Extending p-divisible groups and Barsotti-Tate deformation ring in the relative case

Yong Suk Moon

Abstract

Let k be a perfect field of characteristic p > 2, and let K be a finite totally ramified extension of $W(k)[\frac{1}{p}]$ of ramification degree e. We consider an unramified base ring R_0 over W(k) satisfying certain conditions, and let $R = R_0 \otimes_{W(k)} \mathcal{O}_K$. Examples of such R include $R = \mathcal{O}_K[s_1, \ldots, s_d]$ and $R = \mathcal{O}_K\langle t_1^{\pm 1}, \ldots, t_d^{\pm 1} \rangle$. We show that the generalization of Raynaud's theorem on extending p-divisible groups holds over the base ring R when $e , whereas it does not hold when <math>R = \mathcal{O}_K[s]$ with $e \ge p$. As an application, we prove that if R has Krull dimension 2 and e , then the $locus of Barsotti-Tate representations of <math>\operatorname{Gal}(\overline{R}[\frac{1}{p}]/R[\frac{1}{p}])$ cuts out a closed subscheme of the universal deformation scheme. If $R = \mathcal{O}_K[s]$ with $e \ge p$, we prove that such a locus is not p-adically closed.

Contents

1	Introduction	1
2	Relative Breuil-Kisin Classification	3
3	Étale φ -modules and Galois Representations	7
4	Extending <i>p</i> -divisible Groups	9
5	Barsotti-Tate Deformation Ring for Relative Base of Dimension 2	13

1 Introduction

Let k be a perfect field of characteristic p > 2, and W(k) be its ring of Witt vectors. Let K be a finite totally ramified extension of $W(k)[\frac{1}{p}]$ of ramification degree e, and let \mathcal{O}_K be its ring of integers. We consider an unramified base ring R_0 over W(k) satisfying certain conditions (cf. Section 2), and let $R = R_0 \otimes_{W(k)} \mathcal{O}_K$. Important examples of such R include the formal power series ring $R = \mathcal{O}_K[\![s_1, \ldots, s_d]\!]$, and $R = \mathcal{O}_K\langle t_1^{\pm 1}, \ldots, t_d^{\pm 1}\rangle$ which is the *p*-adic completion of $\mathcal{O}_K[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$.

When $R = \mathcal{O}_K$, Raynaud showed the following theorem on extending *p*-divisible groups.

Theorem 1.1. ([Ray74, Proposition 2.3.1]) Let G be a p-divisible group over K. Suppose that for each $n \geq 1$, $G[p^n]$ extends to a finite flat group scheme over \mathcal{O}_K . Then G extends to a p-divisible group over \mathcal{O}_K , and such an extension is unique up to isomorphism.

In this paper, we prove that the generalization of Raynaud's theorem holds over the relative base R when the ramification is small (e). On the other hand, using an example from [VZ10] on purity of <math>p-divisible groups, we show that such a statement does not hold when the ramification is large.

Theorem 1.2. Assume $e . Let G be a p-divisible group over <math>R[\frac{1}{p}]$. Suppose that for each $n \ge 1$, $G[p^n]$ extends to a finite locally free group scheme over R. Then G extends to a p-divisible group over R, and such an extension is unique up to isomorphism.

If $e \ge p$ and $R = \mathcal{O}_K[\![s]\!]$, there exists a p-divisible group G over $R[\frac{1}{p}]$ such that $G[p^n]$ extends to a finite locally free group scheme over R for each n but G does not extend to a p-divisible group over R.

As an application, we study the geometry of the locus of representations arising from p-divisible groups over R when R has Krull dimension 2. Let \mathcal{G}_R be the étale fundamental group of $\operatorname{Spec} R[\frac{1}{p}]$. For a fixed absolutely irreducible \mathbf{F}_p -representation V_0 of \mathcal{G}_R , there exists a universal deformation ring which parametrizes the deformations of V_0 ([SL97]). We say that a finite continuous \mathbf{Q}_p -representation V of \mathcal{G}_R is *Barsotti-Tate* if it arises from a p-divisible group over R, i.e., if there exists a p-divisible group G_R over R such that $V \cong T_p(G_R) \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$ where $T_p(G_R)$ denotes the Tate module of G_R . For a torsion \mathbf{Z}_p -representation T of \mathcal{G}_R , we say it is *torsion Barsotti-Tate* if it is a quotient of a finite free \mathbf{Z}_p -representation T_1 such that $T_1[\frac{1}{p}]$ is Barsotti-Tate. By using Theorem 1.2, we prove:

Theorem 1.3. Suppose R has Krull dimension 2 and e < p-1. Then the locus of Barsotti-Tate representations of \mathcal{G}_R cuts out a closed subscheme of the universal deformation scheme.

If $R = \mathcal{O}_K[\![s]\!]$ and $e \ge p$, then the locus of Barsotti-Tate representations is not p-adically closed in the following sense: there exists a finite free \mathbb{Z}_p -representation T of \mathcal{G}_R such that $T/p^n T$ is torsion Barsotti-Tate for each integer $n \ge 1$ but $T[\frac{1}{p}]$ is not Barsotti-Tate.

We give a more precise statement of Theorem 1.3 in Section 5.

Acknowledgements

I would like to express sincere gratitude to Mark Kisin for his guidance while working on this topic. This paper is partly based on author's Ph.D. thesis under his supervision. I also thank Brian Conrad and Tong Liu for helpful discussions.

2 Relative Breuil-Kisin Classification

We first explain the classification of *p*-divisible groups and finite locally free group schemes over Spec*R* via certain Kisin modules, which is proved in [Kis06] when $R = \mathcal{O}_K$ and generalized in [Kim15] for the relative case.

We will work over the relative base rings as considered in [Bri08] with some additional mild assumptions. Denote by $W(k)\langle t_1^{\pm 1},\ldots,t_d^{\pm 1}\rangle$ the *p*-adic completion of the polynomial ring $W(k)[t_1^{\pm 1},\ldots,t_d^{\pm 1}]$. Let R_0 be a ring obtained from $W(k)\langle t_1^{\pm 1},\ldots,t_d^{\pm 1}\rangle$ by iterations of the following operations:

- *p*-adic completion of an étale extension;
- *p*-adic completion of a localization;
- completion with respect to an ideal containing p.

We assume that either $W(k)\langle t_1^{\pm 1}, \ldots, t_d^{\pm 1}\rangle \to R_0$ has geometrically regular fibers or R_0 has Krull dimension less than 2, and that $k \to R_0/pR_0$ is geometrically integral and R_0 is an integral domain. Furthermore, we suppose that R_0 is formally smooth formally finite type over some Cohen ring (cf. [Kim15, Section 2.2.2]). In particular, R_0 is a regular ring.

 R_0/pR_0 has a finite *p*-basis given by $\{t_1, \ldots, t_d\}$ in the sense of [DJ95, Definition 1.1.1]. Let $\widehat{\Omega}_{R_0} = \varprojlim_n \Omega_{(R_0/p^n)/W(k)}$ be the module of *p*-adically continuous Kähler differentials. We have $\widehat{\Omega}_{R_0} \cong \bigoplus_{i=1}^d R_0 \cdot d(\log t_i)$ by [Bri08, Proposition 2.0.2]. The Witt vector Frobenius on W(k) extends (not necessarily uniquely) to R_0 . We fix such a Frobenius endomorphism $\varphi: R_0 \to R_0$, and let $R = R_0 \otimes_{W(k)} \mathcal{O}_K$ be our base ring. Examples of such R include $R = \mathcal{O}_K \langle t_1^{\pm 1}, \ldots, t_d^{\pm 1} \rangle$ and $R = \mathcal{O}_K[[s_1, \ldots, s_d]]$ (for example, via $s_i = 1 + t_i$).

It will be useful later to consider the following natural maps between base rings. Let $R_{0,g}$ be the *p*-adic completion of $\lim_{\varphi} (R_0)_{(p)}$ with the induced Frobenius, and denote by k_g the perfect closure $\lim_{\varphi} \operatorname{Frac}(R_0/pR_0)$ of $\operatorname{Frac}(R_0/pR_0)$. By the universal property of *p*-adic Witt vectors, we have a unique continuous (with respect to the *p*-adic topology) morphism $h: W(k_g) \to R_{0,g}$ commuting with their projections to k_g . By unicity, h is compatible with Frobenius endomorphisms. Since h modulo p is an isomorphism and $R_{0,g}$ is *p*-torsion free and *p*-adically complete and separated, h is an isomorphism. We will make use of this isomorphism later when we apply results from classical *p*-adic Hodge theory over *p*-adic fields, since such results will hold for the base ring $R_{0,g} \otimes_{W(k)} \mathcal{O}_K$. Let $b_g: R_0 \to R_{0,g}$ be the natural morphism compatible with Frobenius. This induces \mathcal{O}_K -linearly the base change map $b_g: R \to R_{0,g} \otimes_{W(k)} \mathcal{O}_K$.

Lemma 2.1. The map $b_g : R_0 \to R_{0,g}$ is injective. Furthermore, for each integer $n \ge 1$, the map $R_0/(p^n) \to R_{0,g}/(p^n)$ induced from b_g is injective.

Proof. Since $R_0/(p)$ is an integral domain, the map $R_0/(p) \to R_{0,g}/(p) = k_g$ is injective. Thus, $b_g : R_0 \to R_{0,g}$ is injective as R_0 is *p*-adically separated and $R_{0,g}$ is *p*-torsion free. It also follows that $R_0/(p^n) \to R_{0,g}/(p^n)$ is injective for each $n \ge 1$.

Let $\mathfrak{S} = R_0[\![u]\!]$ equipped with the Frobenius extending that on R_0 , given by $\varphi : u \mapsto u^p$. Denote by E(u) the Eisenstein polynomial for the extension K over $W(k)[\frac{1}{n}]$.

Definition 2.2. A quasi-Kisin module of height 1 is a pair $(\mathfrak{M}, \varphi_{\mathfrak{M}})$ where

- \mathfrak{M} is a finitely generated projective \mathfrak{S} -module;
- $\varphi_{\mathfrak{M}} : \mathfrak{M} \to \mathfrak{M}$ is a φ -semilinear map such that $\operatorname{coker}(1 \otimes \varphi_{\mathfrak{M}} : \mathfrak{S} \otimes_{\varphi, \mathfrak{S}} \mathfrak{M} \to \mathfrak{M})$ is annihilated by E(u).

Note that for a quasi-Kisin module \mathfrak{M} of height 1, $1 \otimes \varphi_{\mathfrak{M}} : \varphi^* \mathfrak{M} := \mathfrak{S} \otimes_{\varphi,\mathfrak{S}} \mathfrak{M} \to \mathfrak{M}$ is injective since \mathfrak{M} is finite projective over \mathfrak{S} and $\operatorname{coker}(1 \otimes \varphi_{\mathfrak{M}})$ is killed by E(u). Let $\operatorname{Mod}_{\mathfrak{S}}(\varphi)$ denote the category of quasi-Kisin modules of height 1 whose morphisms are \mathfrak{S} -module maps compatible with Frobenius.

