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Abstract

In the stable general linear group over an arbitrary field, we prove that
every element with determinant ±1 is the product of three involutions, and
of no less in general. We also obtain several results of the same flavor, with
applications to decompositions of automorphisms of an infinite-dimensional
vector space that are scalar multiples of finite-rank perturbations of the
identity.
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1 Introduction

1.1 The problem

Let F be a field, whose group of units we denote by F
∗. Denote by Mn(F) the

algebra of all n by n square matrices with entries in F, by GLn(F) its group of
invertible elements, and by SLn(F) its subgroup of all matrices with determi-
nant 1. The zero matrix of Mn(F) is denoted by 0n, the identity matrix by In.
A matrix of Mn(F) will be called scalar when it is a scalar multiple of In.
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An element x of a group G, with unity 1G, is called an involution whenever
x2 = 1G. An element x of a unital ring R is called unipotent of index 2 when
(x−1R)

2 = 0R (i.e. it is invertible, with inverse 2.1R−x). In particular, a matrix
A ∈ GLn(F) is an involution if and only if A2 = In, and it is unipotent of index
2 if and only if (A − In)

2 = 0n (in which case we say that A is a U2-matrix).
We note that the U2-matrices are the involutions if F has characteristic 2. Every
involutary matrix has determinant ±1, while every U2-matrix has determinant
1. Note also that In is both an involution and a U2-matrix.

Our starting point is the classical problem of decomposing a square matrix
into a product of involutions (with unprescribed number of factors). Obviously,
a matrix that is a product of involutions must be invertible, and more precisely
its determinant must equal ±1. The converse is easily proved by noting that
any transvection matrix is the product of two involutions: for 2 by 2 matrices,
we note that, for all λ ∈ F,

[
1 λ
0 1

]
=

[
1 0
0 −1

] [
1 λ
0 −1

]
.

The next step in this problem is the so-called length problem: given a matrix
A ∈ GLn(F) with determinant ±1, what is the minimal number of factors ℓ(A)
(called the length of A) required to write A as the product of ℓ(A) involutions?
Surprisingly, ℓ(A) is very small! More precisely, ℓ(A) ≤ 4; in other words, every
matrix with determinant ±1 is the product of at most four involutions (see [4],
and [12] for a shorter proof over fields with large cardinality). Yet, in general
there are matrices with determinant ±1 that fail to be the product of three
involutions (e.g. any matrix of the form αIn in which α ∈ F∗ satisfies αn = ±1
and α4 6= 1; see [5]).

The matrices that are the product of two involutions are known: the cele-
brated theorem of Wonenburger [15] (for the field of complex numbers), Djokovic
[3] (for the general case), and Hoffmann and Paige [6] (an independent discov-
ery) states that they are exactly the invertible matrices that are similar to their
inverse: this result is rephrased as point (i) of Theorem 1.2 in the present article.
Note that, in any group, an element is the product of two involutions only if it
is conjugated to its inverse.

The remaining open problem is the determination of the matrices A with
length 3. Of course, the length of A is invariant under conjugation, and hence
it is encoded in the invariant factors of A (i.e. its rational canonical form).
Unfortunately, several studies in low dimension have shown that for length 3
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no neat necessary and sufficient condition in terms of invariant factors appears
possible (a famous quote by Paul Halmos even states that “the best known
characterization of products of three involutions is being the product of three
involutions”). Several interesting non-trivial necessary conditions have been
found however: for example, if A is of length 3 then it has no eigenvalue λ
with geometric multiplicity at least 3n

4 and such that λ4 6= 1 (see [1]). This
result has been improved by Liu (see Theorem 3.1 of [7]). Moreover, several nice
sufficient conditions are also known: for example if A has determinant ±1 and a
sole invariant factor then it is the product of three involutions (see [1], and also
Proposition 3.7 here); if F is the field of complex numbers, A has determinant
±1 and all its eigenvalues have geometric multiplicity at most n

2 , then A is the
product of three involutions [7]. Here, we will prove a variation of that result for
arbitrary fields (see Theorem 1.6). Finally, characterizations are known for very
small values of n. Yet, we agree with Halmos that a full solution to the length
problem should be viewed as an essentially hopeless endeavour.

In the present article, we will not tackle the length problem per se but the
stable length problem, which is motivated by the length problem in the general
linear group of an infinite-dimensional vector space (see Section 1.3). Given
A ∈ GLn(F) and p ∈ N, we consider the “augmented matrix”

A⊕ Ip :=

[
A 0
0 Ip

]
∈ GLn+p(F).

Interestingly, this new matrix has the same determinant as A, and hence it is a
product of involutions if and only if so is A. Obviously, if A is of length k then
A ⊕ Ip is of length at most k: indeed if we split A = S1 · · ·Sk for involutions
S1, . . . , Sk, then A ⊕ Ip = (S1 ⊕ Ip) · · · (Sk ⊕ Ip) is obviously the product of k
involutions. Moreover, judging from Djokovic’s theorem, A ⊕ Ip is of length 2
if and only if A is of length 2 (classically, the primary canonical form yields a
cancellation rule for the similarity of matrices with respect to the direct sum).
Strikingly, there are cases when ℓ(A ⊕ Ip) = 3 whereas ℓ(A) = 4! For example,
it is known that given a positive integer p > 0 and a scalar α in F with αp = ±1
and α4 6= 1, the matrix αIp is of length 4 (see [5]), yet αIp ⊕ Ip is of length 3
(see Lemma 7.1).

Here, we shall prove that for every matrix A ∈ GLn(F) having determinant
±1, the augmented matrix A ⊕ In is the product of three involutions. In [9],
a similar result was proved for the decomposition of a trace-zero matrix into
the sum of three square-zero matrices. The striking point here is that, in the
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known sufficient conditions for a matrix A ∈ GLn(C) with determinant ±1 to
be the product of three involutions, it is required that there be no eigenvalue
with geometric multiplicity too large. In contrast, here it is precisely the fact
that 1 is an eigenvalue with large geometric multiplicity that will make A⊕ In
a product of three involutions if detA = ±1!

The stable length problem has a nice reformulation as a statement on the
stable general linear group. Recall that this group can be defined as follows.
For A ∈ GLn(F) and B ∈ GLp(F), we say that A and B are stably equal
whenever A ⊕ Ip = B ⊕ In. This defines an equivalence relation on the union⋃
n∈N

GLn(F), whose quotient set we denote by GL∞(F). Noting that the class

of the product (A ⊕ Ip) × (B ⊕ In) depends only on the respective classes of
the matrices A ∈ GLn(F) and B ∈ GLp(F), we naturally endow GL∞(F) with a
group structure. Noting that det(A ⊕ I1) = det(A) for all A ∈ GLn(F), we see
that all the matrices in an equivalence class share the same determinant. This
yields a group homomorphism from GL∞(F) to F

∗, called the determinant.
Let now A ∈ GLn(F) have determinant ±1. By the above, the sequence of

lengths
(
ℓ(A ⊕ Ik)

)
k∈N

is non-increasing, and one sees that its ultimate value
is the length of the class of A in GL∞(F), i.e. the minimal number of factors
required to write this class as a product of involutions. Moreover, this length
equals 2 if and only if the length of A equals 2, which is equivalent to the class
of A being conjugated to its inverse in GL∞(F). Hence, as a consequence of
Theorems 1.2 and 1.7 that follow, the length problem will be completely solved
in the stable group GL∞(F):

Theorem 1.1. (a) An element of GL∞(F) is a product of involutions if and
only if its determinant equals ±1.

(b) An element of GL∞(F) is the product of two involutions if and only if it is
conjugated to its inverse.

(c) Every element of GL∞(F) with determinant ±1 is the product of three invo-
lutions.

Actually, we will not restrict our study to decompositions into products of
involutions, because the techniques we develop here allow us to consider more
general decompositions that involve involutions and U2-matrices. Here is our
more general problem: let A1, . . . ,Ak be subsets of GLn(F), each of which equal
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to the set of all involutions or to the set of all U2-matrices, and set

A1 · · · Ak :=

{
k∏

i=1

Si | S1 ∈ A1, . . . , Sk ∈ Ak

}
.

Given a matrix A ∈ GLn(F), can we give a nice necessary and sufficient
condition for A to belong to A1 · · · Ak? A full solution to this is known when
k = 2, and we will also obtain one for k ≥ 4. A complete solution in the case
k = 3 is of course out of reach as it would imply a characterization of products
of three involutions. In the case k = 3, we will however give a complete solution
to the stable version of this problem (see Theorems 1.7 to 1.10).

In general, we note that, since each set Ai is stable under conjugation, so is
A1 · · · Ak.

Moreover, it is crucial to observe that the order of factors is not important.
To see this, consider two subsets U and V of GLn(F) that are both stable under
conjugation and transposition. Then, we claim that UV = VU . First, VU
is stable under conjugation, obviously. Then, given (u, v) ∈ U × V, we write
(uv)T = vTuT to find that (uv)T belongs to VU and we conclude that so does
uv because every square matrix with entries in a field is similar to its transpose.
It follows that A1 · · · Ak = Aσ(1) · · · Aσ(k) for every permutation σ of [[1, k]].

In particular, given k ∈ {0, 1, 2, 3}, if a matrix of GLn(F) is the product of k
involutions and (3− k) unipotent matrices of index 2 in some prescribed order,
then it is the product of k involutions and (3− k) unipotent matrices of index 2
in any possible order!

Hence, for the length 3 problem, we only have four cases to consider, and for
the length 4 problem only five cases need consideration.

1.2 Main results

It is time to state our main results. Here, we write A ≃ B to state that two
square matrices A and B are similar. We start by recalling the characterization
of products of two involutions, and the one of products of two U2-matrices. We
will make systematic use of them. See [3] for statement (i), and [2] for statement
(ii) (see also the recent [11] for a more general characterization of products of
two invertible matrices with prescribed annihilated polynomials with degree 2).

Theorem 1.2. Let M ∈ GLn(F).

(i) The matrix M is the product of two involutions if and only if M ≃ M−1.
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(ii) The matrix M is the product of two U2-matrices if and only if M ≃ M−1

and, if char(F) 6= 2, all the Jordan cells of M with respect to the eigenvalue
−1 are even-sized.

Note in particular that a matrix that is the product of two U2-matrices is
also the product of two involutions!

The matrices that are the product of an involution and a U2-matrix are also
known: see [13] for the field of complex numbers, and [11] for the general case.
We will only use the following two sufficient conditions:

Theorem 1.3. Let M ∈ GLn(F). Assume that M ≃ −M−1 and that, for any
α ∈ Fr{1} such that α2 = −1, the Jordan cells of M associated to the eigenvalue
α are all even-sized. Then, M is the product of a U2-matrix and an involution.

Theorem 1.4. Let k, l be non-negative integers such that |k− l| ≤ 2, and let M
be the direct sum of a Jordan cell with size k for the eigenvalue 1 and of a Jordan
cell with size l for the eigenvalue −1. Then, M is the product of a U2-matrix
and an involution.

Now, we turn to the new results. First, our result on the length 4 problem
in the general linear group (not the stable one!):

Theorem 1.5. Let A1, . . . ,A4 be subsets of GLn(F), in which each Ai equals
the set of all involutions or the one of all U2-matrices.

If at least one Ai equals the set of all involutions, then

A1A3A3A4 =
{
M ∈ GLn(F) : detM = ±1}.

Otherwise,
A1A3A3A4 = SLn(F).

Here, the case when all the Ai’s equal the set of all involutions of GLn(F)
was already known, as stated in the introduction ([4]), and the case when all
the Ai’s equal the set of all U2-matrices of GLn(F) was known over the field of
complex numbers (see [14]).

Next, we have a new sufficient condition for the decomposability into the
product of three matrices, either unipotent of index 2 or involutary:

Theorem 1.6. Let M ∈ GLn(F) be such that detM = ±1. Assume that M has
at most one Jordan cell of size 1 for each one of its eigenvalues in F, and that the
characteristic polynomial of M is not a power of some irreducible polynomial.
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Then, for all k ∈ {0, 1, 2}, the matrix M is the product of k unipotent ma-
trices of index 2 and 3 − k involutions. Moreover, if detM = 1 then M is the
product of three U2-matrices.

Note that our assumptions imply that every eigenvalue of M in F has geo-
metric multiplicity at most n

2 · Hence, in the case when k = 0 and F is the field
of complex numbers, our result is weaker than the result of Liu recalled in the
introduction (theorem 2.5 of [7]).

Our most demanding results deal with the stable length 3 problem. First,
the case of three involutions:

Theorem 1.7. Let A ∈ GLn(F) have determinant ±1. Then, A ⊕ In is the
product of three involutions.

Then, the case of three U2-matrices, which turns out to be easier to deal
with:

Theorem 1.8. Let A ∈ SLn(F). Then, A ⊕ In is the product of three U2-
matrices.

Finally, the results on “mixed” products, the latter of which is the most
difficult of all:

Theorem 1.9. Let A ∈ GLn(F) have determinant ±1. Then, A ⊕ In is the
product of two involutions and one U2-matrix.

Theorem 1.10. Let A ∈ GLn(F) have determinant ±1. Then, A ⊕ In is the
product of one involution and two U2-matrices.

Using the same techniques, we will also prove three additional results of the
same flavor in which we augment the matrix A not by an identity matrix, but
by a scalar multiple of an identity matrix.

The motivation for tackling such results is related to the characterization of
the scalar matrices that are of length 3. It can indeed be proved that, given a
scalar α and a positive integer n:

• The matrix αIn is the product of three involutions if and only if α = ±1,
or α4 = 1 and n is even. The same holds for the decomposition into the
product of one involution and two U2-matrices.

• The matrix αIn is the product of three U2-matrices if and only if α = 1,
or α = −1 and n is even.
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• The matrix αIn is the product of two involutions and one U2-matrix if and
only if α = ±1.

Theorem 1.11. Assume that F has characteristic not 2, and let i be an element
of F such that i2 = −1. Let A ∈ GLn(F), and let r ≥ n be an integer such that
ir detA = ±1. Then, A⊕ (iIr) is the product of three involutions.

Theorem 1.12. Assume that F has characteristic not 2. Let A ∈ GLn(F), and
let k ≥ n be an integer such that (−1)k detA = 1. Then, A⊕(−Ik) is the product
of three U2-matrices.

Theorem 1.13. Assume that F has characteristic not 2, and let i be an element
of F such that i2 = −1. Let A ∈ GLn(F), and let r ≥ n be an integer such that
ir detA = ±1. Then, A ⊕ (iIr) is the product of one involution and two U2-
matrices.

1.3 Application to the general linear group of an infinite-dimensional

vector space

Our motivation for tackling the stable length problem comes from the length
problem in infinite-dimensional vector spaces. Let V be an infinite-dimensional
vector space over F. Denote by End(V ) the algebra of all endomorphisms of V ,
and by GL(V ) its group of invertible elements (i.e. the automorphisms of V ).
It can be shown that every element of GL(V ) is a product of involutions, and,
better still, every element of GL(V ) is the product of four involutions (this will
be proved in a subsequent article). Over fields with more than 3 elements, there
are automorphisms that are not the product of three involutions however, which
motivates us to characterize the automorphisms that are the product of three
involutions.

In considering this problem, it turns out that a special kind of automor-
phism needs to be singled out: the ones that equal α idV +u for some nonzero
scalar α and some finite-rank endomorphism u. Denote by Endf (V ) the two-
sided ideal of End(V ) consisting of the finite-rank endomorphisms of V . Then,
F idV ⊕Endf (V ) is a subalgebra of End(V ), denoted by A(V ), and every element
of it that is invertible in End(V ) has its inverse in A(V ). To every f ∈ A(V ),
we assign the unique λ(f) ∈ F such that f − λ(f) idV has finite rank, thereby
defining a morphism of F-algebras from A(V ) to F. We denote by GPf (V ) the
group of all invertible elements of the algebra A(V ), and by SPf (V ) the sub-
group of all elements of GPf (V ) of the form idV +u for some u ∈ Endf (V ) (i.e.
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the kernel of f ∈ GPf (V ) 7→ λ(f) ∈ F
∗). Hence, GPf (V ) is isomorphic to the

direct product of SPf (V ) with F∗.
For every u ∈ SPf (V ) and every finite-dimensional linear subspace W of V

that includes Im(u − idV ), the determinant of the induced endomorphism u|W
depends only on u (not on the choice of W ). By assigning this quantity to u,
one obtains a group homomorphism from SPf (V ) to F

∗, called the determinant.
Here, we shall derive the following results from the theorems stated in the

preceding section:

Proposition 1.14. Let u ∈ SPf (V ) have determinant ±1. Then, in the algebra
A(V ), u is the product of three involutions, and also of one unipotent element
of index 2 and two involutions, and also of one involution and two unipotent
elements of index 2 (in any prescribed order).

