
ar
X

iv
:1

80
8.

01
58

8v
2 

 [
m

at
h.

L
O

] 
 3

0 
A

pr
 2

02
0

Which classes of structures are both pseudo-elementary

and definable by an infinitary sentence?

Will Boney, Barbara F. Csima∗, Nancy A. Day, Matthew Harrison-Trainor†

May 1, 2020

Abstract

When classes of structures are not first-order definable, we might still try to find
a nice description. There are two common ways for doing this. One is to expand the
language, leading to notions of pseudo-elementary classes, and the other is to allow
infinite conjuncts and disjuncts. In this paper we examine the intersection. Namely,
we address the question: Which classes of structures are both pseudo-elementary and
Lω1,ω-elementary? We find that these are exactly the classes that can be defined by
an infinitary formula that has no infinitary disjunctions.

1 Introduction

It is well-known that many properties are not definable in elementary first-order logic, even
by a theory rather than a single sentence. Common examples are the property (of graphs)
of being connected, the property (of abelian groups) of being torsion, and the property (of
linear orders) of being well-founded. To capture such properties, one can pass to extensions of
elementary first-order logic. This paper is about a characterization of the common expressive
power of two such extensions.

The first extension of elementary first-order logic that we consider is to allow countably
infinite conjunctions and disjunctions; this is, morally, similar to allowing quantifiers over
the (standard) natural numbers. One can then define properties such as being torsion by
saying “for each group element x, there is n such that nx = 0”, or formally,

(∀x)⩔
n∈N

nx = 0.

This work grew out of initial discussions with Vakili about the generality of expressing properties not
definable in first-order logic in a pseudo-elementary way, and whether such phenomena might be of use for
model checking (as the pseudo-elementary definability of graph reachability was used for model checking by
Vakili in his thesis [Vak16] and with the third author in [VD14]). We thank one of the referees for pointing
us towards some very helpful references.

∗Partially supported by Canadian NSERC Discovery Grant 312501.
†Supported by an NSERC Banting Fellowship.

1

http://arxiv.org/abs/1808.01588v2


This infinitary logic is known as Lω1,ω. One loses compactness, but gains other powerful tools.
For example, every countable structure is described, up to isomorphism among countable
structures, by a sentence of Lω1,ω [Sco65].

The second extension of elementary first-order logic is to allow existential second-order
quantifiers. For example, the property of a linear order being non-well-founded can be
defined by the sentence “there is a set with no least element”. We say that such a property
is pseudo-elementary. More formally, a property P of τ -structures is pseudo-elementary if
there is an expanded language τ∗ ⊇ τ and an τ∗-sentence ϕ (or τ∗-theory T ) such that the
τ -structures admitting an τ∗-expansion to a model of ϕ (respectively T ) are exactly the
structures satisfying P . We will describe both of these extensions of first-order logic in more
detail later.

These two extensions of elementary first-order logic have different descriptive powers.
For example, the property of being non-well-founded is pseudo-elementary but not Lω1,ω-
definable. Also, the negation of a pseudo-elementary property is not necessarily pseudo-
elementary, but the negation of an Lω1,ω-definable property is again Lω1,ω-definable. Never-
theless, there are properties that are not elementary first-order definable, but that are both
pseudo-elementary and Lω1,ω-definable. The property of a graph being disconnected is such
an example; we provide a more detailed discussion of various examples in Section 3. The
main result of this paper is a complete classification of such properties.

Theorem 1.1. Let K be a class of structures closed under isomorphism. The following are
equivalent:

1. K is both a pseudo-elementary (PC∆) class and defined by an Lω1,ω-sentence.

2. K is defined by a ⩕-sentence,

Theorem 1.1 follows immediately from Corollary 4.5 (for (1)⇒(2)) and Theorem 5.1 (for
(2)⇒(1)).

There is some notation in this theorem that we must explain. First, there are some
subtleties in the definition of what it means for a property to be pseudo-elementary, and in
fact there are four different natural definitions (giving rise to three distinct notions; these
are discussed in Section 2.2). Two of them are as follows.

Definition 1.2. We say that a class K of τ -structures is a PC-class if there is a language
τ∗ ⊇ τ and an elementary first-order τ∗-sentence φ such that

K = {M ∣ there is an τ∗-structure M∗ expanding M with M∗ ⊧ φ}.

We say that K is a PC∆-class if φ is replaced by an elementary first-order theory.

So the theorem above is concerned with pseudo-elementary classes where one is allowed to
use a theory in the definition.

