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Extending p-divisible groups and Barsotti-Tate
deformation ring in the relative case

Yong Suk Moon

Abstract

Let & be a perfect field of characteristic p > 2, and let K be a finite totally ramified
extension of W(k;)[%] of ramification degree e. We consider an unramified base ring
Ro over W (k) satisfying certain conditions, and let R = Ry ®yy 1) Or. Examples of
such R include R = Ok][s1,...,s4] and R = (QK(tfd,...,tflﬂ). We show that the
generalization of Raynaud’s theorem on extending p-divisible groups holds over the
base ring R when e < p — 1, whereas it does not hold when R = Og[s] with e > p.
As an application, we prove that if R has Krull dimension 2 and e < p — 1, then the

locus of Barsotti-Tate representations of Gal(R[%] / R[%]) cuts out a closed subscheme
of the universal deformation scheme. If R = Ok[s] with e > p, we prove that such a

locus is not p-adically closed.
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1 Introduction

Let k be a perfect field of characteristic p > 2, and W (k) be its ring of Witt vectors. Let
K be a finite totally ramified extension of W(k)[%] of ramification degree e, and let O be
its ring of integers. We consider an unramified base ring Ry over W (k) satisfying certain
conditions (cf. Section[2)), and let R = Ry ®w ) Ok. Important examples of such R include
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the formal power series ring R = Ok[s1,...,sq], and R = Ok (tf', ... t5') which is the
p-adic completion of Ok [t5, ..., 5.
When R = Ok, Raynaud showed the following theorem on extending p-divisible groups.

Theorem 1.1. ([Ray74], Proposition 2.3.1]) Let G be a p-divisible group over K. Suppose
that for each n > 1, G[p"] extends to a finite flat group scheme over Ok. Then G extends
to a p-divisible group over Ok, and such an extension is unique up to isomorphism.

In this paper, we prove that the generalization of Raynaud’s theorem holds over the
relative base R when the ramification is small (e < p —1). On the other hand, using an
example from [VZ10] on purity of p-divisible groups, we show that such a statement does
not hold when the ramification is large.

Theorem 1.2. Assume e < p— 1. Let G be a p-divisible group over R[%]. Suppose that
for each n > 1, G[p"] extends to a finite locally free group scheme over R. Then G extends
to a p-divisible group over R, and such an extension is unique up to isomorphism.

If e > p and R = Ok[s], there exists a p-divisible group G over R[%] such that G[p"]
extends to a finite locally free group scheme over R for each n but G does not extend to a
p-divisible group over R.

As an application, we study the geometry of the locus of representations arising from
p-divisible groups over R when R has Krull dimension 2. Let Gr be the étale fundamental
group of SpecR[%]. For a fixed absolutely irreducible F,-representation V; of Gg, there
exists a universal deformation ring which parametrizes the deformations of V, ([SLI7]).
We say that a finite continuous Q,-representation V' of Gr is Barsotti-Tate if it arises
from a p-divisible group over R, i.e., if there exists a p-divisible group G over R such
that V = T,(Gr) ®z, Qp where T,(Gr) denotes the Tate module of G'r. For a torsion
Z,-representation 1" of Gg, we say it is torsion Barsotti-Tate if it is a quotient of a finite

free Z,-representation T such that 7 [%] is Barsotti-Tate. By using Theorem [[.2] we prove:

Theorem 1.3. Suppose R has Krull dimension 2 and e < p—1. Then the locus of Barsotti-
Tate representations of Gr cuts out a closed subscheme of the universal deformation scheme.

If R = Ok|[s] and e > p, then the locus of Barsotti- Tate representations is not p-adically
closed in the following sense: there exists a finite free Z,-representation T' of Gr such that

T/p"T is torsion Barsotti-Tate for each integer n > 1 but T[%] is not Barsotti- Tate.

We give a more precise statement of Theorem [I.3] in Section [l
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2 Relative Breuil-Kisin Classification

We first explain the classification of p-divisible groups and finite locally free group schemes
over SpecR via certain Kisin modules, which is proved in [Kis06] when R = Ok and
generalized in [Kim15] for the relative case.

We will work over the relative base rings as considered in [Bri08] with some additional
mild assumptions. Denote by W (k){(t{', ... t5') the p-adic completion of the polynomial
ring W (k)[ti', ..., t5']. Let Ry be a ring obtained from W (k)(t{, ... ;') by iterations of

the following operations:

e p-adic completion of an étale extension;
e p-adic completion of a localization;

e completion with respect to an ideal containing p.

We assume that either W (k)(55", ..., t5') — Ry has geometrically regular fibers or Ry has
Krull dimension less than 2, and that k — Ro/pRy is geometrically integral and Ry is an
integral domain. Furthermore, we suppose that Ry is formally smooth formally finite type
over some Cohen ring (cf. [Kiml15l Section 2.2.2]). In particular, Ry is a regular ring.
Ry/pRy has a finite p-basis given by {t1,...,t;} in the sense of [DJ95|, Definition 1.1.1].
Let Ry = @n Q(ry/pmyw (k) be the module of p-adically continuous Kahler differentials.

We have Qg, = @7, Ry-d(logt;) by [Bri08, Proposition 2.0.2]. The Witt vector Frobenius
on W (k) extends (not necessarily uniquely) to Ry. We fix such a Frobenius endomorphism
¢ Ry — Ry, and let R = Ry @w ) Ok be our base ring. Examples of such R include
R=0g{tF,...,t5") and R = Ok[si, ..., s4] (for example, via s; = 1 + ;).
It will be useful later to consider the following natural maps between base rings. Let
Ry 4 be the p-adic completion of liﬂ(R(])(p) with the induced Frobenius, and denote by £,
©

the perfect closure th rac(Ry/pRy) of Frac(Ry/pRy). By the universal property of p-adic
%)

Witt vectors, we have a unique continuous (with respect to the p-adic topology) morphism
h : W(k,) — Ry, commuting with their projections to k,. By unicity, h is compatible
with Frobenius endomorphisms. Since A modulo p is an isomorphism and Ry, is p-torsion
free and p-adically complete and separated, h is an isomorphism. We will make use of this
isomorphism later when we apply results from classical p-adic Hodge theory over p-adic
fields, since such results will hold for the base ring Ry, @wm) Ok. Let by : Ry — Ry,
be the natural morphism compatible with Frobenius. This induces Og-linearly the base
change map b, : R — Ry 4 Qwr) Ok.

