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ON LI–YORKE CHAOTIC TRANSFORMATION GROUPS

MODULO AN IDEAL

MEHRNAZ POURATTAR, FATEMAH AYATOLLAH ZADEH SHIRAZI

Abstract. In the following text we introduce the notion of chaoticity modulo
an ideal in the sense of Li–Yorke in topological transformation semigroups and
bring some of its elementary properties. We continue our study by characteriz-
ing a class of abelian infinite Li–Yorke chaotic Fort transformation groups and
show all of the elements of the above class is co–decomposable to non–Li–Yorke
chaotic transformation groups.
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1. Introduction

Different senses of chaos in dynamical systems like Devaney chaos [5, 2, 21], Li–
Yorke chaos [14], distributional chaos [13], ω–chaos [12], e–chaos [17], ... for dy-
namical systems have been studied in several texts, the main emphasis in these
researches are on (compact) metric dynamical systems. Moreover, recently have
been done researches on chaos in transformation groups [22], maps on transfor-
mation groups [18] and uniform phase spaces [3]. On the other hand different
compactifications (and amongst them one–point–compactification) have their sig-
nificant role in point set topology and topological dynamics [1, 10, 20]. In this text
we present a definition for Li–Yorke chaos in transformation semigroups (modulo
an ideal) with infinite phase semigroup and study this concept in the category of
transformation groups with one–point–compactification of a discrete space (i.e., a
Fort space) as phase space.

2. Preliminaries

As it has been mentioned in Introduction in this text we deal with Li–Yorke chaos
in transformation semigroups with a uniform space as phase space, so we need
backgrounds on transformation semigroups, uniform spaces and Li–Yorke chaos,
also we bring backgrounds on Fort spaces too regarding our examples.

2.1. Background on uniform spaces. Suppose F is a collection of subsets of
X ×X such that:

• ∀α ∈ F (∆X ⊆ α),
• ∀α, β ∈ F (α ∩ β ∈ F),
• ∀α ∈ F ∀β ⊆ X ×X (α ⊆ β ⇒ β ∈ F),
• ∀α ∈ F (α−1 ∈ F),
• ∀α ∈ F ∃β ∈ F (β ◦ β ⊆ α),

where ∆X = {(x, x) : x ∈ X} and α−1 = {(y, x) : (x, y) ∈ α} also α ◦ β = {(x, z) :
∃y ((x, y) ∈ β∧ (y, z) ∈ α)} (for α, β ⊆ X×X), then we call F a uniform structure
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on X , also we call the elements of F entourages on X . For α ∈ F and x ∈ X
let α[x] = {y ∈ X : (x, y) ∈ α}, then {U ⊆ X : ∀y ∈ U ∃β ∈ F (β[y] ⊆ U)} is
a topology on X , we call it uniform topology on X induced by uniform structure
F and call (X,F) or briefly X a uniform space. We call the topological space Y
uniformzable if there exists a uniform structure E on Y such that uniform topology
induced by E coincides with original topology on Y , also in this case we say E is
a compatible uniform structure on Y . Compact Hausdorff spaces are uniformzable
and admit a unique compatible uniform structure. In particular compact metric
space in (X, d) {α ⊆ X × X : ∃ε > 0 (Oε ⊆ α)} is unique compatible uniform
structure on X (where Oε = {(z, w) ∈ X ×X : d(z, w) < ε} for every ε > 0). For
more details on uniform spaces see [6, 8].

2.2. Ideals and Fort spaces. Let’s recall that we say the nonempty collection I
of subsets of W is an ideal on W if for all A,B ∈ I and C with C ⊆ A we have
A ∪B,C ∈ I, in particular ∅ ∈ I. Although most of the authors in ideal I on W
have supposed X /∈ I [11] we allow this condition too (so I = P(W ) is allowed in
this text, where P(W ) = {A : A ⊆ W} is the collection of all subsets of W ).
Suppose b ∈ F and equip F with topology {U ⊆ F : b /∈ U ∨ (F \ U is finite)},
then we say F is a Fort space with particular point b (it’s evident that Fort space
F with particular point b is just one point compactification (or Alexandroff com-
pactification) of discrete space F \ {b}) [19].

2.3. Background on Li–Yorke chaos in dynamical systems. By a dynamical
system (X, f) we mean a topological space X and continuous map f : X → X . In
dynamical system (X, f) with compact metric phase space (X, d) we say x, y ∈ X
are

1. proximal if lim inf
n→∞

d(fn(x), fn(y)) = 0,

2. asymptotic if lim
n→∞

d(fn(x), fn(y)) = 0,

3. scrambled if lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0.

We say the dynamical system (X, f) is Li–Yorke chaotic if it has an uncountable
subset like A such that every distinct x, y ∈ A are scrambled. So for unique
compatible uniform structure on X , F = {α ⊆ X × X : ∃ε > 0 (Oε ⊆ α)},
which is introduced in subsection 2.1, we may use the following definitions too, we
say x, y ∈ X are

1′. proximal if there exist z ∈ X and net {nα}α∈Γ in N with

lim
α∈Γ

fnα(x) = z = lim
α∈Γ

fnα(y) ,

2′. asymptotic if for every α ∈ F the set {n ∈ N : (fn(x), fn(y)) /∈ α} is finite,
3′. scrambled if they are proximal and non–asymptotic.