The ⩕-sentences in the theorem are the Lω1,ω-sentences which (in normal form) involve
infinitary conjunctions, but no infinitary disjunctions. For example, the property of being
infinite is definable by the ⩕-sentence

⩕
n∈N

∃x1, . . . , xn(⋀
i≠j

xi ≠ xj).

2



The negation, the property of being finite, is Lω1,ω-definable by the sentence

⩔
n∈N

∀x1, . . . , xn(⋁
i≠j

xi = xj)

but this sentence is not a ⩕-sentence because it involves an infinitary disjunct.

Definition 1.3. The ⩕-formulas are defined inductively as follows:

• every finitary quantifier-free formula is a ⩕-formula

• if ϕ is a ⩕-formula, then so are (∃x)ϕ and (∀x)ϕ

• if (ϕi)i∈ω are ⩕-formulas with finitely many free variables, then so is ⩕i∈ω ϕi.

The proof of (1)⇒(2) uses an argument inspired by the proof of Craig Interpolation for
Lω1,ω. This was originally proved by Lopez-Escobar [LE65] who also gave the following corol-
lary: a property which is both pseudo-elementary and co-pseudo-elementary with respect to
Lω1,ω (i.e., both Σ1

1
and Π1

1
) is actually Lω1,ω-definable.

In the direction (2)⇒(1), there are several possible proofs. We give the simplest and
shortest argument in Section 5. A second proof is to note that any ⩕-sentence is equivalent
to a closed game formula, and these are known to PC∆ [Kol85]. We describe this in Section 6.
A third proof, for which we do not give the details, proceeds by coding computable formulas
in models of weak arithmetic. This is an approach that was taken by Craig and Vaught
[CV58] to prove:

Theorem 1.4 (Craig and Vaught [CV58]). Every computably axiomatizable class in a finite
language is pseudo-elementarily defined using a single sentence (PC ′).

A result on closed game formulas in [Bar75] gives:

Theorem 1.5. Let K be a class of structures in a finite language that is axiomatized by
a computable ⩕-sentence. Then K is pseudo-elementarily defined using a single sentence
(PC ′).

Indeed, Theorem 1.4 is a corollary of Theorem 1.5. Unfortunately, we do not know how to
reverse Theorem 1.5. We conjecture:

Conjecture 1.6. A PC or PC′ class which is also Lω1,ω-axiomatizable is axiomatizable by
a computable ⩕-sentence.

The argument in Section 5 for (2)⇒(1) of Theorem 1.1 goes through for ⩕-sentences of
Lκ,ω for any κ. However, we do not know if (1)⇒(2) holds for Lκ,ω for κ > ω1.

Question 1.7. For κ > ω1, is every PC∆ class defined by an Lκ,ω sentence actually defined
by a ⩕-sentence?

We note that interpolation fails in Lω2,ω [Mal71, Theorem 4.2]. Intriguingly, Malitz goes on
to give a proof system for Lκ,ω that goes through L(2<κ)+,κ that gives rise to an interpolation
theorem [Mal71, Section 5]. Shelah [She12] uses this to define a logic L1

κ that is intermediate
between Lκ,ω and Lκ,κ that has interpolation and other nice properties (when κ = ℶκ). This
suggests the right answer to Question 1.7 goes through L1

κ instead of Lκ,ω. However, this
logic lacks any syntax in the normal sense (formulas are defined by the existence of winning
strategies in a delayed Ehrenfeucht-Fraisse game), which causes additional problems, e.g., it
is not clear what a ⩕-sentence should mean, or what Skolem functions should look like.

3



2 Notation and Definitions

2.1 Infinitary Logic

For the most part, we follow Marker’s book [Mar16]. We want to be precise with our
definitions here, because we will need to encode infinitary formulas in first-order sentences.
We first define Lω1,ω-formulas. Throughout the paper, let τ be a countable language.

Definition 2.1. The Lω1,ω(τ)-formulas are defined inductively as follows:

• every atomic τ -formula is an Lω1,ω(τ)-formula,

• if ϕ is an Lω1,ω(τ)-formula, then so are ¬ϕ, (∃x)ϕ and (∀x)ϕ,

• if (ϕi)i∈ω are Lω1,ω(τ)-formulas with finitely many free variables, then so are ⩕i∈ω ϕi

and ⩔i∈ω ϕi.

In general, we will drop the reference to τ when it is clear what we mean.

Definition 2.2. An Lω1,ω-formula is in Lω1,ω normal form if the ¬ only occurs applied to
atomic formulas.