Moreover, if u has determinant 1 then it is the product of three unipotent
elements of index 2.

Proof. We prove the first claimed result. The proof is similar for the other three,
and consequently left to the reader.

We choose a finite-dimensional linear subspace W of V such that Im(u −
idV ) ⊂ W and W + Ker(u − idV ) = V . Then, we choose a linear subspace
H of Ker(u − idV ) such that W ⊕ H = V . Set n := dimW . Then, H is
infinite-dimensional, and hence we can re-split H = H1⊕H2 where dimH1 = n.
Choose a matrix A that represents the automorphism of W induced by u. Then,
detA = detu = ±1. Since u is the identity onH1, the automorphism v ofW⊕H1

induced by u is represented by A ⊕ In in some basis. Hence, by Theorem 1.7,
v = abc for some involutions a, b, c in GL(W ⊕ H1). Now, extend a, b, c to
automorphisms ã, b̃, c̃ of V that are the identity on H2. Obviously, ã, b̃, c̃ are
involutions that belong to SPf (V ), and u = ãb̃c̃.

Noting that the opposite of an involution is an involution, we deduce the
following corollary:

Corollary 1.15. Let u ∈ SPf (V ) have determinant ±1, and let ε ∈ {−1, 1}.
Then, in the algebra End(V ), εu is the product of three involutions, and also of
one unipotent element of index 2 and two involutions, and also of one involution
and two unipotent elements of index 2 (in any prescribed order).

Here are the corresponding results for special extensions:
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Proposition 1.16. Let i ∈ F
∗ be of order 4. Let u ∈ SPf (V ) have its de-

terminant in {±1,±i}. Then, in the algebra End(V ), the automorphism iu is
the product of three involutions, and also the product of one involution and two
unipotent elements of index 2 (in any prescribed order).

Proposition 1.17. Let u ∈ SPf (V ) have determinant ±1. Then, in the algebra
End(V ), −u is the product of three unipotent elements of index 2.

We only prove Proposition 1.16, since the proof of Proposition 1.17 is essen-
tially similar.

Proof. We choose a finite-dimensional linear subspace W of V such that Im(u−
idV ) ⊂ W and W +Ker(u− idV ) = V . Then, we choose a linear subspace H of
Ker(u− idV ) such that W ⊕H = V . Set n := dimW .

Choose a matrix A that represents the automorphism of W induced by u.
Then det(iA) = in det u ∈ {±1,±i}. By Theorem 1.11, there is an integer k ≥ 0
such that iA ⊕ iIk is the product of three involutions in GLn+k(F). Then, we
resplit H = H1 ⊕H2 where dimH1 = k.

Since u is the identity on H1, the automorphism v of W ⊕H1 induced by iu
is represented by iA ⊕ iIk in some basis. Hence, v = abc for some involutions
a, b, c in GL(W ⊕H1). Next, we can write H2 =

⊕
x∈X

Px in which each Px is a

2-dimensional linear subspace of V . By Corollary 7.3, for each x ∈ X we can find
involutions ax, bx and cx in GL(Px) such that axbxcx = i idPx

. Now, consider
the endomorphism a of V whose restriction to W ⊕H1 is a and whose restriction
to Px is ax for all x ∈ X: this is obviously an involution. Likewise, we define b̃
and c̃, and we obtain iu = ãb̃c̃.

In a similar fashion, one deduces from Theorem 1.13 and Corollary 7.3 that
iu is the product of one involution and two unipotent endomorphisms of index
2 (in any prescribed order).

The proof of Proposition 1.17 is an easy adaptation of the previous one,
where instead of Theorems 1.11 and 1.13, one uses Theorem 1.12, and instead
of Corollary 7.3 one uses Lemma 6.1.

Finally, it can be proved that the above results yield all the elements of
GPf (V ) that are the product of three involutions (respectively, of two involutions
and a unipotent element of index 2, of one involution and two unipotent elements
of index 2, of three unipotent elements of index 2) in the group GL(V ). This is
however another story to be told.
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In a further article, the above results will be used to complete the classifica-
tion of the products of three involutions in GL(V ), as well as for the other three
types of decompositions we have considered earlier.

1.4 Strategy, and structure of the article

Let us start from the problem of decomposing a matrix A ∈ GLn(F) into the
product of three involutions. Note that this problem is invariant under replacing
A with a similar matrix B, and that it amounts to finding an involution S such
that SA is the product of two involutions. The following notion and notation
will thus be very convenient:

Definition 1.1. Let A,B be matrices of GLn(F).
We say that A is i-adjacent to B whenever there exists an involution S ∈

GLn(F) such that SA ≃ B: then, we write A →
i

B.

We say that A is u-adjacent to B whenever there exists a U2-matrix U such
that UA ≃ B; then, we write A →

u
B.

Remarks 1. (i) The inverse of an involution is itself. The inverse of a U2-
matrix is a U2-matrix. It follows that both relations →

i
and →

u
are

symmetric.

(ii) If A →
i

B, A′ ≃ A and B′ ≃ B, then A′ →
i

B′.

(iii) If A →
i

B and A′ →
i

B′ then A⊕A′ →
i

B ⊕B′.

(iv) If A →
u

B, A′ ≃ A and B′ ≃ B, then A′ →
u

B′.

(v) If A →
u

B and A′ →
u

B′ then A⊕A′ →
u

B ⊕B′.

If A is i-adjacent to the product of two involutions, then it is the product of
three involutions. If A is u-adjacent to the product of two U2-matrices, then it
is the product of three U2-matrices. And so on. This suggests a basic strategy:

(1) Devise ways to construct suitable matrices that are i-adjacent (or u-adjacent)
to a given matrix.

(2) Recognize products of two involutions, and products of two U2-matrices,
from their Jordan canonical form (or their rational canonical form).

11



Point (2) is settled: we have already recalled the characterizations in Theo-
rem 1.2: yet they require a bit of caution with respect to the products of two
U2-matrices, because of the possible eigenvalue −1 in the characteristic not 2
case.

Most of our efforts, in the first half of this article, will be geared towards
problem (1). There has already been some good work on the matter in the
literature (see e.g. [7]): in particular, the fact that any invertible cyclic matrix
is i-adjacent to any cyclic matrix of the same size and with opposite determi-
nant has been already recognized and used with success by other authors [1, 7].
Our key contribution here is the generalization of this idea to the so-called well-
partitioned matrices that were introduced in [10]: in short, a well-partitioned
matrix is a block-diagonal matrix A ⊕ B in which the matrices A and B have
coprime characteristic polynomials and are themselves direct sums of compan-
ion matrices, with at most one block of size 1 in each. While they are not truly
generalizations of cyclic matrices, well-partitioned matrices are extremely con-
venient to solve our problem: indeed, with the exception of the matrices with
characteristic polynomial having a sole monic irreducible divisor, any matrix
is similar to the direct sum of a well-partitioned matrix and a diagonalisable
matrix with at most two eigenvalues. Hence, after we give general results on
well-partitioned matrices, the rest of our effort will focus on transforming ma-
trices that are diagonalisable with two eigenvalues, and even more specifically
those in which the eigenvalues have the same multiplicity.

In a recent work [9], a similar strategy was used to prove that for any matrix
A ∈ Mn(F) with trace 0, the augmented matrix A⊕0n is the sum of three square-
zero matrices. We will use similar ideas, but things tend to be substantially
more complicated in the present context. One part of the additional complexity
comes from the elements of finite order in the multiplicative group F

∗. The other
major source of additional difficulty comes from the necessity, in the study of
the matrices that are i-adjacent or u-adjacent to a well-partitioned matrix, to
recognize some that are cyclic: this has lead us to identify a very large class of
matrices that are cyclic but not in an obvious way: see Lemma 2.5.

The remainder of the article is laid out as follows.
In Section 2, we introduce some additional notation, we recall some basic

results on cyclic matrices, and we develop the groundwork for the next part.
The key new concept in this section is the notion of a block-quasi-companion
matrix, to be used in Section 3.

In Section 3, we explore well-partitioned matrices: we prove various de-
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composition theorems involving well-partitioned matrices (mostly variations of
known results, but better suited to the present study); we finish the section with
the Adaptation Theorem, a major result on matrices that are i-adjacent or u-
adjacent to a well-partitioned matrix (Theorem 3.6). We conclude the section by
obtaining decomposition results for cyclic or well-partitioned matrices, as easy
consequences of the previous groundwork.

In Section 4, we prove Theorem 1.5. The proof we will give is certainly not
the shortest one in some cases, but it has the main upside of requiring little
discussion on the five types of decompositions! The strategy is simple: we start
from a matrix A ∈ GLn(F) with determinant ±1. When A is cyclic, the result is
known (see Proposition 3.7). When A is scalar, its diagonal entry has finite order:
we write A as the product of two well-chosen diagonal matrices (whose diagonal
elements form cycles or half-cycles) that are the product of two U2-matrices, or
of two involutions, or of one involution and one U2-matrix. When A is neither
scalar nor cyclic, we prove that it is u-adjacent to a well-partitioned matrix,
and then we use the decomposition theorems of Section 3 for well-partitioned
matrices. Note that a more elementary strategy is possible in three situations:
for products of four involutions, products of four U2-matrices, and products of
two involutions and two U2-matrices, one can prove that any non-scalar matrix is
similar to the product of a lower-triangular matrix with only 1’s on the diagonal,
and an upper-triangular matrix in which all the diagonal entries equal 1 with
the possible exception of the last one (see [12]). Then, each such matrix is the
product of two involutions, the first one is the product of two U2-matrices, and
ditto for the second one if its determinant equals 1.

The remaining sections deal with the proofs of Theorems 1.7 to 1.13. We
start by establishing results that are largely common to all four situations in
the stable length 3 problem: in Section 5, we first prove adjacency results for
matrices of the form αIn ⊕ βIn where α and β are distinct nonzero scalars, and
then we combine them with the Adaptation Theorem to obtain decomposition
results in specific situations when we have the direct sum of such a matrix with
a well-partitioned matrix (Section 5.4).

Then, we turn to the specific situations in the stable length 3 problem. First,
we deal with products of three U2-matrices (Section 6, where we successively
prove Theorems 1.8 and 1.12). Then, we deal with products of three involutions
(Section 7). Products of one involution and two U2-matrices are easily dealt with
in Section 8. We finish, in Section 9, with the most difficult situation: products
of one involution and two U2-matrices. In those sections, the extension of A to
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A ⊕ Ik is called natural, whereas the extension of A to A ⊕ −Ik (in Theorem
1.12) or to A⊕ iIk (in Theorems 1.11 and 1.13) is called unnatural.

Given an integer n ≥ 2, one could seek to find the least integer k ≥ 0 for
which, for every field F and every matrix A ∈ GLn(F) with determinant ±1,
the augmented matrix A ⊕ Ik is the product of three involutions. It turns out
that n is not the right answer but very close to it. In Section 10, we will briefly
discuss the corresponding problem in Theorems 1.8 to 1.13. It turns out that the
optimal augmentation size always corresponds to a special case when A is scalar.
Improving our theorems involves a hefty dose of additional technicalities, and
proving the optimality of the improved statements is a tedious task that requires
a careful use of the classification of products of two quadratic matrices (see [11]).
Moreover, our primary motivation for the present study comes from the infinite-
dimensional setting, in which the size of the augmentation is a non-issue. Hence,
in that ultimate section we will state the optimal results but we will offer no
proof.

A final word about mixed decompositions: it is seen in Theorem 1.2 that
any product of two U2-matrices is also the product of two involutions. Hence,
a matrix that is the product of one involution and two U2-matrices is also the
product of three involutions. In particular, Theorem 1.7 is a corollary of Theorem
1.10, and in Theorem 1.5 one could reduce the situation to only three problems
(products of two involutions and two U2-matrices, products of one involution
and three U2-matrices, and products of four U2-matrices). We have used this
trick to shorten the proof of Theorem 1.5. However, as far as the stable length
3 problem is concerned, we have chosen not to start from the most difficult
situation, for two reasons: firstly, we suspect that most readers will be more
interested in the decompositions into involutions only, and hence they will more
quickly grasp the techniques if we focus first on them; secondly, the proofs that
involve the recognition of products of two U2-matrices tend to be substantially
more technical, and as a consequence we prefer to save them for later parts of
the article.

2 On cyclic matrices

2.1 Additional notation

We denote by N the set of all natural numbers, i.e. non-negative integers, and
by Z the set of all integers.
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Given a square matrix M ∈ Mn(F), we denote its characteristic polynomial
by χM (t) := det(tIn −M).

Let p(t) = tn −
n−1∑
k=0

ak t
k ∈ F[t] be a monic polynomial with degree n. We

define its trace by an−1, denoted by tr p, and its norm by (−1)n−1a0, denoted
by N(p). The companion matrix of p is defined as

C
(
p(t)

)
:=




0 (0) a0
1 0 a1

0
. . .

. . .
...

...
. . . 0 an−2

(0) · · · 0 1 an−1



∈ Mn(F).

The characteristic polynomial of C(p(t)) is precisely p(t), and so is its minimal
polynomial. Given n ∈ N

∗ and α ∈ F, we simply write

Cn(α) := C
(
(t− α)n

)
,

and we note that this matrix is similar to a Jordan cell with size n with respect
to the eigenvalue α.

Let A ∈ Mn(F) and X ∈ Fn. We say that X is cyclic for A whenever
(AkX)k∈N spans Fn. This is equivalent to (AkX)0≤k<n being a basis of Fn, and
in that case A is similar to the companion matrix of χA. More precisely, we have

P−1AP = C(χA) for P :=
[
X AX · · · An−1X

]
.

We note that if A is invertible, then for X ∈ Fn to be a cyclic vector of A it
suffices that span{AkX | k ∈ Z} = F

n: indeed, as V := span{AkX | k ∈ N} is
finite-dimensional and stable under A, it is also stable under A−1, and hence it
contains AkX for every negative integer k, yielding span{AkX | k ∈ Z} = V .

A good cyclic matrix is a matrix of the form

A =




a1,1 a1,2 · · · a1,n
1 a2,2

0
. . .

. . .
...

...
. . .

. . . an−1,n−1 an−1,n

(0) · · · 0 1 an,n
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with no specific requirement on the ai,j’s for j ≥ i. Classically, such a matrix
is always cyclic: more precisely the first vector of the standard basis is a cyclic
vector for it.

Finally, we denote by Mn,p(F) the vector space of all n by p matrices with
entries in F, and in this space we consider the matrix units

Hn,p :=



0 · · · 1
... (0)

...
0 · · · 0


 , Kn,p :=



0 · · · 0
... (0)

...
0 · · · 1


 and Ln,p :=



0 · · · 0
... (0)

...
1 · · · 0


 .

2.2 Basic lemmas

The first lemma is folklore and is an easy consequence of Roth’s theorem (see
[8]):

Lemma 2.1. Let A ∈ Mn(F), B ∈ Mp(F), and C ∈ Mn,p(F). Assume that χA

and χB are coprime. Then,
[
A C
0 B

]
≃

[
A 0
0 B

]
.

The next lemma will be crucial:

Lemma 2.2 (Polynomial fit lemma). Let A ∈ Mn(F) and B ∈ Mm(F) be cyclic
matrices, and p(t) be a monic polynomial of degree n + m such that N(p) =
(detA) (detB).
Let X ∈ F

m be a cyclic vector for B, and Y ∈ F
n be a cyclic vector for AT .

Then, there exists a matrix D ∈ Mn,m(F) such that

∣∣∣∣
tIn −A −D
tXY T tIm −B

∣∣∣∣ = p(t).

To prove this, our starting point is a result of similar flavor that was proved
in [10] (see lemma 11 there):

Lemma 2.3. Let A ∈ Mn(F) and B ∈ Mm(F) be good cyclic matrices, and p(t)
be a monic polynomial of degree n+m such that tr p = tr(A) + tr(B).
Then, there exists a matrix D ∈ Mn,m(F) such that

∣∣∣∣
tIn −A −D
−Hm,n tIm −B

∣∣∣∣ = p(t).
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This allows us first to obtain a weaker version of Lemma 2.2, in which the
matrices A, B, X and Y are much more specific:

Lemma 2.4. Let A ∈ Mn(F) and B ∈ Mm(F) be good cyclic matrices, and p(t)
be a monic polynomial of degree n+m such that N(p) = (detA)(detB). Then,
there exists a matrix D ∈ Mn,m(F) such that

∣∣∣∣
tIn −A −D
tHm,n tIm −B

∣∣∣∣ = p(t).

