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MIXED RAY TRANSFORM ON SIMPLE 2-DIMENSIONAL RIEMANNIAN
MANIFOLDS

MAARTEN V. DE HOOP, TEEMU SAKSALA, AND JIAN ZHAI

ABSTRACT. We characterize the kernel of the mixed ray transform on simple 2-dimensional Rie-
mannian manifolds, that is, on simple surfaces for tensors of any order.

1. INTRODUCTION

We provide a characterization of the kernel of the mixed ray transform on simple 2-dimensional
Riemannian manifolds for tensors of any order. The key application pertains to elastic ¢S-wave
tomography [3] in weakly anisotropic media.

We let (M, g) be a smooth, compact, connected 2-dimensional Riemannian manifold with smooth
boundary M. We assume that (M, g) is simple, that is, OM is strictly convex with respect to g and
exp,, : exp, (M) — M is a diffeomorphism for every p € M. We let SM = {(z,v) € TM;|jv|ly = 1}
be the unit sphere bundle. We use the notation v for the outer unit normal vector field to OM. We
write i, (SM) = {(z,v) € SM;x € OM, (v,v)y < 0} for the vector bundle of inward pointing unit
vectors on M. For (x,v) € SM, 7, ,(t) is the geodesic starting from x in direction v, and 7(z,v)
is the time when ~, , exits M. Since (M, g) is simple 7(z,v) < oo for all (z,v) € 90;,(SM) and the
exit time function T is smooth in 9, (SM) [15, Section 4.1].

We use the notation S*M, k € N, for the space of smooth symmetric tensor fields on M. We also
use the notation S¥M x SYM, k,¢ > 1 for the space of smooth tensor fields that are symmetric with
respect to first k£ and last £ variables. The mized ray transform Ly, ¢ of a tensor field f € S kM x SEM
is given by the formula

(1)
7(z.w) , , , ,
Lyef (x,0) = /0 Jireoiigr g V@)Y - A@) 0 (8)7 - n(E)*de, (x,0) € Oin(SM), ¥ = Va0,

where we used the summation convention, while 7(t) is some unit length vector field on 7 that is
parallel and perpendicular to 4(¢) and depends smoothly on (x,v) € 9;,(SM). We note that the
definition of the mixed ray transform is different in higher dimensions, due to the freedom in the
choice of n (See [15 Section 7.2]). We consider the choice of n(t) and the mapping properties of
Ly, ¢ in dimension 2.

We define two linear operators the images of which are contained in the kernel of Ly ,. For a

(k x £)-tensor, fi, i, ii...j,» We introduce the symmetrization operator as

. . 1
(2) (Sym(it, -y i) ir,oiggirnge = k! Z fio(l)v~~~’io(k)j1,m,jz7
g

where o runs over all permutations of (1,2,--- ,k). This operator symmetrizes f with respect to
the first k indices. We define the symmetrization operator Sym(j1,...,j¢), for the last ¢ indices
analogously.
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We introduce a first operator A the image of which is contained in the kernel of Lj,. The
operator \ : S*71M x S“IM — SEM x S*M is defined by

3) (AW)i iy ege 7= SYm(in, - o i) Sym(ji, -, o) (Girjy Wia,...pipga, g )-
Using () and (@) it is straightforward to verify that

(4) Wiy a0 0™ () (v =0, v e TM,
where v* is any vector orthogonal to v. Therefore (@) implies that

Im(X) C ker(Ly).

We use the notation w;, ., for the (h) component functions of the covariant derivative Vu of
the tensor field u. We define the second operator, d’' say, by the formula,

(5) d/ : Sk_lM X SZM — SkM X SZM, (d,u)il,-~-,ikj17~~,jz = Sym(il, . 7ik‘)uiz,...,ikjl,...,j(;h'
Then the following holds for any v € S¥~*M x S*M,

©) 5 (Wi s OO 50 () )
= (d/u)h,---,ikjh---,j/'Y(t)il e ';Y(t)ikn(t)jl o 'n(t)jl'
If u|lpps = 0, then Ly ¢(d'u) = 0 by the fundamental theorem of calculus. Thus
{d'u: ue SFIM x S*M, ulgpnr = 0} C ker(Lyp).
Our main result shows that the kernel of Lj, ¢ is spanned by the images of these two linear operators.