2.4. Background on transformation semigroup. By a transformation semi-
group (resp. transformation group) (X,S, π) or simply (X,S) we mean a compact
Hausdorff space X , discrete topological semigroup (resp. group) S with identity e
and continuous map π : X × S → X

(x,s) 7→xs
such that for all x ∈ X and s, t ∈ S we have

xe = x, x(st) = (xs)t [7]. In particular, every dynamical system (X, f) may be
considered as the transformation semigroup (X,N∪{0}, πf) where πf (x, n) = fn(x)
(x ∈ X,n ≥ 0).
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We say (X, (Gα;α ∈ Γ)) is a multi—transformation semigroup (resp. multi—
transformation group) if for each α ∈ Γ, (X,Gα) is a transformation semigroup
(resp. transformation group), moreover for each distinct α1, . . . , αn ∈ Γ and
x ∈ X, s1 ∈ Gα1

, . . . sn ∈ Gαn
we have

(· · · (xs1)s2) · · · )sn = (· · · (xsσ(1))sσ(2)) · · · )sσ(n)

for each permutation σ : {1, . . . , n} → {1, . . . , n}.
For transformation semigroup (resp. transformation group) (X,G), we say the
multi–transformation semigroup (resp. multi—transformation group) (X, (Gα;α ∈
Γ)) is a co–decomposition of (X,G) if Gαs are distinct sub–semigroups (resp. sub-

groups) of G, and G is the semigroup (resp. group) generated by
⋃

α∈Γ

Gα [15].

Definition 2.1. In transformation semigroup (X,S) with uniform phase space
(X,F) suppose I is an ideal on semigroup S. We say x, y ∈ X are:

• proximal if there exists z ∈ X and a net {gα}α∈Γ in S with [7]

lim
α∈Γ

xgα = z = lim
α∈Γ

ygα ,

• asymptotic modulo I if for every α ∈ F we have {s ∈ S : (xs, ys) /∈ α} ∈ I,
• scrambled modulo I if they are proximal and non–asymptotic modulo I,
• stab(x) := {g ∈ S : xg = x} is the stablizer of x.

We denote the collection of all proximal pairs of (X,S) with Prox(X,S). Moreover
we have Prox(X,S) =

⋂

{αS−1 : α ∈ F} where for all α ∈ F we have αS−1 =
{(z, w) ∈ X ×X : ∃s ∈ S ((zs, ws) ∈ α)} [9]. Also we denote the collection of all
asymptotic pairs (z, w) modulo ideal I (i.e., z, w ∈ X are asymptotic modulo ideal
I) with AsymI(X,S).
Also we say D ⊆ X with at least two elements is an scrambled set modulo I if for
all distinct z, w ∈ D we have (z, w) ∈ Prox(X,S) \AsymI(X,S). We say (X,S) is
Li–Yorke chaotic modulo I if it contains an uncountable scrambled subset modulo
I.

Definition 2.2. In transformation semigroup (X,S), Pfin(S) := {D ⊆ S : Dis finite}
is an ideal on S, let

Asym(X,S) := AsymPfin(S)(X,S) .

We say (X,S) is Li–Yorke chaotic if it is Li–Yorke chaotic modulo Pfin(S). Also
we say x, y ∈ X are asymptotic (resp. scrambled) if they are asymptotic modulo
Pfin(S) (resp. scrambled modulo Pfin(S)).

Note 2.3. Consider dynamical system (X, f) with compact metric phase space X
and transformation semigroup (X,N∪{0}) with xn := fn(x) (for all x ∈ X,n ≥ 0),
then (X, f) is a Li–Yorke chaotic dynamical system if and only if (X,N ∪ {0}) is a
Li–Yorke chaotic transformation semigroup.

Note 2.4. For compact metric space X with compatible metric d, and infinite
countable semigroup S = {t1, t2, . . .} (with distinct tns), in transformation semi-
group (X,S) the following statements are equivalent:

A. (X,S) is Li–Yorke chaotic (according to Definition 2.2),
B. There exists an uncountable subset A of X such that for any distinct points

x, y ∈ A we have (x, y) ∈ Prox(X,S) (i.e. there exists a sequence {sn}n≥1
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in S with limn→∞ d(xsn, ysn) = 0), and there exists (rn)n≥1 ∈
∏

n≥1

S \

{t1, . . . , tn} with lim
n→∞

d(xrn, yrn) > 0.

C. for any increasing sequence F = {Fn}n≥1 of compact subsets of S there
exists an uncountable subset AF of X such that for any distinct points
x, y ∈ AF we have (x, y) ∈ Prox(X,S), and there exists (rn)n≥1 ∈

∏

n≥1

S\Fn

with lim
n→∞

d(xrn, yrn) > 0 (i.e., (X,S) is Li–Yoke chaotic according to [4,

Definition 1.2]).

Proof. Let’s consider the following two claims for every x, y ∈ X :
Claim 1. If (x, y) /∈ Asym(X,S), then for any increasing sequence {Fn}n≥1 of
finite subsets of S, there exists (rn)n≥1 ∈

∏

n≥1

S \ Fn with lim
n→∞

d(xrn, yrn) > 0.

