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Abstract

In this paper, we suggest an effective technique based on time-change for dealing with a large

class of backward stochastic differential equations (BSDEs for short) defined in general space

whose drivers have stochastic Lipschtz coefficients. By studying the deep properties of random

time change combined with stochastic integral and measure theory, we show the relation between

the BSDEs with stochastic Lipschtz coefficients and the ones with deterministic Lipschtz coeffi-

cients and stopping terminal time, so they are possible to be exchanged with each other from one

type to another. In other words, the stochastic Lipschtz condition is not essential in the context

of BSDEs with random terminal time. Next, we derive various results by applying our technique

to some types of BSDEs such as Brownian motion BSDE or Markov chain BSDE.
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1. Introduction

Since their first introduction by Bismut [6] in the linear case and the nonlinear extension by

Pardoux and Peng [36], Backward stochastic differential equations (BSDEs for short) have been

developed rapidly with various types of generalizations in the last decades.

BSDEs are closely connected to finance, optimal control and partial differential equation

etc.([24, 41, 37, 48]).

Most of BSDEs are concerned with the case of constant time horizon and the uniformly

Lipschtz conditions on driver. In many environments, the Lipschtz condition is too restrictive to

be assumed, so much effort have been devoted to relax it ([10, 12, 26, 29]).

In this context, El Karoui and Huang [23] studied the BSDEs with stochastic Lipschtz coeffi-

cients driven by a general càdlàg martingale and those were developed under weaker conditions

in [13]. For the Brownian motion BSDEs, there are some papers going in this direction([2, 8,

5, 46, 40]). Particularly, in [2], Section 3, the existence of the measure solution was stated by

the way of examining the weak convergence of a sequence of measures which were constructed

using the martingale representation and the Girsanov change of measure. Also, the reflected
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backward stochastic differential equations or backward doubly stochastic differential equations

(BDSDEs) with stochastic Lipschtz coefficients were studied in [25, 28, 31, 33, 34, 47].

Recently, the inclusive and generalized BSDEs with jumps were studied in the context of

stochastic Lipschtz condition in [35].

Although the details are slightly different, the most techniques for the BSDEs with stochastic

Lipschtz conditions are similar to the procedure of BSDEs with Lipschtz conditions.

That is, the techniques consist of using martingale representation theorem, obtaining a priori

estimates and finally using the fixed-point arguments.

Other technique was also used in [18], where the Lipschtz approximation to the driver was

introduced, some estimates were obtained for the convergence of approximation sequence and

finally it was shown that the limit of this sequence is a unique solution.

In this paper, we approach the problem differently by indirect method. The technique is

based on time change represented by stochastic Lipschtz coefficients. This time change converts

the BSDEs with stochastic Lipschtz condition to the ones with uniformly Lipschtz condition and

stopping terminal time on another stochastic basis and these two BSDEs are equivalent in some

sense. So, if we know the results of BSDEs with random terminal time and uniformly Lipschtz

coefficients, then the results are easily extended to the ones with stochastic Lipschtz coefficients

through our framework. In other words, the stochastic Lipschtz condition is not a problem in a

setting of BSDEs with random terminal time.

We briefly mention that the opposite argument also holds, that is, the randomness of terminal

time do not play an essential role under the stochastic Lipschtz condition. During our discussion,

if the integrator of the driver is a general continuous increasing process, it is converted to the

typically well-known one, that is, the Lebesgue measure by time change.

Consequently, if we study only the BSDEs to stopping time with standard conditions - the

driver satisfies the uniformly Lipschtz continuity, the integrator of the driver is Lebesgue mea-

sure, then the research on BSDEs with general conditions - the driver satisfies the stochastic

Lipschtz condition, the integrator of the driver is a continuous increasing process is just a corol-

lary of that.

And we apply our technique to the detailed BSDEs and get some improved and new results.

The prototype of BSDEs is of course Wiener-type BSDE, so we first apply our framework to

the BSDE driven by Brownian motion. Here, we deal with the stochastic monotonicity condition

more generally. It is clear that the better results in the setting of random terminal time we make

use of, the better results in the stochastic Lipschtz setting are obtained. On the other hands, the

BSDEs with random terminal time were well-studied sufficiently in many papers.

We note that our results include the comparison theorem. In fact, it is a natural question what

the behavior of comparison theorem will be like by time change.

Here, we emphasize that the comparison theorem as well as wellposedness for BSDEs are

easily extended to the stochastic one by our technique. With respect to the previous results in the

setting of stochastic Lipschtz, we guarantee the results under weaker conditions on parameters.

Moreover we show some new results in the various settings for BSDEs.

In this paper, we also apply our framework effectively to the Markov chain BSDE. The smart

feature is that the discussion on the case of uniformly Lipschtz condition is just inherited to the

case of stochastic Lipschtz condition under the same conditions on volumes.

In general, for the wellposedness of BSDEs with stochastic Lipschtz condition, the stronger

integrability conditions are required than ones with uniformly Lipschtz condition. The main rea-

son is on the discounting property of the terminal time. This discounting property is contributed

to the exponential integrability conditions of volumes and these conditions are influenced by the
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Lipschtz coefficients. In fact, discounting property is inherited from the monotonicity of the

driver. In our framework, the original BSDE with stochastic Lipschtz condition can be shown

as the BSDE to stopping time which is time-changed in reverse and the time-independent dis-

counting rate of this BSDE with constant Lipschtz coefficients is preserved while time change is

processed. This means that the stronger integrability conditions are still required if we use the

results of BSDEs with random terminal time obtained by using the monotonicity condition as

the key tool. But for the Markov chain BSDEs, the results of undiscounted BSDEs to stopping

time without assuming the monotonicity which was researched by Samuel N. Cohen[14] make

our technique more effective. By passing through the proposed framework, we get a new version

of Markov chain BSDEs in the case where the driver has stochastic Lipschtz coefficients for the

first time. We also give an example of the real model described as the Markov chain BSDEs with

stochastic Lipschtz condition. At the end of the paper, we also show some further uses of time

change for the BSDEs.

The rest of this paper is organized as follows. In Section 2, we suggest a general map from

the BSDEs with stochastic Lipschtz coefficients to the ones with uniformly Lipschtz coefficients

by the technique of time change. We discuss this for BSDEs in general space as in [17]. The

applications to the Wiener-type BSDEs are shown in Section 3. We give new results on Markov

chain BSDEs in Section 4. In Section 5, we give some concluding remarks.

Let us introduce some useful notations which are used in this paper. Let (Ω,F ,P) be a

probability space with a filtration F := {Ft}t≥0 satisfying the usual conditions. We shall assume

that F = F∞ and F0 is trivial.

• ‖·‖ denotes the standard Euclidean norm. If z is a matrix, ‖z‖=Trace[zzT], where [·]T means

the vector transpose.

• B(0,∞) denotes the Borel-σ− field given on (0,∞).

• (Ω,F ) means the product measurable space. That isΩ := Ω×(0,∞) andF := F ×B(0,∞).

• dQ/dµ denotes the Radon-Nikodym derivative of Q with respect to µ, where Q is ab-

solutely continuous with respect to µ. If µ is Lebesgue meausre and Q is the meausre

generated by an absolutely continuous function f , then we use f ′ rather than dQ/dµ.

• EQ[·] means the expectation under measure Q.

• L2(Ω,F ,P) is the space of square-integrable random variables.

• Ł and Łc are the spaces of local martingales and continuous local martingales, respectively.

• H2 is the space of square-integrable martingales.

• H2
T

is the space of square-integrable martingales on [0, T ].

• H2
loc

is the space of locally square integrable martingales.

• L2(M) :=
{
Z
∣∣∣ Z is predictable,E

[∫ ∞
0
‖Zt‖

2d < M >t

]
< +∞

}
where M ∈ H2.

• L2
T

(M) :=
{
Z | Z · I[0,T ] ∈ L2(M)

}
, where M ∈ H2

T
.
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• L2
loc

(M) is the space of predictable processes Z for which there exists a localizing sequence

(τn) such that

E

(∫ ∞

0

‖Z‖2d < Mτn >

)
= E

(∫ τn

0

‖Z‖2d < M >

)
< +∞,

where M ∈ H2
loc

.

• L2
t,loc

(M) :=
{
X | X ∈ L2

T
(M) for any T < ∞

}
, where M ∈ H2

loc
.

• U2
T

:=

{
Y
∣∣∣ Y is càdlàg, adapted and E

[
supt∈[0,T ] ‖Yt‖

2

]
< +∞

}
.

• V is the space of càdlàg, adapted processes which have finite variation on every finite

interval.

• V+ := {v ∈ V | v is increasing}.

• A :=
{
A ∈ V | E

[
Var
(
A(∞)

)]
< ∞)

}
.

• Aloc is the space of processes locally belonging to A, that is the space of processes X for

which there exists a localizing sequence (τn) such that Xτn

∈ A for all n.

• A+
loc

:=
{
X ∈ A+

loc
| X is increasing

}
.

• L2
θ
(0, τ; φ) :=

{
X
∣∣∣ X is progressive, E

[∫ τ
0

exp(θφ(s))‖X(s)‖2ds

]
< ∞

}
,

where θ ∈ R, τ is stopping time and φ is an increasing process.

