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Extending p-divisible groups and Barsotti-Tate

deformation ring in the relative case

Yong Suk Moon

Abstract

Let k be a perfect field of characteristic p > 2, and let K be a finite totally ramified
extension of W (k)[1p ] of ramification degree e. We consider an unramified base ring
R0 over W (k) satisfying certain conditions, and let R = R0 ⊗W (k) OK . Examples of

such R include R = OK [[s1, . . . , sd]] and R = OK〈t
±1
1 , . . . , t±1

d 〉. We show that the
generalization of Raynaud’s theorem on extending p-divisible groups holds over the
base ring R when e < p − 1, whereas it does not hold when R = OK [[s]] with e ≥ p.
As an application, we prove that if R has Krull dimension 2 and e < p− 1, then the
locus of Barsotti-Tate representations of Gal(R[1p ]/R[1p ]) cuts out a closed subscheme
of the universal deformation scheme. If R = OK [[s]] with e ≥ p, we prove that such a
locus is not p-adically closed.
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1 Introduction

Let k be a perfect field of characteristic p > 2, and W (k) be its ring of Witt vectors. Let
K be a finite totally ramified extension of W (k)[1

p
] of ramification degree e, and let OK be

its ring of integers. We consider an unramified base ring R0 over W (k) satisfying certain
conditions (cf. Section 2), and let R = R0⊗W (k)OK . Important examples of such R include
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the formal power series ring R = OK [[s1, . . . , sd]], and R = OK〈t
±1
1 , . . . , t±1

d 〉 which is the
p-adic completion of OK [t

±1
1 , . . . , t±1

d ].
When R = OK , Raynaud showed the following theorem on extending p-divisible groups.

Theorem 1.1. ([Ray74, Proposition 2.3.1]) Let G be a p-divisible group over K. Suppose
that for each n ≥ 1, G[pn] extends to a finite flat group scheme over OK. Then G extends
to a p-divisible group over OK , and such an extension is unique up to isomorphism.

In this paper, we prove that the generalization of Raynaud’s theorem holds over the
relative base R when the ramification is small (e < p − 1). On the other hand, using an
example from [VZ10] on purity of p-divisible groups, we show that such a statement does
not hold when the ramification is large.

Theorem 1.2. Assume e < p − 1. Let G be a p-divisible group over R[1
p
]. Suppose that

for each n ≥ 1, G[pn] extends to a finite locally free group scheme over R. Then G extends
to a p-divisible group over R, and such an extension is unique up to isomorphism.

If e ≥ p and R = OK [[s]], there exists a p-divisible group G over R[1
p
] such that G[pn]

extends to a finite locally free group scheme over R for each n but G does not extend to a
p-divisible group over R.

As an application, we study the geometry of the locus of representations arising from
p-divisible groups over R when R has Krull dimension 2. Let GR be the étale fundamental
group of SpecR[1

p
]. For a fixed absolutely irreducible Fp-representation V0 of GR, there

exists a universal deformation ring which parametrizes the deformations of V0 ([SL97]).
We say that a finite continuous Qp-representation V of GR is Barsotti-Tate if it arises
from a p-divisible group over R, i.e., if there exists a p-divisible group GR over R such
that V ∼= Tp(GR) ⊗Zp

Qp where Tp(GR) denotes the Tate module of GR. For a torsion
Zp-representation T of GR, we say it is torsion Barsotti-Tate if it is a quotient of a finite
free Zp-representation T1 such that T1[

1
p
] is Barsotti-Tate. By using Theorem 1.2, we prove:

Theorem 1.3. Suppose R has Krull dimension 2 and e < p−1. Then the locus of Barsotti-
Tate representations of GR cuts out a closed subscheme of the universal deformation scheme.

If R = OK [[s]] and e ≥ p, then the locus of Barsotti-Tate representations is not p-adically
closed in the following sense: there exists a finite free Zp-representation T of GR such that
T/pnT is torsion Barsotti-Tate for each integer n ≥ 1 but T [1

p
] is not Barsotti-Tate.

We give a more precise statement of Theorem 1.3 in Section 5.
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2 Relative Breuil-Kisin Classification

We first explain the classification of p-divisible groups and finite locally free group schemes
over SpecR via certain Kisin modules, which is proved in [Kis06] when R = OK and
generalized in [Kim15] for the relative case.

We will work over the relative base rings as considered in [Bri08] with some additional
mild assumptions. Denote by W (k)〈t±1

1 , . . . , t±1
d 〉 the p-adic completion of the polynomial

ring W (k)[t±1
1 , . . . , t±1

d ]. Let R0 be a ring obtained from W (k)〈t±1
1 , . . . , t±1

d 〉 by iterations of
the following operations:

• p-adic completion of an étale extension;

• p-adic completion of a localization;

• completion with respect to an ideal containing p.

We assume that either W (k)〈t±1
1 , . . . , t±1

d 〉 → R0 has geometrically regular fibers or R0 has
Krull dimension less than 2, and that k → R0/pR0 is geometrically integral and R0 is an
integral domain. Furthermore, we suppose that R0 is formally smooth formally finite type
over some Cohen ring (cf. [Kim15, Section 2.2.2]). In particular, R0 is a regular ring.

R0/pR0 has a finite p-basis given by {t1, . . . , td} in the sense of [DJ95, Definition 1.1.1].

Let Ω̂R0
= lim
←−n

Ω(R0/pn)/W (k) be the module of p-adically continuous Kähler differentials.

We have Ω̂R0

∼=
⊕d

i=1R0 ·d(log ti) by [Bri08, Proposition 2.0.2]. The Witt vector Frobenius
on W (k) extends (not necessarily uniquely) to R0. We fix such a Frobenius endomorphism
ϕ : R0 → R0, and let R = R0 ⊗W (k) OK be our base ring. Examples of such R include
R = OK〈t

±1
1 , . . . , t±1

d 〉 and R = OK [[s1, . . . , sd]] (for example, via si = 1 + ti).
It will be useful later to consider the following natural maps between base rings. Let

R0,g be the p-adic completion of lim
−→
ϕ

(R0)(p) with the induced Frobenius, and denote by kg

the perfect closure lim
−→
ϕ

Frac(R0/pR0) of Frac(R0/pR0). By the universal property of p-adic

Witt vectors, we have a unique continuous (with respect to the p-adic topology) morphism
h : W (kg) → R0,g commuting with their projections to kg. By unicity, h is compatible
with Frobenius endomorphisms. Since h modulo p is an isomorphism and R0,g is p-torsion
free and p-adically complete and separated, h is an isomorphism. We will make use of this
isomorphism later when we apply results from classical p-adic Hodge theory over p-adic
fields, since such results will hold for the base ring R0,g ⊗W (k) OK . Let bg : R0 → R0,g

be the natural morphism compatible with Frobenius. This induces OK-linearly the base
change map bg : R→ R0,g ⊗W (k) OK .