Proof of Claim 1. Suppose (x, y) /∈ Asym(X,S), then there exists δ > 0 such
that D := {s ∈ S : d(xs, ys) > δ}(= {s ∈ S : (xs, ys) /∈ Oδ}) is infinite. Now
consider increasing sequence {Fn}n≥1 of finite subsets of S, for all n ≥ 1 there
exists pn ∈ D \Fn also we may suppose pns are paiwise distinct, thus for all n ≥ 1,
d(xpn, ypn) > δ which leads to ε := lim inf

n→∞
d(xpn, ypn) ≥ δ, so {pn}n≥1 has a sub-

sequence {pnk
}k≥1 with ε = lim

k→∞
d(xpnk

, ypnk
) > 0, For all k ≥ 1 we have nk ≥ k

and Fk ⊆ Fnk
, hence pnk

∈ S \ Fnk
⊆ S \ Fk. Thus (pnk

)k≥1 ∈
∏

k≥1

S \ Fk which

completes the proof of Claim 1.
Claim 2. If there exists (rn)n≥1 ∈

∏

n≥1

S \ {t1, . . . , tn} with lim
n→∞

d(xrn, yrn) > 0,

then (x, y) /∈ Asym(X,S).
Proof of Claim 2. For all n ≥ 1 there exists sn ∈ S \ {t1, . . . , tn} with ε :=
lim
n→∞

d(xsn, ysn) > 0, so there exists N ≥ 1 with d(xsn, ysn) > ε/2 for all n ≥ N

which leads to {sn : n ≥ N} ⊆ {s ∈ S : d(xs, ys) > ε/2}. If {sn : n ≥ N} is
finite, then there exists M ≥ 1 with {sn : n ≥ N} ⊆ {t1, . . . , tM} in particular
sN+M ∈ {t1, . . . , tM} which is in contradiction with sN+M ∈ S \ {t1, . . . , tN+M},
hence {sn : n ≥ N} is infinte. Therefore {s ∈ S : d(xs, ys) > ε/2}(= {s ∈ S :
(xs, ys) /∈ Oε/2}) is infinite too and (x, y) /∈ Asym(X,S).
Now we are ready to prove the Note.
“(A) ⇒ (C)” Use Claim 1 and the fact that the collection of finite subsets of S is
equal to the collection of compact subsets of S (since S is finite).
“(C) ⇒ (B)” It is obvious, since {{t1, . . . , tn}}n≥1 is an incresing sequence of com-
pact subsets of S.
“(B) ⇒ (A)” Use Claim 2. �

3. Asymptoticity and Li–Yorke chaoticity modulo an ideal

In this section we bring some elementary properties of Li–Yorke chaoticity modulo
an ideals in transformation semigroups, in topics like products, quotient,
co–decomposition, .... in transformation semigroups.

Theorem 3.1. In transformation semigroup (X,S) suppose I and J are ideals on
S with I ⊆ J . We have:
• AsymI(X,S) ⊆ AsymJ (X,S),
• if D ⊆ X is an scrambled set modulo J , then it is an scrambled set modulo I,
• if (X,S) is Li–Yorke chaotic modulo J , then it is Li–Yorke chaotic modulo I.
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Proof. Use the definition of asympoticity and Li–Yorke chaoticity modulo an ideal.
�

In the transformation semigroup (X,S) if T is a sub–semigroup of S, then we may
consider transformation semigroup (X,T ) (with induced action of S on X) in a
natural way too, in the following Theorem we deal with this type of transformation
semigroups.

Theorem 3.2. In transformation semigroup (X,S) suppose T is a sub–semigroup
of S and I is an ideals on T , then:

1. AsymI(X,S) ⊆ AsymI(X,T ),
2. if D ⊆ X is an scrambled set modulo I in (X,T ), then it is an scrambled

set modulo I in (X,S),
3. if (X,T ) is Li–Yorke chaotic modulo I, then (X,S) is Li–Yorke chaotic

modulo I,
4. if (X,S) is co–decomposable to Li–Yorke chaotic modulo I transformation

semigroups if and only if it is Li–Yorke chaotic modulo I (so with phase
semigroups all of them containing

⋃

I).

Proof. First of all note that I is an ideal on S. Consider compatible uniform
structure F on X .
1) For x, y ∈ X we have (use {s ∈ T : (xs, ys) /∈ U} ⊆ {s ∈ S : (xs, ys) /∈ U}):

(x, y) ∈ AsymI(X,S) ⇒ (∀U ∈ F {s ∈ S : (xs, ys) /∈ U} ∈ I)

⇒ (∀U ∈ F {s ∈ T : (xs, ys) /∈ U} ∈ I)

⇒ (x, y) ∈ AsymI(X,T ) .

2) Use item (1) and Prox(X,T ) ⊆ Prox(X,S).
3) Use item (2).
4) If (X,S) is Li–Yorke chaotic modulo I, then (X,S) is a co–decomposition of
itself to Li–Yorke chaotic modulo I transformation semigroups. On the other hand
if (X, (Sα : α ∈ Γ)) is co–decomposition of (X,S) to Li–Yorke chaotic modulo I
transformation semigroups such that for all α ∈ Γ we have

⋃

I ⊆ Sα, then choose
α0 ∈ Γ. Since (X,Sα0

) is Li–Yorke chaotic modulo I, Sα0
is a subsemigroup of

S and I is an ideal on Sα0
too, then (X,S) is Li–Yorke chaotic modulo I by

item (2). �

In transformation semigroup (X,S) we say nonempty subset Y of X is invariant if
Y S := {ys : y ∈ Y, s ∈ S} ⊆ Y . If Y is a closed invariant subset of X then we may
consider transformation semigroup (Y, S) with induced action of S on X .

