ In−k for all n ≥ k

(see [SH06, Proposition 5.3.4]).

Now let {ti} be an increasing sequence satisfying I(sti) ⊂ Irti for all ti (which

must exist by the construction of h = s
r
). We have I(sti) ⊂ Irti ⊂ Irti−k for all i,

so the sequences {si = sti} and {ri = rti−k} satisfy the hypotheses of Lemma 4.1.
We conclude ρa(I) ≤ s

r
= h. �

Remark 4.3. Using the Briançon-Skoda Theorem (see [SH06, Theorem 13.3.3]
and the following remarks), we can choose the integer k independently of the ideal
I in the proof of Proposition 4.2. More precisely, we can always take k = n − 1,
regardless of the ideal I.

Recall that a discrete valuation on a field K is a homomorphism v : K∗ =
Kr {0} → Z from the multiplicative group K∗ to the additive group Z satisfying
that for all x, y ∈ K, v(x+y) ≥ min{v(x), v(y)}. If S is the polynomial ring, we will
take K to be the fraction field of S. In this case, a valuation on K is determined
uniquely by its values on S, so we will abuse notation by referring to these as
valuations on S rather than K. Given a valuation v, set Kv = {x ∈ K : v(x) ≥ 0}.
Then V = Kv is a discrete valuation ring (DVR) with field of fractions K and
we denote its unique maximal ideal by mV . If V ⊂ K is a DVR with maximal
ideal mV , we may define a valuation vV by the rule vV (x) = max(k : x ∈ m

k
V ).
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Every valuation with valuation ring V is then a scalar multiple of vV , so there is
a one-to-one correspondence between valuations on K (up to this equivalence) and
DVRs whose field of fractions is K. For more details, see [SH06, Chapter 6].

Given a valuation v and an ideal I, we write v(I) for the minimum value that v
takes on I; i.e., v(I) = min{v(f) : f ∈ I}. Valuations are relevant for our analysis
because of the valuative criterion for integral closure (see [SH06, Theorem 6.8.3]):

Theorem 4.4 (Valuative Criterion for Integral Closure). Fix an ideal I, and x ∈ S.
Then x ∈ I if and only if x ∈ IV for every DVR V containing S with field of
fractions K. Equivalently, x ∈ I if and only if v(x) ≥ v(I) for every discrete
valuation v. Furthermore, if J is another ideal, then J ⊂ I if and only if v(J) <
v(I) for all v.

We now discuss the sequence {v(I(n))}. Since I(m)I(n) ⊂ I(m+n), and v is a
valuation, it follows that v is subadditive. (That is, v(I(m+n)) ≤ v(I(m))+v(I(n)) for

all m,n.) Thus lim
n→∞

v(I(n))

n
= inf

{
v(I(n))

n

}
. (This is sometimes called Fekete’s

lemma and holds for any subadditive sequence.) Another important consequence

of subadditivity is that v(I(n))
n

≤ v(I(m))
m

whenever m divides n. We record these
facts in the following lemma (see [BH10a, Lemma 2.3.1] for a proof).

Lemma 4.5. Let v : S → Z be a discrete valuation and I ⊂ S an ideal. Then the
limit

v̂(I) := lim
s→∞

v(I(s))

s

exists, and v̂(I) = inf
s
{ v(I(s))

s
}. Moreover, v(I(n))

n
≤ v(I(m))

m
if m divides n.

Remark 4.6. The map α : S → Z defined on homogeneous polynomials by α(f) =
deg(f) extends to a valuation on S. In this case, α̂(I) is the Waldschmidt constant,
and Lemma 4.5 is the first part of [BH10a, Lemma 2.3.1].

Definition 4.7. Given a valuation v and an ideal I, we say v is supported on I if
v(I) ≥ 1.

Lemma 4.8. A valuation v is supported on I if and only if v̂(I) > 0.

Proof. Suppose v̂(I) > 0. Then v(I) ≥ v̂(I) is an integer and in particular must be
at least 1.

Conversely, suppose v(I) ≥ 1. By [Swa00], there is some h so that I(sh) ⊂ Is for
all s. It follows that

v(I(sh))

sh
≥ v(Is)

sh
=

sv(I)

sh
≥ 1

h
> 0,

hence v̂(I) > 0. �

Remark 4.9. Every non-zero ideal in S has a (unique) set of DVRs V1, . . . , Vr

(called Rees valuation rings) so that

(1) Vi ⊂ K, where K is the fraction field of S,
(2) for all n ∈ N, In = ∩r

i=1I
nVi, and

(3) the set V1, . . . , Vr satisfying (2) is minimal possible.
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See [SH06, Chapter 10] for details of the construction. The corresponding valua-
tions v1, . . . , vr are called Rees valuations (these are unique up to equivalence for
valuations; see [SH06, Definition 6.1.8]). Thus to check that x ∈ In using the val-
uative criterion for integral closure, it suffices to check that v(x) ≥ nv(I) for the
finitely many Rees valuations of I.