Lemma 2.1. The map bg : R0 → R0,g is injective. Furthermore, for each integer n ≥ 1,
the map R0/(p

n)→ R0,g/(p
n) induced from bg is injective.
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Proof. Since R0/(p) is an integral domain, the map R0/(p) → R0,g/(p) = kg is injective.
Thus, bg : R0 → R0,g is injective as R0 is p-adically separated and R0,g is p-torsion free. It
also follows that R0/(p

n)→ R0,g/(p
n) is injective for each n ≥ 1.

Let S = R0[[u]] equipped with the Frobenius extending that on R0, given by ϕ : u 7→ up.
Denote by E(u) the Eisenstein polynomial for the extension K over W (k)[1

p
].

Definition 2.2. A quasi-Kisin module of height 1 is a pair (M, ϕM) where

• M is a finitely generated projective S-module;

• ϕM : M → M is a ϕ-semilinear map such that coker(1 ⊗ ϕM : S ⊗ϕ,S M → M) is
annihilated by E(u).

Note that for a quasi-Kisin module M of height 1, 1 ⊗ ϕM : ϕ∗M := S ⊗ϕ,S M → M

is injective since M is finite projective over S and coker(1 ⊗ ϕM) is killed by E(u). Let
ModS(ϕ) denote the category of quasi-Kisin modules of height 1 whose morphisms are
S-module maps compatible with Frobenius.

Consider the composite S ։ S/uS = R0
ϕ
→ R0. Let ModS(ϕ,∇) denote the category

whose objects are tuples (M, ϕM,∇M) where (M, ϕM) is a quasi-Kisin module of height 1,

M := M⊗S,ϕR0, and ∇M :M→M⊗R0
Ω̂R0

is a topologically quasi-nilpotent integrable
connection commuting with ϕM := ϕM ⊗ ϕR0

. (Here, ∇M being topologically quasi-
nilpotent means that the induced connection onM/pM is nilpotent). The morphisms in
ModS(ϕ,∇) are S-module maps compatible with Frobenius and connection. The objects
in ModS(ϕ,∇) are called Kisin modules of height 1. The following theorem is proved in
[?].

Theorem 2.3. (cf. [Kim15, Corollary 6.7 and Remark 6.9]) There exists an exact anti-
equivalence of categories

M∗ : {p-divisible groups over R} → ModS(ϕ,∇).

Let R′
0 be another unramifed ring satisfying the conditions as above equipped with a Frobe-

nius, and let b : R0 → R′
0 be a ϕ-equivariant map. Then the formation of M∗ commutes

with the base change R→ R′ := R′
0 ⊗W (k) OK induced OK-linearly from b.

The classification of p-power order finite locally free group schemes over R can be
obtained by considering torsion Kisin modules.

Definition 2.4. A torsion quasi-Kisin module of height 1 is a pair (M, ϕM) where

• M is a finitely presented S-module killed by a power of p, and of S-projective di-
mension 1;
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• ϕM : M→M is a ϕ-semilinear endomorphism such that coker(1⊗ ϕM : ϕ∗M→M)
is killed by E(u).

Let Modtor
S (ϕ) denote the category of torsion quasi-Kisin modules of height 1 whose

morphisms are S-linear maps compatible with ϕ. Let Modtor
S (ϕ,∇) denote the category

whose objects are tuples (M, ϕM,∇M) where (M, ϕM) is a torsion quasi-Kisin module of

height 1,M := M⊗S,ϕ R0, and ∇M :M→M⊗R0
Ω̂R0

is a topologically quasi-nilpotent
integrable connection commuting with ϕM := ϕM ⊗ ϕR0

. The morphisms in Modtor
S (ϕ,∇)

areS-module maps compatible with ϕ and∇. The objects are called torsion Kisin modules
of height 1.

Lemma 2.5. Let M be a torsion quasi-Kisin module of height 1. Then 1⊗ϕM : ϕ∗M→M

is injective.

Proof. Let Sg := R0,g[[u]] equipped with the Frobenius given by ϕ(u) = up. By the local
criterion for flatness, bg : R0 → R0,g is flat since R0/(p) → R0,g/(p) = kg is flat and R0,g

is p-torsion free, and the map S → Sg is flat. Note that Mg := M ⊗S Sg equipped with
ϕMg

:= ϕM ⊗ ϕSg
is a torsion Kisin module of height 1 over Sg.

We first claim that the natural map b : M → Mg is injective. Since M has projective
dimension ≤ 1, there exists a short exact sequence 0 → M1 → M2 → M → 0 where M1

and M2 are finite projective S-modules. M1 and M2 have the same rank since M is killed
by a power of p. We have a commutative diagram

0 −−−→ M1 −−−→ M2 −−−→ M −−−→ 0y
y

yb

0 −−−→ M1 ⊗S Sg −−−→ M2 ⊗S Sg −−−→ Mg −−−→ 0

whose rows are exact. Since M1 and M2 are projective over S, the left and middle vertical
maps are injective. Furthermore, for i = 1, 2, we have coker(Mi → Mi ⊗S Sg) ∼= Mi ⊗S

(Sg/S) as S-modules. On the other hand, all elements in the kernel of the induced map
M1 ⊗S (Sg/S) → M2 ⊗S (Sg/S) are killed by some power of p since M1[

1
p
] ∼= M2[

1
p
].

And Sg/S is p-torsion free since R0/(p)→ R0,g/(p) = kg is injective, so M1 ⊗S (Sg/S) is
p-torsion free asM1 is projective over S. Hence, the map M1⊗S (Sg/S)→M2⊗S (Sg/S)
is injective. By the snake Lemma, we deduce that b : M→Mg is injective.

Now, consider the following commutative diagram:

S⊗ϕ,S M
1⊗ϕM−−−→ My

yb

Sg ⊗ϕ,Sg
Mg

1⊗ϕMg

−−−−→ Mg

Since ϕ : S→ S is flat by [Bri08, Lemma 7.1.8], S⊗ϕ,S M has projective dimension 1 as
a S-module and is killed by a power of p. By the same argument as above, the natural
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map S⊗ϕ,S M→ Sg ⊗S (S⊗ϕ,S M) ∼= Sg ⊗ϕ,Sg
Mg is injective, which is the left vertical

map. The bottom map is injective by [Liu07, Proposition 2.3.2] since R0,g
∼= W (kg). Thus,

the top map is injective.

Denote by (Mod FI)S(ϕ,∇) the full subcategory of Modtor
S (ϕ,∇) consisting of objects

M such that M ∼=
⊕

i Mi as S-modules where Mi’s are projective over S/(pni) for some
positive integers ni. The following theorem is shown in [Kim15].