Note 3.3. In transformation semigroup (X,S) suppose Y is a closed invariant
subset of X and I is an ideal on S, then
• AsymI(Y, S) ⊆ AsymI(X,S),
• if D ⊆ Y is an scrambled set modulo I in (X,S), then it is an scrambled set
modulo I in (Y, S),

In the following Theorem we deal; with product of transformation semigroups.
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Theorem 3.4. Suppose {(Xα, S) : α ∈ Γ} is a nonempty set of transformation
semigroups and I is an ideal on S. In transformation semigroup (

∏

α∈Γ

Xα, S) with

(xα)α∈Γs := (xαs)α∈Γ ((xα)α∈Γ ∈
∏

α∈Γ

Xα, s ∈ S)

we have:
1. AsymI(

∏

α∈Γ

Xα, S) = {((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ((zα, wα) ∈ AsymI(Xα, S))},

2. if (zα)α∈Γ, (wα)α∈Γ are scrambled modulo I (in transformation semigroup
(
∏

α∈Γ

Xα, S)), then there exists β ∈ Γ such that zβ, wβ are scrambled modulo I

(in transformation semigroup (Xβ , S)),
3. for β ∈ Γ suppose p, q ∈ Xβ and for each α ∈ Γ choose zα ∈ Xα, let

xα :=

{

p α = β ,
zα α 6= β ,

yα :=

{

q α = β ,
zα α 6= β ,

then (xα)α∈Γ, (yα)α∈Γ are scrambled modulo I (in transformation semigroup
(
∏

α∈Γ

Xα,
∏

α∈Γ

Sα)), if and only if p, q are scrambled modulo I (in transformation

semigroup (Xβ , S)),
4. if there exists β ∈ Γ such that (Xβ , S) is Li–Yorke chaotic modulo I, then
(
∏

α∈Γ

Xα, S) is Li–Yorke chaotic modulo I,

Proof. 1) For compact Hausdorff topological space Y suppose FY is the unique
compatible uniform structure on Y . For β ∈ Γ and U ∈ FXβ

let:

Mβ(U) := {((zα)α∈Γ, (wα)α∈Γ) ∈
∏

α∈Γ

Xα ×
∏

α∈Γ

Xα : (zβ , wβ) ∈ U} .

Now suppose ((zα)α∈Γ, (wα)α∈Γ) ∈ AsymI(
∏

α∈Γ

Xα, S), thus for each β ∈ Γ and

U ∈ FXβ
(use Mβ(U) ∈ F ∏

α∈Γ

Xα
)) we have

{s ∈ S : (zβs, wβs) /∈ U} = {s ∈ S : ((zαs)α∈Γ, (wαs)α∈Γ) /∈ Mβ(U)} ∈ I

which leads to (zβ, wβ) ∈ AsymI(Xβ , S). Therefore:

AsymI(
∏

α∈Γ

Xα, S) ⊆ {((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ ((zα, wα) ∈ AsymI(Xα, S))} .

Now suppose for each α ∈ Γ we have (pα, qα) ∈ AsymI(Xα, S) and A ∈ F ∏

α∈Γ

Xα
.

There exist α1, . . . , αn ∈ Γ and U1 ∈ FXα1
, . . . , Un ∈ FXαn

with

(*)
⋂

1≤i≤n

Mαi
(Ui) ⊆ A .

For each i ∈ {1, . . . , n} we have (pαi
, qαi

) ∈ AsymI(Xαi
, S), thus {s ∈ S :

(pαi
s, qαi

s) /∈ Ui} ∈ I, so:

(**)
⋃

1≤i≤n

{s ∈ S : (pαi
s, qαi

s) /∈ Ui} ∈ I

thus:
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{s ∈ S : ((pαs)α∈Γ, (qαs)α∈Γ) /∈ A}

(∗)

⊆ {s ∈ S : ((pαs)α∈Γ, (qαs)α∈Γ) /∈
⋂

1≤i≤n

Mαi
(Ui)}

=
⋃

1≤i≤n

{s ∈ S : ((pαs)α∈Γ, (qαs)α∈Γ) /∈ Mαi
(Ui)}

=
⋃

1≤i≤n

{s ∈ S : (pαi
s, qαi

s) /∈ Ui}
(∗∗)
∈ I

which shows {s ∈ S : ((pαs)α∈Γ, (qαs)α∈Γ) /∈ A} ∈ I and ((pαs)α∈Γ, (qαs)α∈Γ) ∈
AsymI(

∏

α∈Γ

Xα, S). Therefore:

AsymI(
∏

α∈Γ

Xα, S) ⊇ {((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ ((zα, wα) ∈ AsymI(Xα, S))} .

2)Use Prox(
∏

α∈Γ

Xα, S) ⊆ {((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ((zα, wα) ∈ Prox(Xα, S))}

and item (1).
3) If p, q are scrambled modulo I in transformation semigroup (Xβ , S), then by
item (2), then (xα)α∈Γ, (yα)α∈Γ are scrambled modulo I in transformation semi-
group (

∏

α∈Γ

Xα,
∏

α∈Γ

Sα).