Theorem 1. Let (M, g) be a simple 2-dimensional Riemannian manifold. Let f € S*M x S*M,
k,0 > 1. Then

Lk,éf($v U) =0, (337 U) € am(SM)
if and only if
f=du+ w, uweS*IM xS'M, ulop =0, we SFIM x SIM.

The key observation needed to prove this theorem is that the mixed ray transform and the
geodesic ray transform can be transformed to one another, for arbitrary k,¢ > 1, if (M,g) is a
2-dimensional simple Riemannian manifold. A similar observation has already been obtained for
the transverse ray transform by Sharafutdinov [15, Chapter 5]. The work by Paternain, Salo and

Uhlmann [9] proved the s-injectivity of the geodesic ray transform on simple manifolds in dimension
2. In Theorem [I we characterize the kernel of Ly, using their results.

2. RELATION WITH ELASTIC ¢S-WAVE TOMOGRAPHY

We describe a mixed ray transform arising from elastic wave tomography. We follow the pre-
sentation in [I5, Chapter 7], wherein one can find more details. Let (z!,2?) be any curvilinear
coordinate system in R?, where the Euclidean metric is

ds? = gjkda;jda;k.

The elastic wave equations

(7)

k
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describes the waves traveling in a two-dimensional elastic body M C R2. Here u(z,t) = (u',u?) is
the displacement vector. The strain tensor is given by

1
Ejk = 5(”]’;16 + Uksj),
while the stress tensor is
ot = Cirime™,
where C(z) = (Cjpm) is the elastic tensor and p(z) is the density of mass. Here /™ is obtained
by raising indices with respect to the metric g;;. The elastic tensor has the following symmetry
properties
(8) Cjkim = Ckjim = Cimjk-

We assume that the elastic tensor is weakly anisotropic, that is, it can be represented as

Cikim = AGjkGim + 1(gjiGkm + GimGrt) + 0Cjkim,

where A and p are positive functions called the Lamé parameters, and ¢ = (cjkiy,) is an anisotropic
perturbation. Here, 0 is a small positive real number. We note here that ¢ = 0 corresponds to an
isotropic medium.

We construct geometric optics solutions to system ([7]) using the parameter w = wy/9,

00 u(m) oo E(m) 00 O'(m)
Ui — eiwL Z J Eip = eiwL Z Jk Ok = eiwL E Jk
7 - \m? Ik — - \m? Ik — Nm?
= (iw) | (iw) = (iw)

where ¢(z) is a real function.
We substitute the above solutions into equation (7)), assume uY = (2 = 5(=2) = 0 and
equate the terms of the order —2 and —1 respectively in w, to obtain

A+ ), Vi) Vet (ulVel[§ = p)u® = 0.

If we take

2 P
9) Vel = o
then

W Vi), =0.
(0)

The solutions u; " represent shear waves (S-waves), and the displacement vector u© is orthogonal
to Vi. We denote ng = p/u and vs = 1/ns. The characteristics of the eikonal equation (@) are
geodesics of the Riemannian metric n2ds? = n2g;xda’ dz*.

We choose a geodesic v of metric n2ds? and apply the change of variables,

w = An] G,

where
As = ¢ )
v dJpus

Then it is shown in [I5, Section 7.1.5.] that ( satisfies the following Rytov’s law

D¢ 1 . "
( ) <dL >]’ vag( j YiY )wochl et Cv

J* = n2det(g;r), C is a constant.
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where % is the covariant derivative along . We note that chlmﬁkﬁm is quadratic in 7§, and
symmetric in k, m, so the solution ¢ of (I0) depends only on the symmetrization

Jikim = —im(cjlkm + Cjmkl)-

We assume that for every unit speed geodesic v : [a,b] — M (in Riemannian manifold (M, n2ds?))
with endpoints in OM, the value ((b) of a solution to equation (I0) is known as ((b) = U(v)((a),
where U(7) is the solution operator of (I0) and 7(a) is the initial value. We formulate an inverse
problem.