Theorem 4.10. Let I be an ideal and let v1, . . . , vr be the set of Rees valuations
for I. Then

ρa(I) = max
i

{
vi(I)

v̂i(I)

}
= sup

v

{
v(I)

v̂(I)

}
,

where the maximum and supremum are taken over discrete valuations which are
supported on I.

Proof. Write M for max
i

{
vi(I)

v̂i(I)

}
. We first show that ρa(I) ≤ M . Suppose to

the contrary that ρa(I) > M . By Proposition 4.2, there exist r and s such that
M < s

r
< ρa(I) and I(s) 6⊂ Ir. By the valuative criterion for integral closure

and the properties of Rees valuations, there exists a Rees valuation vi such that
vi(I

(s)) < vi(I
r) = rvi(I). Now,

M ≥ vi(I)

v̂i(I)
(by assumption)

≥ vi(I)
vi(I(s))

s

(by Lemma 4.5)

>
vi(I)
rvi(I)

s

(by the discussion above)

=
s

r
,

a contradiction.
To show M ≤ ρa(I), suppose v is any valuation supported on I. We will show

v(I)
v̂(I) ≤ ρa(I). Suppose r and s are such that s

r
<

v(I)
v̂(I) . Then there exists t0 such

that s
r
<

v(I)
v(I(st))

st

for all t ≥ t0. Hence v(I(st)) < rtv(I) = v(Irt) for all t ≥ t0. By

the valuative criterion for integral closure, I(st) 6⊂ Irt for t ≥ t0. Hence
s
r
≤ ρa(I),

so by Proposition 4.2 s
r
≤ ρa(I). Since s

r
could be arbitrarily close to v(I)

v̂(I) , we

conclude that v(I)
v̂(I) ≤ ρa(I).

We have shown M ≤ sup
{

v(I)
v̂(I)

}
≤ ρa(I) ≤ M . The desired equalities are

immediate. �

Remark 4.11. Theorem 4.10 generalizes the well-known bound α(I)
α̂(I) ≤ ρ(I).

Lemma 4.12. If I is an ideal, then

(1) if I(s) 6⊆ Ir then s
r
< ρa(I)

(2) if s
r
< ρa(I) then I(st) 6⊆ Irt for all t ≫ 0.

Remark 4.13. Given an ideal I and a fraction s
r
< ρa(I), we may have to take t

to be quite large before I(st) 6⊆ Irt. See Example 2.26.
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Proof. If I(s) 6⊆ Ir then by the valuative criterion for integral closure there is a
valuation v : S → Z so that v(I(s)) < v(Ir). So we have

s

r
<

s

r

v(Ir)

v(I(s))
=

s

r

rv(I)

v(I(s))
=

v(I)
v(I(s))

s

≤ v(I)

v̂(I)
≤ ρa(I)

by Lemma 4.5 and Theorem 4.10. This proves (1).
For (2), if s

r
< ρa(I) then by Theorem 4.10 there is a valuation v : S → Z so

that s
r
<

v(I)
v̂(I) . By Lemma 4.5,

s

r
<

v(I)
v(I(st))

st

for all t ≫ 0. Rearranging, v(I(st)) < rtv(I) = v(Irt) for all t ≫ 0, so the valuative

criterion for integral closure tells us that I(st) 6⊆ Irt for all t ≫ 0. �

Corollary 4.14. For any ideal I, we have ρa(I) = ρa(I) = ρ(I). In particular, if
I is normal (that is, if all powers of I are integrally closed), then ρa(I) = ρ(I).

Proof. The inequality ρa(I) ≤ ρ(I) is automatic from the definitions. The rest
follows from part (1) of Lemma 4.12 and Proposition 4.2. �

Remark 4.15. Corollary 4.14 gives a partial answer to the question raised at
the end of [GHVT13]: in what cases do we have ρa(I) = ρ(I)? The normalilty
hypothesis here is very strong and far from sharp – it happens that ρa(I) = ρ(I)
for many ideals which are not normal.

Corollary 4.16. Let I be an ideal. Then ρa(I) ≥ 1, with equality if and only if
I(s) ⊆ Is for every s ≥ 1.

Proof. For the inequality 1 ≤ ρa(I), see [GHVT13, Theorem 1.1]. Now suppose
there is some s ≥ 1 so that I(s) 6⊂ Is. Then by Lemma 4.12, 1 < ρa(I). Hence if
ρa(I) = 1, we must have I(s) ⊆ Is for every s ≥ 1. �

Corollary 4.17. Suppose that the symbolic powers of I are integrally closed (for

example, if I is radical). Then ρ(I) = 1 if and only if ρa(I) = 1 and Ir+1 ⊂ Ir for
all r ≥ 1.