Consider the composite $\mathfrak{S} \to \mathfrak{S}/u\mathfrak{S} = R_0 \xrightarrow{\varphi} R_0$. Let $\operatorname{Mod}_{\mathfrak{S}}(\varphi, \nabla)$ denote the category whose objects are tuples $(\mathfrak{M}, \varphi_{\mathfrak{M}}, \nabla_{\mathcal{M}})$ where $(\mathfrak{M}, \varphi_{\mathfrak{M}})$ is a quasi-Kisin module of height 1, $\mathcal{M} := \mathfrak{M} \otimes_{\mathfrak{S},\varphi} R_0$, and $\nabla_{\mathcal{M}} : \mathcal{M} \to \mathcal{M} \otimes_{R_0} \widehat{\Omega}_{R_0}$ is a topologically quasi-nilpotent integrable connection commuting with $\varphi_{\mathcal{M}} := \varphi_{\mathfrak{M}} \otimes \varphi_{R_0}$. (Here, $\nabla_{\mathcal{M}}$ being topologically quasinilpotent means that the induced connection on $\mathcal{M}/p\mathcal{M}$ is nilpotent). The morphisms in $\operatorname{Mod}_{\mathfrak{S}}(\varphi, \nabla)$ are \mathfrak{S} -module maps compatible with Frobenius and connection. The objects in $\operatorname{Mod}_{\mathfrak{S}}(\varphi, \nabla)$ are called *Kisin modules of height* 1. The following theorem is proved in [?].

Theorem 2.3. (cf. [Kim15, Corollary 6.7 and Remark 6.9]) There exists an exact antiequivalence of categories

 $\mathfrak{M}^*: \{p\text{-divisible groups over } R\} \to \mathrm{Mod}_{\mathfrak{S}}(\varphi, \nabla).$

Let R'_0 be another unramifed ring satisfying the conditions as above equipped with a Frobenius, and let $b : R_0 \to R'_0$ be a φ -equivariant map. Then the formation of \mathfrak{M}^* commutes with the base change $R \to R' \coloneqq R'_0 \otimes_{W(k)} \mathcal{O}_K$ induced \mathcal{O}_K -linearly from b.

The classification of p-power order finite locally free group schemes over R can be obtained by considering torsion Kisin modules.

Definition 2.4. A torsion quasi-Kisin module of height 1 is a pair $(\mathfrak{M}, \varphi_{\mathfrak{M}})$ where

M is a finitely presented S-module killed by a power of p, and of S-projective dimension 1;

• $\varphi_{\mathfrak{M}} : \mathfrak{M} \to \mathfrak{M}$ is a φ -semilinear endomorphism such that $\operatorname{coker}(1 \otimes \varphi_{\mathfrak{M}} : \varphi^* \mathfrak{M} \to \mathfrak{M})$ is killed by E(u).

Let $\operatorname{Mod}_{\mathfrak{S}}^{\operatorname{tor}}(\varphi)$ denote the category of torsion quasi-Kisin modules of height 1 whose morphisms are \mathfrak{S} -linear maps compatible with φ . Let $\operatorname{Mod}_{\mathfrak{S}}^{\operatorname{tor}}(\varphi, \nabla)$ denote the category whose objects are tuples $(\mathfrak{M}, \varphi_{\mathfrak{M}}, \nabla_{\mathcal{M}})$ where $(\mathfrak{M}, \varphi_{\mathfrak{M}})$ is a torsion quasi-Kisin module of height 1, $\mathcal{M} \coloneqq \mathfrak{M} \otimes_{\mathfrak{S},\varphi} R_0$, and $\nabla_{\mathcal{M}} \colon \mathcal{M} \to \mathcal{M} \otimes_{R_0} \widehat{\Omega}_{R_0}$ is a topologically quasi-nilpotent integrable connection commuting with $\varphi_{\mathcal{M}} \coloneqq \varphi_{\mathfrak{M}} \otimes \varphi_{R_0}$. The morphisms in $\operatorname{Mod}_{\mathfrak{S}}^{\operatorname{tor}}(\varphi, \nabla)$ are \mathfrak{S} -module maps compatible with φ and ∇ . The objects are called *torsion Kisin modules of height* 1.

Lemma 2.5. Let \mathfrak{M} be a torsion quasi-Kisin module of height 1. Then $1 \otimes \varphi_{\mathfrak{M}} : \varphi^* \mathfrak{M} \to \mathfrak{M}$ is injective.

Proof. Let $\mathfrak{S}_g \coloneqq R_{0,g}\llbracket u \rrbracket$ equipped with the Frobenius given by $\varphi(u) = u^p$. By the local criterion for flatness, $b_g : R_0 \to R_{0,g}$ is flat since $R_0/(p) \to R_{0,g}/(p) = k_g$ is flat and $R_{0,g}$ is *p*-torsion free, and the map $\mathfrak{S} \to \mathfrak{S}_g$ is flat. Note that $\mathfrak{M}_g \coloneqq \mathfrak{M} \otimes_{\mathfrak{S}} \mathfrak{S}_g$ equipped with $\varphi_{\mathfrak{M}_g} \coloneqq \varphi_{\mathfrak{M}} \otimes \varphi_{\mathfrak{S}_g}$ is a torsion Kisin module of height 1 over \mathfrak{S}_g .

We first claim that the natural map $b: \mathfrak{M} \to \mathfrak{M}_g$ is injective. Since \mathfrak{M} has projective dimension ≤ 1 , there exists a short exact sequence $0 \to \mathfrak{M}_1 \to \mathfrak{M}_2 \to \mathfrak{M} \to 0$ where \mathfrak{M}_1 and \mathfrak{M}_2 are finite projective \mathfrak{S} -modules. \mathfrak{M}_1 and \mathfrak{M}_2 have the same rank since \mathfrak{M} is killed by a power of p. We have a commutative diagram

whose rows are exact. Since \mathfrak{M}_1 and \mathfrak{M}_2 are projective over \mathfrak{S} , the left and middle vertical maps are injective. Furthermore, for i = 1, 2, we have $\operatorname{coker}(\mathfrak{M}_i \to \mathfrak{M}_i \otimes_{\mathfrak{S}} \mathfrak{S}_g) \cong \mathfrak{M}_i \otimes_{\mathfrak{S}} (\mathfrak{S}_g/\mathfrak{S})$ as \mathfrak{S} -modules. On the other hand, all elements in the kernel of the induced map $\mathfrak{M}_1 \otimes_{\mathfrak{S}} (\mathfrak{S}_g/\mathfrak{S}) \to \mathfrak{M}_2 \otimes_{\mathfrak{S}} (\mathfrak{S}_g/\mathfrak{S})$ are killed by some power of p since $\mathfrak{M}_1[\frac{1}{p}] \cong \mathfrak{M}_2[\frac{1}{p}]$. And $\mathfrak{S}_g/\mathfrak{S}$ is p-torsion free since $R_0/(p) \to R_{0,g}/(p) = k_g$ is injective, so $\mathfrak{M}_1 \otimes_{\mathfrak{S}} (\mathfrak{S}_g/\mathfrak{S})$ is p-torsion free as \mathfrak{M}_1 is projective over \mathfrak{S} . Hence, the map $\mathfrak{M}_1 \otimes_{\mathfrak{S}} (\mathfrak{S}_g/\mathfrak{S}) \to \mathfrak{M}_2 \otimes_{\mathfrak{S}} (\mathfrak{S}_g/\mathfrak{S})$ is injective. By the snake Lemma, we deduce that $b : \mathfrak{M} \to \mathfrak{M}_g$ is injective.

Now, consider the following commutative diagram:

$$\begin{array}{cccc} \mathfrak{S} \otimes_{\varphi,\mathfrak{S}} \mathfrak{M} & \xrightarrow{1 \otimes \varphi_{\mathfrak{M}}} & \mathfrak{M} \\ & & & \downarrow^{b} \\ \mathfrak{S}_{g} \otimes_{\varphi,\mathfrak{S}_{g}} \mathfrak{M}_{g} & \xrightarrow{1 \otimes \varphi_{\mathfrak{M}_{g}}} & \mathfrak{M}_{g} \end{array}$$

100

Since $\varphi : \mathfrak{S} \to \mathfrak{S}$ is flat by [Bri08, Lemma 7.1.8], $\mathfrak{S} \otimes_{\varphi,\mathfrak{S}} \mathfrak{M}$ has projective dimension 1 as a \mathfrak{S} -module and is killed by a power of p. By the same argument as above, the natural

map $\mathfrak{S} \otimes_{\varphi,\mathfrak{S}} \mathfrak{M} \to \mathfrak{S}_g \otimes_{\mathfrak{S}} (\mathfrak{S} \otimes_{\varphi,\mathfrak{S}} \mathfrak{M}) \cong \mathfrak{S}_g \otimes_{\varphi,\mathfrak{S}_g} \mathfrak{M}_g$ is injective, which is the left vertical map. The bottom map is injective by [Liu07, Proposition 2.3.2] since $R_{0,g} \cong W(k_g)$. Thus, the top map is injective.

Denote by $(\text{Mod FI})_{\mathfrak{S}}(\varphi, \nabla)$ the full subcategory of $\text{Mod}_{\mathfrak{S}}^{\text{tor}}(\varphi, \nabla)$ consisting of objects \mathfrak{M} such that $\mathfrak{M} \cong \bigoplus_i \mathfrak{M}_i$ as \mathfrak{S} -modules where \mathfrak{M}_i 's are projective over $\mathfrak{S}/(p^{n_i})$ for some positive integers n_i . The following theorem is shown in [Kim15].

Theorem 2.6. (cf. [Kim15, Proposition 9.5 and Theorem 9.8]) There exists an exact fully faithful functor \mathfrak{M}^* from the category of p-power order finite locally free group schemes over R to $\operatorname{Mod}_{\mathfrak{S}}^{\operatorname{tor}}(\varphi, \nabla)$ with the following properties:

- Let H be a p-power order finite locally free group scheme over R. If H = ker(h : G⁰ → G¹) for an isogeny h of p-divisible groups over R, then there exists a natural isomorphism M^{*}(H) ≅ coker(M^{*}(h)) of torsion Kisin modules of height 1;
- Let R'_0 be another unramified ring satisfying the conditions as above equipped with a Frobenius, and let $b : R_0 \to R'_0$ be a φ -equivariant map. Then the formation of \mathfrak{M}^* commutes with the base change $R \to R' \coloneqq R'_0 \otimes_{W(k)} \mathcal{O}_K$ induced \mathcal{O}_K -linearly from b.