Every Lω1,ω-fromula can be placed into a normal form. The negation ¬ϕ of a sentence ϕ in
normal form is not immediately in normal form itself. This gives rise to the formal negation
∼ϕ, which is logically equivalent to ¬ϕ but is in normal form.

Definition 2.3. For any Lω1,ω-formula ϕ, the formula ∼ϕ is defined inductively as follows:

• if ϕ is atomic, ∼ϕ is ¬ϕ,

• ∼¬ϕ is ϕ, ∼(∃x)ϕ is (∀x)∼ϕ and ∼(∀x)ϕ is (∃x)∼ϕ,

• ∼⩕i∈ω ϕi is ⩔i∈ω ∼ϕi and ∼⩔i∈ω ϕi is ⩕i∈ω ∼ϕi.

We repeat again the definition of a ⩕-formula.

Definition 2.4. An Lω1,ω-formula ϕ is a ⩕-formula if it can be written in normal form
without any infinite disjunctions. More concretely, the ⩕-formulas are defined inductively
as follows:

• every finitary quantifier-free formula is a ⩕-formula,

• if ϕ is a ⩕-formula, then so are (∃x)ϕ and (∀x)ϕ,

• if (ϕi)i∈ω are ⩕-formulas with finitely many free variables, then so is ⩕i∈ω ϕi.

An Lω1,ω (or ⩕-) formula is computable if, essentially, there is a computable syntactic
representation of the formula (see [AK00]).

4



2.2 Pseudo-elementary Classes

In this section, we follow the book by Hodges [Hod93]. There are four different types of
pseudo-elementary classes: PC, PC′, PC∆, and PC′∆. The ∆ means that we are allowed
a full theory rather than a single sentence, and the ′ means that we are allowed to add
additional sorts (elements) to the structure. The classes PC and PC∆ have already been
defined, but we repeat the definition.

Definition 2.5. We say that a class K of τ -structures is a PC-class if there is a language
τ∗ ⊇ τ and an elementary first-order τ∗ sentence φ such that

K = {M ∣ there is a τ∗-structure M∗ expanding M with M∗ ⊧ φ}.

We say that K is a PC∆-class if φ is replaced by an elementary first-order theory.

The classes PC′ and PC′∆ are a little more complicated to define. We need the following
definition, which one should think of as throwing away a sort from a structure.

Definition 2.6. Let τ ⊆ τ∗ be a pair of languages, with a unary predicate P ∈ τ∗ ∖ τ . Given
a τ∗-structure A, we denote by AP the substructure of A ∣ τ whose domain is PA (if this is
a τ -structure; otherwise AP is not defined).

The classes PC′ and PC′∆ differ from PC and PC∆ respectively in that in addition to ex-
panding the language, one is allowed to add additional elements.

Definition 2.7. We say that a class K of τ -structures is a PC′-class if there is a language
τ∗ ⊇ τ , with a unary relation P ∈ τ∗ ∖ τ , and a τ∗-formula φ, such that

K = {AP ∣ A ⊧ φ and AP is defined}.

We say that K is a PC′∆-class if φ is a first-order theory.

Note that, if the language is finite (or we are dealing with a PC′∆-class) it suffices to ask that

K = {AP ∣ A ⊧ φ}

as φ can say that AP is defined.
Though we have four different definitions, they give rise to only three different notions

(and only two if we consider classes which consist only of infinite structures).

Theorem 2.8 (Theorem 5.2.1 of [Hod93]). Let K be a class of structures.

• K is a PC∆-class if and only if it is a PC′∆-class.

• If all the structures in K are infinite, then K is a PC-class if and only if it is a PC′-
class.

In Example 3.5 we give a class which is PC′ but not PC.
The proof of the first point in [Hod93] is not obvious and quite interesting. For the

second, essentially the only reason that PC and PC′ are different is that the model might be
finite; if a model is infinite, one could just have the elements of the model “wear two hats”,
on the one hand being the domain of the expansion of the original model, and on the other
hand playing the role of the elements of the new sort P .

5



3 Examples

We give here a few examples of properties that are definable in various combinations of
expansions of elementary first-order logic, including some applications of the theorems.

Example 3.1. Let τ = {R} the language of graphs. The class K of non-connected graphs is
a PC-class. Indeed, an undirected graph G = (G,R) is disconnected if and only if there is a
binary relation C of connectedness such that

• (∀x)(∀y)[R(x, y)→ C(x, y)],
• (∀x)(∀y)(∀z)[C(x, y) ∧C(y, z)→ C(x, z)], and
• ¬(∀x)(∀y)C(x, y).