Proof of Lemma 2.4. We write p(t) = χA(t)χB(t) + t q(t) for some q(t) ∈ F[t]
with degree at most n + m − 2. It follows that χA(t)χB(t) − q(t) is monic
with degree n +m and trace trA + trB. By Lemma 2.3, we can find a matrix
D ∈ Mn,m(F) such that

∣∣∣∣
tIn −A −D
−Hm,n tIm −B

∣∣∣∣ = χA(t)χB(t)− q(t).

Denote by R(t) the minor of the characteristic matrix

[
tIn −A −D
0m,n tIm −B

]
in

the entry (n + 1, n). Using the linearity of the determinant with respect to the
(n+ 1)-th row leads to the two formulas

∣∣∣∣
tIn −A −D
tHm,n tIm −B

∣∣∣∣ = χA(t)χB(t)− tR(t)

and ∣∣∣∣
tIn −A −D
−Hm,n tIm −B

∣∣∣∣ = χA(t)χB(t) +R(t).

The second result yields R(t) = −q(t), and hence we deduce from the first one
that ∣∣∣∣

tIn −A −D
tHm,n tIm −B

∣∣∣∣ = χA(t)χB(t) + t q(t) = p(t).

We are now ready to prove Lemma 2.2.

Proof of Lemma 2.2. We will reduce the situation to the one covered by Lemma
2.4. Set Q :=

[
X BX · · · Bm−1X

]
and P :=

[
(AT )n−1Y · · · ATY Y

]
.

Our assumptions show that P and Q are invertible and that Q−1BQ = C(χB).
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Moreover, in denoting by (E1, . . . , En) the standard basis of Fn, we see that the
last n−2 columns of the matrix P−1ATP are E1, . . . , En−1. Thus, (P

−1ATP )T =
P TA(P T )−1 is a good cyclic matrix (it is actually very close to a companion
matrix, but instead of having potential nonzero entries in the last column it has
potential nonzero entries in the first row).

The matrix R := (P T )−1 ⊕Q ∈ Mn+m(F) is then invertible, and one checks
that, for all D ∈ Mn,m(F),

R−1

[
tIn −A −D
tXY T tIm −B

]
R =

[
tIn − P TA(P T )−1 −P TDQ
tQ−1XY T (P T )−1 tIm −Q−1BQ

]
.

Note that Q−1XY T (P T )−1 = Hm,n. Indeed, Q−1X is the first vector of the
standard basis of Fm, and P−1Y is the last vector of the one of Fn. Hence,

R−1

[
tIn −A −D
tXY T tIm −B

]
R =

[
tIn − P TA(P T )−1 −P TDQ

tHm,n tIm −Q−1BQ

]
.

Remember that P TA(P T )−1 and Q−1BQ are good cyclic matrices. As they
are similar to A and B, respectively, their respective characteristic polynomials
are χA and χB. Hence, by Lemma 2.4 there exists D′ ∈ Mn,m(F) such that

∣∣∣∣
tIn − P TA(P T )−1 −D′

tHm,n tIm −Q−1BQ

∣∣∣∣ = p(t).

Setting D := (P T )−1D′Q−1, we deduce that
∣∣∣∣
tIn −A −D
tXY T tIm −B

∣∣∣∣ =
∣∣∣∣
tIn − P TA(P T )−1 −D′

tHm,n tIm −Q−1BQ

∣∣∣∣ = p(t).

2.3 Block quasi-companion matrices

Definition 2.1. A square matrixM = (mi,j) ∈ Mn(F) is called quasi-companion

whenever mi,j = 0 for all (i, j) ∈ [[1, n− 1]]2 such that i 6= j+1, i.e. when M has
the following shape:

M =




0 (0) ?
? 0 ?

0
. . .

. . .
...

...
. . . ? 0 ?

? · · · ? ? ?



.
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A matrix M ∈ Mn(F) is called block quasi-companion (in abbreviated
form: BQC) whenever there are quasi-companion matrices D1, . . . ,DN with
respective sizes d1, . . . , dN , and nonzero scalars β1, . . . , βN−1 such that

M =




D1 ? (?)
β1Kd2,d1 D2

0 β2Kd3,d2
. . .

...
. . . DN−1 ?

(0) · · · 0 βN−1KdN ,dN−1
DN



,

where the question marks represent unspecified blocks. In that case (d1, . . . , dN )
is called a characteristic list of M (in general there can be several such lists
attached to M).

Now, we prove that any invertible BQC matrix is cyclic. More precisely, we
establish the following result:

Lemma 2.5. Let A ∈ GLn(F) be an invertible BQC matrix, and (d1, . . . , dN )
be an associated characteristic list. Then:

(a) The d1-th vector of the standard basis of Fn is cyclic for A.

(b) The (n− dN + 1)-th vector of the standard basis of Fn is cyclic for AT .

Proof. Throughout the proof, we denote by (e1, . . . , en) the standard basis of
Fn. For k ∈ [[0, N ]], set

ak :=

k∑

i=1

di, Vk := span(ei)1≤i≤ak and V ′
k := span(ei)ak<i≤n.

To prove point (a), we set W := span(Aked1)k∈Z. Note that this subspace is
obviously stable under both A and A−1.

We prove by induction that Vk ⊂ W for all k ∈ [[0, N ]]. This inclusion is
trivial for k = 0. Let k ∈ [[0, N − 1]] be such that Vk ⊂ W . First, we claim that
W contains eak+1

: if k = 0 this comes from having ed1 in W ; otherwise we use the
assumptions on A to obtain Aeak = λeak+1

mod Vk for some λ ∈ Fr {0}, which
yields the claimed result since W is stable under A and includes Vk. Next, for all
i ∈ [[1, dk+1−1]], we have Aeak+i = λeak+i+1 mod Vk+span(eak+1

) for some λ ∈ F,
whence Aeak+i = λeak+i+1 mod W , and we deduce that eak+i = λA−1eak+i+1
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mod W because W is stable under A−1. Hence, by downward induction we get
that eak+i ∈ W for all i ∈ [[1, dk+1]], and we conclude that Vk+1 ⊂ W .

Therefore, by induction W includes VN = F
n, which completes the proof of

point (a) (see the basic considerations in Section 2.1).

To prove point (b), we set B := AT and W ′ = span(BkeaN−1+1)k∈Z. Note
again that W ′ is stable under B and B−1. We prove by downward induction
that V ′

k ⊂ W ′ for all k ∈ [[0, N ]]. This inclusion is trivial if k = N . Now, we let
k ∈ [[0, N − 1]] be such that V ′

k+1 ⊂ W , and we prove that V ′
k ⊂ W .

First, we claim that eak+1
∈ W ′. Indeed:

• if k = N − 1 and dN = 1 then this is known because W contains eaN−1+1;

• if k = N −1 and dN > 1, then BeaN−1+1 = λeaN for some λ ∈ F, and since
B is invertible we find λ 6= 0 and hence eaN ∈ W ′;

• if k < N − 1 then we see that Beak+2
= λeak+1

mod V ′
k+1 for some λ ∈ F

∗,
and hence eak+1

∈ W ′ because W ′ includes V ′
k+1, contains in particular

eak+2
, and is stable under B.

If dk+1 = 1, then the above is enough to see that W includes V ′
k. Now, assume

that dk+1 > 1. We see that Beak+1 = λeak+1
mod V ′

k+1 for some scalar λ.
Since W ′ is stable under B−1, contains eak+1

and includes V ′
k+1, this yields

eak+1 ∈ W ′. Finally, for all i ∈ [[2, dk+1 − 1]], we have Beak+i = λeak+i−1 mod
span(eak+1

) + V ′
k+1 for some λ ∈ F, whence Beak+i = λeak+i−1 mod W ′. Using

once more the fact that W ′ is stable under B−1, we obtain by induction that
eak+i ∈ W ′ for all i ∈ [[1, dk+1 − 1]]. Hence we have shown that V ′

k ⊂ W ′.
Therefore, by downward induction we find F

n = V ′
0 ⊂ W ′, which shows that

eaN−1+1 is a cyclic vector for the invertible matrix AT .

3 Well-partitioned matrices

3.1 Definition

Definition 3.1. A square matrix M is called well-partitioned if there are
positive integers r and s and monic polynomials p1, . . . , pr, q1, . . . , qs in F[t] such
that:

(i) M = C(p1)⊕ · · · ⊕C(pr)⊕ C(q1)⊕ · · · ⊕ C(qs);
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(ii) deg pi ≥ 2 for all i ∈ [[2, r]];

(iii) deg qj ≥ 2 for all j ∈ [[1, s− 1]];

(iv) Each polynomial pi is coprime to each polynomial qj.

Note that the polynomials p1, . . . , pr, q1, . . . , qs are then uniquely determined by
M (beware that in (i) we really require an equality and not a mere similarity).

If in addition at most one of p1 and qs has degree 1, we say that M is
very-well-partitioned.

3.2 Reducing a square matrix with the help of a well-partitioned

matrix

Here, we prove the following results. They are variations of a lemma that was
proved in [9] (lemma 3.1 there).

Lemma 3.1. Let M ∈ Mn(F). Assume that M has at least n
2 Jordan cells of

size 1 for the eigenvalue 0. Then, there exist non-negative integers p, q, r such
that p+ q + r = n, a matrix N ∈ Mp(F) and a scalar α ∈ F r {0} such that

M ≃ N ⊕ α Iq ⊕ 0r, r ≥ q,

and either N is void, or N is nilpotent and q = 0, or N is very-well-partitioned.

Lemma 3.2. Let M ∈ Mn(F). Assume that M has at most one Jordan cell of
size 1 for each one of its eigenvalues in F, and that the characteristic polynomial
of M is not a power of some irreducible polynomial. Then, M is similar to a
well-partitioned matrix.

We start with the proof of Lemma 3.2 as it is easier:

Proof of Lemma 3.2. Since the characteristic polynomial of M is not a power of
an irreducible polynomial, we deduce from the primary canonical form that we
can splitM ≃ A⊕B in which A and B are nonvoid square matrices with coprime
characteristic polynomials. We write the invariant factors of A as p1, . . . pa and
the ones of B as q1, . . . , qb. There is at most one integer k for which pk is constant,
otherwise M would have several Jordan cells of size 1 for one of its eigenvalues in
F. Likewise, there is at most one integer k such that qk is nonconstant. Hence,
the matrix

M ′ := C(pa)⊕ · · · ⊕ C(p1)⊕ C(q1)⊕ · · · ⊕ C(qb)

is well-partitioned, and obviously M ≃ M ′.
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Proof of Lemma 3.1. The proof strategy is similar to the previous one, only the
details differ. If 0 is the sole eigenvalue of M in an algebraic closure of F, then we
take N := M , q = r = 0 and α = 1. Assume now that the contrary holds. Then,
M ≃ A⊕ B in which A is nilpotent and B is invertible, both of them nonvoid.
The assumptions on M show that the size of A is at least n

2 , and hence the one
of B is at most n

2 · Using the rational canonical form, we find that A ≃ 0m ⊕A′,
where A′ is the direct sum of companion matrices associated with polynomials
of the form ti with i ≥ 2 (possibly A′ is void). Note that m is the number
of Jordan cells of size 1 for the eigenvalue 0 of M , whence m ≥ n

2 . Moreover,
the rational canonical form of B can be written B ≃ B′ ⊕ αIq, in which B′ is
the direct sum of invertible companion matrices with size at least 2, and α is a
nonzero scalar (possibly q = 0 here, in which case we take α = 1).

• If A′ and B′ are both nonvoid, then A′ ⊕ B′ is very-well-partitioned and
M ≃ (A′ ⊕B′)⊕ αIq ⊕ 0m. Note that q ≤ n

2 ≤ m in that case.

• If A′ is void but B′ is not, then 01 ⊕B′ is very-well-partitioned and M ≃
(01 ⊕B′)⊕ αIq ⊕ 0m−1. Note that q ≤ n

2 − 2 ≤ m− 1 in that case.

• If A′ is nonvoid but B′ is void, then q > 0, A′⊕αI1 is very-well-partitioned,
M ≃ (A′ ⊕ αI1)⊕ αIq−1 ⊕ 0m, and again q − 1 ≤ m.

• If A′ and B′ are both void, then M ≃ αIq ⊕ 0m with q ≤ n
2 ≤ m, and the

first possible outcome is satisfied.

Actually, we will not use Lemma 3.1 directly but in the form of the fol-
lowing corollary. It is easily deduced from the standard observation that, for
every monic polynomial p(t) ∈ F[t] with degree k, and every β ∈ F, the matrix
C(p(t)) + βIk is similar to C(p(t− β)).

Proposition 3.3. Let M ∈ GLn(F). Assume that, for some nonzero scalar β,
M has at least n

2 Jordan cells of size 1 for the eigenvalue β. Then, there exist
non-negative integers p, q, r such that p+ q + r = n, a matrix N ∈ GLp(F) and
a scalar α ∈ F r {β} such that

M ≃ N ⊕ α Iq ⊕ βIr, r ≥ q,

and either N is void, or N − βIp is nilpotent and q = 0, or N is very-well-
partitioned.
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3.3 Adjacency results for cyclic or well-partitioned matrices

Proposition 3.4. Let A ∈ GLn(F) be an invertible cyclic matrix and p be a
monic polynomial of degree n such that N(p) = ± detA.

If n is odd or N(p) = − detA then A is i-adjacent to C(p).

Proof. Assume first that N(p) = − detA, and write p = tn −
n−1∑
k=0

bk t
k. Without

loss of generality, we can assume that A = C(r) for some monic polynomial

r = tn −
n−1∑
k=0

ak t
k. Hence, a0 = −b0. Note that a0 6= 0 since A is invertible.

Define then S = (si,j) ∈ Mn(F) as the matrix such that si,1 = bi−1−ai−1

a0
for all

i ∈ [[2, n]], s1,1 = −1, si,i = 1 for all i ∈ [[2, n]], and all the other entries equal
zero. Then, it is easily seen that S2 = In and that S C(r) = C(p).

Assume now that n is odd and N(p) = detA. Set q := −p(−t), so that
N(q) = − detA. Then, there is an involution S such that SA ≃ C(q). Hence,
(−S)A ≃ −C(q) ≃ C(p).

With a similar proof, we obtain the following result (in the definition of S
from the above proof, it suffices to replace the entry at the (1, 1)-spot with 1).

Proposition 3.5. Let A ∈ GLn(F) be an invertible cyclic matrix and p be a
monic polynomial of degree n such that N(p) = detA. Then, A is u-adjacent to
C(p).

Now, we arrive at the main key of the present study, that can be viewed as
a variation of the above two results:

Theorem 3.6 (Adaptation Theorem). Let M ∈ GLn(F) be an invertible well-
partitioned matrix.

(a) For every monic polynomial r ∈ F[t] with degree n such that N(r) = detM ,
the matrix M is u-adjacent to C(r).

(b) There exists η ∈ {1,−1} such that, for every monic polynomial r ∈ F[t] with
degree n such that N(r) = η detM , the matrix M is i-adjacent to C(r).

(c) If in addition M is very-well-partitioned, then for every monic polynomial
r ∈ F[t] with degree n such that N(r) = ± detM , the matrix M is i-adjacent
to C(r).
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Proof. Let ε ∈ {1,−1}. Denote by p1, . . . , pu, q1, . . . , qv the polynomials asso-
ciated with the well-partitioned matrix M , and by n1, . . . , nu,m1, . . . ,mv their
respective degrees. For k ∈ N

∗, set Uk := Ik−1 ⊕ (εI1). Set

S :=




Un1
0n1×n2

(0)

Ln2,n1
Un2

. . .

(0)
. . .

. . .

Lnu,nu−1
Unu

0nu×m1

Lm1,nu
Um1

0m1×m2

... Lm2,m1
Um2

. . .
. . .

. . . 0mv−1×mv

(0) · · · (0) Lmv ,mv−1
Umv




.

Using the fact that n2 > 1, . . . , nu > 1,m1 > 1, . . . ,mv−1 > 1, it is easily seen
that (S − In)(S − εIn) = 0. Note that detS is a power of ε. From now on,
we let r(t) ∈ F[t] be an arbitrary monic polynomial with degree n such that
N(r) = α detM for some α ∈ {1,−1}.

Next, set a =
u∑

k=1

nk and b =
v∑

k=1

mk, and let U ∈ Ma,b(F). We can rewrite

M =

[
M1 0a×b

0b×a M2

]
and S =

[
S1 0a×b

? S2

]
,

where S1,M1 belong to GLa(F), and S2,M2 belong to GLb(F). Along the same
format, set

AU :=

[
M1 U
0b×a M2

]
.