Moreover, the functor \mathfrak{M}^* induces an anti-equivalence from the category of p-power order finite locally free group schemes H over R such that $H[p^n]$ is locally free over R for all $n \ge 1$ to (Mod FI) $\mathfrak{S}(\varphi, \nabla)$.

We end this section by recalling some necessary results on connections explained in [Kim15, Section 10.2], which is based on [Vas13]. Let $(\mathfrak{M}, \varphi_{\mathfrak{M}})$ be a quasi-Kisin module of height 1, and let $\mathcal{M} = \mathfrak{M} \otimes_{\mathfrak{S},\varphi} R_0$ equipped with the induced Frobenius $\varphi_{\mathfrak{M}} \otimes \varphi_{R_0}$. From [Kim15, Eq. (6.1), (6.2) and Remark 3.13], we have the R_0 -submodule Fil¹ $\mathcal{M} \subset \mathcal{M}$ associated with \mathfrak{M} such that $p\mathcal{M} \subset \operatorname{Fil}^1\mathcal{M}, \mathcal{M}/\operatorname{Fil}^1\mathcal{M}$ is projective over $R_0/(p)$, and $(1 \otimes \varphi)(\varphi^*\operatorname{Fil}^1\mathcal{M}) = p\mathcal{M}$ as R_0 -modules (cf. [Kim15, Definition 3.4 and 3.6] for the frame $(R_0, pR_0, R_0/(p), \varphi_{R_0}, \frac{\varphi_{R_0}}{p})$). Fix an R_0 -direct factor $\mathcal{M}^1 \subset \mathcal{M}$ which lifts Fil¹ $\mathcal{M}/p\mathcal{M} \subset$ $\mathcal{M}/p\mathcal{M}$, and let $\tilde{M} \coloneqq (\mathcal{M} + \frac{1}{p}\mathcal{M}^1) \otimes_{R_0,\varphi} R_0 \subset \mathcal{M} \otimes_{R_0,\varphi} R_0[\frac{1}{p}]$. For each integer $n \ge 1$, suppose $\nabla_n : R_0/(p^n) \otimes_{R_0} \mathcal{M} \to (R_0/(p^n) \otimes_{R_0} \mathcal{M}) \otimes_{R_0} \widehat{\Omega}_{R_0}$ is a connection such that the following diagram is commutative:

Here, $\varphi^*(\nabla_n)$ is given by choosing an arbitrary lift of ∇_n on $R_0/(p^{n+1}) \otimes_{R_0} \mathcal{M}$, and $\varphi^*(\nabla_n)$ does not depend on the choice of such a lift (cf. [Vas13, Section 3.1.1 Equation (9)]).

Identify $\widehat{\Omega}_{R_0} = \bigoplus_{i=1}^d R_0 \cdot d(\log t_i)$. By passing to a finite Zariski covering of $\operatorname{Spf}(R_0, p)$, we may assume that \mathcal{M}^1 and $\mathcal{M}/\mathcal{M}^1$ are free over R_0 . Fix such a choice of the covering, and fix a R_0 -basis of \mathcal{M} adapted to the direct factor \mathcal{M}^1 . By [Vas13, Section 3.2 Basic Theorem] and its proof, the set of connections ∇_1 on $R_0/(p) \otimes_{R_0} \mathcal{M}$ satisfying the commutative diagram (2.1) for n = 1 corresponds to the solutions over $R_0/(p)$ of a certain Artin-Schreier system of equations over $R_0/(p)$. In particular, it follows directly that we have finitely many such ∇_1 (cf. [Vas13, Theorem 2.4.1 (b)]). Furthermore, given a connection ∇_n on $R_0/(p^n) \otimes_{R_0} \mathcal{M}$, the set of connections ∇_{n+1} on $R_0/(p^{n+1}) \otimes_{R_0} \mathcal{M}$ which lift ∇_n and satisfy the commutative diagram (2.1) for n + 1 corresponds the solutions over $R_0/(p)$ of a certain Artin-Schreier system of equations over $R_0/(p)$ by *loc. cit.*, and we have finitely many such ∇_{n+1} .

3 Étale φ -modules and Galois Representations

We recall the results in [Kim15, Section 7] on associating Galois representations with étale φ -modules in the relative setting. The underlying geometry is based on perfectoid spaces (cf. [Sch12]). We will use the results to translate our question on *p*-divisible groups into a question on Kisin modules and étale φ -modules.

Let \overline{R} denote the union of finite R-subalgebras R' of a fixed separable closure of $\operatorname{Frac}(R)$ such that $R'[\frac{1}{p}]$ is étale over $R[\frac{1}{p}]$. Then $\operatorname{Spec}\overline{R}[\frac{1}{p}]$ is a pro-universal covering of $\operatorname{Spec}R[\frac{1}{p}]$, and \overline{R} is the integral closure of R in $\overline{R}[\frac{1}{p}]$. Let $\mathcal{G}_R := \operatorname{Gal}(\overline{R}[\frac{1}{p}]/R[\frac{1}{p}]) = \pi_1^{\text{ét}}(\operatorname{Spec}R[\frac{1}{p}],\eta)$ with a choice of a geometric point η . Choose a uniformizer $\varpi \in \mathcal{O}_K$. For integers $n \ge 0$, we choose compatibly $\varpi_n \in \overline{R}$ such that $\varpi_0 = \varpi$ and $\varpi_{n+1}^p = \varpi_n$, and let L be the padic completion of $\bigcup_{n\ge 0} K(\varpi_n)$. Then L is a perfectoid field and $(\widehat{R}[\frac{1}{p}], \widehat{\overline{R}})$ is a perfectoid affinoid L-algebra, where $\widehat{\overline{R}}$ denotes the p-adic completion of \overline{R} .

Let L^{\flat} denote the tilt of L as defined in [Sch12], and let $\underline{\varpi} := (\varpi_n) \in L^{\flat}$. Let $(\overline{R}^{\flat}[\frac{1}{\underline{\varpi}}], \overline{R}^{\flat})$ be the tilt of $(\widehat{\overline{R}}[\frac{1}{p}], \widehat{\overline{R}})$. Let $E_{R_{\infty}}^{+} = \mathfrak{S}/p\mathfrak{S}$, and let $\widetilde{E}_{R_{\infty}}^{+}$ be the *u*-adic completion of $\lim_{\substack{\to \varphi}} E_{R_{\infty}}^{+}$. Let $E_{R_{\infty}} = E_{R_{\infty}}^{+}[\frac{1}{u}]$ and $\widetilde{E}_{R_{\infty}} = \widetilde{E}_{R_{\infty}}^{+}[\frac{1}{u}]$. By [Sch12, Proposition 5.9], $(\widetilde{E}_{R_{\infty}}, \widetilde{E}_{R_{\infty}}^{+})$ is a perfectoid affinoid L^{\flat} -algebra, and we have the natural injection $(\widetilde{E}_{R_{\infty}}, \widetilde{E}_{R_{\infty}}^{+}) \hookrightarrow (\overline{R}^{\flat}[\frac{1}{\underline{\varpi}}], \overline{R}^{\flat})$ given by $u \mapsto \underline{\varpi}$. Let $(\widetilde{R}_{\infty}[\frac{1}{p}], \widetilde{R}_{\infty})$ be a perfectoid affinoid L-algebra whose tilt is $(\widetilde{E}_{R_{\infty}}, \widetilde{E}_{R_{\infty}}^{+})$, and let $\mathcal{G}_{\widetilde{R}_{\infty}} = \pi_{1}^{\text{\acute{e}t}}(\operatorname{Spec} \widetilde{R}_{\infty}[\frac{1}{p}], \eta)$. Then we have a continuous map of Galois groups $\mathcal{G}_{\widetilde{R}_{\infty}} \to \mathcal{G}_{R}$, which is a closed embedding by [GR03, Proposition 5.4.54]. By the almost purity theorem in [Sch12], $\overline{R}^{\flat}[\frac{1}{\underline{\varpi}}]$ can be canonically identified with the $\underline{\varpi}$ -adic completion of the affine ring of a pro-universal covering of Spec $\widetilde{E}_{R_{\infty}}$, and letting $\mathcal{G}_{\widetilde{E}_{R_{\infty}}}$ be the Galois group corresponding to the pro-universal covering, there exists a canonical isomorphism $\mathcal{G}_{\widetilde{E}_{R_{\infty}}} \cong \mathcal{G}_{\widetilde{R}_{\infty}}$.

Now, let $\mathcal{O}_{\mathcal{E}}$ be the *p*-adic completion of $\mathfrak{S}[\frac{1}{n}]$. Note that φ on \mathfrak{S} extends naturally to

 $\mathcal{O}_{\mathcal{E}}.$

Definition 3.1. An étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -module is a pair (M, φ_M) where M is a finitely generated $\mathcal{O}_{\mathcal{E}}$ -module and $\varphi_M : M \to M$ is a φ -semilinear endomorphism such that $1 \otimes \varphi_M : \varphi^*M \to M$ is an isomorphism. We say that an étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -module is projective (resp. torsion) if the underlying $\mathcal{O}_{\mathcal{E}}$ -module M is projective (resp. p-power torsion).

Let $\operatorname{Mod}_{\mathcal{O}_{\mathcal{E}}}$ denote the category of étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -modules whose morphisms are $\mathcal{O}_{\mathcal{E}}$ -linear maps compatible with Frobenius. Let $\operatorname{Mod}_{\mathcal{O}_{\mathcal{E}}}^{\operatorname{pr}}$ and $\operatorname{Mod}_{\mathcal{O}_{\mathcal{E}}}^{\operatorname{tor}}$ respectively denote the full subcategories of projective and torsion objects.

Note that we have a natural notion of a subquotient, direct sum, and tensor product for étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -modules, and duality is defined for projective and torsion objects. If $(\mathfrak{M}, \varphi_{\mathfrak{M}})$ is a quasi-Kisin module (resp. torsion quasi-Kisin module) of height 1, then $(\mathfrak{M} \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}}, \varphi_{\mathfrak{M}} \otimes \varphi_{\mathcal{O}_{\mathcal{E}}})$ is a projective (resp. torsion) étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -module since $1 \otimes \varphi_{\mathfrak{M}}$ is injective (by Lemma 2.5 for torsion quasi-Kisin modules) and its cokernel is killed by E(u)which is a unit in $\mathcal{O}_{\mathcal{E}}$. If we denote by $\mathcal{O}_{\mathcal{E},g}$ the corresponding ring for $R_{0,g}$, then for any étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -module $M, M \otimes_{\mathcal{O}_{\mathcal{E}}, b_g} \mathcal{O}_{\mathcal{E}, g}$ with the induced Frobenius is an étale $(\varphi, \mathcal{O}_{\mathcal{E}, g})$ module. If M is a torsion object, we define its *length* to be the length of $\mathcal{O}_{\mathcal{E}, g}$ -module $M \otimes_{\mathcal{O}_{\mathcal{E}}, b_g} \mathcal{O}_{\mathcal{E}, g}$.