Lemma 2.1. The map b, : Ry — Ry, is injective. Furthermore, for each integer n > 1,
the map Ry/(p™) — Ro4/(p") induced from b, is injective.



Proof. Since Ry/(p) is an integral domain, the map Ry/(p) — Ro,/(p) = k, is injective.
Thus, b, : Ry — Ry 4 is injective as Ry is p-adically separated and Ry, is p-torsion free. It
also follows that Ry/(p") — Ro4/(p") is injective for each n > 1. O

Let & = Ry[u] equipped with the Frobenius extending that on Ry, given by ¢ : u — u?.
Denote by E(u) the Eisenstein polynomial for the extension K over W(k)[%]

Definition 2.2. A quasi-Kisin module of height 1 is a pair (9, pen) where
e M is a finitely generated projective G-module;

o Yo @ M — M is a p-semilinear map such that coker(l ® pop : G ®, e M — M) is
annihilated by F(u).

Note that for a quasi-Kisin module 901 of height 1, 1 ® pgp : ™M = 6 R, M — M
is injective since 9 is finite projective over & and coker(1 ® pgy) is killed by F(u). Let
Modg(p) denote the category of quasi-Kisin modules of height 1 whose morphisms are
G-module maps compatible with Frobenius.

Consider the composite & - & /uS = Ry - Ry. Let Modg (g, V) denote the category
whose objects are tuples (9, @on, V) where (91, pgn) is a quasi-Kisin module of height 1,
M =M®g , Ry, and Vo : M — M ®p, ® R, 18 a topologically quasi-nilpotent integrable
connection commuting with ¢r = v ® pgr,. (Here, Vo, being topologically quasi-
nilpotent means that the induced connection on M /pM is nilpotent). The morphisms in
Modg (¢, V) are G-module maps compatible with Frobenius and connection. The objects
in Modg(p, V) are called Kisin modules of height 1. The following theorem is proved in

7).

Theorem 2.3. (cf. [Kiml15, Corollary 6.7 and Remark 6.9]) There exists an exact anti-
equivalence of categories

M* - {p-divisible groups over R} — Modg(y, V).

Let R, be another unramifed ring satisfying the conditions as above equipped with a Frobe-
nius, and let b : Ry — R} be a p-equivariant map. Then the formation of M* commutes
with the base change R — R’ := Ry Q@wu) O induced O-linearly from b.

The classification of p-power order finite locally free group schemes over R can be
obtained by considering torsion Kisin modules.

Definition 2.4. A torsion quasi-Kisin module of height 1 is a pair (I, pgy) where

e 91 is a finitely presented G-module killed by a power of p, and of &-projective di-
mension 1;



e pop : M — M is a g-semilinear endomorphism such that coker(1 @ pgn : @* M — M)
is killed by E(u).

Let Modg" () denote the category of torsion quasi-Kisin modules of height 1 whose
morphisms are G-linear maps compatible with . Let Modg* (i, V) denote the category
whose objects are tuples (I, pon, Vo) where (9, pgn) is a torsion quasi-Kisin module of
height 1, M =M ®g, Ry, and V1 M — M ®@p, ® R, 1s a topologically quasi-nilpotent
integrable connection commuting with ¢ = po ® @g,. The morphisms in ModE" (¢, V)
are G-module maps compatible with ¢ and V. The objects are called torsion Kisin modules

of height 1.

Lemma 2.5. Let 9 be a torsion quasi-Kisin module of height 1. Then 1® pgy : ™M — IMN
18 1njective.

Proof. Let &, = Ry 4[u] equipped with the Frobenius given by ¢(u) = u”. By the local
criterion for flatness, b, : Ry — Ry, is flat since Ry/(p) = Ro4/(p) = k, is flat and Ry,
is p-torsion free, and the map & — &, is flat. Note that 9, = M ®e &, equipped with
o, = pm @ pe, is a torsion Kisin module of height 1 over &,.

We first claim that the natural map b : 9t — 9, is injective. Since 91 has projective
dimension < 1, there exists a short exact sequence 0 — 9M; — My — DM — 0 where N,y
and 9, are finite projective G-modules. 9, and 9, have the same rank since 9 is killed
by a power of p. We have a commutative diagram

0 —— my — M — M - > 0

J J |

0 — M RsGy — MRsG; —— My —— 0

whose rows are exact. Since 91, and 9N, are projective over G, the left and middle vertical
maps are injective. Furthermore, for i = 1,2, we have coker(I; — M, ®s ;) = M; ®e
(6,/6) as G-modules. On the other hand, all elements in the kernel of the induced map
M Vs (6,/6) = My ®e (6,/6) are killed by some power of p since 9)?1[1—1?] &~ Sﬁg[%].
And 6,/6 is p-torsion free since Ry/(p) — Ry 4/(p) = k, is injective, so M; ®g (6,/6) is
p-torsion free as My is projective over &. Hence, the map M ®e (6,/6) — Ma®e (6,/6)
is injective. By the snake Lemma, we deduce that b : 9t — 91, is injective.
Now, consider the following commutative diagram:

G RyeM 2% 9y

| s
1®
Gg ®<p’69 mg ﬂ) mg

Since ¢ : & — & is flat by [Bri08, Lemma 7.1.8], & ®, ¢ 9 has projective dimension 1 as
a G-module and is killed by a power of p. By the same argument as above, the natural
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map & @, M = Gy Vs (6 Vpe M) = 6, ®,.6, M, is injective, which is the left vertical
map. The bottom map is injective by [Liu07, Proposition 2.3.2] since Ry, = W (k,). Thus,
the top map is injective. O

Denote by (Mod FI)g(p, V) the full subcategory of ModE" (¢, V) consisting of objects
9 such that M = P, M; as G-modules where M;’s are projective over &/(p™) for some
positive integers n;. The following theorem is shown in [Kim15].