Now suppose (xα)α∈Γ, (yα)α∈Γ are scrambled modulo I in transformation semi-
group (

∏

α∈Γ

Xα,
∏

α∈Γ

Sα), then by item (2) there exists α ∈ Γ such that xα, yα

are scrambled modulo I in transformation semigroup (Xα, S). If α 6= β, then
(xα, yα) = (zα, zα) ∈ ∆Xα

⊆ AsymI(Xα, S) which is a contradiction to the fact
that xα, yα are scrambled modulo I and hence non–asymptotic modulo I, therefore
α = β and p(= xβ), q = (yβ) are scrambled modulo I.
4) Use (2). �

Corollary 3.5. Suppose {(Xα, Sα) : α ∈ Γ} is a nonempty set of transformation
semigroups and for each α ∈ Γ, Iα is an ideal on Sα. In transformation semigroup
(
∏

α∈Γ

Xα,
∏

α∈Γ

Sα) with

(xα)α∈Γ(sα)α∈Γ := (xαsα)α∈Γ ((xα)α∈Γ ∈
∏

α∈Γ

Xα, (sα)α∈Γ ∈
∏

α∈Γ

Sα)

for each β ∈ Γ and D ∈ Iβ let Hβ(D) = {(sα)α∈Γ ∈
∏

α∈Γ

Sα : sβ ∈ D} and suppose

I is an ideal on
∏

α∈Γ

Sα generated by {Hα(D) : α ∈ Γ, D ∈ Iα}. Also suppose R is

an ideal on
∏

α∈Γ

Sα. Then we have:

1. AsymI(
∏

α∈Γ

Xα,
∏

α∈Γ

Sα) is the set

{((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ ((zα, wα) ∈ AsymIα
(Xα, Sα))} ,

2. if (zα)α∈Γ, (wα)α∈Γ are scrambled modulo I (in transformation semigroup
(
∏

α∈Γ

Xα,
∏

α∈Γ

Sα)), then there exists β ∈ Γ such that zβ, wβ are scrambled mod-

ulo Iβ (in transformation semigroup (Xβ , Sβ)),
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3. with the same (xα)α∈Γ, (yα)α∈Γ as in item (3) of Theorem 3.4, (xα)α∈Γ, (yα)α∈Γ

are scrambled modulo I (in transformation semigroup (
∏

α∈Γ

Xα,
∏

α∈Γ

Sα)), if and

only if p, q are scrambled modulo Iβ (in transformation semigroup (Xβ , Sβ)),
4. if there exists β ∈ Γ such that (Xβ , Sβ) is Li–Yorke chaotic modulo Iβ , then
(
∏

α∈Γ

Xα,
∏

α∈Γ

Sα) is Li–Yorke chaptic modulo I,

Proof. Use a similar method described in Theorem 3.4 and Prox(
∏

α∈Γ

Xα,
∏

α∈Γ

Sα) =

{((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ ((zα, wα) ∈ Prox(Xα, Sα))}. �

Note 3.6. In transformation semigroups (X,S), (Y, S) suppose ϕ : (X,S) → (Y, S)
is a homomorphism and I is an ideal of S, then for ϕ× ϕ : X ×X → Y × Y

(x,y) 7→(ϕ(x),ϕ(y))

we have

ϕ × ϕ(Prox(X,S)) ⊆ Prox(Y, S) [7], and ϕ × ϕ(AsymI(X,S)) ⊆ AsymI(Y, S),
suppose (x, y) ∈ AsymI(X,S) and U is an entourage of Y , since ϕ : X → Y is
continuous and X,Y compact Hausdorff spaces, ϕ : X → Y is uniformly continuous
too. Thus there exists entourage V of X with ϕ × ϕ(V ) ⊆ U . Using (x, y) ∈
AsymI(X,S) and ϕ(zs) = ϕ(z)s for all z ∈ X, s ∈ S, we have:

{s ∈ S : (ϕ(x)s, ϕ(y)s) /∈ U} = {s ∈ S : (ϕ(xs), ϕ(ys)) /∈ U}

⊆ {s ∈ S : (xs, ys) /∈ V } ∈ I ,

therefore {s ∈ S : (ϕ(x)s, ϕ(y)s) /∈ U} ∈ I and (ϕ(x), ϕ(y)) ∈ AsymI(Y, S).

In transformation semigroup (X,S) suppose ℜ is a closed invariant relation on X ,
then one may consider transformation semigroup (Xℜ , S) [7, 16]. Using Note 3.6

and natural quotient homomorphism πℜ : (X,S) → (Xℜ , S) we have the following
Corollary.

Corollary 3.7. In transformation semigroup (X,S) suppose ℜ is a closed invariant
relation on X and I is an ideal on S, then πℜ×πℜ(AsymI(X,S)) ⊆ AsymI(

X
ℜ , S).

Let’s recall that in transformation semigroup (X,S) with compatible uniform struc-
ture F on X for all α ∈ F let αS−1 := {(z, w) ∈ X ×X : ∃s ∈ S (zs, ws) = (x, y)},
then Prox(X,S) =

⋂

{αS−1 : α ∈ F} [9].

Theorem 3.8. In transformation semigroup (X,S) with card(S) ≥ 2 we have:

Prox(X,S) =
⋃

{AsymI(X,S) : I is an ideal on S with I 6= P(S)}.