We consider $W(\overline{R}^{\flat}[\frac{1}{\underline{\omega}}])$ as an $\mathcal{O}_{\mathcal{E}}$ -algebra via mapping u to the Teichmüller lift $[\underline{\omega}]$ of $\underline{\omega}$, and let $\mathcal{O}_{\mathcal{E}}^{\mathrm{ur}}$ be the integral closure of $\mathcal{O}_{\mathcal{E}}$ in $W(\overline{R}^{\flat}[\frac{1}{\underline{\omega}}])$. Let $\widehat{\mathcal{O}}_{\mathcal{E}}^{\mathrm{ur}}$ be its p-adic completion. Since $\mathcal{O}_{\mathcal{E}}$ is normal, we have $\operatorname{Aut}_{\mathcal{O}_{\mathcal{E}}}(\mathcal{O}_{\mathcal{E}}^{\mathrm{ur}}) \cong \mathcal{G}_{E_{R_{\infty}}} \coloneqq \pi_{1}^{\mathrm{\acute{e}t}}(\operatorname{Spec} E_{R_{\infty}})$, and by [GR03, Proposition 5.4.54] and the almost purity theorem, we have $\mathcal{G}_{E_{R_{\infty}}} \cong \mathcal{G}_{\tilde{E}_{R_{\infty}}} \cong \mathcal{G}_{\tilde{E}_{R_{\infty}}}$. This induces $\mathcal{G}_{\tilde{E}_{\infty}}$ -action on $\widehat{\mathcal{O}}_{\mathcal{E}}^{\mathrm{ur}}$. The following is shown in [Kim15].

Lemma 3.2. (cf. [Kim15, Lemma 7.5 and 7.6]) We have $(\widehat{\mathcal{O}}_{\mathcal{E}}^{\mathrm{ur}})^{\mathcal{G}_{\tilde{R}_{\infty}}} = \mathcal{O}_{\mathcal{E}}$ and the same holds modulo p^n . Furthermore, there exists a unique $\mathcal{G}_{\tilde{R}_{\infty}}$ -equivariant ring endomorphism φ on $\widehat{\mathcal{O}}_{\mathcal{E}}^{\mathrm{ur}}$ lifting the p-th power map on $\widehat{\mathcal{O}}_{\mathcal{E}}^{\mathrm{ur}}/(p)$ and extending φ on $\mathcal{O}_{\mathcal{E}}$. The inclusion $\widehat{\mathcal{O}}_{\mathcal{E}}^{\mathrm{ur}} \hookrightarrow W(\overline{R}^{\flat}[\frac{1}{\pi}])$ is φ -equivariant where the latter ring is given the Witt vector Frobenius.

Let $\operatorname{Rep}_{\mathbf{Z}_p}(\mathcal{G}_{\tilde{R}_{\infty}})$ be the category of finite continuous \mathbf{Z}_p -representations of $\mathcal{G}_{\tilde{R}_{\infty}}$, and let $\operatorname{Rep}_{\mathbf{Z}_p}^{\operatorname{free}}(\mathcal{G}_{\tilde{R}_{\infty}})$ and $\operatorname{Rep}_{\mathbf{Z}_p}^{\operatorname{tor}}(\mathcal{G}_{\tilde{R}_{\infty}})$ respectively denote the full subcategories of free and torsion objects. For $M \in \operatorname{Mod}_{\mathcal{O}_{\mathcal{E}}}$ and $T \in \operatorname{Rep}_{\mathbf{Z}_p}(\mathcal{G}_{\tilde{R}_{\infty}})$, we define $T(M) \coloneqq (M \otimes_{\mathcal{O}_{\mathcal{E}}} \widehat{\mathcal{O}}_{\mathcal{E}}^{\operatorname{ur}})^{\varphi=1}$ and $M(T) \coloneqq (T \otimes_{\mathbf{Z}_p} \widehat{\mathcal{O}}_{\mathcal{E}}^{\operatorname{ur}})^{\mathcal{G}_{\tilde{R}_{\infty}}}$. Then we have the following proposition from [Kim15].

Proposition 3.3. ([Kim15, Proposition 7.7]) The constructions $T(\cdot)$ and $M(\cdot)$ give exact quasi-inverse equivalences of \otimes -categories between $\operatorname{Mod}_{\mathcal{O}_{\mathcal{E}}}$ and $\operatorname{Rep}_{\mathbf{Z}_p}(\mathcal{G}_{\tilde{R}_{\infty}})$. Moreover, $T(\cdot)$ and $M(\cdot)$ restrict to rank-preserving equivalences of categories between $\operatorname{Mod}_{\mathcal{O}_{\mathcal{E}}}^{\operatorname{pr}}$ and $\operatorname{Rep}_{\mathbf{Z}_p}^{\operatorname{free}}(\mathcal{G}_{\tilde{R}_{\infty}})$, and length-preserving equivalences between $\operatorname{Mod}_{\mathcal{O}_{\mathcal{E}}}^{\operatorname{tor}}$ and $\operatorname{Rep}_{\mathbf{Z}_p}^{\operatorname{tor}}(\mathcal{G}_{\tilde{R}_{\infty}})$. In both cases, $T(\cdot)$ and $M(\cdot)$ commute with taking duals. For M in $\operatorname{Mod}_{\mathcal{O}_{\mathcal{E}}}^{\operatorname{pr}}$ (resp. in $\operatorname{Mod}_{\mathcal{O}_{\mathcal{E}}}^{\operatorname{tor}}$), we define the contravariant functor $T^{\vee}(\cdot)$ to $\operatorname{Rep}_{\mathbf{Z}_p}(\mathcal{G}_{\tilde{R}_{\infty}})$ by $T^{\vee}(M) \coloneqq \operatorname{Hom}_{\mathcal{O}_{\mathcal{E}},\varphi}(M, \widehat{\mathcal{O}}_{\mathcal{E}}^{\operatorname{ur}})$ (resp. $\operatorname{Hom}_{\mathcal{O}_{\mathcal{E}},\varphi}(M, \widehat{\mathcal{O}}_{\mathcal{E}}^{\operatorname{ur}} \otimes_{\mathbf{Z}_p} \mathbf{Q}_p/\mathbf{Z}_p)$). Note that if we have a short exact sequence of étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -modules $0 \to M_1 \to M_2 \to M \to 0$ where M_1, M_2 are projective over $\mathcal{O}_{\mathcal{E}}$ and M is p-power torsion, then it induces a short exact sequence

$$0 \to T^{\vee}(M_2) \to T^{\vee}(M_1) \to T^{\vee}(M) \to 0$$

in $\operatorname{Rep}_{\mathbf{Z}_p}(\mathcal{G}_{\tilde{R}_{\infty}}).$

Now, if G_R is a *p*-divisible group over R, we write $T_p(G_R) \coloneqq \operatorname{Hom}_{\overline{R}}(\mathbf{Q}_p/\mathbf{Z}_p, G_R \times_R \overline{R})$ to be the associated Tate module, which is a finite free \mathbf{Z}_p -representation of \mathcal{G}_R . By [Kim15, Corollary 8.2], we have a natural $\mathcal{G}_{\widetilde{R}_{\infty}}$ -equivariant isomorphism $T^{\vee}(\mathfrak{M}^*(G_R) \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}}) \cong$ $T_p(G_R)$. If H is a *p*-power order finite locally free group scheme over R, then $H(\overline{R})$ is a finite torsion \mathbf{Z}_p -representation of \mathcal{G}_R . By [Kim15, Proposiiton 9.10], there exists a natural $\mathcal{G}_{\widetilde{R}_{\infty}}$ equivariant isomorphism $T^{\vee}(\mathfrak{M}^*(H) \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}}) \cong H(\overline{R})$, and if $H = \ker(h : G^0 \to G^1)$ for some isogeny h of p-divisible groups over R, then the isomorphism $T^{\vee}(\mathfrak{M}^*(H) \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}}) \cong H(\overline{R})$ is compatible with the isomorphisms $T^{\vee}(\mathfrak{M}^*(G^i) \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}}) \cong T_p(G^i), i = 0, 1$.

Note that any p-divisible group over $R[\frac{1}{p}]$ is étale, so the category of p-divisible groups over $R[\frac{1}{p}]$ is equivalent to the category of finite free \mathbb{Z}_p -representations of \mathcal{G}_R . If we are given a p-divisible group G over $R[\frac{1}{p}]$, then the corresponding Galois representation is given by $T_p(G) = \operatorname{Hom}_{\overline{R}[\frac{1}{p}]}(\mathbb{Q}_p/\mathbb{Z}_p, G \times_{R[\frac{1}{p}]} \overline{R}[\frac{1}{p}])$. By Proposition 3.3, there exists a unique (up to isomorphism) projective étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -module M such that $T^{\vee}(M) \cong T_p(G)$ as $\mathcal{G}_{\overline{R}_{\infty}}$ representations. We remark that if G extends to a p-divisible group G_R over R, then $T_p(G_R) = T_p(G)$ as \mathcal{G}_R -representations.

4 Extending *p*-divisible Groups

We now prove the generalization of Raynaud's theorem for the relative base R when e < p-1, and use an example in [VZ10] on purity of p-divisible groups to show that when the ramification is large, such a generalization does not hold. We first consider the special case when the base ring R_0 as in Section 2 is equal to the formal power series ring over a Cohen ring.

Proposition 4.1. Suppose $R_0 = \mathcal{O}[\![s_1, \ldots, s_r]\!]$ over a Cohen ring \mathcal{O} and e < p-1. Let G be a p-divisible group over $R[\frac{1}{p}]$, and let $n \ge 1$ be an integer. Suppose that $G[p^n]$ extends to a finite flat group scheme $G_{n,R}$ over R. Then for each integer $1 \le m \le n$, the group scheme $G_{n,R}[p^m]$ is finite flat over R.

Furthermore, if H is another finite flat group scheme over R extending $G[p^n]$ and if we identify the associated étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -modules $M_n := \mathfrak{M}^*(G_{R,n}) \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}} = \mathfrak{M}^*(H) \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}}$, then $\mathfrak{M}^*(G_{R,n}) = \mathfrak{M}^*(H)$ as \mathfrak{S} -submodules of M_n with compatible Frobenius. Proof. Let M be the projective étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -module such that $T^{\vee}(M) = T_p(G)$ as $\mathcal{G}_{\tilde{R}_{\infty}}$ representations. Denote $\mathfrak{M}_n = \mathfrak{M}^*(G_{n,R})$. Since $T_p(G[p^n]) \cong T_p(G)/p^nT_p(G)$, we have $M_n = \mathfrak{M}_n \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}} \cong M/p^n M$ as étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -modules.