In order to conclude, it would suffice to prove that U can be chosen so that

SAU ≃ C(r).

Assume indeed that such a matrix U exists. Lemma 2.1 shows that AU =
Q−1MQ for some Q ∈ GLn(F). The matrix S̃ := QSQ−1 is then annihilated by
(t− 1)(t− ε) and it satisfies

S̃M = Q(SAU )Q
−1 ≃ C(r),

which will conclude the proof.
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In order to obtain the claimed existence, we look more closely at SAU . Note
first that det(SAU ) = detS detM . One computes that

SM =

[
S1M1 0a×b

L S2M2

]

where

L :=

[
0m1×(a−nu) −pu(0)Km1 ,nu

0(b−m1)×(a−nu) 0(b−m1)×nu

]
.

Moreover, one computes that both S1M1 and S2M2 are BQC matrices with
respective characteristic lists (n1, . . . , nu) and (m1, . . . ,mv).

Finally, and this is crucial, one carefully checks that SAU is itself block-quasi-
companion with characteristic list (n1, . . . , nu,m1, . . . ,mv). Hence, by Lemma
2.5 the invertible matrix SAU is cyclic. In order to conclude, it suffices to prove
that U can be adjusted so that the characteristic polynomial of SAU be r(t).

We can split S = NS′ where

S′ :=

[
S1 0a×b

0b×a S2

]

and N is the transvection matrix that acts on rows by adding to the (a+m1)-th
row the product of λ with the (a− nu + 1)-th row for some fixed nonzero scalar
λ ∈ F r {0}. Denote by X the m1-th vector of the standard basis of Fb, and by
Y the (a− nu + 1)-th vector of the one of Fa. Then,

det(tIa+b − SAU ) = det(tN−1 − S′AU ) =

∣∣∣∣
tIa − S1M1 −S1U
t(−λXY T ) tIb − S2M2

∣∣∣∣ .

By Lemma 2.5, X is cyclic for S2M2, and hence so is −λX, and Y is cyclic for
(S1M1)

T . If α = detS, Lemma 2.2 yields a matrix U ′ ∈ Ma,b(F) such that

∣∣∣∣
tIa − S1M1 U ′

t(−λXY T ) tIb − S2M2

∣∣∣∣ = r(t)

and hence the matrix U := −S−1
1 U ′ satisfies the required conditions.

Now, we can conclude.

• If α = 1, then we take ε := 1 and we obtain M →
u

C(r).

• If ε = −1 and α = detS, then we obtain M →
i

C(r).
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• Assume finally that M is very-well-partitioned, that ε = −1 and that
α = − detS. Then, we can do a simple modification in the matrix S
that leaves all the arguments of the above proof intact but yields a new
involution S of GLn(F) such that detS = α: if n1 > 1, we can safely
replace the n1-th diagonal entry of S with its opposite; otherwise mv > 1
because M is very-well-partitioned, and then we can safely replace the
(n−mv + 1)-th diagonal entry of S with its opposite.

Hence, points (a), (b) and (c) are proved.

3.4 Decomposition of cyclic or well-partitioned matrices

We start with a result that is widely known in the case of products of three
involutions.

Proposition 3.7. Let p ∈ F[t] be a monic polynomial with norm ±1. Let
k ∈ {0, 1, 2}. Then, C(p) is the product of k unipotent matrices of index 2 and
3− k involutions.

Moreover, if p has norm 1 then C(p) is the product of three U2-matrices.

Proof. Denote by d the degree of p. By Lemma 3.4, C(p) is u-adjacent to C(q)
where q := (t− 1)d−1(t− λ) for some λ ∈ {1,−1}. By Theorem 1.2, C(q) is the
product of two involutions. Hence, C(p) is the product of one U2-matrix and
two involutions.

Likewise, C(p) is i-adjacent to C(r) where r(t) := (t− 1)d−1(t− µ) for some
µ ∈ {1,−1}, and hence C(p) is the product of three involutions.

If d is even, C(p) is u-adjacent to C(q1) or to C(q2), where q1 := (t−1)d/2(t+
1)d/2 and q2 := (t− 1)d/2+1(t+ 1)d/2−1, and both matrices C(q1) and C(q2) are
the product of a U2-matrix and an involution (by Theorem 1.4). If d is odd, then
C(p) is u-adjacent to C(r1) or to C(r2), where r1 := (t− 1)(d−1)/2(t+ 1)(d+1)/2

and r2 := (t− 1)(d+1)/2(t+ 1)(d−1)/2, and again both matrices C(r1) and C(r2)
are the product of a U2-matrix and an involution. Hence, C(p) is the product
of two U2-matrices and an involution.

Assume finally that p has norm 1. By Proposition 3.4, C(p) is u-adjacent to
C((t− 1)d), a matrix which is the product of two U2-matrices by Theorem 1.2.
Hence, C(p) is the product of three U2-matrices.

Using Proposition 3.6 instead of Propositions 3.4 and 3.5, the same line of
reasoning yields the following new result:
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Proposition 3.8. Let A ∈ GLn(F) be such that detA = ±1. Assume that A is
similar to a well-partitioned matrix. Then, for all k ∈ {0, 1, 2}, the matrix A is
the product of k unipotent matrices of index 2 and 3− k involutions. Moreover,
if detA = 1 then A is the product of three U2-matrices.

Combining this last result with Lemma 3.2 yields Theorem 1.6.

4 The length 4 problem in GLn(F)

Here, we give a proof of Theorem 1.5. This is done in three steps. First,
we consider the case of scalar matrices (Section 4.1). Then, we prove that
any invertible matrix that is neither scalar nor cyclic is u-adjacent to a well-
partitioned matrix (Section 4.2). We will complete the proof of Theorem 1.5 by
using Propositions 3.7 and 3.8.

4.1 The case of scalar matrices

Lemma 4.1. Let α ∈ F∗, and n ≥ 1 be an integer such that αn = ±1. Then,
the matrix αIn is the product of four involutions, and it is also the product of
two involutions and two U2-matrices.

Proof. Set A :=
n−1⊕
k=0

C1(α
2k). Noting that α2n = 1, we see that A is simi-

lar to A−1, and we deduce from Theorem 1.2 that A−1 is the product of two

involutions. Likewise αA =
n−1⊕
k=0

C1(α
2k+1) is similar to its inverse (note that

C1(α
2k+1) = C1(α

2n−2k−1)−1 for all k ∈ [[0, n − 1]]), and hence it is the product
of two involutions. Hence, αIn = (αA)A−1 is the product of four involutions.

We also claim that one of the matrices αA and A−1 is the product of two U2-
matrices. This is immediate if F has characteristic 2, and hence in the remainder
of the proof we assume that the characteristic of F is not 2.

By Theorem 1.2, it suffices to prove that −1 is not an eigenvalue of one of
αA and A−1. Assume on the contrary that −1 is an eigenvalue of both. Then,
−1 = αp = αq for some pair (p, q) of integers, with p odd and q even. Thus
αq−p = 1 with q − p odd, which yields that α has finite odd order and shows
that −1 is not a power of α! This is a contradiction. Hence, one of the matrices
αA and A−1 is the product of two U2-matrices, and the other one is the product
of two involutions. Hence, their product αIn is the product of two U2-matrices
and two involutions.
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Lemma 4.2. Let α ∈ F
∗, and n ≥ 1 be an integer such that αn = 1. Then, the

matrix αIn is the product of four U2-matrices.

Proof. Because of Lemma 4.1, we only consider the case when the characteristic
of F is not 2.

Assume first that n is odd. Then, α has odd order and hence−1 6∈ 〈α〉. Then,

we set A :=
n−1⊕
k=0

C1(α
2k). With the same method as in the proof of Lemma 4.1,

we find that both A−1 and αA are products of two U2-matrices (using the fact
that −1 is not a power of α), and we conclude that αIn is the product of four
U2-matrices.

Assume now that n is even, and write n = 2m. Note that αm = ±1. Then,
we set

A :=

m−1⊕

k=0

C2(α
2k).

This time around, we see that both A−1 and αA are products of two U2-matrices
(indeed, like in the proof of Lemma 4.1, we see that both are similar to their
inverse, and all the Jordan cells for the eigenvalue −1 have size 2). Hence, αIn
is the product of four U2-matrices.

Lemma 4.3. Let α ∈ F∗ and n ≥ 1 be an integer such that αn = ±1. Then,
αIn is the product of one U2-matrix and three involutions. Moreover, it is the
product of three U2-matrices and one involution.

Proof. Due to Lemma 4.1, we only consider the case when the characteristic of
F is not 2. Moreover, by Theorem 1.2, it suffices to prove that αIn is the product
of three U2-matrices and one involution.

We split the discussion into two main cases.
Case 1: n is even.

We write n = 2m. Set

B1 :=

m−1⊕

k=1

C2

(
(−α2)k

)
and B :=

m−1⊕

k=0

C2

(
(−α2)k

)
= C2(1)⊕B1,

so that

αB ≃

m−1⊕

k=0

C2

(
α(−α2)k

)
.
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Note that both matrices B−1 and αB only have Jordan cells of size 2. For every
integer k, we see that

(−α2)k(−α2)m−k = (−α2)m = (−1)mαn

and
α(−α2)kα(−α2)m−1−k = (−1)m−1αn.

• Assume first that (−1)mαn = 1. Then, B−1
1 is similar to its inverse and

αB is similar to the opposite of its inverse. Since both matrices only have
Jordan cells of size 2, we deduce from Theorems 1.2 and 1.3 that B−1 is the
product of two U2-matrices and that αB is the product of one U2-matrix
and one involution.

• Assume next that (−1)mαn = −1. Then, B−1
1 is similar to the opposite of

its inverse and αB is similar to its inverse. This time around, we combine
Theorems 1.3 and 1.4 to see that B−1 is the product of one U2-matrix and
one involution, whereas Theorem 1.2 shows that αB is the product of two
U2-matrices.

In any case αIn = B−1(αB) is the product of three U2-matrices and one involu-
tion.

Case 2: n is odd.

If αn = −1, we see that (−α)n = 1. Moreover, if −αIn is the product of
three U2-matrices and one involution, then so is αIn. Hence, it suffices to deal
with the case when αn = 1. In that case, we see that α has odd order, which we
denote by q, and n is a multiple of q. Hence, it suffices to prove that αIq is the
product of three U2-matrices and one involution.

Set

A1 :=

q−1⊕

k=1

C1

(
(−α2)k

)
and A :=

q−1⊕

k=0

C1

(
(−α2)k

)
= C1(1)⊕A1,

so that

αA ≃

q−1⊕

k=0

C1

(
α(−α2)k

)
.

With the same line of reasoning as in the beginning of the proof, one sees that
αA is similar to its inverse, whereas A−1

1 is similar to the opposite of its inverse.
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Moreover, we note that no eigenvalue of A−1
1 is a square root of −1: indeed

otherwise there would be an integer k such that (−α2)2k = −1, whence−1 = α4k,
whereas −1 is not in the subgroup generated by α because the order of α is odd.
Hence, by Theorem 1.3 the matrix A−1 is the product of a U2-matrix and an
involution.

Next, we claim that one of the matrices αA and −αA is the product of two
U2-matrices. Assume that the contrary holds. Since αA and −αA are both
similar to their inverse, −1 must be an eigenvalue of both, yielding two elements
k, l of [[0, q − 1]] such that α(−α2)k = −1 = −α(−α2)l. Then α2k+1 = (−1)k+1

and α2l+1 = (−1)l. Since α has odd order, −1 is not a power of it and hence k is
odd and l is even, whence they are distinct and α2k+1 = α2l+1. Then, q divides
2(k − l), and hence it divides k − l, which is absurd because k, l are distinct
elements of [[0, q − 1]].

Therefore, one of αA and −αA is the product of two U2-matrices. Yet, both
A−1 and −A−1 are products of one U2-matrix and one involution (using once
more the fact that the opposite of an involution is an involution). Hence, by
writing αIq = (αA)A−1 = (−αA) (−A−1), we conclude that αIq is the product
of three U2-matrices and one involution.

4.2 Converting non-scalar matrices into well-partitioned matri-

ces

Our aim here is to prove the following result:

Proposition 4.4. Let M ∈ GLn(F) be a matrix that is neither scalar nor cyclic.
Then, M is u-adjacent to a well-partitioned matrix.

With a similar method, one can prove that M is also i-adjacent to a well-
partitioned matrix, but we will not use this result.

We start with a basic result on polynomials:

Lemma 4.5. Let I be a finite subset of F∗, and let λ ∈ F
∗. Let n be an integer

greater than 1. Then, there exists a monic polynomial q of degree n such that
N(q) = λ and q has no root in I.

This result is deduced from the following one, which is folklore:

Lemma 4.6. Let F be a finite-dimensional affine space over F, and F1, . . . ,Fn

be proper affine subspaces of F (possibly void), with n < |F|. Then, F1, . . . ,Fn

do not cover F .
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Proof of Lemma 4.6. The result is obvious if F is void. Assume now that it is
not. We prove the result by induction on the dimension of F . If it is less than or
equal to 1, then the result is obvious (the Fi’s being either void or singletons).
Assume now that the dimension of F is at least 2. We choose an affine hyperplane
H of F that includes F1. Assume first that some affine hyperplane H′ that is
parallel to H is included in none of the Fi’s. Then, F1 ∩ H′, . . . ,Fn ∩ H′ are
proper affine subspaces of H′ and hence by induction they do not cover H′;
hence, F1, . . . ,Fn do not cover F .

If the converse holds every affine hyperplane H′ of E that is parallel to H is
included in Fi for some i, and then it equals Fi, which leads to n ≥ |F|. This
contradicts our assumptions.

Proof of Lemma 4.5. For each α ∈ I, consider the nonconstant affine map

fα : (xk)1≤k≤n−1 ∈ F
n−1 7→

(n−1∑

k=1

xk α
k

)
+ αn + (−1)nλ.

We note that |I| < |F| since I ⊂ F
∗. Hence, the proper affine subspaces f−1

α {0},
for α ∈ I, do not cover F

n−1. This yields a list x ∈ F
n−1 such that fα(x) 6= 0

for all α ∈ I. Hence, the polynomial tn +
n−1∑
k=1

xkt
k + (−1)nλ has the required

properties.

We are now ready to prove Proposition 4.4.

Proof of Proposition 4.4. Using the rational canonical form of M , we lose no
generality in assuming that

M = C(p1)⊕ · · · ⊕ C(pr)⊕ αIs

where p1, . . . , pr are polynomials, all with degree at least 2 and such thatN(p1) 6=
0, . . . , N(pr) 6= 0, r ≥ 1, α ∈ F r {0}, and potentially s = 0. Moreover if s = 0
then r ≥ 2 since M is not cyclic.

Now, we split the discussion into two cases.
Case 1: s > 0.
Set

B :=





s/2⊕
i=1

C2(α) if s is even

[(s−1)/2⊕
i=1

C2(α)

]
⊕ C1(α) if s is odd.
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In any case, noting that αC2(1) ≃ C2(α), we see that αIs →
u

B.

Then, by using Lemma 4.5, we find, for each i ∈ [[1, r]], a monic polynomial
qi such that N(qi) = N(pi), qi(α) 6= 0 and deg(pi) = deg(qi). By Lemma 3.5, we
see that C(pi) →

u
C(qi) for all i ∈ [[1, r]]. Hence, A :=

[
C(q1)⊕· · · ⊕C(qr)

]
⊕B

is well-partitioned and M →
u

A.

Case 2: s = 0.
Then, r > 1. Using Lemma 4.5, we find, for each i ∈ [[2, r]], a monic polynomial qi
such that N(pi) = N(qi), deg(qi) = deg(pi) and qi has no root in {1, N(p1)}. Set
q1 := (t− 1)d−1(t−N(p1)), where d := deg p1. Then, q1 is coprime to q2, . . . , qr,
and hence A := C(q1)⊕ · · · ⊕ C(qr) is well-partitioned. Yet, by Lemma 3.5, we
have C(pi) →

u
C(qi) for all i ∈ [[1, r]]. Hence, M →

u
A, which completes the

proof.

4.3 Concluding the proof of Theorem 1.5

We are now ready to complete the proof of Theorem 1.5.
Let M ∈ SLn(F). We prove that M is the product of four U2-matrices. It

is known by Lemma 4.2 if M is scalar, and by Proposition 3.7 if M is cyclic
(because in that case M is the product of three U2-matrices). Assume now
that M is neither scalar nor cyclic. Then, by Proposition 4.4, there is a well-
partitioned matrix A ∈ GLn(F) such that M →

u
A. Hence, detA = detM = 1.