An undirected graph G is also disconnected if and only if

(∃x ≠ y)⩕
n∈ω
(∀u0, . . . , un)[x ≠ u0 ∨ ¬R(u0, u1) ∨ ¬R(u1, u2) ∨⋯∨ ¬R(un−1, un) ∨ un ≠ y].

So K is also defined by a ⩕-sentence.

Example 3.2. Let τ = {<} the language of linear orders. The class K of non-well-founded
linear orders is a PC-class as a linear order (S,<) is non-well-founded if and only if there is
a unary relation U such that

(∀x)[x ∈ U → (∃y)[y ∈ U ∧ y < x]].
K is not definable by any Lω1,ω formula.

Example 3.3. Let τ be any language and φ a τ -sentence. The class K of infinite models
of φ is a PC-class as A ⊧ φ is infinite if and only if there is a linear order < on A such that(∀x)(∃y)[x < y]. K is also defined by the ⩕-sentence

⩕
n∈ω

(∃x0, . . . , xn)[⋀
i≠j

xi ≠ xj] .
Example 3.4. Orderable groups are a PC-class. They are also universally axiomatizable (in
first-order logic) by saying that every finite subset can be ordered in a way that is compatible
with the group operation.

Example 3.4 is a particular instance of a more general phenomena: if we take a PC-class
that such that (a) the expanded vocabulary only adds relations and (b) the added relations
are only universally quantified over, then the resulting class is actually elementary (though
it may require infinitely many axioms).

Example 3.5. There is a c.e. universal theory T whose models do not form a PC-class;
by Theorem 1.4 they are, however, a PC′-class. The language of T will be the language
of graphs. Fix an enumeration of the sentences φn in finite languages Ln expanding the
language of graphs. Note that for every finite graph G, we can decide effectively whether
there is an expansion of G to a model of φn. For each n, let Cn be cycle of length n. Then,
let T be the theory that says that there is no cycle of length n for exactly those n where Cn

does not have an expansion to a model of φn. Note that T is c.e. and universal, and that it
is different from each PC-class.

6



4 An Application of Craig Interpolation

To prove the direction (1) implies (2) of Theorem 1.1, we will adapt a proof of the Craig Inter-
polation Theorem for Lω1,ω. The proof we adapt is not the original proof by Lopez-Escobar,
but one that appears in the book by Marker [Mar16]. We begin with a few preliminaries.

Lemma 4.1. If ϕ1 and ϕ2 are ⩕-formulas, ϕ1 ∨ϕ2 is equivalent to a ⩕-formula.

Proof. We argue by induction on the complexity of ϕ1 and ϕ2 together. If ϕ1 and ϕ2 are
both finitary quantifier-free, then so is ϕ1 ∨ ϕ2. For the inductive steps, we will give the
argument which reduces the complexity of ϕ1; the arguments for ϕ2 are similar.

If ϕ1 is of the form (Qx)ϕ′
1
(x), where Q is either ∃ or ∀, then ϕ1 ∨ ϕ2 is equivalent

to (Qv)[ϕ′
1
(v) ∨ ϕ2] where v is not free in ϕ2; by the inductive hypothesis, ϕ′

1
(v) ∨ ϕ2 is

equivalent to a ⩕-formula and so (Qv)[ϕ′
1
(v) ∨ϕ2] is as well.

Finally, if ϕ1 is of the form⩕φ∈X φ, where each φ is a⩕-formula, then ϕ1∨ϕ2 is equivalent
to ⩕φ∈X[φ ∨ϕ2], and by the induction hypothesis, each φ ∨ ϕ2 is a ⩕-formula.

The proof of Craig Interpolation makes use of consistency properties. Consistency proper-
ties are the infinitary equivalent of Henkin-style constructions in finitary logic. The following
definition, due to Makkai, is what we need to do to perform such a construction.