Theorem 2.6. (cf. [Kim15, Proposition 9.5 and Theorem 9.8]) There exists an exact fully
faithful functor OM* from the category of p-power order finite locally free group schemes over
R to Modg" (¢, V) with the following properties:

e Let H be a p-power order finite locally free group scheme over R. If H = ker(h :
G° — G for an isogeny h of p-divisible groups over R, then there exists a natural
isomorphism I*(H) = coker(9M*(h)) of torsion Kisin modules of height 1;

e Let R be another unramified ring satisfying the conditions as above equipped with a
Frobenius, and let b : Ry — R{, be a @-equivariant map. Then the formation of 9*
commutes with the base change R — R' = R ®@w ) Ok induced Ok -linearly from b.

Moreover, the functor ON* induces an anti-equivalence from the category of p-power order
finite locally free group schemes H over R such that H[p"] is locally free over R for all
n > 1 to (Mod FI)g(¢, V).

We end this section by recalling some necessary results on connections explained in
[Kim15 Section 10.2], which is based on [Vasl3]. Let (9, o) be a quasi-Kisin module
of height 1, and let M = M ®g,, Ry equipped with the induced Frobenius pom ® ¢g,.
From [Kim15, Eq. (6.1), (6.2) and Remark 3.13], we have the Ry-submodule Fil' M c M
associated with 9 such that pM C Fil'M, M/Fil' M is projective over Ry/(p), and
(1® ) (@ Fil' M) = pM as Ry-modules (cf. [KimI5, Definition 3.4 and 3.6] for the frame
(Ro, pRo, Ro/(P), ©Rys %)). Fix an Ry-direct factor M! C M which lifts Fil' M /pM C

M/pM, and let M == (M + 1—1?/\/11) ®Rop Bo C M @Ry Ro[%]. For each integer n > 1,
suppose V, : Ro/(p") @g, M — (Ro/(p") @, M) @, Qr, is a connection such that the

following diagram is commutative:
n v *(V”) n y o
Ro/(p") ®p, M "% Ro/(p") ®p, M @, Qn,
l®gpl l(l@w)@idﬁ% (2.1)

RO/(pn) ®Ro M L) RO/(pn) ®Ro M ®Ro QRO

Here, ©*(V,,) is given by choosing an arbitrary lift of V,, on Ry/(p" ™) ®@p, M, and ¢*(V,,)
does not depend on the choice of such a lift (cf. [Vasl3 Section 3.1.1 Equation (9)]).



Identify (AZRO = @?:1 Ry - d(logt;). By passing to a finite Zariski covering of Spf(Ry,p), we
may assume that M* and M /M! are free over Ry. Fix such a choice of the covering, and fix
a Ro-basis of M adapted to the direct factor M'. By [Vas13| Section 3.2 Basic Theorem]
and its proof, the set of connections V; on Ry/(p) ®g, M satisfying the commutative
diagram (2.1)) for n = 1 corresponds to the solutions over Ry/(p) of a certain Artin-Schreier
system of equations over Ry/(p). In particular, it follows directly that we have finitely
many such V; (cf. [Vasl3l Theorem 2.4.1 (b)]). Furthermore, given a connection V,, on
Ro/(p™) ®p, M, the set of connections V,,,1 on Ry/(p" ™) ®g, M which lift V,, and satisfy
the commutative diagram (Z.]) for n+ 1 corresponds the solutions over Ry/(p) of a certain
Artin-Schreier system of equations over Ry/(p) by loc. cit., and we have finitely many such
Vn—i—l-

3 Etale w-modules and Galois Representations

We recall the results in [Kim15, Section 7] on associating Galois representations with étale
p-modules in the relative setting. The underlying geometry is based on perfectoid spaces
(cf. [Sch12]). We will use the results to translate our question on p-divisible groups into a
question on Kisin modules and étale ¢-modules.

Let R denote the union of finite R-subalgebras R’ of a fixed separable closure of Frac(R)
such that R’ [1—1?] is étale over R[%]. Then Specﬁ[%] is a pro-universal covering of SpecR[%],
and R is the integral closure of R in E[%]. Let Gr = Gal(ﬁ[%]/]i’[%]) = W‘ft(SpecR[%],n)
with a choice of a geometric point 7. Choose a uniformizer w € O. For integers n > 0,
we choose compatibly @, € R such that wy, = w and wh 1 = wy, and let L be the p-

adic completion of (J, o K (w@,). Then L is a perfectoid field and (R[%],E) is a perfectoid

affinoid L-algebra, where ﬁ denotes the p-adic completion of R.
Let L’ denote the tilt of L as defined in [Sch12], and let @ = (w,) € L’. Let

(R [é],ﬁb) be the tilt of (R[;], R). Let Ef = &/p&, and let B} be the u-adic com-
pletion of lim Ef . Let Ep, = Ef _[+] and Ep = E}_[+]. By [Sch12, Proposition

b

5.9], (ERWEEOO) is a perfectoid affinoid L’-algebra, and we have the natural injection
(ERw?EEw) — (Eb[é],ﬁb) given by u — w. Let (Rm[%],éoo) be a perfectoid affinoid
L-algebra whose tilt is (EROO,EEOO), and let G = ﬂft(Specﬂ’w[%],n). Then we have a
continuous map of Galois groups Gz — Gg, which is a closed embedding by [GR03, Propo-

sition 5.4.54]. By the almost purity theorem in [Sch12], R [1] can be canonically identified
with the w-adic completion of the affine ring of a pro-universal covering of SpecERoo, and
letting Gz, be the Galois group corresponding to the pro-universal covering, there exists
a canonical isomorphism G5~ =Gy .

Now, let Og¢ be the p-adic completion of 6[%] Note that ¢ on & extends naturally to



Oc.