For proving the first statement, we can make the following choice of Frobenius on R_0 without loss of generality. Let $k' = \mathcal{O}/(p)$. Note that since $R_0/pR_0 \cong k'[s_1, \ldots, s_r]$ has a finite *p*-basis, we have $[k': k'^p] < \infty$, i.e., k' has a finite *p*-basis. Choose a Frobenius $\varphi_{\mathcal{O}}: \mathcal{O} \to \mathcal{O}$ lifting the natural Frobenius on W(k), and equip R_0 with Frobenius given by $\varphi_{\mathcal{O}}$ and $\varphi(s_i) = s_i^p$. Let $b_0: R_0 \to \mathcal{O}$ be the \mathcal{O} -linear map given by $s_i \mapsto 0$, which is φ -equivariant. Let $b_g: R_0 \to R_{0,g} \cong W(k_g)$ be the φ -equivariant map considered in Section 2. Note that $\mathfrak{M}_n \otimes_{\mathfrak{S}, b_g} W(k_g)[\![u]\!]$ and $\mathfrak{M}_n \otimes_{\mathfrak{S}, b_0} \mathcal{O}[\![u]\!]$ with the induced diagonal Frobenius are torsion quasi-Kisin modules of height 1 over $W(k_g)[\![u]\!]$ and $\mathcal{O}[\![u]\!]$ respectively. Denote by I_j the *j*-th Fitting ideal of \mathfrak{M}_n over $\mathfrak{S}_n \coloneqq \mathfrak{S}/p^n \mathfrak{S}$. Let $I_{j,0}$ and $I_{j,g}$ be the *j*-th Fitting ideal of $\mathfrak{M}_n \otimes_{\mathfrak{S}, b_g} W(k_g)[\![u]\!]$ and $\mathfrak{M}_n \otimes_{\mathfrak{S}, b_0} \mathcal{O}[\![u]\!]$ over $W(k_g)[\![u]\!]/(p^n)$ and $\mathcal{O}[\![u]\!]/(p^n)$ respectively. Then $I_{j,0}$ and $I_{j,g}$ are given by the images of I_j under the corresponding maps b_0 and b_g respectively.

Let *h* be the height of *G*. Since e , we deduce from [Liu07, Lemma 4.3.1 and $Corollary 4.2.5] that <math>\mathfrak{M}_n \otimes_{\mathfrak{S}, b_g} W(k_g)[\![u]\!]$ is free of rank *h* over $W(k_g)[\![u]\!]/(p^n)$. Furthermore, if we denote by \mathcal{O}_g the *p*-adic completion of $\varinjlim_{\varphi} \mathcal{O}_{(p)}$ with the induced Frobenius and $\kappa := \varinjlim_{\varphi} \mathcal{O}/(p)$, then by the universal property of *p*-adic Witt vectors as in Section 2, $\mathcal{O}_g \cong$ $W(\kappa)$ compatibly with Frobenius endomorphisms. The map $\mathcal{O}[\![u]\!]/(p^n) \to W(\kappa)[\![u]\!]/(p^n)$ is faithfully flat, and the induced torsion Kisin module $(\mathfrak{M}_n \otimes_{\mathfrak{S}, b_0} \mathcal{O}[\![u]\!]) \otimes_{\mathcal{O}[\![u]\!]} W(\kappa)[\![u]\!]$ is free of rank *h* over $W(\kappa)[\![u]\!]/(p^n)$ by *loc. cit.* Hence, $\mathfrak{M}_n \otimes_{\mathfrak{S}, b_0} \mathcal{O}[\![u]\!]$ is free of rank *h* over $\mathcal{O}[\![u]\!]/(p^n)$. We obtain

$$I_{j,g} = \begin{cases} 0 & \text{if } j < h \\ W(k_g)\llbracket u \rrbracket / (p^n) & \text{if } j \ge h \end{cases}$$
$$I_{j,0} = \begin{cases} 0 & \text{if } j < h \\ \mathcal{O}\llbracket u \rrbracket / (p^n) & \text{if } j \ge h. \end{cases}$$

By Lemma 2.1, the map $\mathfrak{S}_n \to W(k_g)\llbracket u \rrbracket/(p^n)$ induced from b_g is injective. For j < h, the image of I_j under b_g in $W(k_g)\llbracket u \rrbracket/(p^n)$ is equal to $I_{j,g}$ which is 0. Thus, $I_j = 0$ if j < h. Suppose $j \ge h$. If I_j is contained in the maximal ideal (p, s_1, \ldots, s_r, u) of \mathfrak{S}_n , then the image of I_j under b_0 would be contained in the maximal ideal of $\mathcal{O}\llbracket u \rrbracket/(p^n)$. Since $I_{j,0} = \mathcal{O}\llbracket u \rrbracket/(p^n)$, we have $I_j = \mathfrak{S}_n$. Hence, \mathfrak{M}_n is projective and thus free of rank h over \mathfrak{S}_n . By Theorem 2.6, $G_{n,R}[p^m]$ is finite flat over R for each $m \ge 1$.

Now we show the second statement, for any choice of Frobenius on R_0 . Suppose that $G[p^n]$ extends to another finite flat group scheme H over R, and let $\mathfrak{N} := \mathfrak{M}^*(H)$ be the associated torsion Kisin module. Identify $\mathfrak{N} \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}} = \mathfrak{M}_n \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}} = M_n$ as étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -modules, and consider both \mathfrak{N} and \mathfrak{M}_n as \mathfrak{S}_n -submodules of M_n . Since $G_{n,R}[p^m]$ is finite flat over R for each $m \geq 1$ and similarly for H, and since M_n is projective over $\mathcal{O}_{\mathcal{E},n} := \mathcal{O}_{\mathcal{E}}/(p^n)$,

we have by Theorem 2.6 that \mathfrak{M}_n and \mathfrak{N} are projective and thus flat over \mathfrak{S}_n . By [Liu07, Corollary 4.2.5], we have $\mathfrak{M}_n \otimes_{\mathfrak{S}, b_g} W(k_g) \llbracket u \rrbracket = \mathfrak{N} \otimes_{\mathfrak{S}, b_g} W(k_g) \llbracket u \rrbracket$ as $W(k_g) \llbracket u \rrbracket$ -submodules of $M_n \otimes_{\mathfrak{S}} W(k_g) \llbracket u \rrbracket$. Note that by Lemma 2.1, the induced map $\mathcal{O}_{\mathcal{E},n} \to W_n(k_g) \llbracket u \rrbracket [\frac{1}{u}]$ is injective, and $\mathcal{O}_{\mathcal{E},n} \cap W_n(k_g) \llbracket u \rrbracket = \mathfrak{S}_n$ as subrings of $W_n(k_g) \llbracket u \rrbracket [\frac{1}{u}]$. Since \mathfrak{M}_n is flat over \mathfrak{S}_n , we deduce

$$(\mathfrak{M}_n \otimes_{\mathfrak{S}_n} \mathcal{O}_{\mathcal{E},n}) \bigcap (\mathfrak{M}_n \otimes_{\mathfrak{S}_n} W_n(k_g)\llbracket u \rrbracket) = \mathfrak{M}_n \otimes_{\mathfrak{S}_n} (\mathcal{O}_{\mathcal{E},n} \bigcap W_n(k_g)\llbracket u \rrbracket) = \mathfrak{M}_n \otimes_{\mathfrak{S}_n} \mathfrak{S}_n = \mathfrak{M}_n$$

as \mathfrak{S}_n -submodules of $\mathfrak{M}_n \otimes_{\mathfrak{S}_n} W_n(k_g)[\![u]\!][\frac{1}{u}] = M_n \otimes_{\mathfrak{S}} W(k_g)[\![u]\!]$, and similarly

$$(\mathfrak{N}\otimes_{\mathfrak{S}_n}\mathcal{O}_{\mathcal{E},n})\bigcap(\mathfrak{N}\otimes_{\mathfrak{S}_n}W_n(k_g)\llbracket u
rbracket)=\mathfrak{N}$$

as \mathfrak{S}_n -submodules of $\mathfrak{N} \otimes_{\mathfrak{S}_n} W_n(k_g) \llbracket u \rrbracket [\frac{1}{u}] = M_n \otimes_{\mathfrak{S}} W(k_g) \llbracket u \rrbracket$. Since $\mathfrak{M}_n \otimes_{\mathfrak{S}_n} \mathcal{O}_{\mathcal{E},n} = M_n = \mathfrak{N} \otimes_{\mathfrak{S}_n} \mathcal{O}_{\mathcal{E},n}$ and $\mathfrak{M}_n \otimes_{\mathfrak{S}_n} W_n(k_g) \llbracket u \rrbracket = \mathfrak{N} \otimes_{\mathfrak{S}_n} W_n(k_g) \llbracket u \rrbracket$ as submodules of $M_n \otimes_{\mathfrak{S}} W(k_g) \llbracket u \rrbracket$, we obtain $\mathfrak{M}_n = \mathfrak{N}$ with compatible Frobenius.

We remark that in the second statement of above Proposition 4.1, we do not know whether $\mathfrak{M}^*(G_{R,n}) \cong \mathfrak{M}^*(H)$ as Kisin modules, i.e., whether the connections on both sides are compatible.

Now we consider the general base ring R as in Section 2.

Theorem 4.2. Assume e < p-1. Let G be a p-divisible group over $R[\frac{1}{p}]$. Suppose that for each n, $G[p^n]$ extends to a finite locally free group scheme $G_{n,R}$ over R. Then G extends to a p-divisible group over R, and such an extension is unique up to isomorphism.

If $e \ge p$ and $R = \mathcal{O}_K[s]$, then there exists a p-divisible group G over $R[\frac{1}{p}]$ such that $G[p^n]$ extends to a finite locally free group scheme $G_{n,R}$ over R for each n but G does not extend to a p-divisible group over R.

Proof. Suppose e < p-1. Let M be the projective étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -module such that $T^{\vee}(M) = T_p(G)$ as $\mathcal{G}_{\tilde{R}_{\infty}}$ -representations. For each $n \geq 1$, let $\mathfrak{M}_n \coloneqq \mathfrak{M}^*(G_{n,R}) \in \operatorname{Mod}_{\mathfrak{S}}^{\operatorname{tor}}(\varphi, \nabla)$ be the torsion Kisin module of height 1 corresponding to $G_{n,R}$. We have $\mathfrak{M}_n \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}} \cong M_n \coloneqq M/p^n M$ as étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -modules. Let h be the height of G.