Definition 4.2 (Definition 4.1 of [Mar16]). Let C be a countable collection of new constants.
A consistency property Σ is a collection of countable sets σ of Lω1,ω-sentences with the
following properties. For σ ∈ Σ:

1. if µ ⊆ σ, then µ ∈ Σ;

2. if φ ∈ σ, then ¬φ ∉ σ;

3. if ¬φ ∈ σ, then σ ∪ {∼ φ} ∈ Σ;
4. if ⩕φ∈X φ ∈ σ, then for all φ ∈ X , σ ∪ {φ} ∈ Σ;
5. if ⩔φ∈X φ ∈ σ, then there is φ ∈ X such that σ ∪ {φ} ∈ Σ;
6. if (∀v)φ(v) ∈ σ, then for all c ∈ C, σ ∪ {φ(c)} ∈ Σ;
7. if (∃v)φ(v) ∈ σ, then there is c ∈ C such that σ ∪ {φ(c)} ∈ Σ;
8. let t be a term with no variables and let c, d ∈ C,

(a) if c = d ∈ σ, then σ ∪ {d = c} ∈ Σ;
(b) if c = t ∈ σ and φ(t) ∈ σ, then σ ∪ {φ(c)} ∈ Σ;
(c) there is e ∈ C such that σ ∪ {e = t} ∈ Σ.

A consistency property is in some sense a recipe for building a model.

Theorem 4.3 (Model Existence Theorem; see Theorem 4.1.6 of [Mar16]). If Σ is a consis-
tency property and σ ∈ Σ, there isM ⊧ σ.

7



We are now ready to prove our variant of the Craig Interpolation Theorem. We strengthen
the hypotheses to assume that one of the sentences is a ⩕-sentence, and in return, we get
that the interpolant is also a ⩕-sentence. The proof follows the same structure as that of
the Craig Interpolation Theorem in [Mar16] (Theorem 4.3.1).

Theorem 4.4. Suppose φ1 is a ⩕-sentence and φ2 is an Lω1,ω-sentence with φ1 ⊧ φ2. There
is a ⩕-sentence θ such that φ1 ⊧ θ, θ ⊧ φ2, and every relation, function and constant symbol
occurring in θ occurs in both φ1 and φ2.

Proof. Let C be a countable collection of new constants. Let τi be the smallest language
containing φi and C, and let τ = τ1 ∩ τ2.

Let Σ be the collection of finite σ containing only finitely many new constants that can
be written as σ = σ1 ∪ σ2, where σ1 is a finite set of ⩕-τ1-sentences and σ2 is a finite set of
τ2-sentences, and such that for all τ -sentences ψ1 and ψ2, with ψ1 a ⩕-sentence, if σ1 ⊧ ψ1

and σ2 ⊧ ψ2 then ψ1 ∧ ψ2 is satisfiable.
In the rest of the proof, we make the convention that if σ ∈ Σ and we write σ = σ1 ∪ σ2,

then σ1 and σ2 are the witnesses that σ ∈ Σ, i.e., σ1 consists of ⩕-τ2-sentences, σ2 consists
of τ2-sentences, and they satisfy the satisfiability condition above.

We claim that Σ is a consistency property. The following claim will verify many of the
conditions.

Claim. Fix σ ∈ Σ and write σ = σ1 ∪ σ2. If φ is a τi-sentence (and a ⩕-sentence if i = 1)
with σi ⊧ φ, then σ ∪ {φ} ∈ Σ.
Proof. We will show the case i = 1. We can write σ∪{φ} = (σ1∪{φ})∪σ2. If σ1∪{φ} ⊧ ψ1 and
σ2 ⊧ ψ2, with ψ1 a ⩕-sentence, then since σ1 ⊧ φ, σ1 ⊧ ψ1. Hence ψ1 ∧ ψ2 is satisfiable.

We now check the conditions of a consistency property.

1. If µ ⊆ σ with σ ∈ Σ, write µ = µ1 ∪µ2 and σ = σ1 ∪ σ2 where µ1 ⊆ σ1 and µ2 ⊆ σ2. Given
µ1 ⊧ ψ1 and µ2 ⊧ ψ2, we have σ1 ⊧ ψ1 and σ2 ⊧ ψ2; hence ψ1∧ψ2 is satisfiable. So µ ∈ Σ.

2. If φ,¬φ ∈ σ = σ1 ∪ σ2, say φ,¬φ ∈ σi, σi ⊧ φ ∧ ¬φ which is not satisfiable. The other
possible case is that φ ∈ σi, ¬φ ∈ σj , i ≠ j, in which case σi ⊧ φ and σj ⊧ ¬φ, and φ∧¬φ
is not satisfiable.

3. This follows from the claim.

4. This follows from the claim.

5. Write σ = σ1 ∪ σ2. We have two cases which are different, depending on whether

⩔φ∈X φ ∈ σ1 or ⩔φ∈X φ ∈ σ2.