If φ(t) = t, we write in L2
θ
(0, τ).

• L2
θ
(τ; φ) is the space of random variables ξ such that E[exp(θφ(τ))ξ2] < ∞.

• L
2,β

θ
(0, τ; φ) := {Y | βY ∈ L2

θ
(0, τ; φ)}.

• U2
θ
(0, τ; φ) := {Y | Y is progressive, E[sup{exp(θφ(s))‖Y(s)‖2 : 0 ≤ s ≤ τ}] < ∞}

If φ(t) = t, we write in U2
θ
(0, τ).

• If we need to show the Eclidean image space V , we use Ł2
θ
(0, τ; φ,V), Ł

2,β

θ
(0, τ; φ,V) etc.

• M
2,β

θ
(0, τ; φ; V1; V2) := L2

θ
(τ; φ; V1) × L

2,β

θ
(0, τ; φ; V2), where V1,V2 are Euclidean spaces.

1.1. Intdroducing BSDEs in general space

As in [17], we seem to construct the BSDEs assuming only the usual properties of the fil-

tration and that L2(Ω,F ,P) is a separable Hilbert space. Unless otherwise indicated, we should

read all equalities(and inequalities) as ”up to a measure-zero set” throughout this paper.

Definition 1.1. For v ∈ V+, let us define the measure µvon (Ω,F ) as follows.

µv(A) := E

[∫ ∞

0

IA(ω, t)dv

]
, A ∈ F (1.1)

where the integral is taken pathwise in a Stieltjes sense.

This measure µv is called the measure induced (or generated) by v.
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Note that if v ∈ A+
loc

then µv gives a σ− finite measure on (Ω,F ).

We give a simple version of the well-known Martingale representation theorem below (see

[20] or [21]).

Theorem 1.1 (Martingale representation theorem). Suppose that L2(Ω,F ,P) is a separable

Hilbert space with an inner product X · Y = E[XY].

Then there exists a sequence ofH2−martingales, M = (M1, M2, ...) such that < Mi, M j >= 0 for

i , j and every N ∈ H2 can be represented as

Nt = N0 +

∫ t

0

ZudMu = N0 +

∞∑

i=1

∫ t

0

Zi
udMi

u (1.2)

for some sequence of predictable processes, Z = (Z1, Z2, ...) satisfying Z ∈ L2(M).

And the predictable quadratic variation processes of these martingales < Mi > satisfy

< M1 > ≻ < M2 > ≻ ..., (≻ denotes absolute continuity of induced measures). If (Ni) is another

such sequence then < Ni >�< Mi >, where � denotes equivalence of induced measures.

Remark 1.1. If the space is generated by Brownian motion, the martingale representation theo-

rem holds on infinite interval (see e.g. [21], Theorem 6 or references therein). This also implies

the martingale representation theorem on every finite interval.

For a given k ∈ N, the general type of BSDE is as follows.

Yt = ξ +

∫ τ

t

g(ω, s, Ys−, Zs)dvs −

∞∑

i=1

∫ τ

t

Zi
sdMi

s, (1.3)

where τ is an F−stopping time, the terminal value ξ is an Fτ−measurable random variable with

values in Rk, the driver g : Ω× (0,∞)×Rk ×Rk×∞ → Rk is predictable, v ∈ V and the integral of

driver is the Lebesgue-Stieltjes integral with respect to the measures generated by the trajectories

of v.

A solution of the BSDE (1.3) is a pair of processes (Y, Z) taking values in Rk × Rk×∞, where

Y is progressive and Z is predictable.

In this paper, we shall make the follwing assumption on v.

(A0) v is a continuous and increasing process.

It follows from (A0) that v is locally bounded and v ∈ A+
loc

.

Noting that the predictable quadratic variation process < M > identifies an induced measure

on F defined by (1.1), suppose that the induced measure µ<Mi> has the following Lebesgue

decomposition.

µ<Mi> = m̄i,1 + m̄i,2, i ∈ N, (1.4)

where m̄i,1 is absolutely continuous with respect to µv and m̄i,2 is orthogonal to µv.

From the generalized Radon-Nikodym Theorem (e.g. see [32], Chapter 3, Proposition 3.49),

there exist two processes m
i,1
t ,m

i,2
t such that µmi,1 = m̄i,1 and µmi,2 = m̄i,2.

More precisely m
i, j
t = dπ

j
t /dP, j = 1, 2, where π

j
t (B) := m̄i, j

(
(0, t] × B

)
, B ∈ F . Thus

< Mi >t= m
i,1
t + m

i,2
t . (1.5)
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We can consider (1.5) as the Lebesgue decomposition of < Mi >.

Let us introduce the stochastic semi-norm ‖ · ‖Mt
which is defined as

‖zt‖
2
Mt

:=
∑

i

[
‖zi

t‖
2 · (dm̄i,1

t /dµv)

]
=
∑

i

[
‖zi

t‖
2 · (dµmi,1/dµv)(·, t)

]
, (1.6)

for every zt = (z1
t , z

2
t , ...) ∈ R

k×∞.

Now let us consider the finite time BSDE for T > 0. We give the following result which is a

special case of Theorem 6.1 in [17].

Lemma 1.2. Let T > 0, ξ ∈ L2(Ω,FT ,P;Rk) and suppose that v is a deterministic continuous,

increasing function which assigns the positive measure to every non-empty interval in R+. Let

g : Ω × [0, T ] × Rk × Rk×∞ → Rk be a predictable process such that

1. E

[∫ T

0
‖g(ω, t, 0, 0)‖2dvt

]
< ∞

2. For any y, y′ ∈ Rk and z, z′ ∈ Rk×∞, there exists c > 0 such that

‖g(ω, t, y, z) − g(ω, t, y′, z′)‖2 ≤ c
[
‖y − y′‖2 + ‖z − z′‖2Mt

]
, dv × dP − a.s.

Then the following BSDE has a unique solution in U2
T
× L2

T
(M).

Yt = ξ +

∫ T

t

g(ω, s, Ys−, Zs)dvs −

∞∑

i=1

∫ T

t

Zi
sdMi

s. (1.7)

In the above lemma, the terminal time is constant. We can also consider the BSDE (1.3) with

stopping terminal time. Perhaps the Lipschtz condition on driver will be still essential and there

will be some further conditions related to stopping terminal time for the existence and uniqueness

of (1.3). We will not do research of the existence and uniqueness of such BSDEs with random

terminal time in this paper. Our main objective is to show a technique by which the results with

respect to stochastic Lipschtz condition are derived from the results with respect to the random

terminal time which is considered to be already given.

2. Time change and BSDEs

We begin with the definition of time change ([42], Chapter V).

Definition 2.1. A time change C is a family {C(s) | s > 0} of stopping times such that the maps

s→ C(s) are almost surely increasing and right continuous.

Definition 2.2. If C is a time change, a process X is said to be C−continuous if X is constant on

each interval [Ct−,Ct].

We can define the stopped σ−field F̃t := FC(t) and get the new stochastic basis (Ω,F ,P, F̃ =

{F̃t}t≥0). It can be easily seen that F̃ also satisfies the usual conditions from the property of

stopped σ−fields. If X is F−progressive then X̃t := XCt
is F̃−adapted and the process X̃t is called

the time changed process of X. We show a typical example of time change below.
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Let us consider an increasing and right-continuous adapted process A (so, progressive) with

which we associate

C(s) := inf{t | A(t) > s}, (2.1)

where inf() = +∞. This process C(s) is called the inverse of A(s) and we write in A−1(s).

As the stohcastic basis satisfies the usual conditions and A is progressive, A−1(s) which is the

hitting time of (s,∞) is a stopping time for every s > 0. And obviously it is increasing and right

continuous. Thus C = A−1 = {A−1(s)|s > 0} is a time change.

Throughout this section, we suppose that C is almost surly finite and C0 = 0 and for any

progressive measurable process Xt, X̃t means the time changed process of it, unless otherwise

indicated. And for the space of processes V with respect to F, Ṽ means the corresponding space

with respect to F̃. For example, Ł̃ means the space of F̃−local martingales. We give some main

results concerning the property of time change under C−continuity below.

Lemma 2.1. ([42], Chapter V, Proposition 1.4).

Let C be a time change on (Ω,F ,P,F). If h is F−progrssive, then h̃ is F̃−progressive. And if X

is a C−continuous process of finite variation, then

∫ Ct

0

hudXu =

∫ t

0

h̃udX̃u.

Lemma 2.2. ([42], Chapter V, Proposition 1.5)

If C is a time change on (Ω,F ,P,F) and M ∈ Łc satisfies C−continuity, then the following hold.

I. M̃ ∈ Ł̃c and < M̃ >= <̃ M >

II. If h ∈ L2
t,loc

(M), then h̃ ∈ L̃2
t,loc

(M̃) and for each t > 0

∫ t

0

h̃udM̃u =

∫ Ct

0

hudMu.

Moreover, if ξ is a non-negative random variable, then

∫ ξ

0

h̃udM̃u =

∫ Cξ

0

hudMu P − a.s. .