Then, by Proposition 3.8, A is the product of three U2-matrices, and hence M
is the product of four U2-matrices.

Next, let M ∈ GLn(F) be such that detM = ±1. Let k ∈ {1, 2, 3}. We wish
to prove that M is the product of k unipotent matrices of index 2 and 4 − k
involutions. Again, it is known by Lemmas 4.1 and 4.3 if M is scalar, and by
Lemma 3.7 if M is cyclic (in that case M is the product of k − 1 unipotent
matrices of index 2 and 4−k involutions). Assume now that M is neither scalar
nor cyclic. Then, by Proposition 4.4, M →

u
A for some well-partitioned matrix

A ∈ Mn(F). Hence, detA = detM = ±1. Then, by Proposition 3.8, A is the
product of k− 1 unipotent matrices of index 2 and 4− k involutions, and hence
M is the product of k unipotent matrices of index 2 and 4− k involutions.

In particular, M is the product of two U2-matrices and two involutions, and
we deduce from Theorem 1.2 that it is also the product of four involutions.
Hence, Theorem 1.5 is now proved.
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5 Common results for the stable length 3 problem

In the present section, we gather some technical results that are more or less
common to all four cases in the stable length 3 problem. Most of our results are
concerned with matrices of the form αIn ⊕ βIn with distinct nonzero scalars α
and β.

5.1 Adjacency results on specific diagonal matrices

Lemma 5.1. Let α, β, γ, δ be nonzero scalars, with α 6= β, and let x ∈ Fr {0}.
Set π := αβγδ. Let n be a positive integer. Then, there is a matrix S ∈ GL2n(F)
that is annihilated by the polynomial (t− γ)(t− δ) and such that

S (αIn ⊕ βIn) ≃ C
(
(t− x)n(t− πx−1)n

)
.

This lemma is a consequence of the following result, which was proved in [11]
(see lemma 4.5 there):

Lemma 5.2. Let r ∈ F[t] be a monic polynomial with degree n > 0, and d be
a nonzero scalar. Let N ∈ Mn(F) be cyclic with characteristic polynomial r.
Then, [

0n −dIn
In N

]
≃ C

(
tn r(t+ dt−1)

)
.

Proof of Lemma 5.1. We start from an arbitrary monic polynomial r ∈ F[t],
which we will adjust afterwards.

Set

A :=

[
γIn 0n

α−1In δIn

]
and B :=

[
αIn C(r)
0n βIn

]
.

Then,

AB =

[
αγIn γ C(r)
In δβIn + α−1C(r)

]
.

Taking P :=

[
In −αγIn
0n In

]
, we deduce that

P (AB)P−1 =

[
0n −πIn
In α−1C(r) + (δβ + αγ)In

]
.
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Set now s(t) :=
(
t− (x+ πx−1)

)n
, so that tns(t+ πt−1) = (t− x)n(t− πx−1)n.

The matrix α(C(s)− (δβ + αγ)In) is obviously cyclic. Hence, if we choose r as
its characteristic polynomial, we deduce from Lemma 5.2 that

AB ≃ C
(
(t− x)n(t− πx−1)n

)
.

Next, it is easily checked that (t−α)(t−β) annihilates B, and (t−α)n(t−β)n is
the characteristic polynomial of B. As α 6= β, we deduce that B is diagonalisable
and its eigenspaces have dimension n, whence B = Q(αIn ⊕ βIn)Q

−1 for some
Q ∈ GL2n(F). Finally, taking S := Q−1AQ, we obtain

S (αIn ⊕ βIn) = Q−1(AB)Q ≃ AB ≃ C
(
(t− x)n(t− πx−1)n

)
.

The conclusion follows because one checks that the polynomial (t − γ)(t − δ)
annihilates A (and hence it also annihilates S).

Lemma 5.3. Let α, β, γ, δ, x be nonzero scalars, with α 6= β. Set π := αβγδ
and assume that x2 6= π. Then, there is a matrix S ∈ GL2(F) that is annihilated
by (t− γ)(t− δ) and such that

S (αI1 ⊕ βI1) ≃ C1(x)⊕ C1(πx
−1).

Proof. As x2 6= π we have x 6= πx−1 and hence C
(
(t − x)(t − πx−1)

)
≃ C(t −

x)⊕C(t−πx−1). Thus, the result follows from Lemma 5.1 applied to n = 1.

Lemma 5.4. Let α, β, γ, δ, x be nonzero scalars, with α 6= β. Set π := αβγδ.
Then, there is a matrix S ∈ GL4(F) that is annihilated by (t−γ)(t− δ) and such
that

S (αI2 ⊕ βI2) ≃ C2(x)⊕ C2(πx
−1).

Proof. As in the previous proof, if x 6= πx−1 the result follows directly from
Lemma 5.1 applied to n = 2. Assume now that x = πx−1. Then, Lemma 5.1
yields a matrix S′ ∈ GL2(F) that is annihilated by (t− γ)(t− δ) and such that

S′ (αI1 ⊕ βI1) ≃ C
(
(t− x)(t− πx−1)

)
= C

(
(t− x)2

)
= C

(
(t− πx−1)2

)
.

Hence
(S′ ⊕ S′) (αI1 ⊕ βI1 ⊕ αI1 ⊕ βI1) ≃ C2(x)⊕ C2(πx

−1).

We can find a permutation matrix P ∈ GL4(F) such that

αI1 ⊕ βI1 ⊕ αI1 ⊕ βI1 = P (αI2 ⊕ βI2)P
−1.
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Hence, the matrix S := P−1(S′⊕S′)P is annihilated by (t−γ)(t−δ) and satisfies

S (αI2 ⊕ βI2) ≃ (S′ ⊕ S′) (αI1 ⊕ βI1 ⊕ αI1 ⊕ βI1) ≃ C2(x)⊕ C2(πx
−1).

5.2 Cycles of cyclic matrices

The following notation will be extremely useful in the remainder of the article:

Notation 5.1. Let n be a positive integer, and let π ∈ F
∗ and d ∈ N

∗. We set

Cn,d(π) :=

n⊕

k=−(n−1)

Cd(π
k),

a matrix that is similar to

n−1⊕

k=0

(
Cd(π

−k)⊕ Cd(π
k+1)

)
.

Lemma 5.5. Let n be a positive integer, and α, β, γ, δ be nonzero scalars with
α 6= β. Set π := αβγδ. Then, there is a matrix S ∈ GL4n(F) that is annihilated
by (t− γ)(t− δ) and such that

S (αI2n ⊕ βI2n) ≃ Cn,2(π).

Proof. Noting that αI2n⊕βI2n is similar to the direct sum of n copies of αI2⊕βI2,
it suffices to apply Lemma 5.4.

Lemma 5.6. Let n be a positive integer, and α, β, γ, δ be nonzero scalars, with
α 6= β. Let ε ∈ {−1, 1}. Set π := αβγδ. Assume that π2k+1 6= 1 for all
k ∈ [[0, n − 1]]. Then, there is a matrix S ∈ GL2n(F) that is annihilated by
(t− γ)(t− δ) and such that

S (αIn ⊕ βIn) ≃
n−1⊕

k=0

(
C1(επ

−k)⊕ C1(επ
k+1)

)
.

Proof. The proof is similar to the one of Lemma 5.5, however we use Lemma 5.3
this time around. This works because our assumptions show that επ−k 6= επk+1

for all k ∈ [[0, n− 1]].
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The next result is a consequence of the classification of products of two U2-
matrices:

Lemma 5.7. Let n be a positive integer, and π be a nonzero scalar. Then,
C2(π

−n)⊕ Cn,2(π) is the product of two U2-matrices.
Moreover, if π2n = 1, then Cn,2(π) is also the product of two U2-matrices.

Proof. Reorganizing the terms, we find

C2(π
−n)⊕ Cn,2(π) ≃ C2(1)⊕

n⊕

k=1

(
C2(π

−k)⊕ C2(π
k)
)

︸ ︷︷ ︸
M

.

By Theorem 1.2, the matrix M is the product of two U2-matrices, and so is
C2(1) (indeed, here all the Jordan cells have size 2).

Assume now that π2n = 1. Then ε := πn belongs to {1,−1}, and we can
reorganize

Cn,2(π) ≃ C2(1) ⊕ C2(ε)⊕

n−1⊕

k=1

(
C2(π

−k)⊕ C2(π
k)
)
.

The conclusion then follows again from Theorem 1.2.

The following result is proved in a similar fashion, using the characterization
of products of two involutions instead of the one of products of two U2-matrices:

Lemma 5.8. Let n be a positive integer, let π be a nonzero scalar and let
ε ∈ {−1, 1}. Then, for every positive integer d, the matrix

Cd(επ
−n)⊕

n−1⊕

k=0

(
Cd(επ

−k)⊕ Cd(επ
k+1)

)

is the product of two involutions, and if πn = ±1, then Cn,d(π) is also the product
of two involutions.

5.3 A general result on simple diagonal matrices

Lemma 5.9. Let α and β be distinct nonzero scalars. Let ε ∈ {1,−1} be such
that (εαβ)p = 1. Set A := αIp ⊕ βIp.
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(i) If ε = 1 then αIp⊕βIp is the product of three U2-matrices, and also of one
U2-matrix and two involutions.

(ii) If ε = −1 then αIp ⊕ βIp is the product of three involutions, and also of
one involution and two U2-matrices.

Proof. Set π := εαβ and q := ⌊p/2⌋. Assume that ε = 1 (respectively, ε = −1).
By Lemma 5.5, the matrix αI2q ⊕βI2q is u-adjacent (respectively, i-adjacent) to
Cq,2(π).

If p is even then the last statement of Lemma 5.7 shows that Cq,2(π) is the
product of two U2-matrices.

Assume now that p is odd, so that π−q = πq+1. Then, αI1 ⊕ βI1 is u-
adjacent (respectively, i-adjacent) to C2(π

−q). Hence, αIp ⊕ βIp is u-adjacent
(respectively, i-adjacent) to B′ := C2(π

−q)⊕Cq,2(π). Once more, by Lemma 5.7,
the matrix B′ is both the product of two involutions and the product of two
U2-matrices.

The conclusions follow.

5.4 More general decompositions

Proposition 5.10. Let N ∈ GLn(F) be an invertible well-partitioned matrix
with n ≥ 3. Let q be a positive integer and α, β be distinct nonzero scalars. Set
M := N ⊕ αIq ⊕ βIq and assume that detM = 1. Assume also that (αβ)k 6= 1
for all k ∈ [[1, q]]. Then, M is the product of three U2-matrices.

Proof. We will prove that M is u-adjacent to the product of two U2-matrices.
To this end, we set π := αβ.
Case 1: q is even. We write q = 2p.
By Lemma 5.5,

αI2p ⊕ βI2p →
u

Cp,2(π).

Note that π−p 6= 1 and detN = π−2p. Hence, the Adaptation Theorem yields

N →
u

C
(
(t− 1)n−2(t− π−p)2

)
≃ Cn−2(1)⊕ C2(π

−p),

whence
M →

u
Cn−2(1)⊕

[
C2(π

−p)⊕ Cp,2(π)
]

and the latter matrix is the product of two U2-matrices by Lemma 5.7 and
Theorem 1.2.
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Case 2: q is odd. We write q = 2p + 1.
Subcase 2.1: q > 3.
Then, detN = π−1(π−p)2 and we note that the assumptions show that π−1, π−p

and 1 are pairwise distinct (indeed p ≥ 2). As n ≥ 3, the Adaptation Theorem
yields

N →
u

C
(
(t− 1)n−3(t− π−1)(t− π−p)2

)
≃ Cn−3(1)⊕ C1(π

−1)⊕ C2(π
−p).

On the other hand, αIq−1 ⊕ βIq−1 →
u

Cp,2(π) and αI1 ⊕ βI1 →
u

C1(1)⊕C1(π).

Hence,

M →
u

M1 := Cn−3(1)⊕ C1(1)⊕
[
C1(π

−1)⊕C1(π)
]
⊕

[
C2(π

−p)⊕ Cp,2(π)
]
.

The matrix M1 is similar to its inverse. Moreover, the assumptions show that
π2 6= 1 (as q ≥ 2) and hence π is distinct from −1. It follows from Theorem 1.2
that M1 is the product of two U2-matrices.
Subcase 2.2: q = 3.
In particular, the assumptions show that π2 6= 1. By Lemma 5.1,

αIq ⊕ βIq →
u

C
(
(t− 1)3(t− π)3

)
≃ C3(1) ⊕ C3(π),

where the last similarity comes from having π 6= 1. Note that detN = π−3 and
π−1 6= 1. Hence, as n ≥ 3 the Adaptation Theorem shows that

N →
u

Cn−3(1) ⊕C3(π
−1).

It follows that

M →
u

Cn−3(1) ⊕ C3(1)⊕ C3(π
−1)⊕ C3(π).

We note that the latter matrix is similar to its inverse and −1 is no eigenvalue
of it, and we conclude that it is the product of two U2-matrices.
Subcase 2.3: q = 1 and π 6= −1.
Note that the assumptions show that π 6= 1. Moreover, detN = π−1. The
Adaptation Theorem shows thatN →

u
Cn−1(1)⊕C1(π

−1), whereas αIq⊕βIq →
u

C1(1) ⊕C1(π). Therefore,

M →
u

Cn−1(1) ⊕ C1(1)⊕ C1(π)⊕ C1(π
−1),
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and as π 6= −1 the latter matrix is the product of two U2-matrices.
Subcase 2.4: q = 1 and π = −1.
Note that detN = −1. The matrix αI1 ⊕ βI1 is cyclic with characteristic
polynomial t2 − (α+ β)t− 1, whence Proposition 3.5 yields

αI1 ⊕ βI1 →
u

C(t2 + t− 1).

Besides, since 1 is not a root ot t2 − t− 1, the Adaptation Theorem yields

N →
u

C
(
(t− 1)n−2(t2 − t− 1)

)
≃ Cn−2(1) ⊕ C(t2 − t− 1).

Therefore,
M →

u
Cn−2(1)⊕ C(t2 − t− 1)⊕ C(t2 + t− 1).

The latter matrix is similar to its inverse and −1 is no eigenvalue of it: hence it
is the product of two U2-matrices.

In any case, we have shown that M is u-adjacent to the product of two
U2-matrices, and hence it is the product of three U2-matrices.

Proposition 5.11. Assume that the characteristic of F is not 2. Let N ∈
GLn(F) be an invertible very-well-partitioned matrix. Let q be a positive integer
and α, β be distinct nonzero scalars. Set M := N ⊕ αIq ⊕ βIq and assume that
detM = ±1. Assume finally that (αβ)k 6= ±1 for all k ∈ [[1, q]]. Then, M is
the product of three involutions, but also of one involution and two U2-matrices,
and also of one U2-matrix and two involutions.

Proof. Let ε ∈ {1,−1}, and define η := 1 if ε = −1, and η := detM otherwise.
Set π := εαβ, and note that πk 6= ±1 for all k ∈ [[1, q]].
Case 1: There is no integer k ∈ [[1, q]] for which π2k+1 = 1.

Assume that ε = −1 (respectively, ε = 1). Then, by Lemma 5.6 the matrix
αIq ⊕ βIq is i-adjacent (respectively, u-adjacent) to

q−1⊕

k=0

(
C1(ηπ

−k)⊕ C1(ηπ
k+1)

)
,

whereas the Adaptation Theorem shows that N is i-adjacent (respectively, u-
adjacent) to

C
(
(t− 1)n−1(t− ηπ−q)

)
≃ Cn−1(1) ⊕ C1(ηπ

−q).
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Hence, M is i-adjacent (respectively u-adjacent) to

M ′ := Cn−1(1) ⊕ C1(ηπ
−q)⊕

q−1⊕

k=0

(
C1(ηπ

−k)⊕ C1(ηπ
k+1)

)
.

The matrix M ′ is obviously similar to its inverse and, if in addition η = 1 then
−1 is no eigenvalue of it. Hence, M ′ is the product of two involutions, and it
also the product of two U2-matrices if ε = −1. This yields the claimed result for
M .

Case 2: There is an integer k ∈ [[0, q−1]] for which π2k+1 = 1. We take the least
such integer a. Then, our starting assumptions show that 2a + 1 > q, whence
a ≥ q

2 · Set b := q − a, so that 1 ≤ b ≤ a ≤ q.
Subcase 2.1: b < a or η = −1.
Then, πa and ηπb are distinct. Indeed, πa 6= πb if b < a, and on the other hand
−1 does not belong to the group 〈π〉 because π has odd order. Assume that
ε = −1 (respectively, ε = 1). By Lemma 5.6, the matrix αIa ⊕ βIa is i-adjacent
(respectively, u-adjacent) to Ca,1(π), whereas αIb⊕βIb is i-adjacent (respectively,
u-adjacent) to

K :=

b−1⊕

k=0

(
C1(ηπ

−k)⊕ C1(ηπ
k+1)

)
.