For each maximal ideal \mathfrak{q} of R, denote $\mathfrak{q}_0 \coloneqq \mathfrak{q} \cap R_0 \subset R_0$ the corresponding maximal ideal of R_0 , and let $b_{\mathfrak{q}} : R_0 \to \widehat{R}_{0,\mathfrak{q}_0}$ be the natural φ -equivariant map where $\widehat{R}_{0,\mathfrak{q}_0}$ denotes the \mathfrak{q}_0 -adic completion of R_{0,\mathfrak{q}_0} . By the structure theorem for complete regular local rings, $\widehat{R}_{0,\mathfrak{q}_0}$ is isomorphic to a formal power series ring $\widehat{R}_{0,\mathfrak{q}_0} \cong \mathcal{O}[\![s_1,\ldots,s_r]\!]$ over a Cohen ring \mathcal{O} . We have the induced base change $b_{\mathfrak{q}} : R \to \widehat{R}_{\mathfrak{q}} \cong \widehat{R}_{0,\mathfrak{q}_0} \otimes_{W(k)} \mathcal{O}_K$, where $\widehat{R}_{\mathfrak{q}}$ is the \mathfrak{q} -adic completion of $R_{\mathfrak{q}}$. Denote $\mathfrak{S}_{\mathfrak{q}} \coloneqq \widehat{R}_{0,\mathfrak{q}_0}[\![u]\!]$. For the *p*-divisible group $G \times_{R[\frac{1}{p}],b_{\mathfrak{q}}} \widehat{R}_{\mathfrak{q}}[\frac{1}{p}]$ over $\widehat{R}_{\mathfrak{q}}[\frac{1}{p}]$, note that $(G \times_{R[\frac{1}{p}]} \widehat{R}_{\mathfrak{q}}[\frac{1}{p}])[p^n]$ extends to the finite locally free group scheme $G_{n,\mathfrak{q}} \coloneqq G_{n,R} \times_{R,b_{\mathfrak{q}}} \widehat{R}_{\mathfrak{q}}$ over $\widehat{R}_{\mathfrak{q}}$ for each $n \geq 1$. By Proposition 4.1, $G_{n,\mathfrak{q}}[p^m]$ is finite locally free over $\widehat{R}_{\mathfrak{q}}$ for each $m \geq 1$, and thus $\mathfrak{M}^*(G_{n,\mathfrak{q}}) = \mathfrak{M}_n \otimes_{\mathfrak{S},b_{\mathfrak{q}}} \mathfrak{S}_{\mathfrak{q}}$ is projective over $\mathfrak{S}_{\mathfrak{q}}/(p^n)$ by Theorem 2.6. Since this holds for each maximal ideal \mathfrak{q} of R, we deduce that \mathfrak{M}_n is projective over $\mathfrak{S}/(p^n)$ of rank h. In particular, $G_{n,R}[p^m]$ is finite locally free over R for each $m \geq 1$. Note that $G_{n,R}[p^m] \times_R R[\frac{1}{p}] \cong (G_{n,R} \times_R R[\frac{1}{p}])[p^m] \cong G[p^m]$, and $G_{n,R}[p^m]$ has order p^{mh} for each $1 \leq m \leq n$.

By considering the orders of the groups, we see that the natural sequence of finite locally free group schemes

$$0 \to G_{n+1,R}[p] \to G_{n+1,R} \to G_{n+1,R}[p^n] \to 0,$$

where the map $G_{n+1,R} \to G_{n+1,R}[p^n]$ is induced by multiplication by p, is short exact. Furthermore, it follows easily from the construction of the functor $\mathfrak{M}^*(\cdot)$ in [Kim15, Proof of Proposition 9.5] using isogeny of p-divisible groups that $\mathfrak{M}^*(G_{n+1,R}[p]) \cong \mathfrak{M}_{n+1}/p\mathfrak{M}_{n+1}$ as torsion Kisin modules, where $\mathfrak{M}_{n+1}/p\mathfrak{M}_{n+1}$ is equipped with Frobenius and connection induced from \mathfrak{M}_{n+1} . Since $\mathfrak{M}^*(\cdot)$ is exact, we have $\mathfrak{M}^*(G_{n+1,R}[p^n]) \cong p\mathfrak{M}_{n+1}$ where $p\mathfrak{M}_{n+1}$ is equipped with Frobenius and connection induced from \mathfrak{M}_{n+1} . We claim that $\mathfrak{M}_n \cong$ $p\mathfrak{M}_{n+1}$ as torsion quasi-Kisin modules with compatible Frobenius. Identify $p\mathfrak{M}_{n+1} \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}} =$ $M_n = \mathfrak{M}_n \otimes_{\mathfrak{S}} \mathcal{O}_{\mathcal{E}}$ as étale $(\varphi, \mathcal{O}_{\mathcal{E}})$ -modules, and consider both $p\mathfrak{M}_{n+1}$ and \mathfrak{M}_n as \mathfrak{S}_n submodules of M_n . For the natural injective map $\mathfrak{M}_n \hookrightarrow \mathfrak{M}_n + p\mathfrak{M}_{n+1}$ of \mathfrak{S} -modules, consider the induced map $\mathfrak{M}_n \otimes_{\mathfrak{S}, \mathfrak{h}_{\mathfrak{q}}} \mathfrak{S}_{\mathfrak{q}} \to (\mathfrak{M}_n + p\mathfrak{M}_{n+1}) \otimes_{\mathfrak{S}, \mathfrak{h}_{\mathfrak{q}}} \mathfrak{S}_{\mathfrak{q}} = \mathfrak{M}_n \otimes_{\mathfrak{S}, \mathfrak{h}_{\mathfrak{q}}} \mathfrak{S}_{\mathfrak{q}} + p\mathfrak{M}_{n+1} \otimes_{\mathfrak{S}, \mathfrak{h}_{\mathfrak{q}}} \mathfrak{S}_{\mathfrak{q}}$ and by Proposition 4.1, $\mathfrak{M}_n \otimes_{\mathfrak{S}, \mathfrak{h}_{\mathfrak{q}}} \mathfrak{S}_{\mathfrak{q}} = p\mathfrak{M}_{n+1} \otimes_{\mathfrak{S}, \mathfrak{h}_{\mathfrak{q}}} \mathfrak{S}_{\mathfrak{q}}$ as submodules of $M_n \otimes_{\mathfrak{S}, \mathfrak{h}_{\mathfrak{q}}} \mathfrak{S}_{\mathfrak{q}}$. Thus, $\mathfrak{M}_n \otimes_{\mathfrak{S}} \mathfrak{S}_{\mathfrak{q}} \stackrel{\cong}{\to} (\mathfrak{M}_n + p\mathfrak{M}_{n+1}) \otimes_{\mathfrak{S}} \mathfrak{S}_{\mathfrak{q}}$ for each \mathfrak{q} , which implies that injective map $\mathfrak{M}_n \hookrightarrow \mathfrak{M}_n + p\mathfrak{M}_{n+1}$ is also surjective. Thus, $p\mathfrak{M}_{n+1} \subset \mathfrak{M}_n$, and similarly $\mathfrak{M}_n \subset p\mathfrak{M}_{n+1}$. This shows the claim $\mathfrak{M}_n = p\mathfrak{M}_{n+1}$ with compatible Frobenius.

Thus, $\mathfrak{M} := \lim_{n \to \infty} \mathfrak{M}_n$ with the induced Frobenius is a quasi-Kisin module of height 1 over \mathfrak{S} . We now equip $\mathcal{M} := \mathfrak{M} \otimes_{\mathfrak{S},\varphi} R_0$ with a connection. Denote by $\nabla_{\mathfrak{M}_n} : \mathfrak{M}_n \otimes_{\mathfrak{S},\varphi} R_0 \to (\mathfrak{M}_n \otimes_{\mathfrak{S},\varphi} R_0) \otimes_{R_0} \widehat{\Omega}_{R_0}$ the connection for the torsion Kisin module \mathfrak{M}_n , and let $\mathcal{M}_n = \mathcal{M} \otimes_{R_0} R_0/(p^n)$. Consider the multiset

$$S_n = \{ \nabla_{\mathfrak{M}_k} \otimes_{R_0} R_0 / (p^n) \mid k \ge n+1 \}$$

of connections on \mathcal{M}_n . Note that for each $k \geq n+1$, the connection $\nabla_{\mathfrak{M}_k} \otimes_{R_0} R_0/(p^n)$ satisfies the commutative diagram (2.1) in Section 2. Using the result discussed at the end of Section 2, we choose a compatible system of connections ∇_n on \mathcal{M}_n inductively as follows. Identify $\widehat{\Omega}_{R_0} = \bigoplus_{i=1}^d R_0 \cdot d(\log t_i)$. Let $\mathcal{M}^1 \subset \mathcal{M}$ be a direct factor lifting $\operatorname{Fil}^1 \mathcal{M}/p\mathcal{M} \subset \mathcal{M}/p\mathcal{M}$ as in Section 2, and we fix a choice of a finite Zariski covering of $\operatorname{Spf}(R_0, p)$ over which \mathcal{M}^1 and $\mathcal{M}/\mathcal{M}^1$ are free, and fix a basis of \mathcal{M} adapted to \mathcal{M}^1 after passing to the covering. For n = 1, S_1 is finite as a set of connections on \mathcal{M}_1 , and we choose a connection ∇_1 on \mathcal{M}_1 which has infinite multiplicity in the multiset S_1 . When we are given a choice of connection ∇_n on \mathcal{M}_n , the elements in S_{n+1} which lift ∇_n are contained in a finite set of connections, and we choose a connection ∇_{n+1} on \mathcal{M}_{n+1} which has infinite multiplicity in S_{n+1} . Let $\nabla \coloneqq \varprojlim_n \nabla_n$ be the induced connection on \mathcal{M} . Then ∇ is compatible with Frobenius, integrable, and topologically quasi-nilpotent. Hence, (\mathfrak{M}, ∇) is a Kisin module of height 1, and the corresponding *p*-divisible group over *R* extends *G*. The uniqueness of extending *G* up to isomorphism follows from [Tat67, Theorem 4].

On the other hand, assume $e \ge p$ and $R_0 = W(k)[s]$. Let $U = \operatorname{SpecR} \{ \mathfrak{m} \}$ be the open subscheme of SpecR , where \mathfrak{m} is the closed point given by the maximal ideal of R. By [VZ10, Theorem 28], there exists a p-divisible group G_U over U which does not extend to a p-divisible group over R. By [FC90, Chapter V. Lemma 6.2], for each $n \ge 1$, the finite locally free group scheme $G_U[p^n]$ extends uniquely to a finite locally free group scheme over R (if A denotes the Hopf algebra for $G_U[p^n] \times_U R[\frac{1}{p}]$ and B denotes the Hopf algebra for $G_U[p^n] \times_U R[\frac{1}{p}][\frac{1}{s}]$, then identifying $C := A[\frac{1}{s}] = B[\frac{1}{p}]$ as the Hopf algebra for $G_U[p^n] \times_U R[\frac{1}{p}][\frac{1}{s}]$, the unique extension is given by $A \cap B$ with the induced Hopf algebra structure over R). Let $G = G_U \times_U R[\frac{1}{p}]$ be the p-divisible group over $R[\frac{1}{p}]$, and suppose G extends to a p-divisible group G_R over R. Since $G_U \times_U (R[\frac{1}{s}])[\frac{1}{p}] = G_R \times_R (R[\frac{1}{s}])[\frac{1}{p}]$, we have by [Tat67, Theorem 4] that $G_U \times_U R[\frac{1}{s}] = G_R \times_R R[\frac{1}{s}]$. Thus, $G_R \times_R U = G_U$, which contradicts to that G_U does not extend over R. This shows that G cannot be extended to a p-divisible group over R.