Proof. For ideal I on S with I 6= P(S) suppose (x, y) ∈ AsymI(X,S) and F is the
compatible uniform structure on X . For every α ∈ F , we have {s ∈ S : (xs, ys) /∈
α} ∈ I, thus {s ∈ S : (xs, ys) /∈ α} 6= S and there exists s ∈ S with (xs, ys) ∈ α,
so (x, y) ∈ αS−1. Therefore (x, y) ∈

⋃

{αS−1 : α ∈ F} = Prox(X,S).
On the other hand suppose (x, y) ∈ Prox(X,S), thus (x, y) ∈

⋂

{αS−1 : α ∈ F}
and for every α ∈ F , there exists s ∈ S with (xs, ys) ∈ α so Jα := {t ∈ S : (xt, yt) /∈
α} 6= S. Let I := {A ⊆ S : ∃α ∈ F (A ⊆ Jα)}. For each α, β ∈ F we have α∩β ∈ F
and Jα ∪ Jβ = Jα∩β, thus I is an ideal on S and (x, y) ∈ AsymI(X,S). Moreover
for all α ∈ F we have Jα 6= S thus S /∈ I and I 6= P(S). �

Note 3.9. In transformation semigroup (X,S) suppose I is an ideal on S, being
asymptotic modulo I is an equivalence relation on X , since if x, y are asymptotic
modulo I and y, z are asymptotic modulo I, then for each α ∈ FX there exists
β ∈ FX with β ◦β ⊆ α and we have {t ∈ S : (xt, yt) /∈ β}, {t ∈ S : (yt, zt) /∈ β} ∈ I
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thus {t ∈ S : (xt, zt) /∈ α} ⊆ {t ∈ S : (xt, yt) /∈ β}∪{t ∈ S : (yt, zt) /∈ β} ∈ I which
leads to {t ∈ S : (xt, zt) /∈ α} ∈ I. Hence x, z are asymptotic modulo I too.

4. Li–Yorke chaotic Fort transformation groups

In this section suppose F is an infinite Fort space with particular point b. For each
D ⊆ F let:

αD := ((F \D)× (F \D)) ∪ {(z, z) : z ∈ D} ,

then

K := {U ⊆ F × F : there exists finite subset D ⊆ F \ {b} with αD ⊆ U}

is the unique compatible uniform structure of F .

Lemma 4.1. In infinite Fort transformation group (F,G) we have:
1) {(b, x) : xG is infinite} ∪ {(x, b) : xG is infinite} ⊆ Prox(F,G).
2) For

P := {(x, x) : x ∈ F} ∪

{(b, x) : xG is infinite} ∪ {(x, b) : xG is infinite} ∪

{(x, y) : xG and yG are infinite}

we have Prox(F,G) ⊆ P .
3) Moreover if G is abelian too, then Prox(F,G) = P .

Proof. First note that in the transformation group (F,G) we have bG = {b} and
for all x ∈ X :

xG =

{

xG xG is finite,
xG ∪ {b} xG is infinite,

also for x 6= b, b /∈ xG. 1) For x ∈ F we have:

(x, b) ∈ Prox(F,G) ⇔ ∃{gα}α∈Γ ⊆ G lim
α∈Γ

xgα = lim
α∈Γ

bgα = b

⇔ b ∈ xG

⇔ b ∈ xG ∨ (xG is infinite)

⇔ x ∈ bG ∨ (xG is infinite)

⇔ x = b ∨ (xG is infinite)

Thus if xG is infinite then (x, b) ∈ Prox(F,G) which completes the proof of (1).
2) Suppose (x, y) ∈ Prox(F,G) we have the following cases:

• Case A. x = b∨y = b. Without any loss of generality we may suppose y = b
and (x, y) = (x, b). Using the proof of item (1), and (x, b) ∈ Prox(F,G) we
have “x = b ∨ (xG is infinite)” which leads to (x, y) = (x, b) ∈ P .

• Case B. xG and yG are infinite. In this case it is clear that (x, y) ∈ P .
• Case C. x 6= b ∧ y 6= b ∧ (xG is finite or yG is finite). In this case we may
suppose x 6= b and xG is finite. Since (x, y) ∈ Prox(F,G), there exists a
net {gα}α∈Γ in G such that lim

α∈Γ
xgα = lim

α∈Γ
ygα =: z thus z ∈ xG = xG 6∋ b

so z 6= b and {z} is an open neighbourhood of z (since b is the unique limit
point of F ) and there exists α ∈ Γ with xgα = z = ygα which shows x = y
and (x, y) = (x, x) ∈ P

Using the above items we have (x, y) ∈ P and Prox(F,G) ⊆ P .
3) Using (1) and (2) we have:
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{(b, x) : xG is infinite} ∪ {(x, b) : xG is infinite} ⊆ Prox(F,G) ⊆
{(x, x) : x ∈ F} ∪ {(b, x) : xG is infinite} ∪ {(x, b) : xG is infinite} ∪ {(x, y) :

xG and yG are infinite} = P

SupposeG is abelian, in order to prove Prox(F,G) = P we should prove for x, y ∈ F
with infinite xG, yG we have (x, y) ∈ Prox(F,G). So consider x, y ∈ F with infinte
xG, yG. We have the following cases:

• Case I. There exists sequence {gn}n≥1 in G such that both sequences
{xgn}n≥1 and {ygn}n≥1 are one–to–one. In this case If U is an open neigh-
bourhood of b, then F \ U is finite and there exists N ≥ 1 such that
for all n ≥ N we have xgn, ygn ∈ U . Thus lim

n≥1
xgn = b = lim

n≥1
ygn and

(x, y) ∈ Prox(F,G).
• Case II. For each sequence {gn}n≥1 in G at least one of the sequences
{xgn}n≥1 or {ygn}n≥1 is not one–to–one. In this case using infiniteness
of xG there exists sequence {gn}n≥1 in G with infinite and one–to–one
{xgn}n≥1. If {ygn : n ≥ 1} is infinite, then there exists a subsequence
{gni

}i≥1 with one–to–one {ygni
}i≥1, therefore both sequences {xgni

}i≥1

and {ygni
}i≥1 are one–to–one which is in contradiction with our assump-

tion. Thus {ygn : n ≥ 1} is finite, therefore {ygn}n≥1 has a constant
subsequence {ygni