Definition 3.1. An étale (¢, Og)-module is a pair (M, ppr) where M is a finitely generated
Og¢-module and ¢y : M — M is a ¢p-semilinear endomorphism such that 1 ® ¢, 0 "M —
M is an isomorphism. We say that an étale (¢, Og)-module is projective (resp. torsion) if
the underlying Og-module M is projective (resp. p-power torsion).

Let Modp, denote the category of étale (¢, Og)-modules whose morphisms are Og-linear
maps compatible with Frobenius. Let Modgg and Mod%ﬁ respectively denote the full
subcategories of projective and torsion objects.

Note that we have a natural notion of a subquotient, direct sum, and tensor product
for étale (p, Og)-modules, and duality is defined for projective and torsion objects. If
(M, pon) is a quasi-Kisin module (resp. torsion quasi-Kisin module) of height 1, then
(M ®s O¢, pm @ Yo, ) is a projective (resp. torsion) étale (¢, Og)-module since 1 @ gy is
injective (by Lemma [2.5] for torsion quasi-Kisin modules) and its cokernel is killed by E(u)
which is a unit in Og. If we denote by Og¢ , the corresponding ring for Ry ,4, then for any
étale (¢, Og)-module M, M ®¢, 5, Oy with the induced Frobenius is an étale (¢, O¢4)-
module. If M is a torsion object, we define its length to be the length of Og -module
M @0¢p, Ot g-

We consider W(Eb[%]) as an Og-algebra via mapping u to the Teichmiiller lift [a] of
w, and let OF be the integral closure of O in W(ﬁb[ ). Let OF be its p-adic comple-

1
w

tion. Since O is normal, we have Auto, (OF) = G, = 7{*(SpecEg_ ), and by [GR03,
Proposition 5.4.54] and the almost purity theorem, we have Gg, = ¢ Pn. = Gp, . This

induces Gz -action on @gf. The following is shown in [Kim15].

Lemma 3.2. (cf. [Kiml5, Lemma 7.5 and 7.6]) We have (OF)%~ = Og and the same
holds modulo p". Furthermore, there exists a unique Gp_-equivariant ring endomorphism

© on (5gf lifting the p-th power map on @gr (p) and extending ¢ on Og. The inclusion
Ow — W(Eb[%]) is p-equivariant where the latter ring is given the Witt vector Frobenius.

Let Repg (G ) be the category of finite continuous Z,-representations of G, and let
Repfzrie(g 7..) and ReptZO:(g 7..) respectively denote the full subcategories of free and torsion
objects. For M € Modo, and T' € Repg (Gj_ ), we define T'(M) := (M ®o, @f)¢=1 and
M(T) = (T ®g, @gr)gﬁoo. Then we have the following proposition from [Kim15].

Proposition 3.3. ([Kiml15l, Proposition 7.7]) The constructions T(-) and M(-) give exact
quasi-inverse equivalences of ®-categories between Modp, and Repzp(ggw). Moreover,

T(:) and M(:) restrict to rank-preserving equivalences of categories between Modp,. and
free tor

Repz°(Gp.. ), and length-preserving equivalences between Modg: and Repy” (G ). In both
cases, T(-) and M(-) commute with taking duals.



For M in Modyp, (resp. in Mod:), we define the contravariant functor TV(-) to
Repzp(gf%w) by TV(M) = Homo, (M, OF) (resp. Home, (M, OF @z, Qp/Z,)). Note
that if we have a short exact sequence of étale (¢, Og)-modules 0 — M; — My — M — 0
where M, M, are projective over Og and M is p-power torsion, then it induces a short

exact sequence
0—TY(My) = TY(M;) =T (M) — 0

in Repz, (Gr.)

Now, if G is a p-divisible group over R, we write T,,(Gr) = Homy(Q,/Z,, Gr Xr R) to
be the associated Tate module, which is a finite free Z,-representation of Ggr. By [Kim15,
Corollary 8.2], we have a natural G;_ -equivariant isomorphism T(9*(Gr) ®e Og) =
T,(GR). If H is a p-power order finite locally free group scheme over R, then H(R) is a finite
torsion Z,-representation of Gr. By [Kim15, Proposiiton 9.10], there exists a natural G5 -
equivariant isomorphism TV (IM*(H)®eO¢) = H(R), and if H = ker(h : G — G*) for some
isogeny h of p-divisible groups over R, then the isomorphism TV(9M*(H) ®¢ Of) = H(R)
is compatible with the isomorphisms TV (9*(G") ®s Og) = T,(G"), i =0, 1.

Note that any p-divisible group over R[%] is étale, so the category of p-divisible groups
over R[%] is equivalent to the category of finite free Z,-representations of Gr. If we are

given a p-divisible group G over R[%], then the corresponding Galois representation is given

by T,(G) = Homg1)(Qp/Zp, G X g1 ﬁ[}—ﬂ) By Proposition B.3], there exists a unique (up
to isomorphism) projective étale (p, Og)-module M such that TV(M) = T,(G) as Gj_-
representations. We remark that if G extends to a p-divisible group G over R, then

T,(Gr) = T,(G) as Gr-representations.

4 Extending p-divisible Groups

We now prove the generalization of Raynaud’s theorem for the relative base R when e <
p— 1, and use an example in [VZ10] on purity of p-divisible groups to show that when the
ramification is large, such a generalization does not hold. We first consider the special case
when the base ring Ry as in Section 2is equal to the formal power series ring over a Cohen
ring.

Proposition 4.1. Suppose Ry = O[sy, ..., s,] over a Cohen ring O ande <p—1. Let G
be a p-divisible group over R[%], and let n > 1 be an integer. Suppose that G[p"] extends
to a finite flat group scheme G, r over R. Then for each integer 1 < m < n, the group
scheme G, g[p™| is finite flat over R.

Furthermore, if H is another finite flat group scheme over R extending G[p"] and if
we identify the associated étale (¢, Og)-modules M, = M*(Grn) @ O = M (H) ®¢ O,
then M*(Gryn) = M (H) as S-submodules of M,, with compatible Frobenius.