Proof. Suppose first that ρ(I) = 1. It follows from 1 ≤ ρa(I) ≤ ρ(I) that ρa(I) = 1.
Since the symbolic powers of I are integrally closed, Corollary 4.16 yields I(r) ⊆
Ir ⊆ I(r) = I(r), so I(r) = Ir for all r ≥ 1. Suppose that Ir+1 = I(r+1) 6⊂ Ir for
some r ≥ 1. Then ρ(I) ≥ r+1

r
> 1, a contradiction. Hence we must have Ir+1 ⊂ Ir

for r ≥ 1.
Now suppose that ρa(I) = 1 and Ir+1 ⊂ Ir for all r ≥ 1. As above, we have

I(s) = Is for all s ≥ 1. If ρ(I) > 1, there would exist positive integers s > r so that

I(s) = Is 6⊂ Ir. Since Is ⊆ Ir+1, it would follow that Ir+1 6⊂ Ir, a contradiction.
So ρ(I) ≤ 1. Since we always have 1 ≤ ρ(I), this shows ρ(I) = 1. �

We now discuss some upper bounds on resurgence in terms of asymptotic resur-
gence.

Definition 4.18. For a fixed positive integer r, write Kr = Kr(I) := min{s : Is ⊂
Ir}. By the Briançon-Skoda theorem (see [SH06, Theorem 13.3.3] and following
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remarks), Kr ≤ r + (n− 1), where n is the number of variables of S. Hence

1 ≤ Kr

r
≤ 1 +

(n− 1)

r
,

and maxr
{
Kr

r

}
exists. Write K(I) for this maximum value. The inequalities above

show K(I) ≤ n.

Proposition 4.19. For any ideal I,

ρ(I) ≤ max
r

{⌈ρa(I)Kr(I)⌉ − 1

r

}
≤ ρa(I)K(I) ≤ ρa(I)n.

Proof. Suppose I(s) 6⊂ Ir. Then I(s) 6⊂ IKr , so by Lemma 4.12, s
Kr

< ρa(I), hence

s ≤ ⌈ρa(I)Kr⌉ − 1. It follows that s
r
≤ ⌈ρa(I)Kr⌉−1

r
, hence

ρ(I) = sup
{s

r
: I(s) 6⊂ Ir

}
≤ sup

{⌈ρa(I)Kr⌉ − 1

r

}
.

The result now follows from the inequalities

⌈ρa(I)Kr⌉ − 1

r
≤ ρa(I)Kr

r
≤ ρa(I)K(I).

�

Remark 4.20. The results of [ELS01] and [HH02] imply that ρ(I) ≤ n − 1, ren-
dering the final inequality in 4.19 useless; however, either of the two expressions
prior to the final inequality can represent non-trivial improvements, depending on
the ideal.
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[HL15] Huy Tài Hà and Kuei-Nuan Lin. Normal 0-1 polytopes. SIAM J. Discrete Math.,
29(1):210–223, 2015.

[HS15] Brian Harbourne and Alexandra Seceleanu. Containment counterexamples for ideals
of various configurations of points in P

N . J. Pure Appl. Algebra, 219(4):1062–1072,
2015.

[Koz08] Dmitry Kozlov. Combinatorial algebraic topology, volume 21 of Algorithms and Com-
putation in Mathematics. Springer, Berlin, 2008.

[Nag61] Masayoshi Nagata. On rational surfaces. II. Mem. Coll. Sci. Univ. Kyoto Ser. A
Math., 33:271–293, 1960/1961.

[OH98] Hidefumi Ohsugi and Takayuki Hibi. Normal polytopes arising from finite graphs. J.
Algebra, 207(2):409–426, 1998.

[SH06] Irena Swanson and Craig Huneke. Integral closure of ideals, rings, and modules, vol-
ume 336 of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 2006.

[SVV98] Aron Simis, Wolmer V. Vasconcelos, and Rafael H. Villarreal. The integral closure

of subrings associated to graphs. J. Algebra, 199(1):281–289, 1998.
[Swa00] Irena Swanson. Linear equivalence of ideal topologies. Math. Z., 234(4):755–775,

2000.

Michael DiPasquale, Department of Mathematics, Oklahoma State University, Still-

water, OK 74078-1058, USA

E-mail address: Michael.DiPasquale@colostate.edu

URL: https://midipasq.github.io/

Christopher A. Francisco, Department of Mathematics, Oklahoma State University,

Stillwater, OK 74078-1058, USA

E-mail address: chris.francisco@okstate.edu

URL: https://math.okstate.edu/people/chris/

Jeffrey Mermin, Department of Mathematics, Oklahoma State University, Stillwa-

ter, OK 74078-1058, USA

E-mail address: mermin@math.okstate.edu

URL: https://math.okstate.edu/people/mermin/

Jay Schweig, Department of Mathematics, Oklahoma State University, Stillwater,

OK 74078-1058, USA

E-mail address: jay.schweig@okstate.edu

URL: https://math.okstate.edu/people/jayjs/

http://arxiv.org/abs/1805.03428
https://midipasq.github.io/
https://math.okstate.edu/people/chris/
https://math.okstate.edu/people/mermin/
https://math.okstate.edu/people/jayjs/

	1. Introduction
	2. Asymptotic resurgence for squarefree monomial ideals
	3. Counterexamples and special cases
	4. Asymptotic resurgence and integral closure
	References