}i≥1. Let km := gnm
g−1
n1

(m ≥ 1). Then for all p, q ≥ 1
we have:

xkp = xkq ⇒ xgnp
g−1
n1

= xgnq
g−1
n1

⇒ xgnp
g−1
n1

gn1
= xgnq

g−1
n1

gn1

⇒ xgnp
= xgnq

⇒ np = nq (since {xgn}n≥1 is a one− to− one sequence)

⇒ p = q

moreover since {ygni
}j≥1 is a constant sequence, we have ygnp

= ygn1
thus

y = ygn1
g−1
n1

= ygnp
g−1
n1

= ykp.
So {xkn}n≥1 is a one–to–one sequence and for all n ≥ 1 we have ykn = y.
Similarly there exists a sequence {tn}n≥1 in G such that {ytn}n≥1 is a one–
to–one sequence and xtn = x (n ≥ 1).
For all n ≥ 1 we have xkntn = xtnkn = xkn and ykntn = ytn, therefore
both sequences:

{xkntn}n≥1(= {xkn}n≥1) and {xkntn}n≥1(= {ytn}n≥1)

are one–to–one and infinite sequences which is in contradiction with our
assumption on x, y, hence this case would have not been occured.

Using the above discussion for abelian G we have (x, y) ∈ Prox(F,G) which com-
pletes the proof of (3). �

Lemma 4.2. In infinite Fort transformation group (F,G) for x, y ∈ F and ideal I
on G, the following statements are equivalent:

1. (x, y) ∈ AsymI(F,G),
2. for all finite subset D of F \ {b}, we have {g ∈ G : (xg, yg) /∈ αD} ∈ I,
3. for all z ∈ F \ {b} we have {g ∈ G : (xg, yg) /∈ α{z}} ∈ I.
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Proof. “(1)⇔(2)” Use definition.
“(2)⇔(3)” Use the fact that for all nonempty finite subset D of F \ {b} we have
αD =

⋂

z∈D

α{z}. �

Theorem 4.3. In infinite Fort transformation group (F,G) with ideal I on G we
have:

AsymI(F,G) = {(x, x) : x ∈ F} ∪

{(x, y) ∈ F × F : ∀h ∈ G stab(x)h ∪ stab(y)h ∈ I} ∪

[{(x, b) ∈ F × F : ∀h ∈ G stab(x)h ∈ I} ∪

{(b, y) ∈ F × F : ∀h ∈ G stab(y)h ∈ I} .

Proof. First note that:

(⊛) for w ∈ F \ {b} and z ∈ F \ wG we have {g ∈ G : wg = z} = ∅ ∈ I
also b /∈ wG.

For x, y ∈ F \ {b} with x 6= y we have:

(x, b) ∈ AsymI(F,G) ⇔ (∀z ∈ F \ {b} ({g ∈ G : (xg, bg) /∈ α{z}} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : (xg, b) /∈ α{z}} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : xg = z} ∈ I))

(⊛)
⇔ (∀z ∈ xG ({g ∈ G : xg = z} ∈ I))

⇔ (∀h ∈ G ({g ∈ G : xg = xh} ∈ I))

⇔ (∀h ∈ G ({g ∈ G : gh−1 ∈ stab(x)} ∈ I))

⇔ (∀h ∈ G (stab(x)h ∈ I))

Also:
(x, y) ∈ AsymI(F,G)

⇔ (∀z ∈ F \ {b} ({g ∈ G : (xg, yg) /∈ α{z}} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : xg = z ∧ yg 6= z} ∪ {g ∈ G : xg 6= z ∧ yg = z} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : xg = z} ∪ {g ∈ G : yg = z} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : xg = z} ∈ I ∧ {g ∈ G : yg = z} ∈ I))

⇔ ((∀z ∈ F \ {b} {g ∈ G : xg = z} ∈ I) ∧ (∀z ∈ F \ {b} {g ∈ G : yg = z} ∈ I))

(⊛)
⇔ ((∀z ∈ xG {g ∈ G : xg = z} ∈ I) ∧ (∀z ∈ yG {g ∈ G : yg = z} ∈ I))

⇔ ((∀h ∈ G {g ∈ G : xg = xh} ∈ I) ∧ (∀h ∈ G {g ∈ G : yg = yh} ∈ I))

⇔ ((∀h ∈ G stab(x)h ∈ I) ∧ (∀h ∈ G stab(y)h ∈ I))

⇔ (∀h ∈ G stab(x)h ∪ stab(y)h ∈ I)

�

In semigroup S we say ideal I on S is S−invariant, if for all A ∈ I and s ∈ S we
have As ∈ I. So in semigroup S, Pfin(S) is an S−invariant ideal on S (however
for nontrivial S with identity e, ideal {{e},∅} on S is not S−invariant).

Corollary 4.4. In infinite Fort transformation group (F,G) with G−invariant ideal
I on G. Then

AsymI(F,G) = {(x, x) : x ∈ F} ∪ {(x, y) ∈ F × F : stab(x) ∪ stab(y) ∈ I}∪

{(x, b) ∈ F × F : stab(x) ∈ I} ∪ {(b, y) ∈ F × F : stab(y) ∈ I} .
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And:

Asym(F,G) = {(x, x) : x ∈ F} ∪

{(x, y) ∈ F × F : stab(x) ∪ stab(y) is finite} ∪

{(x, b) ∈ F × F : stab(x) is finite} ∪

{(b, y) ∈ F × F : stab(y) is finite} .