Inverse Problem 1. Determine tensor field f from U(7y).

We linearize this problem as in [I5] Chapter 5]. Take a unit vector £(t) L 4(t), which is also
parallel along 7. Then e;(t) = £(t) and es(t) = 4(¢) form an orthonormal frame along v. In this
basis, equation (I0) is

. o1
(11) Cl = —Zp

swoctm¥'A"¢, (e =0.
S

v
We denote F(t) = —iﬁwoclllm(y(t))ﬁl t)3™(t). Since () is a separable first order ordinary
differential equation, its solution is

G (b) _ ef(f F(t)dtC1 (a)
We take the first-order Taylor expansion of the right-hand side of the equation above to obtain

b
C1(b) — ¢i(a) ~/ F(t)¢*(a)dt.

Multiplying this equation by n'(a), we get
b

b
(12) m@—mmc@~/fwcmc@wzjmmmm@wwwwvwwww

a a

We denote the vector field n(t) = ¢*(a)e;(t), ¢*(a) = 0, and observe that it is parallel along v and
perpendicular to §(¢). The right-hand side of (I2)) then takes the form

b
[ wnrum @)t ©n' @3 05" @)t
We arrive at the inverse problem.

Inverse Problem 2. Determine the tensor field f from

b
Laalf) = [ Fuan O (01 (03 03" 01t
for all v and n L v, where n is parallel along ~y.

Remark 1. The tensor field f possesses the same symmetry properties &) as C. Therefore f €
S2M x S2M. Since

Loo(f + du+ Aw) = Laao(f), foranyu e SM x S?M, we STM x S*M,

we can only recover the tensor f up to the kernel of Loo. Thus the Inverse Problem[2 is a special
case of Theorem [1.
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3. CONTEXT AND PREVIOUS WORK

We note that if £ =0 in (), the operator Ly is the geodesic ray transform I}, for a symmetric
k-tensor f. It is well known that Sym(iy,...,ix)Vu is in the kernel of Iy, where u is a symmetric
(k — 1)-tensor with u|pq = 0. If I} f = 0 implies f = Sym(i1, ..., i) Vu, we say Ij is s-injective.

When (M, g) is a 2-dimensional simple manifold, Paternain, Salo and Uhlmann [9] proved the
s-injectivity of I for arbitrary k. The standard way to prove s-injectivity of Iy and Iy is to use
an energy identity known as the Pestov identity. If k& > 2 this identity alone is not sufficient to
prove the s-injectivity. The special case k = 2 was proved earlier [14] using the proof for boundary
rigidity [13].

In dimension three or higher, it has been proved that I is injective [6, [7], and I; is s-injective
[2]. The s-injectivity of Ij for k > 2 is still open for simple Riemannian manifolds. Under certain
curvature conditions, the s-injectivity of I, k& > 2 has been proved in [4, 11l 12l 15]. Without
any curvature condition, it has been proved that Iy has a finite-dimensional kernel [16]. If ¢ is in
a certain open and dense subset of simple metrics in C",r > 1, containing analytic metrics, the
s-injectivity is proved by analytic microlocal analysis for k = 2 [I7]. Under a different assumption
that M can be foliated by strictly convex hypersurfaces, the s-injectivity has been established for
m =0 [20], and m = 1,2 [18].

The mixed ray transform (¢ # 0, k # 0) is not studied as extensively as the geodesic ray
transform. In dimension two or higher, a result similar to Theorem [I has been obtained under a
restrictive curvature condition [15].

When k = 0, Lo is called the transverse ray transform, also denoted by Jy. For Jy, the situations
are quite different for dimension two and higher dimensions. In dimension three or higher, J; is
injective for ¢ < dim M under certain curvature conditions [15]. However, J; has a nontrivial kernel
in dimension 2. This problem is related to polarization tomography, for which some results are
given under different conditions [5] [8 [10].