Finally, since 1, π−a, ηπ−b are pairwise distinct, the Adaptation Theorem
shows that N is i-adjacent (respectively, u-adjacent) to

C
(
(t− 1)n−2(t− π−a)(t− ηπ−b)

)
≃ Cn−2(1)⊕ C1(π

−a)⊕ C1(ηπ
−b).

Hence, M is i-adjacent (respectively, u-adjacent) to

M ′ := Cn−2(1) ⊕
[
C1(π

−a)⊕ Ca,1(π)
]
⊕
[
C1(ηπ

−b)⊕K
]
.

The matrix M ′ is obviously similar to its inverse, and if η = 1 then −1 is no
eigenvalue of M ′. Hence, M ′ is the product of two involutions, and it is also the
product of two U2-matrices if ε = −1.
Subcase 2.2: b = a and η = 1.
Hence, detN = ±(π−a)2, and more precisely η detN = (π−a)2 if ε = 1. Assume
that ε = −1 (respectively, ε = 1). Then, the Adaptation Theorem shows that
N is i-adjacent (respectively, u-adjacent) to

C
(
(t− 1)n−2(t− π−a)2

)
≃ Cn−2(1) ⊕C2(π

−a).
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Moreover, since q = 2a, we find that αIq ⊕ βIq is i-adjacent (respectively, u-
adjacent) to Ca,2(π). Hence, M is i-adjacent (respectively, u-adjacent) to

M ′ := Cn−2(1)⊕
[
C2(π

−a)⊕ Ca,2(π)
]
,

a matrix which is the product of two U2-matrices.
Hence, in any case we deduce that M is the product of one involution and

two U2-matrices, as well as the product of one U2-matrix and two involutions.
By the former, M is also the product of three involutions.

We finish with two variations of the previous two results that are relevant to
unnatural extensions.

Proposition 5.12. Assume that the field F does not have characteristic 2. Let
p, q be integers with p > 0 and q ∈ {p − 1, p}. Let α ∈ F r {0,−1}. Let
N ∈ GLn(F) be a well-partitioned matrix with n ≥ 3. Set M := N⊕αIp⊕(−Iq).
Assume that detM = 1 and that there is no integer k ∈ [[1, q]] such that αk = ±1.
Then, M is the product of three U2-matrices.

Proof. If p = q, the result follows directly from Proposition 5.10. Hence, in the
remainder of the proof we only consider the case when q = p− 1.

Assume first that α = 1. Then M ≃ (N ⊕ (−Iq) ⊕ Iq) ⊕ I1. Moreover,
det(N ⊕ (−Iq) ⊕ Iq) = 1, and hence, either by Proposition 5.10 if q > 0, or by
Proposition 3.8 otherwise, N ⊕ (−Iq) ⊕ Iq is the product of three U2-matrices.
Therefore, so is M .

In the remainder of the proof, we assume that α 6= 1.
If p = 1, we have detN = α−1; then, as α−1 6= 1, the Adaptation Theorem

shows that N →
u

Cn−1(1) ⊕ C1(α
−1); hence, M is u-adjacent to Cn−1(1) ⊕

C1(α
−1)⊕ C1(α), which is the product of two U2-matrices because α 6= −1.

In the remainder of the proof, we assume further that p > 1 (and hence
q > 0). We set π := −α. We shall prove that M is u-adjacent to a matrix that
is the product of two U2-matrices. Note that πk 6= −1 for all k ∈ [[1, q]].

Case 1: There is no integer k ∈ [[0, q − 1]] such that π2k+1 = 1.
Then, by Lemma 5.6,

αIp ⊕ (−Iq) →
u

C1(α)⊕ Cq,1(π).

As q > 0, we have πq 6= α otherwise αq−1 = (−1)q, and then q − 1 > 0 and we
contradict our assumptions on α. Hence, 1, α−1 and π−q are pairwise distinct.
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Since detN = α−1π−q, the Adaptation Theorem shows that

N →
u

C
(
(t− 1)n−2(t− α−1)(t− π−q)

)
≃ Cn−2(1)⊕ C1(α

−1)⊕ C1(π
−q).

It follows that

M →
u

M ′ := Cn−2(1)⊕
[
C1(α

−1)⊕ C1(α)
]
⊕

[
C1(π

−q)⊕ Cq,1(π)
]
.

By Lemma 5.8, the matrix M ′ is similar to its inverse. Moreover, as α 6= −1
and πk 6= −1 for all k ∈ [[−q, q]], we see that −1 is no eigenvalue of M ′. Hence,
Theorem 1.2 shows that M ′ is the product of two U2-matrices.

Case 2: q is even.
We write q = 2a for some integer a. Then, by Lemma 5.5,

αIq ⊕ (−Iq) →
u

Ca,2(π).

Note that detN = α−1(π−a)2 and that πa 6= 1 due to our assumptions. If
πa = α then αa−1 = (−1)a, which yields a − 1 = 0 (because 0 ≤ a − 1 ≤ q)
and we obtain a contradiction. Hence, 1, α−1, π−a are pairwise distinct, and we
deduce from the Adaptation Theorem that

N →
u

C
(
(t− 1)n−3(t− α−1)(t− π−a)2

)
≃ Cn−3(1)⊕ C1(α

−1)⊕ C2(π
−a).

Hence,

M →
u

Cn−3(1) ⊕
[
C1(α

−1)⊕ C1(α)
]
⊕

[
C2(π

−a)⊕ Ca,2(π)
]
.

Remembering that α 6= −1, we see that the latter matrix is the product of two
U2-matrices.

Case 3: q is odd and there is an integer k ∈ [[0, q − 1]] such that π2k+1 = 1.
We take the least such integer a. Note that 2a+ 1 > q due to our assumptions.
Hence, a ≥ q

2 . Setting b := q − a, we deduce that 1 ≤ b < a < q because q
is odd. It ensues that 1, α−1, π−a and π−b are pairwise distinct. Note that
detN = α−1π−q = α−1π−aπ−b. Thus, the Adaptation Theorem yields

N →
u

C
(
(t−1)n−3(t−α−1)(t−π−a)(t−π−b)

)
≃ Cn−3(1)⊕C1(α

−1)⊕C1(π
−a)⊕C1(π

−b).
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On the other hand, we note that π2k+1 6= 1 for all k ∈ [[0, a − 1]], and hence
Lemma 5.6 shows that

αIa ⊕ (−Ia) →
u

Ca,1(π) and αIb ⊕ (−Ib) →
u

Cb,1(π).

Combining the above two adjacency results yields that M is u-adjacent to

M ′ := Cn−3(1)⊕
[
C1(α

−1)⊕C1(α)
]
⊕
[
C1(π

−a)⊕Ca,1(π)
]
⊕
[
C1(π

−b)⊕Cb,1(π)
]
.

By Theorem 1.2 and Lemma 5.8, the matrix M ′ is similar to its inverse. More-
over, −1 is not a power of π: indeed, as π2a+1 = 1 we see that π has odd order.
In addition α 6= −1, and hence −1 is no eigenvalue of M ′. Therefore, Theorem
1.2 yields that M ′ is the product of two U2-matrices.

Hence, in any case M is u-adjacent to the product of two U2-matrices, and
we conclude that M is the product of three U2-matrices.

Proposition 5.13. Assume that F has characteristic not 2 and let i ∈ F

satisfy i2 = −1. Let q be a positive integer, N ∈ GLn(F) be a very-well-
partitioned invertible matrix, and let α and β be distinct nonzero scalars such that
(αβ)q detN = ±i. Assume furthermore that (αβ)k 6∈ {±1,±i} for all k ∈ [[1, q]].
Then, M := N ⊕ αIq ⊕ βIq ⊕ iI1 is the product of three involutions, and it is
also the product of one involution and two U2-matrices.

Proof. Set π := −αβ. We will prove that M is i-adjacent to a matrix that is the
product of two U2-matrices. This will yield the claimed results.
Case 1: There is no integer k ∈ [[0, q − 1]] for which −iπ−k = iπk+1, i.e.
π2k+1 = −1.

Then, by Lemma 5.3,

αIq ⊕ βIq →
i

q−1⊕

k=0

(
C1(−iπ−k)⊕ C1(iπ

k+1)
)
.

Besides, since −iπ−q 6= 1, the Adaptation Theorem shows that

N →
i

C
(
(t− 1)n−1(t+ iπ−q)

)
≃ Cn−1(1)⊕ C1(−iπ−q).

Hence,

M →
i

M ′ := Cn−1(1) ⊕
[
C1(i)⊕ C1(−i)

]
⊕

q⊕

k=1

(
C1(−iπ−k)⊕ C1(iπ

k)
)
.
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The matrix M ′ is obviously similar to its inverse. Moreover, the assumptions
show that −1 is no eigenvalue of M ′. Hence, M ′ is the product of two U2-
matrices.
Case 2: There is an integer k ∈ [[0, q − 1]] for which −iπ−k = iπk+1.
Let us take the least such integer a. Then, 1 ≤ a < q. Setting b := q − a, we
have 1 ≤ b < q. Note that π2k+1 6= −1 for all k ∈ [[0, a − 1]]. Moreover, π does
not have odd order because −1 ∈ 〈π〉, whence π2k+1 6= 1 for all k ∈ [[0, b − 1]].
Hence, it follows from Lemma 5.3 that

αIa ⊕ βIa →
i

a−1⊕

k=0

(
C1(−iπ−k)⊕ C1(iπ

k+1)
)

and αIb ⊕ βIb →
i

Cb,1(π).

Besides, −iπ−a, π−b, and 1 are pairwise distinct and hence the Adaptation
Theorem shows that N is i-adjacent to

C
(
(t− 1)n−2(t+ iπ−a)(t− π−b)

)
≃ Cn−2(1) ⊕ C1(−iπ−a)⊕C1(π

−b).

We conclude that M is i-adjacent to

M ′ := Cn−2(1)⊕ C1(i) ⊕

[
C1(−iπ−a)⊕

a−1⊕

k=0

(
C1(−iπ−k)⊕ C1(iπ

k+1)
)]

⊕
[
C1(π

−b)⊕ Cb,1(π)
]
,

which is similar to

Cn−2(1)⊕
[
C1(i)⊕C1(−i)

]
⊕

[ a⊕

k=1

(
C1(−iπ−k)⊕C1(iπ

k)
)]

⊕
[
C1(π

−b)⊕Cb,1(π)
]
.

Hence, M ′ is similar to its inverse. We claim that −1 is no eigenvalue of it.
Indeed, the starting assumptions on π show that πk 6= −1 for all k ∈ [[−b, b]],
and πk 6= ±i for all k ∈ [[−a, a]].

We conclude that M is the product of one involution and two U2-matrices,
and by Theorem 1.2 it is also the product of three involutions.

6 Products of three unipotent matrices of index 2

6.1 Additional results on diagonal matrices

Lemma 6.1. The matrix −I2 is the product of three U2-matrices.
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Proof. Noting that −C2(1) ≃ C2(−1) and that C2(1) is a U2-matrix, we see that
−I2 is u-adjacent to C2(−1). Besides, C2(−1) is the product of two U2-matrices,
by Theorem 1.2. This yields the claimed result.

Lemma 6.2. Assume that F does not have characteristic 2. Let α belong to
Fr{0,−1}. Let n ∈ N∗ be an odd integer such that αn = 1. Then, αIn⊕(−In−1)
is the product of three U2-matrices.

Proof. We note that α has odd order, and we denote by m its order. We start
by proving that αIm ⊕ (−Im−1) is the product of three U2-matrices.

Note that −1 has even order (because F does not have characteristic 2), and
hence it cannot be a power of α. It follows that −α has even order. Therefore,
Lemma 5.6 yields

αIm−1 ⊕ (−Im−1) →
u

m−2⊕

k=0

(
C1((−α)−k)⊕ C1((−α)k+1)

)
,

whence

αIm ⊕ (−Im−1) →
u

B := C1(α) ⊕

m−2⊕

k=0

(
C1((−α)−k)⊕ C1((−α)k+1)

)
.

Noting that α(−α)m−1 = αm = 1, we obtain B ≃ B−1. Moreover, we claim that
−1 is no eigenvalue of B. Indeed, assume that (−α)k = −1 for some integer
k such that |k| < m. Then, αk = (−1)k+1, and since −1 is not a power of α
this yields αk = 1. Then, k = 0 because of the definition of m, which is absurd.
Hence, B is the product of two U2-matrices, and we conclude that αIm⊕(−Im−1)
is the product of three such matrices.

If n = m, we are done. Otherwise we write

αIn ⊕ (−In−1) ≃
(
αIm ⊕ (−Im−1)

)
⊕ (αIn−m ⊕ (−In−m)

)
.

Note that (−α)n−m = 1. Therefore, by Lemma 5.9, αIn−m ⊕ (−In−m) is the
product of three U2-matrices. Therefore, so is αIn ⊕ (−In−1).

Lemma 6.3. Assume that F does not have characteristic 2. Let α ∈ Fr{0,−1}.
Let n ∈ N

∗ be an even integer such that αn = −1. Then, αIn ⊕ (−In−1) is the
product of three U2-matrices.
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Proof. Since n is even, one of the powers of α is a square root of −1, which has
order 4, and hence the order of α is a multiple of 4.

Denote by m the order of α, and write m = 4q, so that α2q = −1. Note that
4q ≤ 2n, whence n ≥ 2q. The element −α does not have odd order otherwise
α2k = 1 for some odd integer k, and 4q would then divide 2k! Hence, with the
same line of reasoning as in the previous lemma, we find

αI2q ⊕ (−I2q−1) →
u

B := C1(α)⊕

2q−2⊕

k=0

(
C1((−α)−k)⊕ C1((−α)k+1)

)
,

and, as α(−α)2q−1 = 1, we note that B is similar to its inverse. Assume now
that −1 is an eigenvalue of B. Then, (−α)k = −1 for some integer k such that
|k| < 2q, and hence α2k = 1 with |2k| < m. It ensues that k = 0, which leads to
a contradiction. Therefore, −1 is no eigenvalue of B, and we conclude that B is
the product of two U2-matrices.

From there, by splitting

αIn ⊕ (−In−1) ≃
(
αIm ⊕ (−Im−1)

)
⊕

(
αIn−m ⊕ (−In−m)

)
,

one concludes with exactly the same line of reasoning as in the proof of Lemma
6.2.

6.2 Natural extensions

Here, we prove Theorem 1.8. Let A ∈ SLn(F). We wish to prove that the matrix
M := A⊕ In is the product of three U2-matrices.

We start by applying Proposition 3.3: there exist non-negative integers p, q, r
such that p + q + r = 2n, a matrix N ∈ GLp(F) and a scalar α ∈ F r {1} such
that

M ≃ N ⊕ α Iq ⊕ Ir and q ≥ r,

and either N is very-well-partitioned, or N − Ip is nilpotent and q = 0, or N
is void. Since Ir−q is the product of three U2-matrices, it suffices to prove that
M ′ := N⊕αIq⊕Iq, which has determinant 1, is the product of three U2-matrices.

If q = 0, then detN = 1 and the result follows directly from Theorem 1.2
if N − Ip is nilpotent, whereas it follows from Proposition 3.8 if N is very-well-
partitioned.

In the rest of the proof, we assume that q > 0.
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If N is void then αq = detM ′ = 1 and the result follows directly from Lemma
5.9.

Assume finally that N is very-well-partitioned and that q > 0. Note that
α 6∈ {0, 1} since M ′ is invertible. Note also that p ≥ 3 because N is very-well-
partitioned. If there is no integer k ∈ [[1, q]] such that αk = 1, then the result
follows directly from Proposition 5.10. Assume finally that there is an integer
k ∈ [[1, q]] such that αk = 1, and denote by a the greatest such integer. Then,
αk 6= 1 for all k ∈ [[1, q − a]]. We split

M ′ ≃
[
N ⊕ αIq−a ⊕ Iq−a

]
︸ ︷︷ ︸

M ′
1

⊕
[
αIa ⊕ Ia

]
︸ ︷︷ ︸

M ′
2

and we note that detM ′
2 = αa = 1 and hence detM ′

1 = 1. By Proposition 5.10
if q − a > 0, and by Proposition 3.8 otherwise, the matrix M ′

1 is the product of
three U2-matrices; so is M ′

2 by Lemma 5.9. We conclude that M ′ is the product
of three U2-matrices.