Now we show the property of time change for general locally square-integrable martingales.

Lemma 2.3. If C is a time change on (Ω,F ,P,F) and M ∈ H2
loc

is C−continuous, then the

followings hold.

I. M̃ ∈ H̃2
loc

and < M̃ >= <̃ M >

II. If h ∈ L2
t,loc

(M), h̃ ∈ L̃2
t,loc

(M̃) and for each t > 0

∫ t

0

h̃udM̃u =

∫ Ct

0

hudMu

Moreover if ξ is a non-negative random variable then

∫ ξ

0

h̃udM̃u =

∫ Cξ

0

hudMu P − a.s.
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Proof. I. For any L ∈ Ł, it is easy to see that L̃ ∈ Ł̃ from the optional stopping theorem and

C−continuity of M.

As M ∈ H2
loc

, the predictable quadratic variation < M > is in A+
loc

and M2− < M > is a local

martingale from the characterization of H2
loc

martingale (see e.g. [32], Chapter 3, Proposition

3.64). Therefore ˜M2− < M > = M̃2 − <̃ M > is an F̃−local martingale.

Let (τn) denote the localizing sequence such that < M >τn∈ A+ for every n.

Then τ̃n := C−1
τn
= inf{t : Ct ≥ τn} is an F̃−stopping time for every n and (τ̃n) is a localizing

sequence.

Noting that M is C−continuous if and only if < M > is C−continuous (see [42], Chapter IV,

Proposition 1.13), < M > is constant on [τn,Cτ̃n
].

So E
[
<̃ M >(̃τn)

]
= E
[
< M > (Cτ̃n

)
]
= E
[
< M > (τn)

]
< ∞. Hence <̃ M > ∈ Ã+

loc
.

And <̃ M > is also F̃−predictable from the C−continuity. Accordingly, using again the charac-

terization ofH2
loc

martingale, M̃ ∈ H̃2
loc

and <̃ M > =< M̃ >.

II. This is a simple consequence of I and Lemma 2.1 together with the relation between

stochastic integral and quadratic variation.

Remark 2.1. Lemma 2.3 still holds for H2−martingales under C−continuity. That is, if M is

H2−martingale satisfying C−continuity, then M̃ ∈ H̃2. In this case we use the characterization

ofH2−martingales (e.g. see [32], Chapter II, Proposition 2.84) and the same procedure is used

for the proof.

Now we return to the discussion on BSDE. For the BSDE on which we discuss, the sequence of

H2−martingales Mi (i = 1, 2, ...) has the martingale representation property on (Ω,F ,P,F).

At this point, the martingale representation on (Ω,F ,P, F̃) is naturally expected whereas the

time changed processes of Mi(i = 1, 2, ...) are H̃2−martingales under C−continuity by Lemma

2.3.

Lemma 2.4. Let C be a time change and H2−martingales Mi (i = 1, 2, ...) be C−continuous.

Then the sequence of H̃2−martingales (M̃i) has the martingale representation property for any

H̃2−martingale satisfying C−1−continuity such as in Theorem 1.1.

Proof. Let Ñ be an H̃2−martingale satisfying C−1−continuity. Then Ñt = ÑC−1 (Ct ) = NCt
, where

Nt := ÑC−1
t

. Obviously, N ∈ H2 by Lemma 2.3. Therefore using Theorem 1.1 and Lemma 2.3,

Ñt = NCt
= N0 +

∞∑

i=1

∫ Ct

0

Zi
udMi

u = Ñ0 +

∞∑

i=1

Z̃i
udM̃i

u,

for some sequence of F−predictable processes, (Zi) satisfying

E

[ ∞∑

i=1

∫ ∞

0

(Zi
u)2d < Mi >u

]
< +∞.

Using Lemma 2.1 and Lemma 2.3 again,

E

[ ∞∑

i=1

∫ ∞

0

(Zi
u)2d < Mi >u

]
= E

[ ∞∑

i=1

∫ ∞

0

(Z̃i
u)2d < M̃i >u

]
.
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This leads to

E

[ ∞∑

i=1

∫ ∞

0

(Z̃i
u)2d < M̃i >u

]
< +∞. (2.2)

Hence for any Ñ ∈ H̃2, there exists a sequence of F̃−predictable processes, Z̃i(i = 1, 2, ...)

satisfying (2.2) such that

Ñt = Ñ0 +

∞∑

i=1

∫ t

0

Z̃i
udM̃i

u.

Then by using Lemma 2.3, we can easily deduce that the martingales M̃i, i = 1, 2, ... are mu-

tually orthogonal. The absolute continuity of the induced measures and the uniqueness of the

representation are similarly proved.

If we know the results for the BSDE (1.4) with uniformly Lipschtz condition, it is possible to

extend to the case where the driver has the stochastic Lipschtz coefficients. This is the main

argument in this section.

Conveniently, we rewrite the BSDE (1.4) omitting the index i as follows.

Yt = ξ +

∫ τ

t

g(ω, s, Ys−, Zs)dvs −

∫ τ

t

ZsdMs, 0 ≤ t ≤ τ, (2.3)

where Z = (Z1, Z2, ...) and M = (M1, M2, ...).

Assume that the driver of (2.3) satisfies the following stochastic Lipschtz condition.

(A1) There exist predictable processes rt and ut such that

‖g(ω, t, yt, zt) − g(ω, t, y′t , z
′
t)‖ ≤ rt‖yt − y′t‖ + ut‖zt − z′t‖Mt

, dµv − a.s.

for any yt, y
′
t ∈ Rk and zt, z

′
t ∈ Rk×∞, where α2

t := max{rt, u
2
t } > ǫ for some ǫ > 0 and α2

t is

pathwise Stieltjes-integrable with respect to v for every finite interval in R+.

Now we define the following process.

φ(t) :=

∫ t

0

α2
sdvs. (2.4)

The remarkable point is that φ−1 i.e. the inverse of φt defined by (2.1) is a time change. We shall

make a good use of this process in the view of time change. It is clear that φ−1 is a.s. finite and

φ−1(0) = φ(0) = 0. From now, the symbol C which has meant time change will be replaced by

φ−1. The focus of this section is on the technique, so we do not have detailed discussion on the

space of solutions. The main result in this section is as follows.

Theorem 2.5. Let φ(t) be a process defined by (2.4) and M be φ−1−continuous. If (Yt, Zt) is a

solution of BSDE (2.3) satisfying (A0) and (A1) on (Ω,F ,P,F), then (yt, zt) := (Yφ−1
t (t), Zφ−1

t (t)) is

a solution of the following BSDE on (Ω,F ,P, F̃).

yt = ξ +

∫ τ̃

t

g̃(ω, s, ys−, zs)ds −

∫ τ̃

t

zsdM̃s, 0 ≤ t ≤ τ̃, (2.5)

9



where

g̃(ω, s, y, z) := g(ω, φ−1(s), y, z)/α2(φ−1(s)), τ̃ := φ(τ), M̃s := Mφ−1
s
. (2.6)

The converse is also true, that is if (yt, zt) is a solution of the BSDE (2.5), then (Yt, Zt) :=

(yφ(t), zφ(t)) is a solution of the BSDE (2.3). Mainly the new driver g̃ of (2.5) satisfies uniform

Lipschtz continuity such that for any yt, y
′
t ∈ R

k and zt, z
′
t ∈ R

k×∞,

‖̃g(ω, t, yt, zt) − g̃(ω, t, y′t , z
′
t)‖ ≤ ‖yt − y′t‖ + ‖zt − z′t‖Mt

, dt × dP − a.s. .

Proof. We split the proof into four steps.

Step 1 We first show that ṽ(·, ω) := v
(
φ−1(·, ω), ω

)
is absolutely continuous for each ω ∈ Ω.

As v is increasing and continuous, v−1 defined by (2.1) is a time change and v is v−1−continuous.

Therefore by Lemma 2.1, we can see that

φ(t) =

∫ t

0

α2(s)dvs =

∫ v−1(vt)

0

α2(s)dvs −

∫ v−1(vt)

t

α2(s)dvs

=

∫ v−1(vt)

0

α2(s)dvs =

∫ vt

0

α2(v−1
s )ds =

[∫ ·

0

α2(v−1
s )ds ◦ v

]
(t).

Thus, ṽt = [v ◦ φ−1](t) =

[
v ◦ v−1 ◦

(∫ ·
0
α2(v−1

s )ds

)−1]
(t) =

(∫ ·
0
α2(v−1

s )ds

)−1

(t).

Noting that α2(s) > ǫ, ṽ−1(·) =
∫ ·

0
α2(v−1

s )ds is strictly increasing and absolutely continuous for

each ω ∈ Ω and so is the reversed process. Hence ṽt (resp. µṽ) is absolutely continuous with

respesct to Lebesgue measure (resp dt × dP) and

dµṽ/(dt × dP) = dṽt/dt = 1/[α2 ◦ v−1 ◦ v ◦ φ−1](t) = α−2(φ−1
t ).

In fact, we can see that ṽt (resp. µṽ) is equivalent to Lebesgue measure (resp. dt × dP). We also

mention that v is φ−1−continuous.