5 Barsotti-Tate Deformation Ring for Relative Base of Dimension 2

Throughout this section, we assume that the Krull dimension of R is equal to 2. For a finite \mathbf{Q}_p -representation V of \mathcal{G}_R , we say it is *Barsotti-Tate* if there exists a p-divisible group G_R over R such that $V = T_p(G_R) \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$ as \mathcal{G}_R -representations.

Proposition 5.1. Assume e . Let <math>T be a finite free \mathbb{Z}_p -representation of \mathcal{G}_R such that $T[\frac{1}{p}]$ is Barsotti-Tate. Then there exists a p-divisible group G_R over R such that $T = T_p(G_R)$.

Proof. Since $T[\frac{1}{p}]$ is Barsotti-Tate, there exists a *p*-divisible group G'_R over R such that $T_p(G'_R)[\frac{1}{p}] = T[\frac{1}{p}]$. Denote $T' = T_p(G'_R)$, $G' = G'_R \times_R R[\frac{1}{p}]$, and let G be the *p*-divisible group over $R[\frac{1}{p}]$ corresponding to the representation T.

Since $p^n T \subset T'$ and $p^n T' \subset T$ for some positiver integer n, we have an isogeny $f : G' \to G$. Let $H := \ker(f)$, which is a finite locally free group scheme over $R[\frac{1}{p}]$. Then we have a closed immersion $h : H \hookrightarrow G'[p^m]$ for some positive integer m. Note that $G'[p^m]$ extends to the finite locally free group scheme $G'_R[p^m]$ over R.

Let H_R be the scheme theoretic closure of H over R obtained from h and $G'_R[p^m]$, given similarly as in [Ray74, Section 2.1]. By the construction of the scheme theoretic closure, H_R is a finite group scheme. We claim that it is locally free over R. For that, let \mathfrak{q} be a maximal ideal of R and let $\mathfrak{q}_0 = \mathfrak{q} \cap R_0$, and consider the base change map $b_\mathfrak{q} : R \to \hat{R}_\mathfrak{q}$ as in the proof of Theorem 4.2. Since R has Krull dimension 2, we have $\hat{R}_\mathfrak{q} \cong \mathcal{O}_{\mathfrak{q}_0}[\![s]\!] \otimes_{W(k)} \mathcal{O}_K$ for some Cohen ring $\mathcal{O}_{\mathfrak{q}_0}$ with the maximal ideal (p). Let $U_\mathfrak{q} \subset \operatorname{Spec} \hat{R}_\mathfrak{q}$ be the closed subscheme obtained by deleting the closed point given by \mathfrak{q} . Since $U_\mathfrak{q}$ is a Dedekind scheme, $(H_R \times_R \hat{R}_\mathfrak{q}) \otimes_{\hat{R}_\mathfrak{q}} U_\mathfrak{q}$ is locally free over $U_\mathfrak{q}$ as the corresponding sheaf of Hopf algebras is torsion free. It extends uniquely to a finite locally free group scheme $H_\mathfrak{q}$ over $\hat{R}_\mathfrak{q}$ by [FC90, Chapter V. Lemma 6.2]. On the other hand, since e < p-1, note that $p \notin (\mathfrak{q} \hat{R}_\mathfrak{q})^{p-1}$. Since h is a monomorphism, we deduce from [VZ10, Proposition 15] applied for $\hat{R}_\mathfrak{q}$ that the map $H_\mathfrak{q} \to G'_R[p^m] \times_R \hat{R}_\mathfrak{q}$ of finite flat group schemes is a monomorphism and hence a closed immersion. Thus, $H_R \times_R \hat{R}_\mathfrak{q} = H_\mathfrak{q}$. Since this holds for every maximal ideal \mathfrak{q} of R, H_R is locally free over R.

The map h induces a closed immersion $H_R \hookrightarrow G'_R[p^m]$, and $G_R \coloneqq G'_R/H_R$ is a p-divisible group over R. It is clear from the construction that $T_p(G_R) = T$ as $\mathbf{Z}_p[\mathcal{G}_R]$ -modules. \Box

For a finite free \mathbb{Z}_p -representation T of \mathcal{G}_R , it makes sense by Proposition 5.1 to say that T is *Barsotti-Tate* if there exists a p-divisible group G_R over R such that $T = T_p(G_R)$.

Lemma 5.2. Assume e < p-1. Let H_R be a p-power order finite locally free group scheme over R, and let $T = H_R(\overline{R})$ be the corresponding torsion \mathbb{Z}_p -representation of \mathcal{G}_R . If we have a short exact sequence of $\mathbb{Z}_p[\mathcal{G}_R]$ -modules

$$0 \to T_1 \to T \to T_2 \to 0,$$

then there exist p-power order finite locally free group schemes $H_{1,R}$ and $H_{2,R}$ over R such that $T_i = H_{i,R}(\overline{R})$ for i = 1, 2 as \mathcal{G}_R -representations.

Proof. Let $H := H_R \times_R R[\frac{1}{p}]$. Let H_i for i = 1, 2 be finite locally free group schemes over $R[\frac{1}{p}]$ such that $H_i(\overline{R}[\frac{1}{p}]) = T_i$ as \mathcal{G}_R -representations. The given exact sequence of \mathcal{G}_R -representations induce the short exact sequence

$$0 \to H_1 \to H \to H_2 \to 0$$

of finite locally free group schemes. Let $H_{1,R}$ be the scheme theoretic closure of H_1 over R obtained from the closed embedding $H_1 \hookrightarrow H$ and H_R . By the same argument as in the proof of Proposition 5.1, $H_{1,R}$ is a finite locally free group scheme over R extending H_1 . Furthermore, $H_{2,R} \coloneqq H_R/H_{1,R}$ is a finite locally free group scheme over R extending H_2 (cf. [Ray67]). It is clear that $T_i = H_{i,R}(\overline{R})$ for i = 1, 2.

Corollary 5.3. Assume $e . Let <math>A_1 \hookrightarrow A_2$ be an injective map of finite free \mathbb{Z}_p algebras. Let T_{A_1} be a finite free A_1 -module given the p-adic topology and equipped with a continuous A_1 -linear \mathcal{G}_R -action. Let $T_{A_2} \coloneqq T_{A_1} \otimes_{A_1} A_2$ be the induced representation with the A_2 -linear \mathcal{G}_R -action. Then T_{A_1} is Barsotti-Tate if and only if T_{A_2} is Barsotti-Tate. Proof. Let G_2 be the *p*-divisible group over $R[\frac{1}{p}]$ corresponding to T_{A_2} . Suppose first that T_{A_1} is Barsotti-Tate. Note that there exist finitely many elements $x_1, \ldots, x_m \in A_2$ generating A_2 as an A_1 -module. We have a surjective map of $\mathbf{Z}_p[\mathcal{G}_R]$ -modules $T_{A_1}^m \to T_{A_2}$ sending the canonical basis elements e_i of $T_{A_1}^m$ to x_i . Note that the direct sum representation $T_{A_1}^m$ is Barsotti-Tate. For each integer $n \geq 1$, T_{A_2}/p^n is therefore a quotient of $T_{A_1}^m/p^n$, and by Lemma 5.2, $G_2[p^n]$ extends to a finite locally free group scheme over R. Thus, T_{A_2} is Barsotti-Tate by Theorem 4.2.

Conversely, suppose T_{A_2} is Barsotti-Tate. Let B_3 be the quotient of the induced injection $A_1[\frac{1}{p}] \hookrightarrow A_2[\frac{1}{p}]$ of \mathbb{Q}_p -algebras, and let $T \subset T_{A_2}$ be the kernel of the induced map of representations $T_{A_2} \to T_{A_2} \otimes_{A_2} B_3$. Then for each integer $n \ge 1$, the map $T/p^n \to T_{A_2}/p^n$ is injective. Hence, by Lemma 5.2 and Theorem 4.2 similarly as above, T is Barsotti-Tate. Since $T[\frac{1}{p}] = T_{A_1}[\frac{1}{p}]$, T_{A_1} is Barsotti-Tate by Proposition 5.1.

We now study the geometry of the locus of Barsotti-Tate representations. Denote by C the category of topological local \mathbb{Z}_p -algebras A satisfying the following conditions:

- the natural map $\mathbf{Z}_p \to A/\mathfrak{m}_A$ is surjective, where \mathfrak{m}_A denotes the maximal ideal of A;
- the map from A to the projective limit of its discrete artinian quotients is a topological isomorphism.

Note that the first condition implies that the residue field of A is \mathbf{F}_p . The second condition is equivalent to the condition that A is complete and its topology can be given by a collection of open ideals $\mathfrak{a} \subset A$ for which A/\mathfrak{a} is aritinian. Morphisms in \mathcal{C} are continuous \mathbf{Z}_p -algebra morphisms. The following proposition is shown in [SL97].

Proposition 5.4. (cf. [SL97, Proposition 2.4]) Suppose A is a Noetherian ring in C. Then the topology on A is equal to the \mathfrak{m}_A -adic topology.

For $A \in \mathcal{C}$, we mean by an A-representation of \mathcal{G}_R a finite free A-module equipped with a continuous A-linear \mathcal{G}_R -action. We fix an \mathbf{F}_p -representation V_0 of \mathcal{G}_R which is absolutely irreducible. For $A \in \mathcal{C}$, a deformation of V_0 in A is an isomorphism class of A-representations of V of \mathcal{G}_R satisfying $V \otimes_A \mathbf{F}_p \cong V_0$ as $\mathbf{F}_p[\mathcal{G}_R]$ -modules. We denote by $\mathrm{Def}(V_0, A)$ the set of such deformations. A morphism $f : A \to A'$ in \mathcal{C} induces a map $f_* : \mathrm{Def}(V_0, A) \to \mathrm{Def}(V_0, A')$ sending the class of an A-representation V to the class of $V \otimes_{A,f} A'$. The following theorem on universal deformation ring is proved in [SL97].

