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On the number of edges in some graphs ⋆

Chunhui Lai a,1

aSchool of Mathematics and Statistics,

Minnan Normal University, Zhangzhou, Fujian, P.R. China.

Abstract

In 1975, P. Erdős proposed the problem of determining the maximum number
f(n) of edges in a graph with n vertices in which any two cycles are of different
lengths. The sequence (c1, c2, · · · , cn) is the cycle length distribution of a graph G
with n vertices, where ci is the number of cycles of length i in G. Let f(a1, a2, · · · ,
an) denote the maximum possible number of edges in a graph which satisfies ci ≤ ai,
where ai is a nonnegative integer. In 1991, Shi posed the problem of determining
f(a1, a2, · · · , an) which extended the problem due to Erdős. It is clear that f(n) =
f(1, 1, · · · , 1). Let g(n,m) = f(a1, a2, · · · , an), where ai = 1 if i/m is an integer, and

ai = 0 otherwise. It is clear that f(n) = g(n, 1). We prove that lim infn→∞
f(n)−n√

n
≥

√

2 + 40
99 , which is better than the previous bounds

√
2 (Shi, 1988), and

√

2 + 7654
19071

(Lai, 2017). We show that lim infn→∞
g(n,m)−n√

n
m

>
√
2.444, for all even integers m.

We make the following conjecture: lim infn→∞
f(n)−n√

n
>

√
2.444.
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1 Introduction

Let f(n) be the maximum number of edges in a graph with n vertices in
which no two cycles have the same length. In 1975, Erdős raised the problem
of determining f(n) (see Bondy and Murty [1], p.247, Problem 11). Shi [11]
proved a lower bound.

Theorem 1 (Shi [11])

f(n) ≥ n+ [(
√
8n− 23 + 1)/2]

for n ≥ 3.

Chen, Lehel, Jacobson and Shreve [3], Jia [4], Lai [5,6,7], Shi [13,14] obtained
some additional related results.

Boros, Caro, Füredi and Yuster [2] proved an upper bound as follows.

Theorem 2 (Boros, Caro, Füredi and Yuster [2]) For n sufficiently large,

f(n) < n+ 1.98
√
n.

Lai [8] improved the lower bound by Shi as follows.

Theorem 3 (Lai [8]) Let t = 1260r + 169 (r ≥ 1), then

f(n) ≥ n +
107

3
t+

7

3

for n ≥ 2119
4
t2 + 87978t+ 15957

4
.

Lai [5] proposed the following conjecture:

Conjecture 4 (Lai [5])

lim inf
n→∞

f(n)− n
√
n

≤
√
3.

It would be nice to prove that

lim inf
n→∞

f(n)− n
√
n

≤

√

3 +
3

5
.

Survey papers on this problem can be found in Tian [15], Zhang [16], Lai and
Liu [9].
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The progress of all 50 problems in [1] can be found in Locke [10].

The sequence (c1, c2, · · · , cn) is the cycle length distribution of a graph G with
n vertices, where ci is the number of cycles of length i in G. Let f(a1, a2, · · · ,
an) denote the maximum possible number of edges in a graph which satisfies
ci ≤ ai, where ai is a nonnegative integer. Shi [12] posed the problem of
determining f(a1, a2, · · · , an) which extended the problem due to Erdős. It is
clear that f(n) = f(1, 1, · · · , 1). Let g(n,m) = f(a1, a2, · · · , an), where ai = 1
if i/m is an integer, and ai = 0 otherwise. It is clear that f(n) = g(n, 1).

In this paper, we obtain the following results.

Theorem 5 Let m be even, s1 > s2, s1 + 3s2 > k , then

g(n,m) ≥ n+ (k + s1 + 2s2 + 1)t− 1

for n ≥ (3
4
mk2 + 1

2
mks1 +

3
2
mks2 +

1
2
ms21 +

3
2
ms1s2 +

9
4
ms22 + mk + ms1 +

3ms2 +
1
2
m)t2 + (1

4
mk + 1

2
ms1 +

3
4
ms2 − k − s1 − 2s2 +

1
2
m− 1)t+ 1.

Theorem 6 Let t = 1260r + 169 (r ≥ 1), then

f(n) ≥ n+
119

3
t−

26399

3

for n ≥ 1309
2
t2 − 1349159

6
t+ 6932215

3
.

2 Proof of Theorem 5

Proof. Let nt = (3
4
mk2 + 1

2
mks1 +

3
2
mks2 +

1
2
ms21 +

3
2
ms1s2 +

9
4
ms22 +mk +

ms1 + 3ms2 +
1
2
m)t2 + (1

4
mk + 1

2
ms1 +

3
4
ms2 − k − s1 − 2s2 +

1
2
m− 1)t + 1,

m be even, s1 > s2, s1 + 3s2 > k, n ≥ nt. It suffice to show that there exists
a graph G on n vertices with n + (k + s1 + 2s2 + 1)t − 1 edges such that all
cycles in G have distinct lengths and all the lengths of cycles are the multiple
of m.