Step 2 We derive the Lebesgue decomposition of the measure induced by < M̃ >. First, we

show that m1 is a.s. φ−1−continuous. Suppose that v is a constant on [a, b] (0 ≤ a < b). Then

for any c ∈ [a, b] and B ∈ F , m̄([c, b] × B) = E[
∫ b

c
IB(ω) · (dm̄1/dµv)(ω, t)dvt] = 0. Noting that

m̄([0, t] × B) =
∫

B
m1

t dP,

0 = m̄([c, b] × B) = m̄([0, b] × B) − m̄([0, c] × B) =

∫

B

(m1
b − m1

c)dP.

Hence m1 is a.s. constant on [a, b]. Because v is φ−1−continuous from Step 1, we can see that

m1 is a.s. φ−1−continuous. Recalling (1.5) and using Lemma 2.3, we obtain(omitting the index

i)

< M̃ >t= <̃ M >t = m̃1
t + m̃2

t . (2.7)

And the continuity of φ which comes from the continuity of v implies φ(φ−1
t ) = t. Now we can

use Lemma 2.1 to show

µm̃1 (A) = E

[∫ ∞

0

IA(ω, t)dm̃1
t

]
= E

[∫ ∞

0

IA(ω, φ(ω, t))dm1
t

]

= E

[∫ ∞

0

IA(ω, φ(ω, t))(dm1
/dµv)(ω, t) · dvt

]

= E

[∫ ∞

0

IA(ω, t)[dm
1
/dµv](φ−1

t )dṽt

]
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for any A ∈ F , where [dm
1
/dµv](φ−1

t ) := [dm
1
/dµv](ω, φ−1(ω, t)).

Thus µm̃1 ≺ µṽ and dµm̃1/dµṽ = [dm
1
/dµv](φ

−1
t ).

Noting that µṽ ≺ dt × dP by Step 1, we can deduce µm̃1 ≺ dt × dP and

dµm̃1/(dt × dP) = [dm
1
/dµv](φ−1

t ) · dṽt/dt. (2.8)

Similarly, µm2 is orthogonal to dt × dP. This shows that (2.7) is the Lebesgue decomposition of

< M̃ > with respect to dt × dP.

Step 3. As (Yt, Zt) is the solution of (2.3),

yt := Yφ−1(t) = ξ +

∫ τ

φ−1(t)

g(ω, s, Ys−, Zs)dvs −

∫ τ

φ−1(t)

ZsdMs, 0 ≤ t ≤ τ̃.

By Lemma 2.1 and Step 1,

∫ τ

φ−1(t)

g(ω, s, Ys−, Zs)dvs =

∫ τ̃

t

g(ω, φ−1(s), Yφ−1(s)−, Zφ−1(s))dṽs/ds · ds

=

∫ τ̃

t

g(ω, φ−1
s , Yφ−1(s)−, Zφ−1(s))α

−2(φ−1(s))ds

=

∫ τ̃

t

g̃(ω, s, ys−, zs)ds.

By Lemma 2.3 and φ−1−continuity of M,

∫ τ

φ−1(t)

ZsdMs =

∫ φ(τ)

t

Zφ−1(s)dMφ−1(s) =

∫ τ̃

t

zsdM̃s.

So we have

yt = ξ +

∫ τ̃

t

g̃(ω, s, ys−, zs) −

∫ τ̃

t

zsdM̃s, 0 ≤ t ≤ τ̃.

As Yt is F−progressive, yt is F̃−progressive. Due to the fact that all stochastic integrals are

indistinguishable from the stochastic integrals of predictable processes, we can consider zt is

predictable. Accordingly, (yt, zt) is a solution of BSDE (2.5) on (Ω,F ,P, F̃). Passing back

through the above procedure, the converse argument is trivial.

Step 4. Finally, we show that g̃ satisfies uniform Lipschtz continuity. It follows from the

results in Step 2 that

‖zt‖
2

M̃t

= ‖zt‖
2 · [dµm̃1/(dt × dP)] = ‖zt‖

2 · [dm
1
/dµv](φ

−1
t )dṽt/dt

= α−2(φ−1
t )‖zt‖

2
Mu

∣∣∣
u=φ−1(t)

.
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From the stochastic Lipschtz condition on g,

‖̃g(ω, t, yt, zt) − g̃(ω, t, y′t , z
′
t )‖ = ‖̃g(ω, φ−1(t), yt, zt) − g̃(ω, φ−1(t), y′t , z

′
t )‖α

−2(φ−1
t )

≤ α−2(φ−1(t))
[
rφ−1(t)‖yt − y′t‖ + uφ−1(t)

(
‖zt − z′t‖Ms

∣∣∣
s=φ−1(t)

)]

= α−2(φ−1(t))
[
rφ−1(t)‖yt − y′t‖ + uφ−1(t)α(φ−1(t))

(
‖zt − z′t‖M̃t

]

=
rφ−1(t)

max{rφ−1(t), u
2
φ−1(t)
}
‖yt − y′t‖ +

uφ−1(t)√
max{rφ−1(t), u

2
φ−1(t)
}
‖zt − z′t‖M̃t

≤ ‖yt − y′t‖ + ‖zt − z′t‖M̃t
, dµṽ − a.s.

for any yt, y
′
t ∈ R

k and zt, z
′
t ∈ R

k×∞. From Step 1, we know that µṽ is equivalent to dt × dP. So

Lipschtz property on g̃ holds dt × dP−a.s.

Remark 2.2. If the trajectories of v are strictly increasing, then φ−1 is strictly increasing and

continuous (that is φ−1(φ(t)) = φ(φ−1(t)) = t), so we do not have to assume that M is φ−1−continuous.

Remark that φ−1− continuity of M is equivalent to φ−1− continuity of m2.

Remark 2.3. In our discussion, the continuity of v which leads to the continuity of φ, plays

an important role. This guarantees v(v−1(t)) = φ(φ−1(t)) = t. If v is a finite variation process

possibly with jumps, it may be needed to decompose the Stieltjes measures generated by the

trajectories of v as the continuous part and the discontinuous one. Perhaps it may be non-trivial.

Remark 2.4. If we only want to simplify the continuous integrator of driver, it is sufficient to use

v−1 as the time change.

It is natural to try the comparison theorem under the stochastic Lipschtz condition by means

of time change. Suppose that we have two BSDEs satisfying (A0), (A1) and let (g, ξ),(ḡ, ξ̄) be

the corresponding generators. And let (Y, Z),(Ȳ, Z̄) be the associated solutions. The following

assumption plays an important role to ensure that the comparison theorem holds ([17]).

(A2)

1. For every j, there exists P̂ j equivalent to P such that jth component of X as defined by

eT

j := −

∫ r

0

eT

j [g(ω, u, Ȳu−, Zu) − g(ω, u, Ȳu−, Z̄u)]dvu +

∫ r

0

eT

j [Zu − Z̄u]dMu

is P̂ j−supermartingale.

2. If for all r ≥ 0,

eT

j Yr − E
P̂i

[∫ ∞

r

eT

i g(ω, u, Yu−, Zu)dvu

∣∣∣Fr

]
≥ eT

j Ȳr − E
P̂i

[∫ ∞

r

eT

i g(ω, u, Ȳu−, Zu)dvu

∣∣∣Fr

]

for all i, then Yr ≥ Ȳr for all r ≥ 0 componentwise.

The driver satisfying (A2) is often called balanced. This notation originated from finance, as in

some sense, the driver balances the outcomes to hedge. This driver is closely connected to no-

arbitrage opportunity and furthermore the condition under which the comparison theorem holds

for martingale-type BSDEs possibly with jumps (see [16, 17] or [18], Part IV).
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It is obvious that the comparison theorem holds for BSDE (2.3) if and only if the comparison

theorem holds for the corresponding BSDE (2.5). Now we shall show that the essential condi-

tions which ensure that the comparison theorem holds are preserved while the time change is

processed. We still assume that the BSDE satisfies (A0),(A1) and M is φ−1−continuous.

Theorem 2.6. If BSDE (2.3) satisfies (A2), the time changed BSDE (2.5) also satisfies (A2) with

respect to filtration F̃.

Proof. First by the optional stopping theorem, eT

j
X̃ is F̃−supermartingale under P̂ j for every j

using that eT

j
is F−supermartingale under P̂ j. Having the similar procedure to Step 3 in the proof

of Theorem 2.5, we obtain

eT

j X̃r = −

∫ r

0

eTj [̃g(ω, u, ȳu−, zu) − g̃(ω, u, ȳu−, z̄u)]du +

∫ r

0

eTj [zu − z̄u]dM̃u

So the first part of (A2) is satisfied with respect to F̃ for BSDE (2.5). Similarly we can prove that

the second part is also satisfied.

We conclude this section with the following statement.

Interesting remark on terminal time

When we study the BSDEs with stochastic Lipschtz coefficients, the randomness of terminal

time does not play an important role. This is illustrated as follows. Due to the Remark 2.4, we

can suppose that the BSDE is given in the following type without loss of generality.