First suppose that ⩔φ∈X φ ∈ σ2. Let σ2,φ = σ2 ∪ {φ}. We claim that for some φ ∈ X ,
σ2,φ ∪ σ1 ∈ Σ. If not, then for each φ ∈ X there are τ -sentences ψ2,φ and ψ1,φ, with
ψ1,φ a ⩕-sentence, such that σ2,φ ⊧ ψ2,φ and σ1 ⊧ ψ1,φ, and such that ψ2,φ ∧ ψ1,φ is
unsatisfiable. So ψ2,φ ⊧ ¬ψ1,φ. Since

σ2 ⊧ ⩔
φ∈X

φ

8



we have that
σ2 ⊧ ⩔

φ∈X

ψ2,φ.

On the other hand,
σ1 ⊧ ⩕

φ∈X

ψ1,φ.

This formula is a ⩕-sentence as each ψ1,φ is. Finally,

⩔
φ∈X

ψ2,φ ⊧ ¬⩕
φ∈X

ψ1,φ

which contradicts that σ ∈ Σ.

Now suppose that ⩔φ∈X φ ∈ σ1; then X is finite. We begin in a similar way as before.
Let σ1,φ = σ1 ∪ {φ}. We claim that for some φ ∈ X , σ1,φ ∪ σ2 ∈ Σ. If not, there for each
φ ∈X there are τ -sentences ψ1,φ and ψ2,φ, with ψ1,φ a ⩕-sentence, such that σ1,φ ⊧ ψ1,φ

and σ2 ⊧ ψ2,φ, and such that ψ1,φ ∧ ψ2,φ is unsatisfiable. So ψ1,φ ⊧ ¬ψ2,φ. Since

σ1 ⊧ ⩔
φ∈X

φ

we have that
σ1 ⊧ ⩔

φ∈X

ψ1,φ.

As X is finite, by Lemma 4.1 this is equivalent to a ⩕-sentence. On the other hand,

σ2 ⊧ ⩕
φ∈X

ψ2,φ

and

⩔
φ∈X

ψ1,φ ⊧ ¬⩕
φ∈X

ψ2,φ

which contradicts that σ ∈ Σ.

6. This follows from the claim as (∀x)φ(x) ⊧ φ(c) for all c ∈ C.
7. If (∃x)φ(x) ∈ σ, then choose c ∈ C which does not appear in σ. Suppose that (∃x)φ(x) ∈
σ1; the case where (∃x)φ(x) ∈ σ2 is similar. We claim that σ ∪ {φ(c)} ∈ Σ. Suppose
that σ1 ∪ {φ(c)} ⊧ ψ1 and σ2 ⊧ ψ2, where ψ1 is a ⩕-sentence. Write ψ1 = θ1(c)
and ψ2 = θ2(c). We have σ1 ⊧ φ(c) → θ1(c), and so since c does not appear in σ1,
σ1 ⊧ (∀x)[φ(x) → θ1(x)]. Similarly, σ2 ⊧ (∀x)θ2(x). Also, σ1 ⊧ (∃x)φ(x) and so
σ1 ⊧ (∃x)θ1(x). Since (∃x)φ(x) ∈ σ1, φ(x) is a ⩕-formula. So (∃x)θ1(x) ∧ (∀x)θ2(x)
is satisfiable, say in a model M. Note that the constant c does not appear in the
formula (∃x)θ1(x) ∧ (∀x)θ2(x), so we may choose the interpretation of c in M such
thatM ⊧ θ1(c). ThenM ⊧ θ1(c) ∧ θ2(c).

8. let t be a term with no variables and let c, d ∈ C,

(a) This follows from the claim.

9



(b) Suppose c = t ∈ σ and φ(t) ∈ σ. Write σ = σ1 ∪ σ2. Consider µ = σ ∪ {φ(c)} =
σ1 ∪ σ2 ∪ {φ(c)}. Suppose c = t ∈ σi and φ(t) ∈ σj . The case i = j follows from the
claim, so we consider the case i ≠ j. Suppose that σi ⊧ ψi and σj ∪ {φ(c)} ⊧ ψj .
Then σi ⊧ c = t ∧ ψi and σj ⊧ c = t → ψj , so c = t ∧ ψi ∧ (c = t → ψi) is satisfiable.
So ψi ∧ ψj is satisfiable.

(c) Pick e ∈ C which does not appear in σ = σ1 ∪ σ2. Then if σ1 ∪ {e = t} ⊧ ψ1 and
σ2 ∪{e = t} ⊧ ψ2, write ψ1 = θ1(e) and ψ2 = θ2(e). Then since e does not appear in
σ1 or σ2, σ1 ⊧ θ1(t) and σ2 ⊧ θ2(t). Thus θ1(t)∧θ2(t) is satisfiable. Given a model
of θ1(t) ∧ θ2(t), setting the interpretation of c to t, we get a model of ψ1 ∧ψ2. So
ψ1 ∧ψ2 is satisfiable.