Theorem 2.6. (cf. [Kim15, Proposition 9.5 and Theorem 9.8]) There exists an exact fully
faithful functor M∗ from the category of p-power order finite locally free group schemes over
R to Modtor

S (ϕ,∇) with the following properties:

• Let H be a p-power order finite locally free group scheme over R. If H = ker(h :
G0 → G1) for an isogeny h of p-divisible groups over R, then there exists a natural
isomorphism M∗(H) ∼= coker(M∗(h)) of torsion Kisin modules of height 1;

• Let R′
0 be another unramified ring satisfying the conditions as above equipped with a

Frobenius, and let b : R0 → R′
0 be a ϕ-equivariant map. Then the formation of M∗

commutes with the base change R→ R′ := R′
0⊗W (k)OK induced OK-linearly from b.

Moreover, the functor M∗ induces an anti-equivalence from the category of p-power order
finite locally free group schemes H over R such that H [pn] is locally free over R for all
n ≥ 1 to (Mod FI)S(ϕ,∇).

We end this section by recalling some necessary results on connections explained in
[Kim15, Section 10.2], which is based on [Vas13]. Let (M, ϕM) be a quasi-Kisin module
of height 1, and let M = M ⊗S,ϕ R0 equipped with the induced Frobenius ϕM ⊗ ϕR0

.
From [Kim15, Eq. (6.1), (6.2) and Remark 3.13], we have the R0-submodule Fil1M⊂M
associated with M such that pM ⊂ Fil1M, M/Fil1M is projective over R0/(p), and
(1⊗ ϕ)(ϕ∗Fil1M) = pM as R0-modules (cf. [Kim15, Definition 3.4 and 3.6] for the frame
(R0, pR0, R0/(p), ϕR0

,
ϕR0

p
)). Fix an R0-direct factor M1 ⊂ M which lifts Fil1M/pM ⊂

M/pM, and let M̃ := (M + 1
p
M1) ⊗R0,ϕ R0 ⊂ M⊗R0,ϕ R0[

1
p
]. For each integer n ≥ 1,

suppose ∇n : R0/(p
n) ⊗R0

M→ (R0/(p
n) ⊗R0

M) ⊗R0
Ω̂R0

is a connection such that the
following diagram is commutative:

R0/(p
n)⊗R0

M̃
ϕ∗(∇n)
−−−−→ R0/(p

n)⊗R0
M̃ ⊗R0

Ω̂R0

1⊗ϕ

y
y(1⊗ϕ)⊗id

Ω̂R0

R0/(p
n)⊗R0

M
∇n−−−→ R0/(p

n)⊗R0
M⊗R0

Ω̂R0

(2.1)

Here, ϕ∗(∇n) is given by choosing an arbitrary lift of ∇n on R0/(p
n+1)⊗R0

M, and ϕ∗(∇n)
does not depend on the choice of such a lift (cf. [Vas13, Section 3.1.1 Equation (9)]).

6



Identify Ω̂R0
=

⊕d
i=1R0 · d(log ti). By passing to a finite Zariski covering of Spf(R0, p), we

may assume thatM1 andM/M1 are free over R0. Fix such a choice of the covering, and fix
a R0-basis ofM adapted to the direct factorM1. By [Vas13, Section 3.2 Basic Theorem]
and its proof, the set of connections ∇1 on R0/(p) ⊗R0

M satisfying the commutative
diagram (2.1) for n = 1 corresponds to the solutions over R0/(p) of a certain Artin-Schreier
system of equations over R0/(p). In particular, it follows directly that we have finitely
many such ∇1 (cf. [Vas13, Theorem 2.4.1 (b)]). Furthermore, given a connection ∇n on
R0/(p

n)⊗R0
M, the set of connections ∇n+1 on R0/(p

n+1)⊗R0
M which lift ∇n and satisfy

the commutative diagram (2.1) for n+1 corresponds the solutions over R0/(p) of a certain
Artin-Schreier system of equations over R0/(p) by loc. cit., and we have finitely many such
∇n+1.

3 Étale ϕ-modules and Galois Representations

We recall the results in [Kim15, Section 7] on associating Galois representations with étale
ϕ-modules in the relative setting. The underlying geometry is based on perfectoid spaces
(cf. [Sch12]). We will use the results to translate our question on p-divisible groups into a
question on Kisin modules and étale ϕ-modules.

Let R denote the union of finite R-subalgebras R′ of a fixed separable closure of Frac(R)
such that R′[1

p
] is étale over R[1

p
]. Then SpecR[1

p
] is a pro-universal covering of SpecR[1

p
],

and R is the integral closure of R in R[1
p
]. Let GR := Gal(R[1

p
]/R[1

p
]) = πét

1 (SpecR[1
p
], η)

with a choice of a geometric point η. Choose a uniformizer ̟ ∈ OK . For integers n ≥ 0,
we choose compatibly ̟n ∈ R such that ̟0 = ̟ and ̟p

n+1 = ̟n, and let L be the p-

adic completion of
⋃

n≥0K(̟n). Then L is a perfectoid field and (R̂[1
p
], R̂) is a perfectoid

affinoid L-algebra, where R̂ denotes the p-adic completion of R.
Let L♭ denote the tilt of L as defined in [Sch12], and let ̟ := (̟n) ∈ L♭. Let

(R
♭
[ 1
̟
], R

♭
) be the tilt of (R̂[1

p
], R̂). Let E+

R∞
= S/pS, and let Ẽ+

R∞
be the u-adic com-

pletion of lim
−→ϕ

E+
R∞

. Let ER∞
= E+

R∞
[ 1
u
] and ẼR∞

= Ẽ+
R∞

[ 1
u
]. By [Sch12, Proposition

5.9], (ẼR∞
, Ẽ+

R∞
) is a perfectoid affinoid L♭-algebra, and we have the natural injection

(ẼR∞
, Ẽ+

R∞
) →֒ (R

♭
[ 1
̟
], R

♭
) given by u 7→ ̟. Let (R̃∞[1

p
], R̃∞) be a perfectoid affinoid

L-algebra whose tilt is (ẼR∞
, Ẽ+

R∞
), and let GR̃∞

= πét
1 (SpecR̃∞[1

p
], η). Then we have a

continuous map of Galois groups GR̃∞
→ GR, which is a closed embedding by [GR03, Propo-

sition 5.4.54]. By the almost purity theorem in [Sch12], R
♭
[ 1
̟
] can be canonically identified

with the ̟-adic completion of the affine ring of a pro-universal covering of SpecẼR∞
, and

letting GẼR∞

be the Galois group corresponding to the pro-universal covering, there exists
a canonical isomorphism GẼR∞

∼= GR̃∞
.

Now, let OE be the p-adic completion of S[ 1
u
]. Note that ϕ on S extends naturally to
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OE .