Now we construct the graph G which consists of a number of subgraphs: Bi,
(0 ≤ i ≤ s1t, i = s1t+ j (1 ≤ j ≤ s2t), i = s1t + s2t+ j (1 ≤ j ≤ t)).

Now we define these Bis. These subgraphs all only have a common vertex x,
otherwise their vertex sets are pairwise disjoint.

For 1 ≤ i ≤ s2t, let the subgraph Bs1t+i consists of a cycle

xa1i a
2
i ...a

ms1t+2ms2t+mi−1
i x
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and a path:

xa1i,1a
2
i,1...a

ms1t−ms2t+mi

2
−1

i,1 a
ms1t+ms2t+mi

2
i .

Based on the construction, Bs1t+i contains exactly three cycles of lengths:

ms1t+mi,ms1t +ms2t +mi,ms1t+ 2ms2t+mi.

For 1 ≤ i ≤ t, let the subgraph Bs1t+s2t+i consists of a cycle

Cs1t+s2t+i = xy1i y
2
i ...y

ms1t+3ms2t+mk(k+1)t+mi−1
i x

and k paths sharing a common vertex x, the other end vertices are on the
cycle Cs1t+s2t+i:

xy1i,py
2
i,p...y

ms1t+3ms2t−mkt+m(p−1)t+mi

2
−1

i,p y
ms1t+3ms2t+mk(2p−1)t+m(p−1)t+mi

2
i (p = 1, 2, ..., k).

As a cycle with k chords contains
(

k+2
2

)

distinct cycles, Bs1t+s2t+i contains

exactly (k+2)(k+1)
2

cycles of lengths:

ms1t+ 3ms2t+mkht + (h+ j − 1)mt+mi(j ≥ 1, h ≥ 0, k + 1 ≥ j + h).

B0 is a path with an end vertex x and length n− nt. The other Bi is simply
a cycle of length mi.

Then g(n,m) ≥ n+ (k + s1 + 2s2 + 1)t− 1, for n ≥ nt.

This completes the proof.

From Theorem 5, we have

lim inf
n→∞

g(n,m)− n
√

n
m

≥

√

√

√

√

(k + s1 + 2s2 + 1)2

(3
4
k2 + 1

2
ks1 +

3
2
ks2 +

1
2
s21 +

3
2
s1s2 +

9
4
s22 + k + s1 + 3s2 +

1
2
)
,

for all even integers m.
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Let s1 = 28499066, s2 = 4749839, k = 14249542, then

lim inf
n→∞

g(n,m)− n
√

n
m

>
√
2.444,

for all even integers m.

3 Proof of Theorem 6

Proof. Let nt =
1309
2
t2 − 1349159

6
t + 6932215

3
, t = 1260r + 169, r ≥ 1, n ≥ nt. It

suffice to show that there exists a graph G on n vertices with n+ 119
3
t− 26399

3

edges such that all cycles in G have distinct lengths.

Now we construct the graph G which consists of a number of subgraphs: Bi,
(0 ≤ i ≤ 22t, i = 22t + j (1 ≤ j ≤ 5t−8

3
), i = 23t + 2t−2

3
+ j (1 ≤ j ≤ 5t−8

3
),

i = 32t+ j − 60 (58 ≤ j ≤ t− 742)).

Now we define these Bis. These subgraphs all only have a common vertex x,
otherwise their vertex sets are pairwise disjoint.

For 1 ≤ i ≤ 5t−8
3

, let the subgraph B22t+i consists of a cycle

xa1i a
2
i ...a

28t+ 2t−2
3

+2i−3

i x

and a path:

xa1i,1a
2
i,1...a

56t−2
6

i,1 a
76t−4

6
+i

i .

Based on the construction, B22t+i contains exactly three cycles of lengths:

22t+ i, 25t+
t− 1

3
+ i− 1, 28t+

2t− 2

3
+ 2i− 2.

For 1 ≤ i ≤ 5t−8
3

, let the subgraph B23t+ 2t−2
3

+i consists of a cycle

xb1i b
2
i ...b

28t+ 2t−2
3

+2i−2
i x

and a path:

xb1i,1b
2
i,1...b

11t−1
i,1 b

76t−4
6

+i

i .
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Based on the construction, B23t+ 2t−2
3

+i contains exactly three cycles of lengths:

23t+
2t− 2

3
+ i, 27t+ i− 1, 28t+

2t− 2

3
+ 2i− 1.