Since φ1 ⊧ φ2, {φ1,¬φ2} ∉ Σ as otherwise by the Model Existence Theorem there would
be a model of φ1 ∧ ¬φ2. By definition of Σ, there are τ -sentences ψ1 and ψ2, with ψ1 a

⩕-sentence, such that φ1 ⊧ ψ1, ¬φ2 ⊧ ψ2, and ψ1 ∧ ψ2 is not satisfiable. So we have that
φ1 ⊧ ψ1, ψ1 ⊧ ¬ψ2, and ¬ψ2 ⊧ φ2. Hence φ1 ⊧ ψ1 and ψ1 ⊧ φ2.

Thus ψ1 is the desired interpolant, except that it may contain constants from C. Write
ψ1 = θ(c̄), where θ is an τ -formula with no constants from c̄. Neither φ1 nor φ2 contains
constants from C, and so φ1 ⊧ (∀x̄)θ(x̄) and (∃x̄)θ(x̄) ⊧ φ2. Since (∀x̄)θ(x̄) ⊧ (∃x̄)θ(x̄), we
can take (∀x̄)θ(x̄) as the interpolant.

We get the following corollary, which is (1) implies (2) of Theorem 1.1. Interestingly,
when we apply the interpolation theorem in the proof, one of the languages contains the
other (i.e., we have τ1 ⊇ τ2 so that τ = τ1 ∩ τ2 = τ2). If it were not for our added assumptions
on the form of the formulas involved, finding an interpolant would be trivial as we could just
take the sentence in the smaller language.

Corollary 4.5. Let K be a class of τ -structures closed under isomorphism. If K is both a
PC∆-class and Lω1,ω-elementary, then it is defined by a ⩕-sentence.

Proof. Let τ∗ ⊇ τ be an expanded language and let X be a set of first-order sentences such
that K is the class of reducts to τ of models of ψ1 = ⩕φ∈X φ. Note that ψ1 is a ⩕-sentence.

Let ψ2 be an Lω1,ω(τ)-sentence defining K. We have that ψ1 ⊧ ψ2, so by the Interpolation
Theorem, there is a ⩕-τ -sentence θ such that ψ1 ⊧ θ and θ ⊧ ψ2.

Every M ∈ K has an expansion which is a model of ψ1 and hence is itself a model of θ;
and every model of θ is a model of ψ2, and hence in the class K. So θ defines K.

5 The Skolem Argument

For the direction (2)⇒(1) of Theorem 1.1, we must prove the following theorem. The proof
works for sentences from Lκ,ω for any κ. The essence of this theorem is that a ⩕-sentence
of Lκ,ω can be Skolemized to a first-order theory.

Theorem 5.1. Let K be a class of structures closed under isomorphism. If K is defined by
a ⩕-theory of Lκ,ω, then it is a pseudo-elementary (PC∆) class.

10



Proof. We will argue by induction on the complexity of formulas that for every ⩕-formula
ϕ(x̄), there is a collection of elementary first-order formulas Φ(ϕ) in an expanded language
τϕ such that for every A ∈ K there is an expansion A+ of A to τϕ such that, for all ā ∈ A, we
have A ⊧ ϕ(ā) ⇐⇒ ∀ϕ′ ∈ Φ(ϕ),A+ ⊧ ϕ′(a)

Indeed, suppose that ϕ(x̄) is a ⩕-formula. Then either ϕ(x̄) is already an elementary
first-order formula (in which case Φ(ϕ) = {ϕ}), or it is of one of the following forms:

1. ϕ ≡ (∃y)ψ(x̄, y).
Take Φ(ϕ) = {θ(x̄, fθ(x̄)) ∣ θ ∈ Φ(ψ)} where the fθ are new function symbols.

2. ϕ ≡ (∀y)ψ(x̄, y).
Take Φ(ϕ) = {(∀y)θ(x̄, y) ∣ θ ∈ Φ(ψ)}.