Definition 3.1. An étale (ϕ,OE)-module is a pair (M,ϕM) where M is a finitely generated
OE -module and ϕM : M → M is a ϕ-semilinear endomorphism such that 1⊗ϕM : ϕ∗M →
M is an isomorphism. We say that an étale (ϕ,OE)-module is projective (resp. torsion) if
the underlying OE -module M is projective (resp. p-power torsion).

Let ModOE
denote the category of étale (ϕ,OE)-modules whose morphisms are OE -linear

maps compatible with Frobenius. Let Modpr
OE

and Modtor
OE

respectively denote the full
subcategories of projective and torsion objects.

Note that we have a natural notion of a subquotient, direct sum, and tensor product
for étale (ϕ,OE)-modules, and duality is defined for projective and torsion objects. If
(M, ϕM) is a quasi-Kisin module (resp. torsion quasi-Kisin module) of height 1, then
(M⊗S OE , ϕM ⊗ ϕOE

) is a projective (resp. torsion) étale (ϕ,OE)-module since 1 ⊗ ϕM is
injective (by Lemma 2.5 for torsion quasi-Kisin modules) and its cokernel is killed by E(u)
which is a unit in OE . If we denote by OE,g the corresponding ring for R0,g, then for any
étale (ϕ,OE)-module M , M ⊗OE ,bg OE,g with the induced Frobenius is an étale (ϕ,OE,g)-
module. If M is a torsion object, we define its length to be the length of OE,g-module
M ⊗OE ,bg OE,g.

We consider W (R
♭
[ 1
̟
]) as an OE -algebra via mapping u to the Teichmüller lift [̟] of

̟, and let Our
E be the integral closure of OE in W (R

♭
[ 1
̟
]). Let Ôur

E be its p-adic comple-

tion. Since OE is normal, we have AutOE
(Our

E ) ∼= GER∞
:= πét

1 (SpecER∞
), and by [GR03,

Proposition 5.4.54] and the almost purity theorem, we have GER∞

∼= GẼR∞

∼= GR̃∞
. This

induces GR̃∞
-action on Ôur

E . The following is shown in [Kim15].

Lemma 3.2. (cf. [Kim15, Lemma 7.5 and 7.6]) We have (Ôur
E )GR̃∞ = OE and the same

holds modulo pn. Furthermore, there exists a unique GR̃∞
-equivariant ring endomorphism

ϕ on Ôur
E lifting the p-th power map on Ôur

E /(p) and extending ϕ on OE . The inclusion

Ôur
E →֒ W (R

♭
[ 1
̟
]) is ϕ-equivariant where the latter ring is given the Witt vector Frobenius.

Let Rep
Zp
(GR̃∞

) be the category of finite continuous Zp-representations of GR̃∞
, and let

Repfree
Zp

(GR̃∞
) and Reptor

Zp
(GR̃∞

) respectively denote the full subcategories of free and torsion

objects. For M ∈ ModOE
and T ∈ Rep

Zp
(GR̃∞

), we define T (M) := (M ⊗OE
Ôur

E )ϕ=1 and

M(T ) := (T ⊗Zp
Ôur

E )GR̃∞ . Then we have the following proposition from [Kim15].

Proposition 3.3. ([Kim15, Proposition 7.7]) The constructions T (·) and M(·) give exact
quasi-inverse equivalences of ⊗-categories between ModOE

and Rep
Zp
(GR̃∞

). Moreover,
T (·) and M(·) restrict to rank-preserving equivalences of categories between Modpr

OE
and

Repfree
Zp

(GR̃∞
), and length-preserving equivalences between Modtor

OE
and Reptor

Zp
(GR̃∞

). In both
cases, T (·) and M(·) commute with taking duals.
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For M in Modpr
OE

(resp. in Modtor
OE

), we define the contravariant functor T∨(·) to

Rep
Zp
(GR̃∞

) by T∨(M) := HomOE ,ϕ(M, Ôur
E ) (resp. HomOE ,ϕ(M, Ôur

E ⊗Zp
Qp/Zp)). Note

that if we have a short exact sequence of étale (ϕ,OE)-modules 0→ M1 → M2 → M → 0
where M1,M2 are projective over OE and M is p-power torsion, then it induces a short
exact sequence

0→ T∨(M2)→ T∨(M1)→ T∨(M)→ 0

in Rep
Zp
(GR̃∞

).

Now, if GR is a p-divisible group over R, we write Tp(GR) := HomR(Qp/Zp, GR×RR) to
be the associated Tate module, which is a finite free Zp-representation of GR. By [Kim15,
Corollary 8.2], we have a natural GR̃∞

-equivariant isomorphism T∨(M∗(GR) ⊗S OE) ∼=

Tp(GR). IfH is a p-power order finite locally free group scheme over R, thenH(R) is a finite
torsion Zp-representation of GR. By [Kim15, Proposiiton 9.10], there exists a natural GR̃∞

-

equivariant isomorphism T∨(M∗(H)⊗SOE) ∼= H(R), and ifH = ker(h : G0 → G1) for some
isogeny h of p-divisible groups over R, then the isomorphism T∨(M∗(H)⊗S OE) ∼= H(R)
is compatible with the isomorphisms T∨(M∗(Gi)⊗S OE) ∼= Tp(G

i), i = 0, 1.
Note that any p-divisible group over R[1

p
] is étale, so the category of p-divisible groups

over R[1
p
] is equivalent to the category of finite free Zp-representations of GR. If we are

given a p-divisible group G over R[1
p
], then the corresponding Galois representation is given

by Tp(G) = HomR[ 1
p
](Qp/Zp, G ×R[ 1

p
] R[1

p
]). By Proposition 3.3, there exists a unique (up

to isomorphism) projective étale (ϕ,OE)-module M such that T∨(M) ∼= Tp(G) as GR̃∞
-

representations. We remark that if G extends to a p-divisible group GR over R, then
Tp(GR) = Tp(G) as GR-representations.

4 Extending p-divisible Groups

We now prove the generalization of Raynaud’s theorem for the relative base R when e <
p− 1, and use an example in [VZ10] on purity of p-divisible groups to show that when the
ramification is large, such a generalization does not hold. We first consider the special case
when the base ring R0 as in Section 2 is equal to the formal power series ring over a Cohen
ring.

Proposition 4.1. Suppose R0 = O[[s1, . . . , sr]] over a Cohen ring O and e < p− 1. Let G
be a p-divisible group over R[1

p
], and let n ≥ 1 be an integer. Suppose that G[pn] extends

to a finite flat group scheme Gn,R over R. Then for each integer 1 ≤ m ≤ n, the group
scheme Gn,R[p

m] is finite flat over R.
Furthermore, if H is another finite flat group scheme over R extending G[pn] and if

we identify the associated étale (ϕ,OE)-modules Mn := M∗(GR,n)⊗S OE = M∗(H)⊗S OE ,
then M∗(GR,n) = M∗(H) as S-submodules of Mn with compatible Frobenius.