Yt = ξ +

∫ τ

t

g(ω, s, Ys−, Zs)ds −

∫ τ

t

ZsdMs. (2.9)

We use the following process introduced for the quadratic BSDEs in [2].

Φ(ω, t) :=
t

1 + τ ∧ t
, t ≥ 0.

After the simple calculation, we get

Φ−1(t) = t/(1 − t), [Φ−1(t)]′ = −(t − 1)−2, 0 ≤ t ≤ τ̃ = Φ(τ) < 1.

ObviouslyΦ−1 is time change and we can deduce the following BSDE on (Ω,F ,P,F) equivalent

to (2.9) in some sense.

yt = ξ +

∫ 1

t

G(ω, s, ys−, zs)ds −

∫ 1

t

zsdM̃s, (2.10)

where G(ω, s, y, z) := Is≤τg(ω,Φ−1(s), y, z)[Φ−1(s)]′ and M̃s := MΦ−1(s). We mention that the

new driver G is stochastic Lipschtz even though the original driver g is uniform Lipschtz. In

fact, if we suppose that g has constants r, u as the Lipschtz coefficients, for any y, y′ ∈ Rk and

z, z′ ∈ Rk×∞,

‖G(ω, s, y, z) −G(ω, s, y′,z′)‖ = Is≤τ̃|(Φ
−1)′(s)| · ‖g(ω,Φ−1

s , y, z) − g(ω,Φ−1
s , y

′, z′)‖

≤ Is≤τ̃|(Φ
−1)′(s)|[r‖y − y′‖ + u‖z − z′‖M̃s

|(Φ−1)′(s)|−1/2]

= Is≤τ̃[r(1 − s)−2‖y − y′‖ + u(1 − s)−1‖zt − z′t‖M̃s
]

≤ r(1 − τ̃)−2‖y − y′‖ + u(1 − τ̃)−1‖z − z′‖M̃s

= r(1 + τ)2‖y − y′‖ + u(1 + τ)‖z − z′‖M̃s
.
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This means that the stopping terminal time of BSDEs can be converted to constant and this

operation is adapted to the class of BSDEs with stochastic Lipschtz condition.

3. Wiener-type BSDEs with stochastic monotone coefficients

The well-known and mostly studied type of BSDEs are of course Wiener-type BSDEs. Let W

be d-dimensional Brownian motion on (Ω,F ,P) and F := {Ft}t≥0 be the natural complete, right

continuous filtration generated by W. It is worthy to study Wiener-type BSDEs with stochastic

Lipschtz conditions. For example, let us consider the pricing problem of a European contingent

claim. This problem is equivalent to solving the following linear BSDE:

Yt = ξ +

∫ T

t

(rsYs + usZs)ds +

∫ T

t

ZsdWs,

where ξ is the contingent claim to hedge, rs is the interest rate, us is the risk premium vector and T

is the maturity date. In general, rt and ut both will not be bounded and moreover the maturity date

will be non-deterministic. In this case the Lipschtz condition does not hold uniformly any more.

For the forward-backward BSDEs, when the uncertainty of driver only comes from a solution

of forward component, we can give the probabilistic interpretation of a system of semi-linear

elliptic PDEs (see [3], Remark 4.6).

We shall have slightly different procedure from Section 2, but this is essentially the same.

For the discussion of Martingale-type BSDE, the martingale term is changed into a martingale

on another stochastic basis. As the quadratic variations of them are different, these martingales

are not equal in general. In view of general Martingale-type BSDE, this is non-sense. But the

theory of Wiener-type BSDE is well studied than others so it will be convenient for the research

if the Wiener-type BSDE is converted to the Wiener-type BSDE on a new basis. We consider the

following BSDE driven by Brownian motion on stochastic basis (Ω,F ,P,F).

Yt = ξ +

∫ τ

t

f (ω, s, Ys, Zs)ds +

∫ τ

t

ZsdWs, 0 ≤ t ≤ τ, (3.1)

where τ is an a.s. finite F−stopping time, ξ is an Fτ−measurable random variable with values

in Rk and f : Ω × R+ × Rk × Rk×d → Rk is F−progressive. Due to < Wt >= t, the stochastic

semi-norm defined by (1.6) is obtained as ‖z‖Wt
= ‖z‖ for z ∈ Rk×d. Let the driver f satisfy the

stochastic Lipschtz condition. That is there exist non-negative progressive processes rt and ut

such that

‖ f (ω, t, y, z) − f (ω, t, y′, z′)‖ ≤ rt‖y − y′‖ + ut‖z − z′‖, dt × dP − a.s. (3.2)

for any y, y′ ∈ Rk, z, z′ ∈ Rk×d. As in Section 2, we assume that there exists ǫ > 0 such that

α2(t) := max{rt, u
2
t } > ǫ and that α2(t) is Lebesgue-integrable on every finite interval in R+. And

we introduce the following strictly increasing, absolutely continuous process:

φ(t) :=

∫ t

0

α2(s)ds. (3.3)

We set F̃ := Fφ−1(t). Now we define stochastic process W̃t as follows.

W̃t :=

∫ t

0

[(φ−1)′(s)]−1/2dWφ−1(s). (3.4)
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Then W̃ is a continuous F̃−local martingale and for each i, < W̃ i >t=
∫ t

0

[
(φ−1)′(s)

]−1
d <

W i >φ−1(s)=
∫ t

0

[
(φ−1)′(s)

]−1
dφ−1(s) = t, so it is F̃−Brownian motion by Lèvy’s characterization

theorem. If (Yt, Zt) is a solution of (3.1), then

yt : = Yφ−1(t) = ξ +

∫ τ

φ−1(t)

f (ω, s, Ys, Zs)ds −

∫ τ

φ−1(s)

ZsdWs

= ξ +

∫ τ̃

t

f (ω, φ−1(s), Yφ−1(s), Zφ−1(s))(φ
−1)′(s)ds −

∫ τ̃

t

Zφ−1(s)dWφ−1(s)

= ξ +

∫ τ̃

t

f (ω, φ−1(s), ys, Zφ−1(s))(φ
−1)′(s)ds −

∫ τ̃

t

Zφ−1(s)

[
(φ−1)′(s)

]1/2
dW̃s

= ξ +

∫ τ̃

t

f
(
ω, φ−1(s), ys, zs

[
(φ−1)′(s)

]−1/2)
(φ−1)′(s)ds −

∫ τ̃

t

zsdW̃s, 0 ≤ t ≤ τ̃,

where zs := Zφ−1(s)

[
(φ−1)′(s)

]1/2
and τ̃ := φ(τ). So, if we set f̃ as

f̃ (ω, s, y, z) := f
(
φ−1(s), y, z ·

[
(φ−1)′(s)

]−1/2)
· (φ−1)′(s) (3.5)

then (yt, zt) = (Yφ−1(t), Zφ−1(t) · (φ
−1)′(t)1/2) is the solution of the following BSDE on (Ω,F ,P, F̃):

yt = ξ +

∫ τ̃

t

f̃ (ω, s, ys, zs)ds −

∫ τ̃

t

zsdW̃s, 0 ≤ t ≤ τ̃. (3.6)

Conversely, if (yt, zt) is a solution of (3.6), (Yt, Zt) := (yφ(t), zφ(t) · (φ
′(t))1/2) is a solution of (3.1)

using that (φ−1)′(φ(t)) = (φ′)−1(t). As in Section 2, f̃ satisfies the uniform Lipschtz continuity.

In fact, noting that (φ−1)′(t) = α−2(φ−1(t)),

‖ f̃ (ω, t, y, z)− f̃ (ω, t, y′, z′)‖ ≤ α−2(φ−1
t )[rφ−1(t)‖y − y′‖ + uφ−1(t) · α(φ−1

t )‖z − z′‖]

=
rφ−1(t)

max{rφ−1(t), u
2
φ−1(t)
}
‖y − y′‖ +

uφ−1(t)√
max{rφ−1(t), u

2
φ−1(t)
}

‖zt − z′t‖

≤ ‖y − y′‖ + ‖z − z′‖, dt × dP − a.s. (3.7)

Now we are prepared to state some results on Wiener type BSDEs.

Lemma 3.1. Let the following conditions hold for BSDE (3.1).

1. The stochastic Lipschtz condition (3.2) holds.

2. ξ ∈ L2
ρ(τ; φ) and f (ω, s, 0, 0)/α(s) ∈ L2

ρ(0, τ, φ) for some ρ > 3.

Then BSDE (3.1) has a unique solution (Yt, Zt) in M2,α
3

(0, τ; φ;Rk;Rk×d). This solution actually

belongs to M
2,α
ρ (0, τ; φ;Rk;Rk×d) and Y ∈ U2

ρ(0, τ; φ).