Proof. Let M be the projective étale (¢, Og)-module such that TV(M) = T,(G) as Gj_-
representations. Denote 9M,, = IM*(G, r). Since T,(G[p"]) = T,(G)/p"T,(G), we have
M, =M, ®s Og = M/p"M as étale (¢, Og)-modules.

For proving the first statement, we can make the following choice of Frobenius on R,
without loss of generality. Let &' = O/(p). Note that since Ry/pRy = k'[s1,...,s,] has
a finite p-basis, we have [k’ : k'P] < oo, i.e., k' has a finite p-basis. Choose a Frobenius
vo : O — O lifting the natural Frobenius on W (k), and equip Ry with Frobenius given
by wo and ¢(s;) = st. Let by : Ry — O be the O-linear map given by s; — 0, which
is @-equivariant. Let b, : Ry — Ry, = W(k,) be the ¢-equivariant map considered in
Section 2l Note that M, ®e s, W(ky)[u] and M, @ep, Ofu] with the induced diagonal
Frobenius are torsion quasi-Kisin modules of height 1 over W (k,)[u] and Ofu] respectively.
Denote by I; the j-th Fitting ideal of 9, over &,, .= &/p"S. Let I, and I; , be the j-th
Fitting ideal of M, ®ep, W (ky)[u] and M, ®e s, Ofu] over W (k,)[u]/(p™) and Ofu]/(p")
respectively. Then I, and I;, are given by the images of I; under the corresponding maps
by and b, respectively.

Let h be the height of G. Since e < p — 1, we deduce from [Liu07, Lemma 4.3.1 and
Corollary 4.2.5] that M, ®e p, W (kg)[u] is free of rank h over W (ky)[u]/(p"). Furthermore,
if we denote by O, the p-adic completion of lig@ Oy with the induced Frobenius and

K= liﬂg) O/(p), then by the universal property of p-adic Witt vectors as in Section 2, O, =

W (k) compatibly with Frobenius endomorphisms. The map O[u]/(p™) — W (x)[u]/(p")
is faithfully flat, and the induced torsion Kisin module (I, ®sp, Ofu]) @opg W (k)[u] is
free of rank h over W (k)[u]/(p™) by loc. cit. Hence, M, Qgp, Ofu] is free of rank h over
O[u]/(p™). We obtain

. :{o if j < h
T\ Wik ]/ ) iG> h,
. :{o if j < h
P OLul/ ) i > h

By Lemma 2.1], the map &,, — W (k,)[u]/(p") induced from b, is injective. For j < h,
the image of I; under b, in W (k,)[u]/(p") is equal to I;, which is 0. Thus, I; = 0 if
Jj < h. Suppose j > h. If I; is contained in the maximal ideal (p,si,...,s,,u) of &,,
then the image of I; under by would be contained in the maximal ideal of Ofu]/(p"). Since
Lo = O[u]/(p"), we have I; = &,,. Hence, M, is projective and thus free of rank h over
S,,. By Theorem 2.6, G,, g[p™] is finite flat over R for each m > 1.

Now we show the second statement, for any choice of Frobenius on Ry. Suppose that
G[p™] extends to another finite flat group scheme H over R, and let 91 := 9M*(H) be the
associated torsion Kisin module. Identify 91 ®g O = M,, ®s O = M,, as étale (p, O¢)-
modules, and consider both 9t and 9, as &,,-submodules of M,,. Since G,, g[p™] is finite flat
over R for each m > 1 and similarly for H, and since M,, is projective over O¢,, == Og/(p"),
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we have by Theorem that 21,, and N are projective and thus flat over &,,. By |Liu07,
Corollary 4.2.5], we have MM, ®ep, W (kg)[u] = N®ep, W (kg)[u] as W (k) [u]-submodules
of M, ®s W (ky)[u]. Note that by Lemma 2T} the induced map Og,, — Wi, (ky)[u][2] is
injective, and Og,, N W, (ky)[u] = &, as subrings of W, (k,)[u][%]. Since M, is flat over
S, we deduce

(mn ®Gn Of,n) ﬂ(mn ®6n Wn(kg) [[u]]) = mn ®Gn (O&n ﬂ Wn(kg) [[u]]) = mn ®Gn Gn = mn
as 6,-submodules of M, ®e, W, (ky)[u][1] = M, @ W (ky)[u], and similarly
(M @e, Oen) [ (N @, Walky)[u]) = 9

as &,-submodules of N®g, W, (k) [u][+] = M, ®s W (ky)[u]. Since M, ®s, O = M, =
N®s, O¢n and M, ®s, Wy, (ky)[u] = N®s, Wi (ky)[u] as submodules of M, ®e W (ky)[u],
we obtain 9, = 9 with compatible Frobenius. O

We remark that in the second statement of above Proposition [4.1] we do not know whether
M*(Grpn) = M (H) as Kisin modules, i.e., whether the connections on both sides are
compatible.

Now we consider the general base ring R as in Section 2

Theorem 4.2. Assume e < p—1. Let G be a p-divisible group over R[%]. Suppose that for
each n, G[p"] extends to a finite locally free group scheme G, g over R. Then G extends to
a p-divisible group over R, and such an extension is unique up to isomorphism.

If e > p and R = Ok]s], then there exists a p-divisible group G over R[%] such that
G[p"| extends to a finite locally free group scheme G, r over R for each n but G does not
extend to a p-divisible group over R.

Proof. Suppose e < p—1. Let M be the projective étale (¢, Og)-module such that V(M) =
T,(G) as Gj_-representations. For each n > 1, let M, = M*(G,,r) € Modg" (¢, V) be
the torsion Kisin module of height 1 corresponding to G, . We have M,, ®s Og = M,, ==
M/p"M as étale (¢, Og)-modules. Let h be the height of G.