9



Proof. Let M be the projective étale (ϕ,OE)-module such that T∨(M) = Tp(G) as GR̃∞
-

representations. Denote Mn = M∗(Gn,R). Since Tp(G[pn]) ∼= Tp(G)/pnTp(G), we have
Mn = Mn ⊗S OE

∼= M/pnM as étale (ϕ,OE)-modules.
For proving the first statement, we can make the following choice of Frobenius on R0

without loss of generality. Let k′ = O/(p). Note that since R0/pR0
∼= k′[[s1, . . . , sr]] has

a finite p-basis, we have [k′ : k′p] < ∞, i.e., k′ has a finite p-basis. Choose a Frobenius
ϕO : O → O lifting the natural Frobenius on W (k), and equip R0 with Frobenius given
by ϕO and ϕ(si) = spi . Let b0 : R0 → O be the O-linear map given by si 7→ 0, which
is ϕ-equivariant. Let bg : R0 → R0,g

∼= W (kg) be the ϕ-equivariant map considered in
Section 2. Note that Mn ⊗S,bg W (kg)[[u]] and Mn ⊗S,b0 O[[u]] with the induced diagonal
Frobenius are torsion quasi-Kisin modules of height 1 over W (kg)[[u]] and O[[u]] respectively.
Denote by Ij the j-th Fitting ideal of Mn over Sn := S/pnS. Let Ij,0 and Ij,g be the j-th
Fitting ideal of Mn⊗S,bg W (kg)[[u]] and Mn ⊗S,b0 O[[u]] over W (kg)[[u]]/(p

n) and O[[u]]/(pn)
respectively. Then Ij,0 and Ij,g are given by the images of Ij under the corresponding maps
b0 and bg respectively.

Let h be the height of G. Since e < p − 1, we deduce from [Liu07, Lemma 4.3.1 and
Corollary 4.2.5] that Mn⊗S,bg W (kg)[[u]] is free of rank h over W (kg)[[u]]/(p

n). Furthermore,
if we denote by Og the p-adic completion of lim

−→ϕ
O(p) with the induced Frobenius and

κ := lim
−→ϕ

O/(p), then by the universal property of p-adic Witt vectors as in Section 2, Og
∼=

W (κ) compatibly with Frobenius endomorphisms. The map O[[u]]/(pn) → W (κ)[[u]]/(pn)
is faithfully flat, and the induced torsion Kisin module (Mn ⊗S,b0 O[[u]]) ⊗O[[u]] W (κ)[[u]] is
free of rank h over W (κ)[[u]]/(pn) by loc. cit. Hence, Mn ⊗S,b0 O[[u]] is free of rank h over
O[[u]]/(pn). We obtain

Ij,g =

{
0 if j < h

W (kg)[[u]]/(p
n) if j ≥ h,

Ij,0 =

{
0 if j < h

O[[u]]/(pn) if j ≥ h.

By Lemma 2.1, the map Sn → W (kg)[[u]]/(p
n) induced from bg is injective. For j < h,

the image of Ij under bg in W (kg)[[u]]/(p
n) is equal to Ij,g which is 0. Thus, Ij = 0 if

j < h. Suppose j ≥ h. If Ij is contained in the maximal ideal (p, s1, . . . , sr, u) of Sn,
then the image of Ij under b0 would be contained in the maximal ideal of O[[u]]/(pn). Since
Ij,0 = O[[u]]/(p

n), we have Ij = Sn. Hence, Mn is projective and thus free of rank h over
Sn. By Theorem 2.6, Gn,R[p

m] is finite flat over R for each m ≥ 1.
Now we show the second statement, for any choice of Frobenius on R0. Suppose that

G[pn] extends to another finite flat group scheme H over R, and let N := M∗(H) be the
associated torsion Kisin module. Identify N ⊗S OE = Mn ⊗S OE = Mn as étale (ϕ,OE)-
modules, and consider bothN andMn asSn-submodules ofMn. Since Gn,R[p

m] is finite flat
over R for each m ≥ 1 and similarly for H , and since Mn is projective over OE,n := OE/(p

n),
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we have by Theorem 2.6 that Mn and N are projective and thus flat over Sn. By [Liu07,
Corollary 4.2.5], we have Mn⊗S,bg W (kg)[[u]] = N⊗S,bg W (kg)[[u]] as W (kg)[[u]]-submodules
of Mn ⊗S W (kg)[[u]]. Note that by Lemma 2.1, the induced map OE,n → Wn(kg)[[u]][

1
u
] is

injective, and OE,n ∩Wn(kg)[[u]] = Sn as subrings of Wn(kg)[[u]][
1
u
]. Since Mn is flat over

Sn, we deduce

(Mn⊗Sn
OE,n)

⋂
(Mn⊗Sn

Wn(kg)[[u]]) = Mn⊗Sn
(OE,n

⋂
Wn(kg)[[u]]) = Mn⊗Sn

Sn = Mn

as Sn-submodules of Mn ⊗Sn
Wn(kg)[[u]][

1
u
] = Mn ⊗S W (kg)[[u]], and similarly

(N⊗Sn
OE,n)

⋂
(N⊗Sn

Wn(kg)[[u]]) = N

as Sn-submodules of N⊗Sn
Wn(kg)[[u]][

1
u
] = Mn⊗SW (kg)[[u]]. Since Mn⊗Sn

OE,n = Mn =
N⊗Sn

OE,n and Mn⊗Sn
Wn(kg)[[u]] = N⊗Sn

Wn(kg)[[u]] as submodules of Mn⊗SW (kg)[[u]],
we obtain Mn = N with compatible Frobenius.

We remark that in the second statement of above Proposition 4.1, we do not know whether
M∗(GR,n) ∼= M∗(H) as Kisin modules, i.e., whether the connections on both sides are
compatible.

Now we consider the general base ring R as in Section 2.

Theorem 4.2. Assume e < p−1. Let G be a p-divisible group over R[1
p
]. Suppose that for

each n, G[pn] extends to a finite locally free group scheme Gn,R over R. Then G extends to
a p-divisible group over R, and such an extension is unique up to isomorphism.

If e ≥ p and R = OK [[s]], then there exists a p-divisible group G over R[1
p
] such that

G[pn] extends to a finite locally free group scheme Gn,R over R for each n but G does not
extend to a p-divisible group over R.