Proof. We can notice that ξ ∈ L̃2
ρ(̃τ) and f̃ (ω, s, 0, 0) ∈ L̃2

ρ(0, τ̃) from

∫ τ

0

exp(ρφ(s))

∥∥∥∥∥
f (ω, s, 0, 0)

α(s)

∥∥∥∥∥
2

ds =

∫ φ(τ)

0

exp(ρs)

∥∥∥∥∥
f (ω, φ−1(s), 0, 0)

α(φ−1(s))

∥∥∥∥∥
2

dφ−1(s)

=

∫ φ(τ)

0

exp(ρs)‖ f (ω, φ−1(s), 0, 0)‖2
[
(φ−1)′(s)

]2
ds =

∫ τ̃

0

exp(ρs)‖ f̃ (ω, s, 0, 0)‖2ds.
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Recalling (3.7), the simple application of [19], Theorem 3.4 admits that BSDE (3.6) has a unique

solution (yt, zt) in L̃2
3
(0, τ̃;Rk × Rk×d) which belongs to L̃2

ρ(0, τ̃;R
k × Rk×d) and y ∈ Ũ2

ρ(0, τ̃).

Noting that (Yt, Zt) = (yφ(t), zφ(t) · [(φ
′(t)]1/2), we get the following expressions:

E

[∫ τ̃

0

exp(ρs)‖ys‖
2ds

]
= E

[∫ τ

0

exp(ρφ(s))‖yφ(s)‖
2φ′(s)ds

]

= E

[∫ τ

0

exp(ρφ(s))‖(α · Y)s‖
2ds

]
,

E

[∫ τ̃

0

exp(ρs)‖zs‖
2ds

]
= E

[∫ τ

0

exp(ρφ(s))
∥∥∥zφ(s)[φ

′(s)]1/2
∥∥∥2ds

]

= E

[∫ τ

0

exp(ρφ(s))‖Zs‖
2ds

]
,

E
[

sup{exp (ρs)‖ys‖
2 : 0 ≤ s ≤ τ̃}

]
= E
[

sup{exp ρφ(s)‖Ys‖
2 : 0 ≤ s ≤ τ}

]
.

These are sufficient to complete the proof.

In the above lemma, the stochastic Lipschtz condition in y can be relaxed whereas BSDEs

with random terminal time are well adopted under the monotonicity condition. This naturally

admits us to give the following main result.

Theorem 3.2. Suppose that the following conditions hold for BSDE (3.1).

1. There exist non-negative progressive processes ut, lt and progressive process rt satisfying

α2(t) := max{r−t , lt, u
2
t } > ǫ (r− := max{−r, 0}) for some ǫ > 0 such that for any y, y′ ∈ Rk

and z, z′ ∈ Rk×d;

1.1. ‖ f (ω, t, y, z)‖ ≤ ‖ f (ω, t, 0, z)‖ + lt(‖y‖ + l′) (where l′ ∈ {0, 1})

1.2. (y − y′)( f (ω, t, y, z) − f (ω, t, y′, z′)) ≤ −rt‖y − y′‖2

1.3. ‖ f (ω, t, y, z) − f (ω, t, y′, z′)‖ ≤ ut‖z − z′‖

2. f (ω, t, ·, z) is continuous.

3. (ξ + l′) ∈ L2
ρ(τ; φ) and f (ω, s, 0, 0)/α(s) ∈ L2

ρ(0, τ; φ) for some ρ > 3, where φ(t) :=∫ t

0
α2(s)ds.

Then the conclusion of Lemma 3.1 holds.

Proof. It can be easily seen that f̃ is Lipschtz continuous in z. The monotonicity and linear

growth in y are shown as follows.

(y − y′)( f̃ (ω, t, y, z)− f̃ (ω, t, y′, z)) ≤ α−2(φ−1
t ) · (−rφ−1(t))‖y − y′‖2

≤ α−2(φ−1
t ) · r−

φ−1(t)
‖y − y′‖2 =

r−
φ−1(t)

max{r−
φ−1(t)

, lφ−1(t), u
2
φ−1(t)
}
‖y − y′‖2 ≤ ‖y − y′‖2.

‖ f̃ (ω, t, y, z)‖ ≤ ‖ f̃ (ω, t, 0, z)‖ + α−2(φ−1
t ) · lφ−1(t)(‖y‖ + l′)

=
lφ−1(t)

max{r−
φ−1(t)

, lφ−1(t), u
2
φ−1(t)
}
(‖y‖ + l′) ≤ ‖ f̃ (ω, t, 0, z)‖ + (‖y‖ + l′)

Now, the result easily follows from [19], Theorem 3.4.
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Remark 3.1. Existence and uniqueness results for BSDEs driven by Brownian motion with

stochastic Lipschtz coefficients or stochastic monotone coefficients were already given in [3, 5]

under stronger assumptions than ours on linear growth coefficient and ρ need to be enough large.

For example, ρ is assumed to be larger than 90 in [23](see the proof of Theorem 6.1 therein).

For the Wiener-type BSDE with random terminal time, the comparison theorem also holds

under the conditions for the existence and uniqueness (see [19], Corollary 4.4.2). Thus it is trivial

that the comparison theorem holds for the BSDE (3.1). Here we give the stability with respect to

perturbations. Comparing to Theorem 3 in [5] we study under weaker assumptions.

Theorem 3.3. Suppose (τ, ξ, f ), (τ′, ξ′, f ′) are the triples verifying the assumptions of Theorem

3.2 with the same ρ > 3. Let ∆Y := Y − Y′,∆Z := Z − Z′ for (Y, Z) ∈ L2,α
ρ (0, τ; φ;Rk ×

Rk×d) and (Y′, Z′) ∈ L2,α
ρ (0, τ′; φ;Rk × Rk×d) which are solutions of (3.1) corresponding to

(τ, ξ, f ), (τ′, ξ′, f ′), respectively. Then there exist positive numbers β, δ for 3 < θ ≤ ρ such

that

‖∆Y(0)‖2 + βE

[∫ τ∨τ′

0

exp(θφ(s))α2(s)
(
‖∆Y(s)‖2 + ‖∆Z(s)‖2

)
ds

]

≤ E‖ exp(θφ(τ)/2)ξ − exp(θφ(τ′)/2)ξ′‖2

+ δ−1E

[∫ τ∨τ′

0

exp(θφ(s))

∥∥∥∥∥
f (ω, s, Y(s), Z(s)) − f ′(ω, s, Y(s), Z(s))

α(s)

∥∥∥∥∥
2

ds

]
.

Proof. We can adopt the same strategy as the proof of Theorem 3.1 thanks to [19], Theorem 4.4

and omit the proof.

We can consider the case where the driver satisfies stochastic polynomial condition, that is,

conditon 1.1 in Theorem 3.2 can be replaced by

‖ f (ω, t, y, z)‖ ≤ ‖ f (ω, t, 0, z)‖ + lt(‖y‖
p + l′), p > 1

or more generally

‖ f (ω, t, y, z)‖ ≤ ‖ f (ω, t, 0, z)‖ + lt(ψ(‖y‖) + l′) (3.8)

for some continuous, increasing function ψ. In this case, we can refer to [10] (or [39]) and there

will not be any difficulty. On the other hand, if the stochastic monotone coefficient is always

non-negative (that is strictly monotone), we can set rt = 0, so it is sufficient to suppose that ρ > 1

in preceding results. If the driver is monotone decreasing, we can get a more useful result by

referring to [43].

Theorem 3.4. For BSDE (3.1), we suppose that the conditions 1.2, 1.3 and 2 in Theorem 3.2

and (3.8) hold with lt = l, rt = 0, k = 1, l′ = 0 for some l, r ∈ R.

We further assume that ∀t ≥ 0, f (ω, t, 0, 0) = 0 and |ξ| ≤ M for some M ≥ 0. Then there

exists a solution (Yt, Zt) of (3.1) such that |Y | ≤ M and ∀t ≥ 0,E

[∫ t∧τ

0
‖Zs‖

2

]
< ∞.

Proof. We only sketch the proof. We define a process φ(t) :=
∫ t

0
(u2(s) + 1)ds with which we

associate time change. Obviously φ−1(t) ≤ t. Let f̃ denote the driver of time changed BSDE.

Then it is easy to see that f̃ is uniformly Lipschtz in z with Lipsctz coefficient 1 and monotone

decreasing in y. It also satisfies controlled growth condition with coefficient 1. We can easily

check that f̃ (ω, t, 0, 0, ) = 0.
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So there exists a solution (yt, zt) to the time changed BSDE such that |y| < M and for

any t,
∫ t∧τ̃

0
‖zs‖

2ds < ∞ from [43], Theorem 3.1. Noting that Yt = yφ(t) and
∫ t∧τ

0
‖Zs‖

2ds ≤
∫ φ−1(t)∧τ

0
‖Zs‖

2ds =
∫ φ−1(t)∧τ

0
‖Zφ(s)‖

2φ′(s)ds =
∫ t∧τ̃

0
‖zs‖

2ds < ∞, we can complete the proof.

Remark 3.2. We note that the uniqueness and comparison can be also stated under the further

conditions using Theorems 3.6 and 3.7 in [43]. In Theorem 3.4, the exponential integrability

condition on terminal value and the driver are not made and the same conditions as the case of

uniformly Lipschtz were used for the study of the BSDE with stochastic one. This is because the

monotone coefficient which makes discounting rate is equal to zero.