4. PROOF OF THEOREM [1I

Since (M, g) is a 2-dimensional simple Riemannian manifold, there exists a diffeomorphism ¢
from M onto a closed unit disc D of R2. If ¢’ is the pullback of metric ¢ under ¢~' on D then ¢’
is conformally Euclidean, meaning that there exists a change of coordinates after which ¢’ = he,
where h is some positive function and e is the Euclidean metric; this was shown in [I, Theorem 4]
and [I9, Proposition 1.3]. Therefore there exists global isothermal coordinates (z1,z2) on M, so
that the metric g can be written as e2a(m)(dx% + dx3) where () is a smooth real-valued function
of z.

The global isothermal coordinate structure makes it possible to define a smooth rotation,

o:TM —TM, o(v):= (v, —v1),
where v = (v1,v2) in these coordinates. This map satisfies
(13) vlo() and |oflg= o)l
Moreover, there exists a linear map
(14)  ®:S"M x S'M — C®(SM), (Df)(2,0) = fir,..oipjrrnge (@0 -V (0) - o ().

Thus each tensor field f € S¥M x S*M is related to a smooth function on SM via ([4)). We note
that ® is not one-to-one since ®(A\w) = 0 for any w € S¥~1M x S~ M, where X is as in (@). We
have the following
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Lemma 1. For any f € S*M x S¢M it holds that

(z,v)
(15) Lief(z,v) = /O () (e (B): A ()l (2,0) € Din(SM)

and
Lyg: SEM x S*M — C>(0;,SM),
if we assume that
n(0) =o(v), (x,v) € Iin(SM).
Proof. Let (z,v) € 0;,SM. We define n = o(v). Let P,(n) be the parallel transport of n from T, M
to T, ,;yM, t € [0,7(x,v)]. By the property of parallel translation, P : T,M — T, M is an
isometry, whence || Pin|ly = 1 and (P;n,7(t))qy = 0. Since M is 2-dimensional, the continuity of P
in ¢t with (I3]) imply
bn = U(I.Vx,v(t))'

Because the functions ®f and 7 are smooth in 0;,(SM), the function Ly ,(f) is smooth in

Oin(SM) due to (I3). O

Let f € S¥M x S¢M. Simplifying the notation, from here on we do not distinguish tensor f from
function ®(f). We notice first that

(16)  flav) = (=) NOIN Lo gt iy NI ) 0y € S,
where N(ji,...,j¢) is the number of 1s in (ji,...,j¢). We let § be the map that maps 1ls in
(J1,---,J¢) to 2s and vice versa. We denote by d(j1,...,j¢) the £-tuple obtained from applying § to
(J1,---,J¢). Then we define a linear operator

(17) A: SkM X SZM — SkM X SZM7 (Af)ih---,ikjl,---JZ = (_1)Z_N(j17m7je)fi1,~~~,ik5(jl,m7je)’

We note that if £ = 1, then A and the Hodge star operator coincide. Formula (I7]) implies that A
is invertible with the following inverse

(18) A7l = (1A
We then point out that
(19) (AP iigige @0 o V0T = (SymAL )y i ()07 0P 0,

The notation Sym#h stands for the full symmetrization of the tensor field h.
Using equations (I6)), (I7) and (I9]), we find that

(20) Lie(f) = Ikte(Sym(Af)),

where I, is the geodesic ray transform on symmetric tensor field h € S*M, defined by the
formula

(z,v) ) )
Iiye(h)(z,v) = /0 hil,--.,ikw('Yx,v(t));}’x,v(t)“ ""‘Y:mv(t)zkHdta (z,v) € On(SM).
By (20) and [9, Theorem 1.1] it holds that for any h € S¥M x SM,

(21) Li.¢(h) = 0 if and only if SymAh = d*v, v € SFH7IM,  w|gy = 0.

In the above, d® stands for the inner derivative, that is, the symmetrization of the covariant deriv-
ative

(22) d*u = Sym(Vu), ue S*1.
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If Ly ¢(f) = 0 then, with (I8) and (2I]), we can write
f= (=1 A(Sym(Af) + (Af — Sym(Af))) = (=1)*A(d*u) + f + (=) A(Sym(A[)).
We conclude that the claim of Theorem [Il holds if
f+ (—D)TTASym(Af)) = Mo,  A(d*u —d'u) = ', dA=Ad,

for some w,w’ € SFIM x S~'M and u € S¥t~1M. These equations will be proved in the
following subsections.