Proof. Suppose e < p−1. LetM be the projective étale (ϕ,OE)-module such that T∨(M) =
Tp(G) as GR̃∞

-representations. For each n ≥ 1, let Mn := M∗(Gn,R) ∈ Modtor
S (ϕ,∇) be

the torsion Kisin module of height 1 corresponding to Gn,R. We have Mn ⊗S OE
∼= Mn :=

M/pnM as étale (ϕ,OE)-modules. Let h be the height of G.
For each maximal ideal q of R, denote q0 := q ∩ R0 ⊂ R0 the corresponding maximal

ideal of R0, and let bq : R0 → R̂0,q0 be the natural ϕ-equivariant map where R̂0,q0 denotes
the q0-adic completion of R0,q0 . By the structure theorem for complete regular local rings,

R̂0,q0 is isomorphic to a formal power series ring R̂0,q0
∼= O[[s1, . . . , sr]] over a Cohen ring

O. We have the induced base change bq : R → R̂q
∼= R̂0,q0 ⊗W (k) OK , where R̂q is the

q-adic completion of Rq. Denote Sq := R̂0,q0 [[u]]. For the p-divisible group G×R[ 1
p
],bq R̂q[

1
p
]

over R̂q[
1
p
], note that (G ×R[ 1

p
] R̂q[

1
p
])[pn] extends to the finite locally free group scheme

Gn,q := Gn,R ×R,bq R̂q over R̂q for each n ≥ 1. By Proposition 4.1, Gn,q[p
m] is finite locally

free over R̂q for each m ≥ 1, and thus M∗(Gn,q) = Mn ⊗S,bq Sq is projective over Sq/(p
n)
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by Theorem 2.6. Since this holds for each maximal ideal q of R, we deduce that Mn is
projective over S/(pn) of rank h. In particular, Gn,R[p

m] is finite locally free over R for
each m ≥ 1. Note that Gn,R[p

m]×R R[1
p
] ∼= (Gn,R ×R R[1

p
])[pm] ∼= G[pm], and Gn,R[p

m] has

order pmh for each 1 ≤ m ≤ n.
By considering the orders of the groups, we see that the natural sequence of finite locally

free group schemes

0→ Gn+1,R[p]→ Gn+1,R → Gn+1,R[p
n]→ 0,

where the map Gn+1,R → Gn+1,R[p
n] is induced by multiplication by p, is short exact.

Furthermore, it follows easily from the construction of the functor M∗(·) in [Kim15, Proof
of Proposition 9.5] using isogeny of p-divisible groups that M∗(Gn+1,R[p]) ∼= Mn+1/pMn+1

as torsion Kisin modules, where Mn+1/pMn+1 is equipped with Frobenius and connection
induced from Mn+1. Since M

∗(·) is exact, we have M∗(Gn+1,R[p
n]) ∼= pMn+1 where pMn+1

is equipped with Frobenius and connection induced from Mn+1. We claim that Mn
∼=

pMn+1 as torsion quasi-Kisin modules with compatible Frobenius. Identify pMn+1⊗SOE =
Mn = Mn ⊗S OE as étale (ϕ,OE)-modules, and consider both pMn+1 and Mn as Sn-
submodules of Mn. For the natural injective map Mn →֒ Mn + pMn+1 of S-modules,
consider the induced map Mn ⊗S,bq Sq → (Mn + pMn+1)⊗S,bq Sq for each maximal ideal
q of R. Since bq : S → Sq is flat, we have (Mn + pMn+1) ⊗S,bq Sq = Mn ⊗S,bq Sq +
pMn+1 ⊗S,bq Sq, and by Proposition 4.1, Mn ⊗S,bq Sq = pMn+1 ⊗S,bq Sq as submodules

of Mn ⊗S,bq Sq. Thus, Mn ⊗S Sq

∼=
→ (Mn + pMn+1)⊗S Sq for each q, which implies that

injective map Mn →֒ Mn + pMn+1 is also surjective. Thus, pMn+1 ⊂ Mn, and similarly
Mn ⊂ pMn+1. This shows the claim Mn = pMn+1 with compatible Frobenius.

Thus, M := lim
←−n

Mn with the induced Frobenius is a quasi-Kisin module of height 1
over S. We now equip M := M ⊗S,ϕ R0 with a connection. Denote by ∇Mn

: Mn ⊗S,ϕ

R0 → (Mn ⊗S,ϕ R0) ⊗R0
Ω̂R0

the connection for the torsion Kisin module Mn, and let
Mn =M⊗R0

R0/(p
n). Consider the multiset

Sn = {∇Mk
⊗R0

R0/(p
n) | k ≥ n + 1}

of connections on Mn. Note that for each k ≥ n + 1, the connection ∇Mk
⊗R0

R0/(p
n)

satisfies the commutative diagram (2.1) in Section 2. Using the result discussed at the
end of Section 2, we choose a compatible system of connections ∇n on Mn inductively
as follows. Identify Ω̂R0

=
⊕d

i=1R0 · d(log ti). Let M1 ⊂ M be a direct factor lifting
Fil1M/pM ⊂ M/pM as in Section 2, and we fix a choice of a finite Zariski covering of
Spf(R0, p) over whichM

1 andM/M1 are free, and fix a basis ofM adapted toM1 after
passing to the covering. For n = 1, S1 is finite as a set of connections onM1, and we choose
a connection ∇1 on M1 which has infinite multiplicity in the multiset S1. When we are
given a choice of connection ∇n onMn, the elements in Sn+1 which lift ∇n are contained
in a finite set of connections, and we choose a connection ∇n+1 onMn+1 which has infinite
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multiplicity in Sn+1. Let ∇ := lim
←−n
∇n be the induced connection on M. Then ∇ is

compatible with Frobenius, integrable, and topologically quasi-nilpotent. Hence, (M,∇)
is a Kisin module of height 1, and the corresponding p-divisible group over R extends G.
The uniqueness of extending G up to isomorphism follows from [Tat67, Theorem 4].

On the other hand, assume e ≥ p and R0 = W (k)[[s]]. Let U = SpecR\{m} be the
open subscheme of SpecR, where m is the closed point given by the maximal ideal of
R. By [VZ10, Theorem 28], there exists a p-divisible group GU over U which does not
extend to a p-divisible group over R. By [FC90, Chapter V. Lemma 6.2], for each n ≥ 1,
the finite locally free group scheme GU [p

n] extends uniquely to a finite locally free group
scheme over R (if A denotes the Hopf algebra for GU [p

n]×U R[1
p
] and B denotes the Hopf

algebra for GU [p
n] ×U R[1

s
], then identifying C := A[1

s
] = B[1

p
] as the Hopf algebra for

GU [p
n]×U R[1

p
][1
s
], the unique extension is given by A ∩ B with the induced Hopf algebra

structure over R). Let G = GU ×U R[1
p
] be the p-divisible group over R[1

p
], and suppose G

extends to a p-divisible group GR over R. Since GU ×U (R[1
s
])[1

p
] = GR ×R (R[1

s
])[1

p
], we

have by [Tat67, Theorem 4] that GU ×U R[1
s
] = GR ×R R[1

s
]. Thus, GR ×R U = GU , which

contradicts to that GU does not extend over R. This shows that G cannot be extended to
a p-divisible group over R.