This completes the proof of Theorem 1.8.

6.3 Unnatural extensions: additional results

In this section and in the following one, we assume that the field F does not have
characteristic 2. Here, we establish preliminary results for the proof of Theorem
1.12 (which will be performed in the next section).

Lemma 6.4. Let N ∈ Mn(F) be nilpotent. Denote by s the number of its Jordan
cells of odd size. Then, (−In +N)⊕ (−Is) is the product of three U2-matrices.

Proof. For a scalar λ and a positive integer k, we denote by Jk(λ) := λIk+C(tk)
the (transposed) Jordan cell of size k associated with the eigenvalue λ.

For every non-negative integer k, the matrix J2k(−1) is the product of two
U2-matrices (by Theorem 1.2), and hence it is also the product of three such
matrices.

In order to conclude, it suffices to prove that for every non-negative integer k,
the matrix (−I1)⊕J2k+1(−1) is the product of three U2-matrices. Let k be such
an integer, and denote by U the transvection matrix of GL2k+2(F) with entry −1
at the (2, 1)-spot. One checks that U ((−I1)⊕ J2k+1(−1)) = J2k+2(−1), and the
latter matrix is the product of two U2-matrices. Noting that U is a U2-matrix,
we conclude that (−I1)⊕ J2k+1(−1) is the product of three U2-matrices.
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Lemma 6.5. Let A ∈ GLn(F) be such that detA = ±1, and k be a positive
integer such that (−1)k = detA. Assume that A is similar to a direct sum of
companion matrices, all with size greater than 1, and that −1 is no eigenvalue
of A. Then, A⊕ (−Ik) is the product of three U2-matrices.

Proof. Since −I2 is the product of three U2-matrices, it suffices to consider the
case when k ∈ {1, 2}.

If k = 1, we see that A⊕(−I1) is similar to a well-partitioned matrix, and we
deduce from Proposition 3.8 that A⊕ (−I1) is the product of three U2-matrices.

Assume now that k = 2, so that detA = 1. If A is cyclic then Proposition 3.7
shows that it is the product of three U2-matrices. Since so is −I2 (see Lemma
6.1), so is A⊕(−I2). Assume finally that A is non-cyclic. The assumptions allow
us to split A ≃ B1 ⊕ · · · ⊕ Bp, where B1, . . . , Bp are companion matrices with
size at least 2, and p ≥ 2. If all the Bi’s have determinant 1, then they are all
products of three U2-matrices, and hence so is A. Assuming otherwise, we lose
no generality in further assuming that detB1 6= 1. Then, we set A1 := (−I1)⊕B1

and A2 := (B2⊕· · ·⊕Bp)⊕ (−I1) and we note that detA1 = − detB1 6= −1 and
detA2 = (detA1)

−1. Set α := detA1. We also note that A1 and A2 are both
well-partitioned. The Adaptation Theorem shows that A1 →

u
C
(
(t−1)s(t−α)

)

and A2 →
u

C
(
(t − 1)r(t − α−1)

)
for some positive integers r and s. Then,

A⊕ (−Ik) is u-adjacent to C
(
(t− 1)s(t − α)

)
⊕ C

(
(t − 1)r(t − α−1)

)
, a matrix

that is similar to its inverse and of which −1 is no eigenvalue. Hence A⊕ (−Ik)
is the product of three U2-matrices.

Lemma 6.6. Let A ∈ GLn(F) be a very-well-partitioned matrix such that detA =
−1. Then, A⊕ (−I1) is the product of three U2-matrices.

Proof. Set M := A⊕ (−I1). We denote by p1, . . . , pr, q1, . . . , qs the polynomials
that are attached to A as a well-partitioned matrix. Without loss of generality,
we can assume that p1, . . . , pr are all coprime with t + 1. If deg(qs) > 1, then
M is well-partitioned with determinant 1 and we deduce from Proposition 3.8
that it is the product of three U2-matrices. Assume now that deg(qs) = 1 and
qs 6= t+1. Then, C(qs)⊕ (−I1) ≃ C

(
(t+1)qs

)
and hence M is similar to a well-

partitioned matrix (with attached polynomials p1, . . . , pr, q1, . . . , qs−1, (t+1)qs).
Again, M is the product of three U2-matrices in that case.

Assume that qs = t+1 and s > 1. As A is very-well-partitioned, the matrix
B := C(p1)⊕· · ·C(pr)⊕C(q1)⊕· · ·⊕C(qs−1) is well-partitioned with determinant
1. Hence, B is the product of three U2-matrices, and so is M = B ⊕ (−I2).
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Assume finally that qs = t+ 1 and s = 1. Then, B := C(p1)⊕ · · · ⊕C(pr) is
the direct sum of companion matrices with size at least 2 and −1 is no eigenvalue
of B. We deduce from Lemma 6.5 that M = B ⊕ (−I2) is the product of three
U2-matrices.

6.4 Unnatural extensions: proof of Theorem 1.8

Here, we complete the proof of Theorem 1.8. We assume that F does not have
characteristic 2. Let A ∈ GLn(F) be such that detA = ±1, and let m ≥ n be
an integer such that (−1)m detA = 1. We wish to prove that M := A⊕ (−Im)
is the product of three U2-matrices.

By Proposition 3.3, there are non-negative integers p, q, r, a matrix N ∈
GLp(F), and a scalar α ∈ F r {−1} such that

M ≃ N ⊕ αIq ⊕ (−Ir) and r ≥ q,

and either N + Ip is nilpotent and q = 0, or N is void, or N is very-well-
partitioned. Moreover, when q = 0 and N + Ip is nilpotent, we can assume that
N has no Jordan cell of size 1 (otherwise we put all those cells in the last −Ir
block).

Assume first that N is void. If q = 0, then r is even and it follows directly
from Lemma 6.1 that M is the product of three U2-matrices. Assume now that
q > 0. If r−q is even, we write that M is similar to the direct sum of αIq⊕(−Iq)
and of copies of −I2, and we conclude by combining Lemmas 5.9 and 6.1. If r−q
is odd, we write that M is similar to the direct sum of αIq ⊕ (−Iq−1) and of
copies of −I2, and we conclude by combining Lemma 6.1 with one of Lemmas
6.2 and 6.3.

Assume now that q = 0 and that N + Ip is nilpotent. Then, r is greater
than or equal to the number s of Jordan cells of odd size of N , and r− s is even
because detM = 1. It follows from Lemmas 6.1 and 6.4 that M is the product
of three U2-matrices.

Assume finally that N is very-well-partitioned. If q = 0 and r is even, then
detN = 1 and we combine Proposition 3.8 with Lemma 6.1 to obtain that M
is the product of three U2-matrices. If q = 0 and r is odd, the same conclusion
is reached by combining Lemmas 6.6 and 6.1. In the remainder of the proof, we
assume that q > 0. Using Lemma 6.1 once more, we choose m ∈ {q − 1, q} that
equals r modulo 2, and we find that it suffices to prove that

M ′ := N ⊕ αIq ⊕ (−Im),

49



which has determinant 1, is the product of three U2-matrices.
If αk 6= ±1 for all k ∈ [[1,m]], then Proposition 5.12 directly yields that

M is the product of three U2-matrices. Assume now that αk = ±1 for some
k ∈ [[1,m]], and denote by a the greatest such integer. Hence, αk 6= ±1 for all
k ∈ [[1,m− a]].

• Assume first that (−α)a = 1. Then, we resplit

M ′ ≃
[
N ⊕ αIq−a ⊕ (−Im−a)

]
︸ ︷︷ ︸

M1

⊕
[
αIa ⊕ (−Ia)

]
︸ ︷︷ ︸

M2

and we note that detM1 = 1. If q − a > 0 then Proposition 5.12 shows
that M1 is the product of three U2-matrices. If q−a = 0 then Proposition
3.8 shows that M1 is the product of three U2-matrices. Moreover, M2 is
also the product of three U2-matrices, by Lemma 5.9. Hence, so is M ′.

• If (−α)a = −1 and m = q − 1, then we resplit

M ′ ≃
[
N ⊕ αIq−a ⊕ (−Iq−a)

]
⊕

[
αIa ⊕ (−Ia−1)

]
,

and this time around we conclude by combining one of Propositions 3.8
and 5.10 with one of Lemmas 6.2 and 6.3.

• If (−α)a = −1, m = q and q > a, then we resplit

M ′ ≃ (−I2)⊕
[
N ⊕ αIq−a ⊕ (−Iq−a−1)

]
⊕

[
αIa ⊕ (−Ia−1)

]
,

and we conclude as in the preceding case, with Proposition 5.12 instead of
Proposition 5.10, and by using Lemma 6.1.

• Assume finally that (−α)a = −1 and m = q = a. Then, we split

M ′ ≃
[
N ⊕ (−I1)

]
⊕

[
αIa ⊕ (−Ia−1)

]
,

and we combine one of Lemmas 6.2 and 6.3 with Lemma 6.6 to conclude
that M ′ is the product of three U2-matrices.

The proof of Theorem 1.8 is now complete.
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7 Products of three involutions

If F has characteristic 2 then the involutions in GLn(F) are the U2-matrices, and
our results are just consequences of Theorem 1.8. Hence, in the present section
(and also in the following two), we assume that the characteristic of F is not 2.

7.1 Natural extensions

We start with an additional preliminary lemma:

Lemma 7.1. Let α and β be distinct nonzero scalars, and let q be a positive
integer such that (−αβ)q = ±1. Then, the matrix αIq ⊕ βIq is the product of
three involutions.

Proof. Set π := −αβ. If πq = 1, the result is already known by Lemma 5.9.
Assume now that πq = −1. As F does not have characteristic 2, this yields

that π has even order in the group F∗, and it ensues that π2k+1 6= 1 for every
integer k. Hence, by Lemma 5.6, αIq ⊕ βIq is i-adjacent to Cq,1(π). Besides,
πq = ±1, and hence the last statement in Lemma 5.8 shows that Cq,1(π) is the
product of two involutions. We conclude that αIq ⊕ βIq is the product of three
involutions.

Now, we can prove Theorem 1.7. Let A ∈ GLn(F) have determinant ±1.
Then, M := A ⊕ In satisfies the conditions of Proposition 3.1, and hence we
have non-negative integers p, q, r, a matrix N ∈ GLp(F) and a scalar α ∈ Fr{1}
such that

M ≃ N ⊕ α Iq ⊕ Ir, r ≥ q,

and either N is very-well-partitioned, or N − Ip is nilpotent and q = 0, or N is
void. Noting that Ir−q is the product of three involutions (say, three copies of
itself), we see that it suffices to consider the case when r = q.

If N is void and q > 0, then αq = detM = ±1 and we directly deduce from
Lemma 7.1 that M is the product of three involutions. If N is void and q = 0,
then the result is obviously true.

If N − Ip is nilpotent and q = 0, then M is triangularizable with sole eigen-
value 1, and we deduce from Theorem 1.2 that it is the product of two involu-
tions, and hence it is also the product of three involutions.

In the rest of the proof, we assume that N is very-well-partitioned. If there
is no integer k ∈ [[1, q]] such that αk = ±1, then Proposition 5.11 readily yields
that M is the product of three involutions.
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Assume now that there is a integer k ∈ [[1, q]] such that αk = ±1, and take
the greatest such integer a. Note that αk 6= ±1 for all k ∈ [[1, q− a]]. Then, split

M ≃ (N ⊕ αIq−a ⊕ Iq−a)︸ ︷︷ ︸
M1

⊕ (αIa ⊕ Ia)︸ ︷︷ ︸
M2

.

Note that detM2 = ±1, and hence detM1 = ±1. By Lemma 7.1, the matrix
M2 is the product of three involutions. By Proposition 5.11 if q− a > 0, and by
Proposition 3.8 otherwise, M1 is the product of three involutions. We conclude
that M is the product of three involutions.

Theorem 1.7 is now established.

7.2 Unnatural extensions : additional results on simple matrices

Here, we assume that there exists an element i of F such that i2 = −1, and we
fix such an element.

Lemma 7.2. Let k be a positive integer. Then, iI1 ⊕C2k−1(i) is the product of
three involutions, and also the product of one involution and two U2-matrices.

Proof. Note that detC2k−1(i) = ±i. By Proposition 3.4,

C2k−1(i) →
i

C
(
(t− 1)2k−2(t+ i)

)
≃ C2k−2(1)⊕ C1(−i),

and hence
iI1 ⊕C2k−1(i) →

i
C2k−2(1)⊕ C1(i) ⊕C1(−i).

The latter matrix is obviously similar to its inverse and −1 is no eigenvalue of
it, and hence it is both the product of two involutions and the product of two
U2-matrices. The conclusion ensues.

Corollary 7.3. The matrix iI2 is the product of three involutions, and also the
product of one involution and two U2-matrices.

Lemma 7.4. Let k be a positive integer. Then, C2k(i) is the product of three
involutions, and also the product of one involution and two U2-matrices.

Proof. Set

K :=

[
1 i
0 −1

]
and L :=

[
−i 1
0 i

]
,
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and define

A := K ⊕ · · · ⊕K and B := iI1 ⊕ L⊕ · · · ⊕ L⊕ (−iI1),

with k copies of K in the definition of A, and k− 1 copies of L in the one of B.
Then, one sees that AB is upper-triangular with all its diagonal entries equal to
i, and for every pair (u, v) ∈ [[1, 2k]]2 such that v = u + 1, the entry of AB at
the (u, v)-spot is nonzero. Hence, AB − iI2k is nilpotent with rank 2k − 1, and
we deduce that AB ≃ C2k(i). Obviously, A is an involution, and B is similar
to its inverse and −1 is no eigenvalue of B. Hence, B is the product of two
U2-matrices. The conclusion ensues that C2k(i) is the product of one involution
and two U2-matrices, and hence it is also the product of three involutions.

Lemma 7.5. Let N ∈ GLn(F) be a very-well-partitioned matrix such that
detN = ±i. Then, N ⊕ iI1 is the product of three involutions, and it is also the
product of one involution and two U2-matrices.

Proof. Indeed, the Adaptation Theorem shows that N is i-adjacent to C
(
(t −

1)n−1(t+ i)
)
, and hence N ⊕ iI1 is i-adjacent to B := Cn−1(1)⊕C1(−i)⊕C1(i),

a matrix which is similar to its inverse and of which −1 is no eigenvalue. Hence,
B is both the product of two U2-matrices and the product of two involutions,
and the conclusion ensues.

Lemma 7.6. Let α, β be distinct nonzero scalars. Assume that, in the group
F
∗, the element (−αβ) has order 4q for some q > 0. Then, αIq ⊕ βIq ⊕ (iI1) is

the product of three involutions, and it is also the product of one involution and
two U2-matrices.

Proof. Set π = −αβ, which has order 4q. In particular π2q = −1 (otherwise
the order of π would divide 2q), and hence πq = −εi for some ε ∈ {−1, 1}.
Moreover, there is no odd integer l such that πl = −1 (otherwise the order of π
would divide 2l), and hence iπk+1 6= −iπ−k for every integer k. By Lemma 5.6,
it follows that

αIq ⊕ βIq →
i

q−1⊕

k=0

(
C1(−εiπ−k)⊕ C1(εiπ

k+1)
)
,

and hence

αIq ⊕ βIq ⊕ iI1 →
i

B := C1(εi)⊕

q−1⊕

k=0

(
C1(−εiπ−k)⊕ C1(εiπ

k+1)
)
.
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Noting that εiπq = 1, we extract two blocks and we obtain

B ≃ C1(1)⊕
[
C1(εi) ⊕ C1(−εi)

]
⊕

q−1⊕

k=1

(
C1(−εiπ−k)⊕ C1(εiπ

k)
)
.

This shows that B is similar to its inverse. Moreover, −1 is no eigenvalue of
B: indeed, there can be no integer k such that |k| < q and πk = ±i, otherwise
π4k = 1 would yield k = 0 which is absurd. Hence, B is the product of two
U2-matrices. The conclusion ensues.

For the case of products of three involutions, we can generalize the previous
result as follows:

Lemma 7.7. Let α, β be distinct nonzero scalars, and p be a non-negative integer
such that (−αβ)p = ±i. Then, αIp⊕βIp⊕iI1 is the product of three involutions.