3.1. Some aspects of further applications

Concluding this section, we shall briefly mention that it is possible to have some further ap-

plications to get better or new results. For example, it is not difficult to study Lp−solution [11],

the stability [9, 45] and reflected BSDE [1] in the context of stochastic monotonicity condition

through our framework. Although Lp−solution of BSDE with stochastic Lipschtz condition was

already studied in [46], we can make the improved version, due to the preceding results. We can

use the results in [38] to study the BSDEs with jumps whose drivers are stochastic Lipschtz. For

the martingale-type BSDE with stochastic Lipschtz condition, results of [44] are available. The

stochastic partial differential equations(SPDEs) with stochastic Lipschtz terms are connected to

the backward doubly SDEs(BDSDEs) with stochastic Lipschtz coefficients and we can refer to

[31] concerning the BDSDEs with random terminal time. Perhaps the derived results will be

better than the ones in [33, 34] where the constant parameter appeared in integrability condition

need to be sufficiently large. The proposed technique can be also applied to the BSDEs on mani-

folds with geometrical Lipschtz condition studied in [7], which includes the results with respect

to the random terminal time (see Section 5 therein), so the geometrical Lipschtz condition can be

relaxed from the uniform one to the stochastic one. The wellposedness of Mean-field backward

stochastic delay equation with stopping terminal time and Lipschtz driver was stated in [28],

Theorem 3.1, so we can state the counterpart when the Lipschtz continuity is stochastic one. By

referring to [27] where the results of second-order BSDEs (2BSDEs) with random terminal time

are established, we can study 2BSDEs with stochastic Lipschtz condition. The details are left to

the readers and some of them may be non-trivial.

In this section, we used the results obtained under the monotonicity assumption. So, the stronger

integrability conditions on the driver and the solutions were still required as in the previous

works. We shall apply the proposed technique to the undiscounted BSDEs driven by Markov

chains without the monotonicity assumption on driver in the next section.

4. Markov chain BSDEs with stochastic Lipschtz coefficients

The BSDEs on Markov chains were first introduced in [15] and have developed in several

papers, for example, the comparison theorem in [16] or the case of random terminal time in [14].

We present some preliminaries of the Markov chain BSDEs below.

Consider a continuous time, countable state Markov chain X on (Ω,F ,P,F), where F is the

natural filtration generated by X. Without loss of generality, we assume that X takes values from

the unit vector ei in RN , (N ∈ N ∪ {∞}), where N is the number of states of the chain. We denote

by Π the state space. If At denotes the rate matrix of the chain at time t, then (At)i j ≥ 0, i , j and
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∀ j,Σi(At)i j = 0. For the simplicity, we shall assume that A is uniformly bounded. The Markov

chain X has the following Doob-Meyer decomposition (see [22], Appendix B).

Xt = X0 +

∫ t

0

AuXu−du + Mt, (4.1)

where M is a pure discontinuous martingale with finite variation. In this section, we further

assume the Markov chain has the strong Markov property. Let us consider the following BSDE

to stopping time on Markov chain.

Yt = ξ +

∫ τ

t

f (ω, u, Yu−, Zu)du −

∫ τ

t

ZudMu, 0 ≤ t ≤ τ, (4.2)

where f : Ω × R+ × R × RN → R and
∫ t

0
ZudMu =

∑N
i=1

∫ t

0
Zi

udMi
u. Note that (4.2) is contained

in the class of BSDEs defined by (1.4) due to [15], Lemma 3.1 where it was shown that the

sequence (Mi), i = 1, 2, ... has the martingale representation.

Definition 4.1. We define ψt := diag(AtXt−) − Atdiag(Xt−) − diag(Xt−)A
T
t . Then the matrix ψt is

symmetric and positive (semi-)definite and d < M >t= ψtdt (see [15]).

Due to (1.6), we can set the stochastic semi-norm ‖ · ‖Mt
as follows.

‖Z‖2Mt
:= ZT

uψuZu, Z ∈ R1×N . (4.3)

We give further definitions from [14].

Definition 4.2. We say that the driver f is γ−balanced if there exists a random field η : Ω×R+×

RN × RN → RN , with η(·, ·, z, z′) predictable and η(ω, t, 0, 0) Borel-measurable, such that

• f (ω, t, y, z) − f (ω, t, y, z′) = (z − z′)T(η(ω, t, z, z′) − AXt−)

• for each ei ∈ Π, (eT

i
η(ω, t, z, z′))/(eT

i
AXt−) ∈ [γ, γ−1] for some γ > 0, where 0/0 := 1

• 1Tη(ω, t, z, z′) = 0 for 1 ∈ RN the vector with all entries 1

• η(ω, t, z + α1, z′) = η(ω, t, z, z′) for all α ∈ R

Remark 4.1. Note that the above definition of γ−balanced driver is closely connected to the

notion of balanced driver in Section 2 (see [14], Lemma 3).

Definition 4.3. Let Qγ denote the family of all measures Q where X has the compensator η(t, ω),

for η a predictable process with 1Tη(t, ω) = 0 and
eT

i
η(t,ω)

eT

i
AXt−
∈ [γ, γ−1] for all ei ∈ Π, where 0/0 := 1.

That is, Xt = X0 +
∫ t

0
ηtdt + Q-martingale, Q ∈ Qγ.

We give the key result of [14] (see Theorem 3, Remark 4 therein).

Lemma 4.1. Suppose that the following conditions are verified for Markov chain BSDE (4.2).

1. ξ is Fτ−measurable.

2. There exist non-decreasing functions K1,K2 : R+ → [1,∞) and some constants β, β̃ > 0

such that

EQ[ξ|Ft] ≤ K1(t),EQ[(1 + τ)1+β|Ft] ≤ K1(t),EQ[K1(τ)1+β̃|Ft] ≤ K2(t),

for all P − a.s. all Q ∈ Qγ and all t.
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3. f : Ω × R+ × R × RN → R is γ−balanced.

4. The discounting terms are uniformly bounded above, that is, there exists a constant C1 ∈ R

such that for any y, y′, z and s < t,

∫ t

s

r(ω, u, y, y′, z)du < C1, r(ω, u, y, y′, z) :=
f (ω, t, y, z) − f (ω, t, y′, z)

y − y′
.

5. There exists C2 ∈ R, β̂ ∈ [0, β] such that | f (ω, t, 0, 0)| ≤ C2(1 + tβ̂).

6. f : Ω × R+ × R × RN → R is uniformly Lipschtz in y. That is, there exists a constant C

such that | f (ω, t, y, z) − f (ω, t, y′, z)| ≤ C|y − y′| for all y, y′, z.

Then the BSDE (4.2) has a unique solution such that |Yt| ≤ (1 +C2) exp(C1)|K1(t)|.

Remark 4.2. Note that the fourth condition is verified if the driver is monotone decreasing.

In Lemma 4.1, the Lipschtz condition in y is restrictive. We give a simple illustration below

with the motion of a particle on graph. Consider a model for transmission of messages from a

node to another node over a network. Let the chain X describe the motion of a message. Then

the probability that the message reaches its target is given as the solution of the following BSDE

(see [14], Section 4).

I{Xτ=x1} = Yt −

∫ τ

t

−rXu−
Yu−du +

∫ τ

t

ZudMu, 0 ≤ t ≤ τ, (4.4)

where rx is the rate by which the node x loses a message. To suppose that the losing rate at each

node is bounded is an assumption rarely satisfied in real world. It depends on the time variable

in general and it should be written as r(t, Xt−) which may be unbounded.

The main result of this section is as follows (we shall give the proof later).

Theorem 4.2. Suppose that the conditions 1)−5) in Lemma 4.1 are satisfied for BSDE (4.2). Let

the driver f be stochastic Lipschtz in y, that is, there exists a non-negative predictable process

C(t) such that for any t, y, z, z′,

| f (ω, t, y, z) − f (ω, t, y′, z)| ≤ C(t)|y − y′|. (4.5)

Then BSDE (4.2) has a unique solution such that |Yt| ≤ 2 exp(C1)|K1(t)|.

Remark 4.3. Theorem 4.2 admits that the bound of a solution does not depend on C2. From this

fact, the bound estimate on a solution can be replaced by |Yt| ≤ (1 + C2 ∧ 1) exp(C1)|K1(t)| in

Lemma 4.1.

Usually, if one wants to relax the Lipschtz continuity as the stochastic one, it has to be con-

sidered that the stronger integrability conditions on terminal value, driver and the solution are

required, instead. However, this is not true for undiscounted BSDE. It is because the terminal

value and driver of this BSDEs are not needed to be discounted at some rate and one can consider

the direct conditions on them respectively.

In Theorem 4.2, the conditions on stopping time seem to be unfamiliar and it is required to

afford an example when they are satisfied. In this context, S. N. Cohen [14] showed that the direct

conditions on stopping time are satisfied when the stopping time is a hitting time of a subset of Π
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under the uniform ergodicity of the chain by the way of examining the exponential ergodicity of

the chain under the perturbations of rate matrix. One can observe that the above hitting time only

depends on the character of the chain. In Theorem 4.2, the driver is stochastic Lipschtz only in

y and the γ−balanced condition related to z is still required. On the other hand, it was shown in

two uniform and stochastic Lipschtz settings that the conditions on stopping time and terminal

value for the wellposedness of BSDE (4.2) coincide. These lead to the following result (see [14],

Lemma 6).