Theorem 5.5. (cf. [SL97, Theorem 2.3]) There exists a universal deformation ring $A_{univ} \in C$ and a deformation $V_{univ} \in Def(V_0, A_{univ})$ such that for all $A \in C$, we have a bijection

$$\operatorname{Hom}_{\mathcal{C}}(A_{\operatorname{univ}}, A) \xrightarrow{\cong} \operatorname{Def}(V_0, A) \tag{5.1}$$

given by $f \mapsto f_*(V_{\text{univ}})$.

We remark that A_{univ} is Noetherian if and only if $\dim_{\mathbf{F}_p} H^1(\mathcal{G}_R, \operatorname{End}_{\mathbf{F}_p}(V_0))$ is finite (cf. *loc. cit.*). Thus, A_{univ} is not Noetherian in general, even when $R = \mathcal{O}_K$ if K/\mathbf{Q}_p is infinite.

Let \mathcal{C}^0 be the full subcategory of \mathcal{C} consisting of artinian rings. Abusing the notation, we write $V \in \text{Def}(V_0, A)$ for an A-representation V to mean that $V \otimes_A \mathbf{F}_p \cong V_0$. For $A \in \mathcal{C}^0$ and a representation $V_A \in \text{Def}(V_0, A)$, we say V_A is torsion Barsotti-Tate if there exists a p-power order finite locally free group scheme H_R over R such that $V_A \cong H_R(\overline{R})$ as $\mathbf{Z}_p[\mathcal{G}_R]$ modules. We remark that if R is local, then every p-power order finite locally free group scheme over R embeds into a p-divisible group over R, and thus V_A is torsion Barsotti-Tate if and only if it is a quotient of a finite free \mathbf{Z}_p -representation which is Barsotti-Tate. For $A \in \mathcal{C}$, denote by $\text{BT}(V_0, A)$ the subset of $\text{Def}(V_0, A)$ consisting of the isomorphism classes of representations V_A such that $V_A \otimes_A A/\mathfrak{a}$ is torsion Barsotti-Tate for all open ideals $\mathfrak{a} \subseteq A$.

Proposition 5.6. Assume e . For any*C* $-morphism <math>f : A \to A'$, we have $f_*(BT(V_0, A)) \subset BT(V_0, A')$. Furthermore, there exists a closed ideal \mathfrak{a}_{BT} of the universal deformation ring A_{univ} such that the map (5.1) induces a bijection $Hom_{\mathcal{C}}(A_{univ}/\mathfrak{a}_{BT}, A) \xrightarrow{\cong} BT(V_0, A)$.

Proof. We check the conditions in [SL97, Section 6]. Let $f : A \hookrightarrow A'$ be an injective morphism of artinian rings in \mathcal{C} , and let $V_A \in \text{Def}(V_0, A)$ be a representation. We first claim that $V_A \in \text{BT}(V_0, A)$ if and only if $V_{A'} \coloneqq V_A \otimes_{A,f} A' \in \text{BT}(V_0, A')$. Suppose that $V_A \in \text{BT}(V_0, A)$. Note that A' is a finite A-module. Let x_1, \ldots, x_m generate A' over A. Then we have a surjective map of $\mathbb{Z}_p[\mathcal{G}_R]$ -modules $V_A^m \twoheadrightarrow V_{A'}$ sending the canonical basis elements e_i of V_A^m for $i = 1, \ldots, m$ to x_i . Since V_A^m is the direct sum of m-copies of V_A , it is torsion Barsotti-Tate. Thus, by Lemma 5.2, $V_{A'} \in \text{BT}(V_0, A')$. Conversely, suppose $V_{A'} \in \text{BT}(V_0, A')$. Since we have an injective map of $\mathbb{Z}_p[\mathcal{G}_R]$ -modules $V_A \hookrightarrow V_{A'}$, we get $V_A \in \text{BT}(V_0, A)$ by Lemma 5.2.

Now, for $A \in \mathcal{C}$ and a representation $V_A \in \text{Def}(V_0, A)$, suppose $\mathfrak{a}_1, \mathfrak{a}_2 \subsetneq A$ are open ideals such that $V_A \otimes_A (A/\mathfrak{a}_i) \in \text{BT}(V_0, A/\mathfrak{a}_i)$ for i = 1, 2. The natural map $A/(\mathfrak{a}_1 \cap \mathfrak{a}_2) \rightarrow A/\mathfrak{a}_1 \oplus A/\mathfrak{a}_2$ is injective, and it induces the injective map of $\mathbf{Z}_p[\mathcal{G}_R]$ -modules

$$V_A \otimes_A A/(\mathfrak{a}_1 \cap \mathfrak{a}_2) \hookrightarrow (V_A \otimes_A A/\mathfrak{a}_1) \oplus (V_A \otimes_A A/\mathfrak{a}_2).$$

Since the direct sum $(V_A \otimes_A A/\mathfrak{a}_1) \oplus (V_A \otimes_A A/\mathfrak{a}_2)$ is torsion Barsotti-Tate, we see from Lemma 5.2 that $V_A \otimes_A A/(\mathfrak{a}_1 \cap \mathfrak{a}_2) \in BT(V_0, A/(\mathfrak{a}_1 \cap \mathfrak{a}_2))$.

The assertion then follows from [SL97, Proposition 6.1].

We now show that when e , the locus of Barsotti-Tate representations cuts out $a closed subscheme of the universal deformation scheme <math>\text{Spec}(A_{\text{univ}})$:

Theorem 5.7. Suppose e < p-1 (and recall that the Krull dimension of R is assumed to be equal to 2). Let A be a finite flat \mathbb{Z}_p -algebra equipped with the p-adic topology, and let $f : A_{univ} \to A$ be a continuous \mathbb{Z}_p -algebra homomorphism. Then the induced representation $V_{univ} \otimes_{A_{univ},f} A[\frac{1}{p}]$ of \mathcal{G}_R is Barsotti-Tate if and only if f factors through the quotient $A_{univ}/\mathfrak{a}_{BT}$.

Proof. Let $A_1 := \operatorname{im}(f) \subset A$, and let $T_{A_1} = V_{\operatorname{univ}} \otimes_{A_{\operatorname{univ}},f} A_1$. Then $T_{A_1} \otimes_{A_1} A = V_{\operatorname{univ}} \otimes_{A_{\operatorname{univ}},f} A$, and by Proposition 5.1 and Corollary 5.3, it suffices to show that T_{A_1} is Barsotti-Tate if and only if f factors through $A_{\operatorname{univ}}/\mathfrak{a}_{\operatorname{BT}}$. Note that $A_1 \in \mathcal{C}$, and since A_1 is finite flat over \mathbb{Z}_p , the topology on A_1 is equivalent to the p-adic topology and $f : A_{\operatorname{univ}} \to A_1$ is continuous by Proposition 5.4. Suppose first that T_{A_1} is Barsotti-Tate, so that there exists a p-divisible group G_R over R such that $T_p(G_R) \cong T_{A_1}$. For each integer $n \geq 1$, we then have $(V_{\operatorname{univ}} \otimes_{A_{\operatorname{univ}},f} A_1) \otimes_{A_1} A_1/(p^n) = T_{A_1}/p^n \cong (G_R[p^n])(\overline{R})$, so $V_{\operatorname{univ}} \otimes_{A_{\operatorname{univ}},f} A_1/(p^n) \in \operatorname{BT}(V_0, A_1/(p^n))$. Hence, by Proposition 5.6, f factors through $A_{\operatorname{univ}}/\mathfrak{a}_{\operatorname{BT}}$.

Conversely, suppose f factors through $A_{\text{univ}}/\mathfrak{a}_{\text{BT}}$. Let G be the p-divisible group over $R[\frac{1}{p}]$ corresponding to T_{A_1} . For each $n \ge 1$, T_{A_1}/p^n is torsion Barsotti-Tate by Proposition 5.6, so $G[p^n]$ extends to a finite locally free group scheme over R. Then by Theorem 4.2, T_{A_1} is Barsotti-Tate.

On the other hand, if the ramification is large, we can deduce that the locus of Barsotti-Tate representations is not p-adically closed in general:

Proposition 5.8. Let $R = \mathcal{O}_K[\![s]\!]$ and suppose $e \ge p$. There exists a \mathbb{Z}_p -representation T of \mathcal{G}_R such that T/p^nT is torsion Barsotti-Tate for each $n \ge 1$ but T is not Barsotti-Tate.

Proof. By Theorem 4.2, there exists a p-divisible group G over $R[\frac{1}{p}]$ such that $G[p^n]$ extends to a finite locally free group scheme $G_{n,R}$ over R but G does not extend to a p-divisible group over R. Let T be the representation corresponding to G. Then for each n, we have $T/p^nT \cong G_{n,R}(\overline{R})$ so it is torsion Barsotti-Tate. However, T is not Barsotti-Tate since Gdoes not extend over R.

References

- [Bri08] Olivier Brinon, Représentations p-adiques cristallines et de de rham dans le cas relatif, Mém. Soc. Math. Fr. **112** (2008).
- [DJ95] Aise Johan De Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. Inst. Hautes Études Sci. 82 (1995), 5–96.
- [FC90] Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties (Berlin), Ergeb. Math. Grenzgeb., vol. 22, Springer-Verlag, 1990.
- [GR03] Ofer Gabber and Lorenzo Ramero, *Almost ring theory*, Lecture Notes in Math., vol. 1800, Springer-Verlag, 2003.
- [Kim15] Wansu Kim, The relative Breuil-Kisin classification of p-divisible groups and finite flat group schemes, Int. Math. Res. Not. IMRN (2015), 8152–8232.

- [Kis06] Mark Kisin, Crystalline representations and F-crystals, Algebraic geometry and number theory (Boston), Progr. Math., vol. 253, Birkhäuser, 2006, pp. 459–496.
- [Liu07] Tong Liu, Torsion p-adic Galois representations and a conjecture of Fontaine, Ann. Sci. Éc. Norm. Supér. 40 (2007), 633–674.
- [Ray67] Michel Raynaud, Passage au quotient par une relation déquivalence plate, Proceedings of a conference on local fields (Berlin, Heidelberg), Springer, 1967, pp. 78–85.
- [Ray74] _____, Schémas en groupes de type (p, \ldots, p) , Bull. Soc. Math. France 102 (1974), 241–280.
- [Sch12] Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313.
- [SL97] Bart De Smit and Hendrick W. Lenstra, Explicit construction of universal deformation rings, Modular forms and Fermat's last theorem (New York), Springer-Verlag, 1997, pp. 313–326.
- [Tat67] John Tate, *p-divisible groups*, Proceedings of a conference on local fields (Berlin, Heidelberg), Springer, 1967, pp. 158–183.
- [Vas13] Adrian Vasiu, A motivic conjecture of Milne, J. Reine Angew. Math. 685 (2013), 181–247.
- [VZ10] Adrian Vasiu and Thomas Zink, Purity results for p-divisible groups and abelian schemes over regular bases of mixed characteristic, Doc. Math. 15 (2010), 571–599.