For each maximal ideal q of R, denote qo := qN Ry C Ry the corresponding maximal
ideal of Ry, and let b, : Ry — Ry g4, be the natural p-equivariant map where Ry 4, denotes
the gg-adic completlon of Ryq,- By the structure theorem for complete regular local rings,

Ry .o 1s isomorphic to a formal power series ring RO w0 = = Olsi,..., ] over a Cohen ring

O. We have the induced base change b, : R — R = Roq Qwr) Ok, where R is the

g-adic completion of R;. Denote &, = Ro,qo[[ ]. For the p—d1v1s1ble group G X iy, Rq[p]
p )

over R [l], note that (G x R R H)[p“] extends to the finite locally free group scheme

Ghq =G, nR X R.bg R over R for each n > 1. By Proposition i1l G, 4[p™] is finite locally
free over Rq for each m > 1, and thus M*(G,,q) = M, Qs p, S, is projective over &,/ (p")
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by Theorem Since this holds for each maximal ideal q of R, we deduce that 9, is
projective over &/(p™) of rank h. In particular, G, g[p™] is finite locally free over R for
each m > 1. Note that G, g[p™] Xr R[%] = (Gn.r Xr R[%])[pm] = G[p™], and Gy, g[p™] has
order p™" for each 1 < m < n.

By considering the orders of the groups, we see that the natural sequence of finite locally

free group schemes
0 = Guy1,rlp] = Guir,r = Guyrrlp"] — 0,

where the map G,y1r — Gni1r[p"] is induced by multiplication by p, is short exact.
Furthermore, it follows easily from the construction of the functor 2t*(-) in [Kim15, Proof
of Proposition 9.5] using isogeny of p-divisible groups that I (G,11,r[p]) = Mt1/pMia
as torsion Kisin modules, where 9,1 /pIM,, 11 is equipped with Frobenius and connection
induced from 9,,;;. Since M*(+) is exact, we have M*(G,11 r[P"]) = Py 1 where pIN,, 44
is equipped with Frobenius and connection induced from 9%,.;. We claim that 91, =
pM,+1 as torsion quasi-Kisin modules with compatible Frobenius. Identify pN, ;1 Qs Os =
M, = M, ®s O¢ as étale (p, Og)-modules, and consider both p9,.; and M, as &,-
submodules of M,. For the natural injective map M, — M, + pIN,, 1 of G-modules,
consider the induced map M, @ep, Sq — (M, + pMyi1) Qs p, S, for each maximal ideal
q of R. Since by : & — &, is flat, we have (9, + pIM,11) Rsp, Gq = M, Ve, Sq +
PMpy1 Rsp, 4, and by Proposition 4.1, M, Rep, Sq = pPM,i1 Ve p, G4 as submodules
of M, ®¢p, G4 Thus, M, ®e &, = (M, + pM, 1) s S, for each g, which implies that
injective map 9M,, — M,, + pN,, 1 is also surjective. Thus, pN,,.1 C M, and similarly
M, C pN,1. This shows the claim 9, = pIN,,.; with compatible Frobenius.

Thus, MM = @n M, with the induced Frobenius is a quasi-Kisin module of height 1
over &. We now equip M = M Qg [y with a connection. Denote by Vop, : M, Qe
Ry — (M, ®e,, Ro) Dng, (AZRO the connection for the torsion Kisin module 9, and let
M, = M ®g, Ry/(p™). Consider the multiset

Sn = Vo, @r, Ro/(p") | k> n+1}

of connections on M,,. Note that for each k > n + 1, the connection Vo, ®pg, Ro/(p")
satisfies the commutative diagram (2I)) in Section 2l Using the result discussed at the
end of Section [, we choose a compatible system of connections V,, on M,, inductively
as follows. Identify Qp, = @%, Ro - d(logt;). Let M' C M be a direct factor lifting
Fil' M /pM C M /pM as in Section @ and we fix a choice of a finite Zariski covering of
Spf(Ry, p) over which M! and M/M! are free, and fix a basis of M adapted to M! after
passing to the covering. For n = 1, S; is finite as a set of connections on M, and we choose
a connection Vi on M; which has infinite multiplicity in the multiset S;. When we are
given a choice of connection V,, on M,,, the elements in S, which lift V,, are contained
in a finite set of connections, and we choose a connection V,,.; on M,,.; which has infinite
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multiplicity in S,y;. Let V : @ V., be the induced connection on M. Then V is
compatible with Frobenius, integrable, and topologically quasi-nilpotent. Hence, (90, V)
is a Kisin module of height 1, and the corresponding p-divisible group over R extends G.
The uniqueness of extending G up to isomorphism follows from [Tat67, Theorem 4].

On the other hand, assume e > p and Ry = W(k)[s]. Let U = SpecR\{m} be the
open subscheme of SpecR, where m is the closed point given by the maximal ideal of
R. By [VZ10, Theorem 28], there exists a p-divisible group Gy over U which does not
extend to a p-divisible group over R. By [FC90, Chapter V. Lemma 6.2], for each n > 1,
the finite locally free group scheme Gy [p"] extends uniquely to a finite locally free group
scheme over R (if A denotes the Hopf algebra for Gy[p"] xu R[%] and B denotes the Hopf

algebra for Gy[p"] xy R[%], then identifying C' == A[l] = B [%] as the Hopf algebra for
Gulp"] xu R[%][%], the unique extension is given by A N B with the induced Hopf algebra
structure over R). Let G = Gy Xy R[%] be the p-divisible group over R[%], and suppose G

extends to a p-divisible group G over R. Since Gy Xy (R[%])[%] = GRr Xpg (R[%])[%], we
have by [Tat67, Theorem 4] that Gy Xy R[%] =GR Xg R[i] Thus, Ggr xgr U = Gy, which
contradicts to that Gy does not extend over R. This shows that G cannot be extended to

a p-divisible group over R. O

5 Barsotti-Tate Deformation Ring for Relative Base
of Dimension 2

Throughout this section, we assume that the Krull dimension of R is equal to 2. For a finite
Q,-representation V' of Gr, we say it is Barsotti- Tate if there exists a p-divisible group Gr
over R such that V' = T,(Gr) ®z, Qp as Gr-representations.

Proposition 5.1. Assume e < p — 1. Let T be a finite free Z,-representation of Gg
such that T[%] is Barsotti-Tate. Then there exists a p-divisible group Gr over R such that
T =T,(Gp).
Proof. Since T [%] is Barsotti-Tate, there exists a p-divisible group G, over R such that
T,(G" )[ ] = T[]. Denote T" = T,(G%), G' = G’y xg R[%], and let G be the p-divisible

group over R[p] corresponding to the representation 7.