Lemma 4.3. Suppose that rate matrix is time-homogeneous under the measure P and the chain

is uniformly ergodic. Let τ be the first hitting time of a set Ξ ⊆ Π and ξ be a random variable

of the form ξ = g(τ, Xτ) for some function g(t, x) ≤ k(1 + tβ) for some k, β > 0. Then there exist

functions K1,K2 satisfying the requirements of Theorem 4.2.

When the terminal time and terminal value have the forms like in Lemma 4.3 and the driver

is Markovian, that is, f (ω, t, y, z) = f̄ (Xt−, t, y, z) for some f̄ , we can give the ODE system with

boundary condition which describes the solution of BSDE in the context of stochastic Lipschtz

assumption (see [14], Theorems 6 or 7). Now we seem to prove Theorem 4.2 by means of time

change described in Section 2.

Proof of Thoerem 4.2 We define the process φ as follows (this is based on the same idea as in

Section 2).

φ(t) :=

∫ t

0

α2(s)ds, α2(s) := max{C(s),C2, 1}. (4.6)

Then it follows that t ≥ φ−1(t) from φ(t) ≥
∫ t

0
1ds = t. We set F̃t := Fφ−1(t), F̃ := {F̃t}t≥0 as in

Section 2. As X is a strong Markov chain, X̃ := Xφ−1(t) is also a strong Markov chain with respect

to F̃ (e.g. see [4], Chapter 22, Section 3).

Using the expression (4.1),

X̃t = X0 +

∫ φ−1(t)

0

AuXudu + Mφ−1(t) = X̃0 +

∫ t

0

ÃuX̃udu + M̃t, (4.7)

where Ãu := Aφ−1(u) · (φ
−1)′(u) and M̃t := Mφ−1 (t). We recall that M̃ = (M̃i), i = 1, 2, ...,N is

a sequence of orthogonal martingales which has martingale representation on (Ω,F ,P, F̃) (see

Lemma 2.4). Therefore, (4.7) is the (unique) Doob-Meyer decomposition of X̃. If we denote by

Ru the rate matrix of X̃, then

RuX̃u = ÃuX̃u, dt × dP − a.s. . (4.8)

It follows that Ru is uniformly bounded from (φ−1)′(t) = 1

φ′(φ−1
t )
= α−2(φ−1(t)) ≤ 1, so the

F̃ −chain X̃ is also regular. We can consider that the random rate matrix Ãt plays the role of

transiation rate matrix of X̃. Next, we shall show that f̃ (ω, s, y, z) := f (ω, φ−1(s), y, z) · (φ−1)′(s)

is γ−balanced with respect to F̃. We define η̃(ω, t, z, z′) := η(ω, φ−1(t), z, z′) · (φ−1)′(t). Then by
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the definition and (4.8), we have

f̃ (ω, t, y, z) − f̃ (ω, t, y, z′) = ( f (ω, φ−1(t), y, z) − f (ω, φ−1(t), y, z′))(φ−1)′(t)

= (z − z′)T(η(ω, φ−1(t), z, z′) − Aφ−1(t)Xφ−1(t))(φ
−1)′(t)

= (z − z′)T(̃η(ω, t, z, z′) − ÃtX̃t) = (z − z′)T (̃η(ω, t, z, z′) − RtX̃t),

(eT

i η̃(ω, t, z, z′))/(eT

i RtX̃t) = (eT

i η̃(ω, t, z, z′))/(eT

i ÃtX̃t)

= (eT

i η(ω, φ−1(t), z, z′))/(eT

i Aφ−1(t)Xφ−1(t)) ∈ [γ, γ−1],

1Tη̃(ω, t, z, z′) = 1Tη(ω, φ−1(t), z, z′)(φ−1)′(t) = 0,

η̃(ω, t, z + α1, z′) = η(ω, φ−1(t), z + α1, z′) · (φ−1)′(t)

= η(ω, φ−1(t), z, z′) · (φ−1)′(t) = η̃(ω, t, z, z′),

dt × dP − a.s.

So f̃ is γ−balanced. We note that f̃ is uniformly Lipschtz in z under norm ‖ · ‖M̃t
because it is

γ−balanced (see [14], Lemma 1). From the expressions (4.7) and (4.8), it is trivial that the family

of probability measures where X̃ has the F̃−predictable compensator η̃(t, ω) such that 1Tη̃ = 0

and ∀1 ≤ i ≤ N; (eT

i
η̃(t, ω))/(eT

i
RtX̃t−) ∈ [γ, γ−1] is also Qγ. Finally we show that the following

time changed BSDE has a unique solution(̃τ := φ(τ)).

yt = ξ +

∫ τ̃

t

f̃ (ω, s, ys, zs)ds −

∫ τ̃

t

zsdM̃s. (4.9)

We have already seen that f̃ is γ−balanced.

Let us define the non-decreasing functions K̃1(t) := K1(φ−1(t)) and K̃2(t) := K2(φ−1(t)).

Then ∀Q ∈ Qγ;EQ[ξ|F̃t] ≤ K1(φ−1(t)) = K̃1(t) and EQ[K̃1(̃τ)1+β̃|F̃t] = EQ[K1(τ)1+β̃|Fφ−1(t)] ≤

K2(φ−1(t)) = K̃2(t).

Using the assumptions on f , we can get the following expressions on f̃ .

| f̃ (ω, t, 0, 0)| = α−2(φ−1(t))| f (ω, φ−1(t), 0, 0)|

≤ (1 + φ−1(t)β̂) · C2/[C(φ−1(t)) +C2 + 1] ≤ 1 + φ−1(t)β̂ ≤ 1 + tβ̂,

∫ t

s

( f̃ (ω, u, y, z) − f̃ (ω, u, y′, z))/(y − y′)du =

∫ t

s

r(ω, φ−1(u), y, y′, z)dφ−1(u)

=

∫ φ−1(t)

φ−1(s)

r(ω, u, y, y′, z)du ≤ C1,

| f̃ (ω, t, y, z) − f̃ (ω, t, y′, z)| = | f̃ (ω, φ−1(t), y, z) − f̃ (ω, φ−1(t), y′, z)| · α−2(φ−1(t))

≤ C(φ−1(t))|y − y′|/
(
max{C(φ−1(t)),C2, 1}

)
≤ |y − y′|.

So BSDE (4.9) has a unique solution satisfying |yt| ≤ 2 exp(C1)|K̃1(t)| by Lemma 4.1. If we

set (Yt, Zt) := (yφ(t), zφ(t)), Theorem 2.5 shows that it is a solution of BSDE (4.2). Because the

solution yt of (4.9) is unique up to indistinguishability, Yt is also unique up to indistinguishability.

And |Yt| = |yφ(t)| ≤ 2 exp(C1)|K̃1(φ(t))| = 2 exp(C1)|K1(t)|. ✷

Remark 4.4. We note that the comparison theorem for BSDE (4.2) holds under the stochas-

tic Lipschtz condition from the corresponding comparison theorem for BSDE (4.9) (see [14],

Theorem 5).
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4.1. Additional use of time change

In Theorem 4.2, the 5th condition is not strictly necessary. In fact, it is sufficient to suppose

that f (ω, s, 0, 0)/(1 + tβ̂) is integrable on every finite interval in R+. For any m > 1, consider the

process φ̄(t) := m
∫ t

0
(| f (ω, s, 0, 0)|/(1+ tβ̂) + 1)ds with which we associate time change. Then

| f̃ (ω, t, 0, 0)| =
| f (ω, φ̄−1(t), 0, 0)|

1 + | f (ω, φ̄−1(t), 0, 0)|/(1+ φ̄−1(t)β̂)
·

1

m
≤

1 + φ̄−1(t)β̂

m
≤

1 + tβ̂

m

Also we have the bound on solution such that |Yt| ≤ (1 + 1/m) exp(C1)|K1(t)|, for all m > 1.

Taking m→ ∞, we get |Yt| ≤ exp(C1)|K1(t)|. So we can show the improvement of Theorem 4.2.

Theorem 4.4. Suppose that conditions 1−4, 6 in Lemma 4.1 and the stochastic Lipschtz condi-

tion (4.5) hold. We further assume that f (ω, s, 0, 0)/(1 + tβ̂) is integrable on every finite interval

in R+. Then there exists a unique solution to BSDE (4.2) such that |Yt| ≤ exp(C1)|K1(t)|. If the

driver is monotone decreasing, then |Yt| ≤ |K1(t)|.

In this subsection, we made the use of time change away from the discussion on Lipschtz

continuity. Perhaps, there will be other problems to which we can apply time change effectively

in the range of stochastic calculus.

5. Conclusion

In this paper, we showed that the technique for dealing with the BSDEs with stochastic

Lipschtz coefficients by time change. The technique says that when we study the BSDE to

stopping time, the Lipschtz condition can be given as the stochastic one. Also roughly speaking,

most of the results of BSDEs obtained under the Lipschtz continuity may be extended to the

case of stochastic Lipschtz continuity. Of course, this is only possible when we are aware of the

results with respect to random terminal time and this admits the importance on the study of them.
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