5 Barsotti-Tate Deformation Ring for Relative Base

of Dimension 2

Throughout this section, we assume that the Krull dimension of R is equal to 2. For a finite
Qp-representation V of GR, we say it is Barsotti-Tate if there exists a p-divisible group GR

over R such that V = Tp(GR)⊗Zp
Qp as GR-representations.

Proposition 5.1. Assume e < p − 1. Let T be a finite free Zp-representation of GR
such that T [1

p
] is Barsotti-Tate. Then there exists a p-divisible group GR over R such that

T = Tp(GR).

Proof. Since T [1
p
] is Barsotti-Tate, there exists a p-divisible group G′

R over R such that

Tp(G
′
R)[

1
p
] = T [1

p
]. Denote T ′ = Tp(G

′
R), G′ = G′

R ×R R[1
p
], and let G be the p-divisible

group over R[1
p
] corresponding to the representation T .

Since pnT ⊂ T ′ and pnT ′ ⊂ T for some positiver integer n, we have an isogeny f : G′ →
G. Let H := ker(f), which is a finite locally free group scheme over R[1

p
]. Then we have a

closed immersion h : H →֒ G′[pm] for some positive integer m. Note that G′[pm] extends
to the finite locally free group scheme G′

R[p
m] over R.

Let HR be the scheme theoretic closure of H over R obtained from h and G′
R[p

m], given
similarly as in [Ray74, Section 2.1]. By the construction of the scheme theoretic closure,
HR is a finite group scheme. We claim that it is locally free over R. For that, let q be a
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maximal ideal of R and let q0 = q∩R0, and consider the base change map bq : R→ R̂q as in

the proof of Theorem 4.2. Since R has Krull dimension 2, we have R̂q
∼= Oq0 [[s]] ⊗W (k) OK

for some Cohen ring Oq0 with the maximal ideal (p). Let Uq ⊂ SpecR̂q be the closed
subscheme obtained by deleting the closed point given by q. Since Uq is a Dedekind scheme,

(HR ×R R̂q) ⊗R̂q
Uq is locally free over Uq as the corresponding sheaf of Hopf algebras is

torsion free. It extends uniquely to a finite locally free group scheme Hq over R̂q by [FC90,

Chapter V. Lemma 6.2]. On the other hand, since e < p−1, note that p /∈ (qR̂q)
p−1. Since

h is a monomorphism, we deduce from [VZ10, Proposition 15] applied for R̂q that the map

Hq → G′
R[p

m] ×R R̂q of finite flat group schemes is a monomorphism and hence a closed

immersion. Thus, HR ×R R̂q = Hq. Since this holds for every maximal ideal q of R, HR is
locally free over R.

The map h induces a closed immersion HR →֒ G′
R[p

m], andGR := G′
R/HR is a p-divisible

group over R. It is clear from the construction that Tp(GR) = T as Zp[GR]-modules.

For a finite free Zp-representation T of GR, it makes sense by Proposition 5.1 to say
that T is Barsotti-Tate if there exists a p-divisible group GR over R such that T = Tp(GR).

Lemma 5.2. Assume e < p−1. Let HR be a p-power order finite locally free group scheme
over R, and let T = HR(R) be the corresponding torsion Zp-representation of GR. If we
have a short exact sequence of Zp[GR]-modules

0→ T1 → T → T2 → 0,

then there exist p-power order finite locally free group schemes H1,R and H2,R over R such
that Ti = Hi,R(R) for i = 1, 2 as GR-representations.

Proof. Let H := HR ×R R[1
p
]. Let Hi for i = 1, 2 be finite locally free group schemes

over R[1
p
] such that Hi(R[1

p
]) = Ti as GR-representations. The given exact sequence of

GR-representations induce the short exact sequence

0→ H1 → H → H2 → 0

of finite locally free group schemes. Let H1,R be the scheme theoretic closure of H1 over R
obtained from the closed embedding H1 →֒ H and HR. By the same argument as in the
proof of Proposition 5.1, H1,R is a finite locally free group scheme over R extending H1.
Furthermore, H2,R := HR/H1,R is a finite locally free group scheme over R extending H2

(cf. [Ray67]). It is clear that Ti = Hi,R(R) for i = 1, 2.

Corollary 5.3. Assume e < p − 1. Let A1 →֒ A2 be an injective map of finite free Zp-
algebras. Let TA1

be a finite free A1-module given the p-adic topology and equipped with a
continuous A1-linear GR-action. Let TA2

:= TA1
⊗A1

A2 be the induced representation with
the A2-linear GR-action. Then TA1

is Barsotti-Tate if and only if TA2
is Barsotti-Tate.
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Proof. Let G2 be the p-divisible group over R[1
p
] corresponding to TA2

. Suppose first
that TA1

is Barsotti-Tate. Note that there exist finitely many elements x1, . . . , xm ∈ A2

generating A2 as an A1-module. We have a surjective map of Zp[GR]-modules Tm
A1

։ TA2

sending the canonical basis elements ei of T
m
A1

to xi. Note that the direct sum representation
Tm
A1

is Barsotti-Tate. For each integer n ≥ 1, TA2
/pn is therefore a quotient of Tm

A1
/pn, and

by Lemma 5.2, G2[p
n] extends to a finite locally free group scheme over R. Thus, TA2

is
Barsotti-Tate by Theorem 4.2.

Conversely, suppose TA2
is Barsotti-Tate. Let B3 be the quotient of the induced injection

A1[
1
p
] →֒ A2[

1
p
] of Qp-algebras, and let T ⊂ TA2

be the kernel of the induced map of

representations TA2
→ TA2

⊗A2
B3. Then for each integer n ≥ 1, the map T/pn → TA2

/pn

is injective. Hence, by Lemma 5.2 and Theorem 4.2 similarly as above, T is Barsotti-Tate.
Since T [1

p
] = TA1

[1
p
], TA1

is Barsotti-Tate by Proposition 5.1.

We now study the geometry of the locus of Barsotti-Tate representations. Denote by C
the category of topological local Zp-algebras A satisfying the following conditions:

• the natural map Zp → A/mA is surjective, where mA denotes the maximal ideal of
A;

• the map from A to the projective limit of its discrete artinian quotients is a topological
isomorphism.

Note that the first condition implies that the residue field of A is Fp. The second condition is
equivalent to the condition that A is complete and its topology can be given by a collection
of open ideals a ⊂ A for which A/a is aritinian. Morphisms in C are continuous Zp-algebra
morphisms. The following proposition is shown in [SL97].

Proposition 5.4. (cf. [SL97, Proposition 2.4]) Suppose A is a Noetherian ring in C. Then
the topology on A is equal to the mA-adic topology.