Proof. Use Theorem 4.3, �

Theorem 4.5. In infinite Fort transformation group (F,G) suppose I is an ideal
on S, then:

Prox(F,G) \AsymI(F,G)

⊆ {(x, b) ∈ F × F : xG is infinite and exists h ∈ G with stab(x)h /∈ I} ∪

{(b, x) ∈ F × F : xG is infinite and exists h ∈ G with stab(x)h /∈ I} ∪

{(x, y) ∈ F × F : xG, yG are infinite and exists h ∈ G with stab(x)h ∪ stab(y)h /∈ I} .

So if J is a G−invariant ideal on G, then:
Prox(F,G) \AsymJ (F,G)

⊆ {(x, b) ∈ F × F : xG is infinite and stab(x) /∈ J } ∪

{(b, x) ∈ F × F : xG is infinite and stab(x) /∈ J } ∪

{(x, y) ∈ F × F : xG, yG are infinite and stab(x) ∪ stab(y) /∈ J } .

In particular:

Prox(F,G) \Asym(F,G) ⊆ {(x, b) ∈ F × F : xG, stab(x) are infinite} ∪

{(b, x) ∈ F × F : xG, stab(x) are infinite} ∪

{(x, y) ∈ F × F : xG, yG, stab(x) ∪ stab(y) are infinite} .

If G is abelian too, we have equality in all of the above relations.

Proof. Use Lemmas 4.1, 4.3 and Corollary 4.4. �

Corollary 4.6. In infinite Fort transformation group (F,G), for S ⊆ F we have:
1. if S is an scrambled subset of F module ideal I on G, then

S \ ({x ∈ F : xG is infinite and there exists h ∈ G with stab(x)h /∈ I} ∪ {b})

has at most one element.
2. if S is an scrambled subset of F modulo ideal J on G and J is G−invariant,
then

S \ ({x ∈ F : xG is infinite and stab(x) /∈ I} ∪ {b})

has at most one element.
3. if S is an scrambled subset of F , then

S \ ({x ∈ F : xG, stab(x) are infinite } ∪ {b})

has at most one element.

Proof. Use Lemma 4.5. �

Theorem 4.7. Abelian infinite Fort transformation group (F,G) is
1. Li–Yorke chaotic modulo ideal I on G if and only if H := {x ∈ F : xG is infinite
and there exists h ∈ G with stab(x)h /∈ I} is uncountable.
2. Li–Yorke chaotic modulo G−invariant ideal J on G if and only if H := {x ∈ F :
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xG is infinite and stab(x) /∈ J } is uncountable.
3. Li–Yorke chaotic if and only if H := {x ∈ F : xG, stab(x) are infinite} is
uncountable.

Proof. If (F,G) is Li–Yorke chaotic, then it has an uncountable scrambled subset
say S, by Corollary 4.6, S \H is finite, so H is uncountable.
For infinite H and abelian G, H is an scrambled subset of F by Lemma 4.5. So if
H is uncountable, then (F,G) is Li–Yorke chaotic. �

Co–decompositions of (F,G) and Li–Yorke chaos. Now in our final notes in
this section for infinite abelian group G, we pay attention to co–decompasability of
(F,G) to Li–Yorke chatic transformation groups and co–decompasability of (F,G)
to non–Li–Yorke chatic transformation groups.

Corollary 4.8. In infinite abelian Fort transformation group (F,G), is Li–Yorke
chaotic (modulo ideal I (on G)) if and only if it is co-decomposible to Li–Yorke
chaotic (modulo ideal I) transformation groups.

Proof. Use Theorem 4.7. �

Note 4.9. Every infinite abelian Fort transformation group (F,G), is co-decomposible
to non–Li–Yorke chaotic transformation groups.

Proof. Suppose (F,G) is an abelian Fort transformation group, then for {Gα :
α ∈ Γ} = {{gn : n ∈ Z} : g ∈ G} with distinct Gαs, (F, (Gα : α ∈ Γ)) is a
co–decomposition of (F,G) to non–Li–Yorke chaotic transformation groups. �

Example 4.10. For uncountable G let Pcount(G) = {A ⊆ G : A is countable}.
Now for G = Z×R and Fort space F := R∪{∞} with particular point ∞, in trans-
formation groug (F,G) with∞(n, r) := ∞ and x(n, r) := x+r (x ∈ R, (n, r) ∈ Z×R

we have:
1. xG = R for all x ∈ F \ {∞},
2. stab(x) = Z× {0} for all x ∈ F \ {∞}.
So by Theorem 4.7, (F,G) is Li–Yorke chaotic (modulo Pfin(G)) however it is not
Li–Yorke chaotic modulo Pcount(G).

As a matter of fact for transfinite cardinal numbers α, β if there exists abelian
group K with β ≤ card(K) < α, in group G := K × R consider two ideals
I := {A ⊆ G : card(A) < β} and J := {A ⊆ G : card(A) < α}, then I ⊆ J .
Consider Fort space F := R ∪ {∞} with particular point ∞, in transformation
group (F,G) with ∞(k, r) := ∞ and x(k, r) := x+r (x ∈ R, (k, r) ∈ K×R we have
• xG = R for all x ∈ F \ {∞},
• stab(x) = K × {0} for all x ∈ F \ {∞}.
So by Theorem 4.7, (F,G) is Li–Yorke chaotic (modulo I) however it is not Li–Yorke
chaotic modulo J .
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