Since p"T C T" and p™T" C T for some positiver integer n, we have an isogeny f : G' —
G. Let H = ker(f), which is a finite locally free group scheme over R[%]. Then we have a
closed immersion h : H — G'[p™] for some positive integer m. Note that G'[p™] extends
to the finite locally free group scheme G’%[p™] over R.

Let Hp be the scheme theoretic closure of H over R obtained from h and G’[p™], given
similarly as in [Ray74, Section 2.1]. By the construction of the scheme theoretic closure,
Hp is a finite group scheme. We claim that it is locally free over R. For that, let q be a

3
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maximal ideal of R and let qo = qN Ry, and consider the base change map b, : R — ﬁq as in
the proof of Theorem Since R has Krull dimension 2, we have ﬁq = O [s] ®ww) Ok
for some Cohen ring Oy, with the maximal ideal (p). Let U; C Specﬁq be the closed
subscheme obtained by deleting the closed point given by g. Since Uy is a Dedekind scheme,

~

(Hr xg Rq) ® R U, is locally free over U, as the corresponding sheaf of Hopf algebras is

torsion free. It extends uniquely to a finite locally free group scheme H, over ﬁq by [FC90,
Chapter V. Lemma 6.2]. On the other hand, since e < p—1, note that p ¢ (qﬁq)p_l. Since
h is a monomorphism, we deduce from [VZ10, Proposition 15] applied for ﬁq that the map
Hy — GRp™ xr ﬁq of finite flat group schemes is a monomorphism and hence a closed
immersion. Thus, Hr X ﬁq = H,. Since this holds for every maximal ideal q of R, Hp is
locally free over R.

The map h induces a closed immersion Hg < G%[p™], and G = G,/ Hg is a p-divisible
group over R. It is clear from the construction that T,(Gr) =T as Z,|Ggr|-modules. O

For a finite free Z,-representation 71" of Gp, it makes sense by Proposition (.1l to say
that T" is Barsotti- Tate if there exists a p-divisible group G over R such that "= T,(Gg).

Lemma 5.2. Assume e <p—1. Let Hg be a p-power order finite locally free group scheme

over R, and let T'= Hg(R) be the corresponding torsion Z,-representation of Gr. If we
have a short exact sequence of Z,|Gr|-modules

0—-T1 —-T—"15,—0,

then there exist p-power order finite locally free group schemes Hy g and Hy g over R such
that T; = H; r(R) fori = 1,2 as Gg-representations.
Proof. et H = Hpr Xpg R[%]. Let H; for ¢« = 1,2 be finite locally free group schemes
over R[%] such that HZ(R[%]) = T, as Gg-representations. The given exact sequence of
Ggr-representations induce the short exact sequence

0—-H —H—Hy—0

of finite locally free group schemes. Let H; r be the scheme theoretic closure of H; over R
obtained from the closed embedding H; < H and Hg. By the same argument as in the
proof of Proposition b1l H; g is a finite locally free group scheme over R extending H;.
Furthermore, Hy p := Hgr/H g is a finite locally free group scheme over R extending Ho

(cf. [Ray67]). It is clear that T; = H; g(R) for i = 1,2. O

Corollary 5.3. Assume e < p—1. Let Ay — Ay be an injective map of finite free Z,-
algebras. Let Ty, be a finite free Ai-module given the p-adic topology and equipped with a
continuous Ay-linear Gr-action. Let Ty, = T4, ®a, As be the induced representation with
the As-linear Gr-action. Then Ty, is Barsotti-Tate if and only if Ta, ts Barsotti- Tate.
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Proof. Let G5 be the p-divisible group over R[%] corresponding to Ty,. Suppose first
that T4, is Barsotti-Tate. Note that there exist finitely many elements xi,...,z,, € Ay
generating A, as an A;-module. We have a surjective map of Z,[Gr]-modules T" — T,
sending the canonical basis elements e; of T\ to z;. Note that the direct sum representation
T is Barsotti-Tate. For each integer n > 1, Ty, /p" is therefore a quotient of 77’ /p", and
by Lemma [B.2] Gs[p™] extends to a finite locally free group scheme over R. Thus, T}, is
Barsotti-Tate by Theorem [4.2]

Conversely, suppose T}y, is Barsotti-Tate. Let Bs be the quotient of the induced injection
Al[%] — Ag[%] of Qp-algebras, and let T' C T4, be the kernel of the induced map of
representations Ty, — T4, ®4, Bs. Then for each integer n > 1, the map T'/p™ — Ta,/p"
is injective. Hence, by Lemma [5.2] and Theorem (4.2 similarly as above, T" is Barsotti-Tate.
Since T[%] = TAl[%], Ty, is Barsotti-Tate by Proposition 5.1l O

We now study the geometry of the locus of Barsotti-Tate representations. Denote by C
the category of topological local Z,-algebras A satisfying the following conditions:

e the natural map Z, — A/my is surjective, where m4 denotes the maximal ideal of
A;

e the map from A to the projective limit of its discrete artinian quotients is a topological
isomorphism.

Note that the first condition implies that the residue field of A is F,,. The second condition is
equivalent to the condition that A is complete and its topology can be given by a collection
of open ideals a C A for which A/a is aritinian. Morphisms in C are continuous Z,-algebra
morphisms. The following proposition is shown in [SLI7].

Proposition 5.4. (cf. [SLI7, Proposition 2.4]) Suppose A is a Noetherian ring in C. Then
the topology on A is equal to the my-adic topology.

For A € C, we mean by an A-representation of Ggr a finite free A-module equipped
with a continuous A-linear Gp-action. We fix an F,-representation Vj of Gg which is
absolutely irreducible. For A € C, a deformation of Vj in A is an isomorphism class of
A-representations of V' of Gp satisfying V @4 F, = V; as F,[Gg]-modules. We denote by
Def(Vp, A) the set of such deformations. A morphism f : A — A’ in C induces a map
fe @ Def(Vy, A) — Def(Vh, A’) sending the class of an A-representation V' to the class of
V ®4,5 A'. The following theorem on universal deformation ring is proved in [SLI7].