For A ∈ C, we mean by an A-representation of GR a finite free A-module equipped
with a continuous A-linear GR-action. We fix an Fp-representation V0 of GR which is
absolutely irreducible. For A ∈ C, a deformation of V0 in A is an isomorphism class of
A-representations of V of GR satisfying V ⊗A Fp

∼= V0 as Fp[GR]-modules. We denote by
Def(V0, A) the set of such deformations. A morphism f : A → A′ in C induces a map
f∗ : Def(V0, A) → Def(V0, A

′) sending the class of an A-representation V to the class of
V ⊗A,f A

′. The following theorem on universal deformation ring is proved in [SL97].

Theorem 5.5. (cf. [SL97, Theorem 2.3]) There exists a universal deformation ring Auniv ∈
C and a deformation Vuniv ∈ Def(V0, Auniv) such that for all A ∈ C, we have a bijection

HomC(Auniv, A)
∼=
→ Def(V0, A) (5.1)

given by f 7→ f∗(Vuniv).
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We remark that Auniv is Noetherian if and only if dimFp
H1(GR,EndFp

(V0)) is finite (cf. loc.
cit.). Thus, Auniv is not Noetherian in general, even when R = OK if K/Qp is infinite.

Let C0 be the full subcategory of C consisting of artinian rings. Abusing the notation,
we write V ∈ Def(V0, A) for an A-representation V to mean that V ⊗AFp

∼= V0. For A ∈ C
0

and a representation VA ∈ Def(V0, A), we say VA is torsion Barsotti-Tate if there exists a
p-power order finite locally free group scheme HR over R such that VA

∼= HR(R) as Zp[GR]-
modules. We remark that if R is local, then every p-power order finite locally free group
scheme over R embeds into a p-divisible group over R, and thus VA is torsion Barsotti-Tate
if and only if it is a quotient of a finite free Zp-representation which is Barsotti-Tate. For
A ∈ C, denote by BT(V0, A) the subset of Def(V0, A) consisting of the isomorphism classes
of representations VA such that VA⊗AA/a is torsion Barsotti-Tate for all open ideals a ( A.

Proposition 5.6. Assume e < p − 1. For any C-morphism f : A → A′, we have
f∗(BT(V0, A)) ⊂ BT(V0, A

′). Furthermore, there exists a closed ideal aBT of the universal

deformation ring Auniv such that the map (5.1) induces a bijection HomC(Auniv/aBT, A)
∼=
→

BT(V0, A).

Proof. We check the conditions in [SL97, Section 6]. Let f : A →֒ A′ be an injective
morphism of artinian rings in C, and let VA ∈ Def(V0, A) be a representation. We first
claim that VA ∈ BT(V0, A) if and only if VA′ := VA ⊗A,f A′ ∈ BT(V0, A

′). Suppose that
VA ∈ BT(V0, A). Note that A′ is a finite A-module. Let x1, . . . , xm generate A′ over A.
Then we have a surjective map of Zp[GR]-modules V m

A ։ VA′ sending the canonical basis
elements ei of V

m
A for i = 1, . . . , m to xi. Since V m

A is the direct sum of m-copies of VA,
it is torsion Barsotti-Tate. Thus, by Lemma 5.2, VA′ ∈ BT(V0, A

′). Conversely, suppose
VA′ ∈ BT(V0, A

′). Since we have an injective map of Zp[GR]-modules VA →֒ VA′ , we get
VA ∈ BT(V0, A) by Lemma 5.2.

Now, for A ∈ C and a representation VA ∈ Def(V0, A), suppose a1, a2 ( A are open
ideals such that VA⊗A (A/ai) ∈ BT(V0, A/ai) for i = 1, 2. The natural map A/(a1 ∩ a2)→
A/a1 ⊕ A/a2 is injective, and it induces the injective map of Zp[GR]-modules

VA ⊗A A/(a1 ∩ a2) →֒ (VA ⊗A A/a1)⊕ (VA ⊗A A/a2).

Since the direct sum (VA ⊗A A/a1) ⊕ (VA ⊗A A/a2) is torsion Barsotti-Tate, we see from
Lemma 5.2 that VA ⊗A A/(a1 ∩ a2) ∈ BT(V0, A/(a1 ∩ a2)).

The assertion then follows from [SL97, Proposition 6.1].

We now show that when e < p− 1, the locus of Barsotti-Tate representations cuts out
a closed subscheme of the universal deformation scheme Spec(Auniv):

Theorem 5.7. Suppose e < p− 1 (and recall that the Krull dimension of R is assumed to
be equal to 2). Let A be a finite flat Zp-algebra equipped with the p-adic topology, and let
f : Auniv → A be a continuous Zp-algebra homomorphism. Then the induced representa-
tion Vuniv ⊗Auniv,f A[

1
p
] of GR is Barsotti-Tate if and only if f factors through the quotient

Auniv/aBT.

16



Proof. Let A1 := im(f) ⊂ A, and let TA1
= Vuniv⊗Auniv,fA1. Then TA1

⊗A1
A = Vuniv⊗Auniv,f

A, and by Proposition 5.1 and Corollary 5.3, it suffices to show that TA1
is Barsotti-Tate

if and only if f factors through Auniv/aBT. Note that A1 ∈ C, and since A1 is finite flat
over Zp, the topology on A1 is equivalent to the p-adic topology and f : Auniv → A1 is
continuous by Proposition 5.4. Suppose first that TA1

is Barsotti-Tate, so that there exists
a p-divisible group GR over R such that Tp(GR) ∼= TA1

. For each integer n ≥ 1, we then
have (Vuniv ⊗Auniv,f A1) ⊗A1

A1/(p
n) = TA1

/pn ∼= (GR[p
n])(R), so Vuniv ⊗Auniv,f A1/(p

n) ∈
BT(V0, A1/(p

n)). Hence, by Proposition 5.6, f factors through Auniv/aBT.
Conversely, suppose f factors through Auniv/aBT. Let G be the p-divisible group over

R[1
p
] corresponding to TA1

. For each n ≥ 1, TA1
/pn is torsion Barsotti-Tate by Proposition

5.6, so G[pn] extends to a finite locally free group scheme over R. Then by Theorem 4.2,
TA1

is Barsotti-Tate.

On the other hand, if the ramification is large, we can deduce that the locus of Barsotti-
Tate representations is not p-adically closed in general:

Proposition 5.8. Let R = OK [[s]] and suppose e ≥ p. There exists a Zp-representation T
of GR such that T/pnT is torsion Barsotti-Tate for each n ≥ 1 but T is not Barsotti-Tate.

Proof. By Theorem 4.2, there exists a p-divisible group G over R[1
p
] such that G[pn] extends

to a finite locally free group scheme Gn,R over R but G does not extend to a p-divisible
group over R. Let T be the representation corresponding to G. Then for each n, we have
T/pnT ∼= Gn,R(R) so it is torsion Barsotti-Tate. However, T is not Barsotti-Tate since G
does not extend over R.
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