Proof. Set π := −αβ. Since the subgroup generated by π contains an element
of order 4, the order of π is a multiple of 4, which we write 4q for some q > 0.
Since π4p = 1 and π2p = −1, we find that p is a multiple of q but not of 2q.
Hence, p = 2qm+ q for some integer m ≥ 0, and we deduce that αIp ⊕βIp ⊕ iI1
is similar to the direct sum of αIq ⊕ βIq ⊕ iI1 and of m copies of αI2q ⊕ βI2q.
Since (−αβ)q = ±i and (−αβ)2q = −1, all those summands are products of
three involutions (by Lemma 7.6 for the first summand, and by Lemma 7.1 for
the remaining ones), and the conclusion ensues.

7.3 Unnatural extensions: completing the proof

We are ready to conclude the proof of Theorem 1.11. Assume that F contains
an element i such that i2 = −1. Let A ∈ GLn(F) and k ≥ n. Set M := A⊕ iIk
and assume that detM = ±1. We shall prove that M is the product of three
involutions.

By Proposition 3.3, there are non-negative integers p, q, r, a matrix N ∈
GLp(F), and a scalar α ∈ F r {i} such that

M ≃ N ⊕ αIq ⊕ iIr and r ≥ q,

and either N − iIp is nilpotent and q = 0, or N is void, or N is very-well-
partitioned. Moreover, when q = 0 and N − iIp is nilpotent, we can assume that
N has no Jordan cell of size 1 (otherwise we put all those cells in the last iIr
block).
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Assume first that q = 0 and that N − iIp is nilpotent with no Jordan cell
of size 1. By the construction of M , we see that r is greater than or equal to
the number s of Jordan cells of odd size of N . Then, 1 = detM = ±ir+s, and
hence r − s is even. By Corollary 7.3, the matrix iIr−s is the product of three
involutions. We note that M is similar to the direct sum of iIr−s, of s matrices
of the form C2k+1(i)⊕ iI1 for some positive integer k, and of Jordan cells of even
size for the eigenvalue i. By Lemmas 7.2 and 7.4, each one of those matrices is
the product of three involutions, and hence so is M .

In the remainder of the proof, we assume that N is either void or very-well-
partitioned. Since iI2 is the product of three involutions, we further reduce the
situation to the one where r ∈ {q, q + 1}. Assume that N is void. Then, either
r = q and (−iα)q = ±1, in which case we use Lemma 7.1 to see that M is the
product of three involutions, or r = q + 1 and (−iα)q = ±i, in which case the
same conclusion is reached by applying Lemma 7.7.

It remains to deal with the case when N is very-well-partitioned and r ∈
{q, q + 1}.

Assume first that q = 0. If r = 0 then we deduce from Proposition 3.8 that
N is the product of three involutions. If r = 1, we get from the Adaptation
Theorem that N →

i
C
(
(t − 1)p−1 (t + i)

)
≃ Cp−1(1) ⊕ C1(−i), and hence

A →
i

Cp−1(1) ⊕ C1(−i) ⊕ C1(i). The latter matrix is the product of two

involutions.

Assume finally that N is very-well-partitioned, r ∈ {q, q+1} and q > 0. We
split the discussion into two cases, whether r = q or r = q + 1.
Case 1: r = q.
If (−iα)k 6= ±1 for all k ∈ [[1, q]], then we readily deduce from Proposition 5.11
that M is the product of three involutions. Assume now that (−iα)k = ±1 for
some k ∈ [[1, q]], and denote by a the greatest such integer. Note that (−iα)l 6=
±1 for all l ∈ [[1, q − a]]. Let us split

M ≃
[
N ⊕ αIq−a ⊕ iIq−a

]
︸ ︷︷ ︸

M1

⊕
[
αIa ⊕ iIa

]
︸ ︷︷ ︸

M2

and note that detM2 = ±1, and hence detM1 = ±1. Then, by Proposition 5.11
if q−a > 0, and by Proposition 3.8 otherwise, we find that M1 is the product of
three involutions. Lemma 7.1 shows that M2 is the product of three involutions,
and we conclude that so is M .
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Case 2: r = q + 1.
If (−iα)4k 6= 1 for all k ∈ [[1, q]], then we directly deduce from Proposition 5.13
that M is the product of three involutions. Assume now that (−iα)4k = 1 for
some k ∈ [[1, q]], and denote by a the greatest such integer. Note then that
(−iα)4l 6= 1 for all l ∈ [[1, q − a]].

• Assume that (−iα)a = ±1. Then, we split

M ≃
[
N ⊕ αIq−a ⊕ iIq−a ⊕ iI1

]
︸ ︷︷ ︸

M1

⊕
[
αIa ⊕ iIa

]
︸ ︷︷ ︸

M2

.

Note that detM2 = ±1 and hence detM1 = ±1. Then, M1 is the product
of three involutions, by Proposition 5.13 if q − a > 0, and by Lemma 7.5
otherwise. Besides, M2 is the product of three involutions by Lemma 7.1.

• Assume that (−iα)a = ±i. Then, we split

M ≃
[
N ⊕ αIq−a ⊕ iIq−a

]
︸ ︷︷ ︸

M3

⊕
[
αIa ⊕ iIa ⊕ iI1

]
︸ ︷︷ ︸

M4

.

Again, detM4 = ±1 and detM3 = ±1. Then, M3 is the product of
three involutions, by Proposition 5.11 if q− a > 0, and by Proposition 3.8
otherwise. Besides, M4 is the product of three involutions by Lemma 7.7.

In any case, we conclude that M is the product of three involutions. This
completes the proof of Theorem 1.11.

8 Products of two involutions and one unipotent ma-

trix of index 2

In this short section, we assume that the field F does not have characteristic 2,
and we prove Theorem 1.9, which we restate below:

Let A ∈ GLn(F) be such that detA = ±1. Then, the matrix A⊕ In
is the product of one U2-matrix and two involutions.

The strategy is identical to the one of the proof of Theorem 1.8 given in
Section 6, and hence we see that it suffices to prove the following result:
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Lemma 8.1. Let α ∈ F r {0, 1} and q be a positive integer such that αq = ±1.
Then, αIq ⊕ Iq is the product of one U2-matrix and two involutions.

Proof. If αq = 1, the result is already known as part of Lemma 5.9. In the rest
of the proof, we assume that αq = −1.

Since −1 is a power of α, we find that α has even order in the group F∗. In
particular αk+1 6= α−k for every integer k. Hence, Lemma 5.6 shows that

αIq ⊕ Iq →
u

Cq,1(α).

Since αq = −1, Lemma 5.8 shows that Cq,1(α) is the product of two involutions.
The conclusion ensues.

Hence, Theorem 1.9 is proved.

9 Products of one involution and two unipotent ma-

trices of index 2

In this section, we assume that the field F does not have characteristic 2.

9.1 Natural extensions

Before we can prove Theorem 1.10, we need two consecutive lemmas.

Lemma 9.1. Let α ∈ F r {0, 1}. Assume that −α has even order 2q in the
group F

∗. Then, αIq ⊕ Iq is the product of one involution and two U2-matrices.

Proof. Set π := −α and note that πq = −1. Since π has even order, we have
π2k+1 6= 1 for every integer k. Hence, Lemma 5.6 yields that αIq−1 ⊕ Iq−1 is
i-adjacent to Cq−1,1(π). Noting that π−(q−1) = −π = α, we deduce that

αIq ⊕ Iq →
i

B := C1(1)⊕ C1(π
−(q−1))⊕ Cq−1,1(π).

We know from Lemma 5.8 that C1(π
−(q−1))⊕ Cq−1,1(π) is similar to its inverse,

and hence so is B. Moreover, we see that −1 is no eigenvalue of B: indeed,
otherwise πk = −1 for some k such that |k| < q, which would yield π2k = 1
and then k = 0 because |2k| < 2q, leading to a contradiction. Hence, B is the
product of two U2-matrices. The conclusion ensues.
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Lemma 9.2. Let α ∈ F r {0, 1}, and q be a positive integer such that (−α)q =
±1. Then, the matrix αIq ⊕ Iq is the product of one involution and two U2-
matrices.

Proof. Set π := −α. If πq = 1, then the result readily follows from Lemma 5.9.
Assume now that πq = −1. Hence, π has even order, which we denote by 2p,

and as π2q = 1 we find that p divides q. Hence, αIq ⊕ Iq is similar to the direct
sum of copies of αIp ⊕ Ip, a matrix which is the product of one involution and
two U2-matrices by Lemma 9.1. Hence, αIq ⊕ Iq is the product of one involution
and two U2-matrices.

From there, the proof of Theorem 1.10 is essentially similar to the one of
Theorem 1.7. The only difference is that one uses Lemma 9.2 instead of Lemma
7.1.

9.2 Unnatural extensions

Here, we let i be an element of F such that i2 = −1. In order to prove Theorem
1.13, we can adapt the strategy of the proof of Theorem 1.11, and we see that
it suffices to prove the following result.

Lemma 9.3. Let α ∈ Fr{0, i}, and let q be a positive integer such that (−iα)q =
−1. Then, αIq ⊕ iIq is the product of one involution and two U2-matrices.

In order to prove this result, a basic lemma is required:

Lemma 9.4. Let α ∈ Fr{0, i}. Then, αI2⊕iI1 is i-adjacent to C1(−i)⊕C2(α).

Proof of Lemma 9.4. Set

S :=



1 0 0
1 −1 0
0 0 1


 and A :=



α 0 0
0 i 0
0 1 α


 .

We see that S is an involution and that A ≃ αI2 ⊕ iI1. Moreover,

SA =



α 0 0
α −i 0
0 1 α




is obviously cyclic with characteristic polynomial (t − α)2(t + i), to the effect
that

SA ≃ C1(−i)⊕ C2(α).
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This yields the claimed result.

Proof of Lemma 9.3. Set π := −iα, so that πq = −1. Set M := αIq ⊕ iIq. We
split the discussion into two cases, whether q is even or odd.

Case 1: q is even.

We write q = 2p. As (π−p)2 = −1, we find π−p = εi for some ε ∈ {1,−1}. By
Lemma 5.4, we have

αI2p−2 ⊕ iI2p−2 →
i

p−2⊕

k=0

(
C2(επ

−k)⊕ C2(επ
k+1)

)
.

Combining this with Lemma 9.4, we deduce that

M →
i

B :=
[
C1(i)⊕ C1(−i)

]
⊕ C2(iπ)⊕

p−2⊕

k=0

(
C2(επ

−k)⊕ C2(επ
k+1)

)
.

Noting that (επp−1)(iπ) = 1, we see that B is similar to its inverse. Moreover,
B has no Jordan cell of odd size for the eigenvalue −1, and hence it is the
product of two U2-matrices. Therefore, M is the product of one involution and
two U2-matrices.

Case 2: q is odd.

If q = 1, then α = −i and M is the product of two U2-matrices. In the remainder
of the proof, we assume that q > 1.

Let us write q = 2p+ 1 for some positive integer p. Note that (iπp+1)2 = π.
Hence, Lemma 5.1 shows that iI1 ⊕ αI1 →

i
C2(iπ

p+1). Moreover, Lemma 5.4

shows that

iI2p−2 ⊕ αI2p−2 →
i

p−1⊕

k=1

(
C2(−iπ−k)⊕ C2(iπ

k+1)
)
.

It follows from Lemma 9.4 that

M →
i

B := C1(i)⊕C1(−i)⊕C2(iπ)⊕C2(iπ
p+1)⊕

p−1⊕

k=1

(
C2(−iπ−k)⊕C2(iπ

k+1)
)
.

Reorganizing the terms and noting that iπp+1 = −iπ−p, we obtain

B ≃
[
C1(i)⊕ C1(−i)

]
⊕

p⊕

k=1

(
C2(−iπ−k)⊕ C2(iπ

k)
)
.
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Hence, B is similar to its inverse and has no Jordan cell of odd size for the
eigenvalue −1 (in fact, one can prove that −1 is no eigenvalue of B). Thus, B is
the product of two U2-matrices, and hence M is the product of one involution
and two U2-matrices.

This completes the proof of Theorem 1.13.

10 Optimality issues

Here, we briefly discuss the optimality of our results. For example, if we refer
to Theorem 1.7, the problem is the following one: Given a positive integer n,
what is the minimal integer k ≥ 0 such that, for any field F and any matrix
A ∈ GLn(F) with determinant ±1, the matrix A ⊕ Ik is the product of three
involutions? It turns out that the solution n is not optimal but very close to
optimality. This is due to the fact that there is room for improvement in the
lemmas that deal with matrices of the form αIq ⊕ βIq: there, we tried to keep
things as general as possible and in particular we seldom cared about the value
of β. Yet, if we assign a specific value to β, say β = 1 for Theorem 1.7, then
there is room for improvement, as we will now see.

Here, we state the optimal results without proof:

• For every integer n ≥ 2 and every A ∈ SLn(F), the matrix A⊕ In−2 is the
product of three U2-matrices. However, if n ≥ 3 then for every α ∈ Fr{0}
of order n, the matrix αIn ⊕ In−3 is not the product of three U2-matrices.

• For every integer n ≥ 2 and every A ∈ GLn(F) having determinant ±1,
the matrix A⊕ In−1 is the product of one U2-matrix and two involutions.
However, for every α ∈ F r {0} of order 2n, the matrix αIn ⊕ In−2 is not
the product of one U2-matrix and two involutions.

• For every even integer n ≥ 4 and every A ∈ GLn(F) having determinant
±1, the matrix A ⊕ In−2 is the product of one involution and two U2-
matrices; however for every α ∈ Fr{0} of order 2n, the matrix αIn⊕ In−3

is not the product of three involutions.

• For every odd integer n ≥ 3 and every A ∈ GLn(F) having determinant ±1,
the matrix A⊕ In−1 is the product of one involution and two U2-matrices;
however for every α ∈ F r {0} of order 2n, the matrix αIn ⊕ In−2 is not
the product of three involutions.
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In those results, the positive statement can be proved by the same techniques
we have resorted to in the present article (using cycles of small companion ma-
trices), whereas the negative statement requires a deep understanding of the
structure of products of two quadratic matrices (see [11]).

Now, let us turn to unnatural extensions. Assume that F does not have
characteristic 2, let n > 2 be an integer, and let A ∈ GLn(F). We start with
decompositions into the product of three U2-matrices.

• If detA = 1 and n is even, then A ⊕ (−In−2) is the product of three U2-
matrices. If n is even and not a multiple of 4, then for any α ∈ Fr {0} of
order n

2 , the matrix αIn⊕ (−In−4) is not the product of three U2-matrices.
If n is a multiple of 4, then for any α ∈ F r {0} of order n, the matrix
αIn ⊕ (−In−4) is not the product of three U2-matrices.

• If detA = −1 and n is odd, then A ⊕ (−In−2) is the product of three
U2-matrices. If n is odd then, for any α ∈ Fr {0} of order 2n, the matrix
αIn ⊕ (−In−4) is not the product of three U2-matrices.

• If detA = −1 and n is even, then A ⊕ (−In−1) is the product of three
U2-matrices. If n is even, then for any α ∈ Fr {0} of order 2n, the matrix
αIn ⊕ (−In−3) is not the product of three U2-matrices.

• If detA = 1 and n is odd, then A ⊕ (−In−1) is the product of three U2-
matrices. If n is odd then, for any α ∈ F r {0} of order n, the matrix
αIn ⊕ (−In−3) is not the product of three U2-matrices.

We finish with decompositions into the product of one involution and two
U2-matrices (or three involutions). To this end, we let i be an element of order
4 in F r {0}.

• If detA = ±i and n is odd, then A⊕ iIn is the product of one involution
and two U2-matrices. However, if n is odd, then for any α ∈ F r {0} of
order 4n such that −iα is of order 2n, the matrix αIn ⊕ iIn−2 is not the
product of three involutions. Note that such a scalar α exists in the field
of complex numbers: it suffices to choose a complex number π of order 2n,
and to take α := iπ.

• If detA = ±i and n is even, then A⊕iIn−1 is the product of one involution
and two U2-matrices. However, if n is even, then for any α ∈ F r {0} of
order 4n, the matrix αIn ⊕ iIn−3 is not the product of three involutions.
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• If detA = ±1 and n is odd, then A⊕ iIn−1 is the product of one involution
and two U2-matrices. However, if n is odd, then for any α ∈ F r {0} of
order 2n, the matrix αIn ⊕ iIn−3 is not the product of three involutions.

• If detA = ±1 and n is even, then A⊕iIn−2 is the product of one involution
and two U2-matrices. However, if n is even and greater than 2, then for
any α ∈ F r {0} of order 2n such that −iα is not of order n

2 , the matrix
αIn ⊕ iIn−4 is not the product of three involutions. Note that such a
scalar α exists in the field of complex numbers: either n

2 is odd, and then
it suffices to start from an element π of order n and to take α := iπ, or n

2
is even and it suffices to choose α of order 2n.
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