3. ϕ ≡ ⩕i∈I ψi(x̄).
Take Φ(ϕ) = ⋃i∈I Φ(ψi)

Then showing that Φ(ϕ) has the desired property is easy by induction. For ϕ in case (2) or
(3), the expansion A+ of A is inherited from the subformulas. For ϕ in case (1), in addition
to the inherited expansion, the fA

+

θ (ā) still need to be defined. For ā such that A ⊧ ϕ(ā),
choose b such that A ⊧ ψ(ā, b), and set fA

+

θ (ā) = b for all θ ∈ Φ(ψ). For ā such that A /⊧ ϕ(ā),
choose any b ∈ A and set fA

+

θ (ā) = b for all θ ∈ Φ(ψ).
Note that the languages constructed can be assumed to be disjoint for different sentences,

so there is no extra difficulty in starting with a theory, rather than a sentence.

6 Game Formulas

In this section, we show how the direction (2)⇒(1) of Theorem 1.1 follows from known results
on game formulas.

Definition 6.1. A closed game formula is an expression of the form

∀y1∃z1∀y2∃z2⋯⩕
n

ϕn(x̄, y1, z1, y2, z2, . . .)
where each ϕn is an elementary first-order formula. Such a formula is computable if the
sequence ϕn is computable.

Satisfaction for such formulas is defined by a game played between two players, with player
I playing the ∀ quantifiers and player II playing the ∃ quantifiers; player II wins, and the
formulas is satisfied, if he can make ϕn(x̄, y1, z1, . . .) true for every n. Alternatively, satisfac-
tion can be defined by the existence of Skolem functions (which turn out to be the winning
strategies for player II).

Note that each ϕn has finitely many free variables. Also, the ‘closed’ adjective refers to
use of conjunctions in the formula.

Every (computable) ⩕-formula is equivalent to a (computable) closed game formula by
moving all of the quantifiers to the front. So we can get we get the direction (2)⇒(1) of
Theorem 1.1 as well as Theorem 1.5 as corollaries of the following theorems, respectively.

11



Theorem 6.2. [Kol85, Theorem 2.1.4] Any class of τ -structures defined by a closed game
formula is PC∆.

Theorem 6.3. [Bar75, Corollary 6.6.7] Any class of τ -structures defined by a computable
closed game formula is PC′.

The proof given in the previous section is, however, much simpler. Indeed, the proof in
Section 5 gives a proof of Theorem 6.2 because the Skolem functions for closed game formulas
are still finitary functions because each stage of the game has only finitely many plays before
it (and because each of the formulas ϕn has finitely many free variables). This proof could
be further generalized to consider longer games, showing that any class defined by a higher
analogue of closed game formulas is PC in some infinitary logic Lκ,λ.

References

[AK00] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy,
volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, 2000.

[Bar75] Jon Barwise. Admissible sets and structures. Springer-Verlag, Berlin-New York,
1975. An approach to definability theory, Perspectives in Mathematical Logic.

[CV58] W. Craig and R. L. Vaught. Finite axiomatizability using additional predicates. J.
Symb. Logic, 23:289–308, 1958.

[Hod93] W. Hodges. Model Theory. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1993.

[Kol85] Ph. G. Kolaitis. Game quantification. In Model-theoretic logics, Perspect. Math.
Logic, pages 365–421. Springer, New York, 1985.

[LE65] E. G. K. Lopez-Escobar. An interpolation theorem for denumerably long formulas.
Fund. Math., 57:253–272, 1965.

[Mal71] Jerome Malitz. Infinitary analogs of theorems from first order model theory. The
Journal of Symbolic Logic, 36(2):216–228, Jun 1971.

[Mar16] D. Marker. Lectures on infinitary model theory, volume 46 of Lecture Notes in
Logic. Association for Symbolic Logic, Chicago, IL; Cambridge University Press,
Cambridge, 2016.

[Sco65] D. Scott. Logic with denumerably long formulas and finite strings of quantifiers. In
Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), pages 329–341. North-
Holland, Amsterdam, 1965.

[She12] Saharon Shelah. Nice infinitary logics. The Journal of the American Mathematical
Society, 25:395–427, 2012.

12



[Vak16] A. Vakili. Temporal Logic Model Checking as Automated Theorem Proving. PhD
thesis, University of Waterloo, 2016.

[VD14] A. Vakili and N. A. Day. Reducing ctl-live model checking to first-order logic
validity checking. In 2014 Formal Methods in Computer-Aided Design (FMCAD),
pages 215–218, Oct 2014.

13


	1 Introduction
	2 Notation and Definitions
	2.1 Infinitary Logic
	2.2 Pseudo-elementary Classes

	3 Examples
	4 An Application of Craig Interpolation
	5 The Skolem Argument
	6 Game Formulas