For 58 ≤ i ≤ t− 742, let the subgraph B32t+i−60 consists of a cycle

C32t+i−60 = xy1i y
2
i ...y

137t+11i+890
i x

and ten paths sharing a common vertex x, the other end vertices are on the
cycle C32t+i−60:

xy1i,1y
2
i,1...y

11t−2
i,1 y21t−59+i

i

xy1i,2y
2
i,2...y

12t−2
i,2 y31t−53+2i

i

xy1i,3y
2
i,3...y

12t−2
i,3 y41t+156+3i

i

xy1i,4y
2
i,4...y

13t−2
i,4 y51t+155+4i

i

xy1i,5y
2
i,5...y

13t−2
i,5 y61t+155+5i

i

xy1i,6y
2
i,6...y

14t−2
i,6 y71t+154+6i

i

xy1i,7y
2
i,7...y

14t−2
i,7 y81t+153+7i

i

xy1i,8y
2
i,8...y

15t−2
i,8 y91t+147+8i

i

xy1i,9y
2
i,9...y

15t−2
i,9 y101t+149+9i

i

xy1i,10y
2
i,10...y

16t−2
i,10 y111t+151+10i

i .

As a cycle with d chords contains
(

d+2
2

)

distinct cycles, B32t+i−60 contains
exactly 66 cycles of lengths:
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32t+ i− 60, 33t+ i+ 4, 34t+ i+ 207, 35t+ i− 3,

36t+ i− 2, 37t+ i− 3, 38t+ i− 3, 39t+ i− 8,

40t+ i, 41t+ i, 42t+ i+ 739, 43t+ 2i− 54,

43t+ 2i+ 213, 45t+ 2i+ 206, 45t+ 2i− 3, 47t+ 2i− 3,

47t+ 2i− 4, 49t+ 2i− 9, 49t+ 2i− 6, 51t+ 2i+ 2,

51t+ 2i+ 741, 53t+ 3i+ 155, 54t+ 3i+ 212, 55t+ 3i+ 206,

56t+ 3i− 4, 57t+ 3i− 4, 58t+ 3i− 10, 59t+ 3i− 7,

60t+ 3i− 4, 61t+ 3i+ 743, 64t+ 4i+ 154, 64t+ 4i+ 212,

66t+ 4i+ 205, 66t+ 4i− 5, 68t+ 4i− 10, 68t+ 4i− 8,

70t+ 4i− 5, 70t+ 4i+ 737, 74t+ 5i+ 154, 75t+ 5i+ 211,

76t+ 5i+ 204, 77t+ 5i− 11, 78t+ 5i− 8, 79t+ 5i− 6,

80t+ 5i+ 736, 85t+ 6i+ 153, 85t+ 6i+ 210, 87t+ 6i+ 198,

87t+ 6i− 9, 89t+ 6i− 6, 89t+ 6i+ 735, 95t+ 7i+ 152,

96t+ 7i+ 204, 97t+ 7i+ 200, 98t+ 7i− 7, 99t+ 7i+ 735,

106t+ 8i+ 146, 106t+ 8i+ 206, 108t+ 8i+ 202, 108t+ 8i+ 734,

116t+ 9i+ 148, 117t+ 9i+ 208, 118t+ 9i+ 943, 127t+ 10i+ 150,

127t+ 10i+ 949, 137t+ 11i+ 891.

B0 is a path with an end vertex x and length n− nt. The other Bi is simply
a cycle of length i.

Then f(n) ≥ n + 119
3
t− 26399

3
, for n ≥ nt.

This completes the proof.

From Theorem 6, we have

lim inf
n→∞

f(n)− n
√
n

≥

√

2 +
40

99
,

which is better than the previous bounds
√
2 (see [11]), and

√

2 + 7654
19071

(see

[8]).
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Combining this with Boros, Caro, Füredi and Yuster’s upper bound, namely
Theorem 2, we get

1.98 ≥ lim sup
n→∞

f(n)− n
√
n

≥ lim inf
n→∞

f(n)− n
√
n

≥

√

2 +
40

99
.

From the proof of Theorem 6, we have

lim inf
n→∞

g(n,m)− n
√

n
m

≥

√

2 +
40

99
,

for all integers m.

If m = 1, 1 ≤ i ≤ t, there exists the subgraph similar to Bs1t+s2t+i consists
of a cycle Cs1t+s2t+i and k paths sharing a common vertex x, the other end
vertices are on the cycle Cs1t+s2t+i such that all cycles inBs1t+s2t+i have distinct
lengths, then we could obtain

lim inf
n→∞

f(n)− n
√
n

>
√
2.444 >

√

2 +
40

99
.

But we only for m = 1, 58 ≤ i ≤ t − 742, construct a subgraph similar to
Bs1t+s2t+i consists of a cycle Cs1t+s2t+i and ten paths sharing a common vertex
x, the other end vertices are on the cycle Cs1t+s2t+i such that all cycles in
Bs1t+s2t+i have distinct lengths and obtain

lim inf
n→∞

f(n)− n
√
n

≥

√

2 +
40

99
.

We make the following conjecture:

Conjecture 7

lim inf
n→∞

f(n)− n
√
n

>
√
2.444.
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