Theorem 5.5. (cf. [SLI7, Theorem 2.3]) There exists a universal deformation ring Auiv €
C and a deformation Vi € Def(Vy, Auniv) such that for all A € C, we have a bijection

Home (Auniv, A) = Def(Vp, A) (5.1)
giU@TL by f — f*(Vuniv)-
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We remark that Ay, is Noetherian if and only if dimp, H' (G, Endg, (V4)) is finite (cf. loc.
cit.). Thus, Ay is not Noetherian in general, even when R = Oy if K/Q,, is infinite.
Let C° be the full subcategory of C consisting of artinian rings. Abusing the notation,
we write V' € Def(Vp, A) for an A-representation V to mean that V@4 F, = V;. For A € C°
and a representation Vy € Def(Vj, A), we say Vy is torsion Barsotti-Tate if there exists a
p-power order finite locally free group scheme Hp over R such that V4 & Hr(R) as Z,[Gr)-
modules. We remark that if R is local, then every p-power order finite locally free group
scheme over R embeds into a p-divisible group over R, and thus V, is torsion Barsotti-Tate
if and only if it is a quotient of a finite free Z,-representation which is Barsotti-Tate. For
A € C, denote by BT (1, A) the subset of Def(Vj, A) consisting of the isomorphism classes

of representations V4 such that V4 ® 4 A/a is torsion Barsotti-Tate for all open ideals a C A.

Proposition 5.6. Assume e < p — 1. For any C-morphism f : A — A’, we have
f«(BT(Vy, A)) € BT(Vy, A’). Furthermore, there exists a closed ideal agr of the universal

deformation ring Auiv such that the map (51) induces a bijection Home(Ayniv /0BT, A) =
BT(Vp, A).

Proof. We check the conditions in [SLI7, Section 6]. Let f : A — A’ be an injective
morphism of artinian rings in C, and let V4 € Def(Vj, A) be a representation. We first
claim that V4 € BT (V;, A) if and only if Vy = V4 ®4 s A" € BT(Vp, A’). Suppose that
Va4 € BT (Vp, A). Note that A’ is a finite A-module. Let x1,...,x,, generate A" over A.
Then we have a surjective map of Z,[Gg|-modules V;* — V4 sending the canonical basis
elements e; of V" for ¢ = 1,...,m to x;. Since V}" is the direct sum of m-copies of Vj4,
it is torsion Barsotti-Tate. Thus, by Lemma 5.2 V4 € BT(Vp, A"). Conversely, suppose
Va € BT(Vp, A’). Since we have an injective map of Z,[Gg]-modules V4 — Vy/, we get
Vi € BT(Vy, A) by Lemma 5.2

Now, for A € C and a representation V4 € Def(Vf, A), suppose a;,a, C A are open
ideals such that V4 ®4 (A/a;) € BT (Vy, A/a;) for i = 1,2. The natural map A/(a; Nay) —
A/ay & A/ay is injective, and it induces the injective map of Z,[Gg]-modules

Va®a Af(arNag) — (Va®@a AJar) & (Va®a Alay).

Since the direct sum (V4 ®4 A/a1) @ (V4 ®4 A/as) is torsion Barsotti-Tate, we see from
Lemma that V4 ®4 A/(Cll N ClQ) S BT(‘/(), A/(Cll N ClQ)).
The assertion then follows from [SLI7, Proposition 6.1]. O

We now show that when e < p — 1, the locus of Barsotti-Tate representations cuts out
a closed subscheme of the universal deformation scheme Spec(Aypiy):

Theorem 5.7. Suppose e < p—1 (and recall that the Krull dimension of R is assumed to
be equal to 2). Let A be a finite flat Z,-algebra equipped with the p-adic topology, and let
f o Aumiv = A be a continuous Z,-algebra homomorphism. Then the induced representa-
tton Viniv @A, f A[%] of Gr is Barsotti-Tate if and only if f factors through the quotient

Auniv/aBT .
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Proof. Let A; :==1im(f) C A, and let T4, = Viniv®a,.,.r A1 Then Ty, @4, A = Viniv @4 f
A, and by Proposition (.1l and Corollary 5.3 it suffices to show that T, is Barsotti-Tate
if and only if f factors through A, /apr. Note that A; € C, and since A; is finite flat
over Z,, the topology on A; is equivalent to the p-adic topology and f : Ay — A1 is
continuous by Proposition [5.4l Suppose first that T4, is Barsotti-Tate, so that there exists
a p-divisible group G'g over R such that T,,(Gr) = T4,. For each integer n > 1, we then
have (Viniy @ tyns A1) @y A1/(07) = Ty /5" = (Calp))(B), 50 Vaniy St Ar/(p") €
BT(Vo, A1/(p™)). Hence, by Proposition 5.6, f factors through A, /apr.

Conversely, suppose f factors through A, /agr. Let G be the p-divisible group over
R[%] corresponding to T4,. For each n > 1, T4, /p™ is torsion Barsotti-Tate by Proposition
B£.6 so G[p"] extends to a finite locally free group scheme over R. Then by Theorem [4.2]
Ty, is Barsotti-Tate. O

On the other hand, if the ramification is large, we can deduce that the locus of Barsotti-
Tate representations is not p-adically closed in general:

Proposition 5.8. Let R = Ok[s] and suppose e > p. There ezists a Z,-representation T
of Gr such that T'/p™T is torsion Barsotti-Tate for each n > 1 but T is not Barsotti- Tate.
Proof. By Theorem[4.2], there exists a p-divisible group G over R[%] such that G[p"] extends
to a finite locally free group scheme G, p over R but G does not extend to a p-divisible
group over R. Let T" be the representation corresponding to G. Then for each n, we have

T/p"T = G, r(R) so it is torsion Barsotti-Tate. However, 7" is not Barsotti-Tate since G
does not extend over R. O
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