4.1. Analysis of operator ASymA. In this subsection, we prove the following identity for any
feSkM x StM:

(23) f4+ (=D)L ASym(Af)) = Mw  for some w € S¥1M x S*1M.
We start with a lemma that characterizes the kernel of ASymA

Lemma 2. For the linear maps ASymA : S*M x S*M — S¥M x S*M and
X SFTIM x SIM — SFM x SM the following holds

ker(ASymA) = Im(\).

Proof. We use the notation ®; for the symmetric product of tensors. We note that operator A maps
a basis element ((®@"dz!) ®, (®F7"d2?)) ® (®%da!) ® (®%d2?)), h € {0,...,k},a € {0,..., ¢}
of S*M x S*M to

(—D)(@"dat) @5 (@7 d2?)) ® (@ dzt) @, (©dz?)).
We also note that the choice of isothermal coordinates implies
(24) Ma®b) = 2@ ((da' @5a) @ (da' @5b) + (da® ®5a) @ (da® @4b)), a®be SFT1M x SIM.
Since A is a bijection, it suffices to prove
(25) Im(A) = ker(SymA).

We prove first that Im(\) C ker(SymA). In view of the linearity of A, it suffices to prove that
Aw € ker SymA when

w= r(:n)((@h_ldxl) ®s (®k_hdx2)) ® ((®“_1dx1) ®s (®£_“dx2)), he{l,...;k},ae{l,...,¢}.
Then

(26) e 2@ Axw = (=1)" % (z) <((®hdazl) ®s (@7 d2?)) @ (@ dz') @ (2°da?))

_ ((®h—1d$1) R (@k_h+1d$2)) ® ((®é—a+1d$1) R (®G_1d$2))>.

Since Sym is a linear operator, we have SymA(Aw) = 0. Therefore Im(\) C ker(SymA)

Now we prove that ker(SymA) C Im()). We assume first that f = S"M_ w,,, where
(27) Uy = rm(:n)((®hdx1) ®s (®k_hdx2)) ® ((@Z_“dxl) s (®“dm2)), h + a < min{k, ¢}.
Then we can write f = Z';;ZO fu, where fi =0, if H > min{k, ¢} and otherwise

H
fu =Y amnfun fan = (@"de") @, (@ " da?)) @ (@ Mda') @, (@7 "da?)).
h=0
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Moreover f € ker(SymA) if and only if fy € ker(SymA) for every H € {1,...,min{k,¢}}. In the
following we study the tensor fg, for a given H € {1,...,min{k, (}}.
For h € {1,..., H} we define w;, € S¥~1M x S*~1 M by formula
wp, = ((®h_1d:p1) ®s (@F"dr?)) @ ((®£_(H_h+1)d:1:1) ®s (®H_hdx2)).
Then (24]) yields
Awy, =2@ (fyr + frn-1)-
This implies the recursive formula
frrn = Me 2 @wy) — frpg.
Thus for every h € {0,..., H} there exists w) € S¥~1M x S*"1M such that
(28) frn = Mwp, + (=1)" fuo.
Therefore there exists wy € S¥~1M x S*~1M such that

H H
fo= Z agnfan = wn + foo Z(_l)haH,h-

h=0 h=0
If f € ker SymA it holds by the first part of this proof that

H
SymAfH = (SymAfH@) < Z(_l)haH,h> = 0.

i=0

Since SymA fr o # 0 it follows that Zfio(—l)hCLH,h = 0 whence f = Awpy. This implies f = Aw

for some w € S¥IM x S¢IM.

If f € ker SymA and we cannot write f = Zn]\fle U, Where each u,, satisfies (27]), then there
exists u,, that satisfies
(@"dz!) @, (®k_hdx2)) ® ((®é_“dx1) ®, (®%dz?), min{k,¢} < h+a < max{k,(}.

Therefore fr # 0 for some min{k, ¢} < H < max{k, ¢} and there exist two sub cases. If k < H < {,
then

k
fu = ZaH,thﬁ, fan= ((®hda;1) ®s (®k_hda;2)) ® ((®£_(H_h)da:1) ®s (®H_hdx2)).
h=0
If £ < H <k, then

¢
fu= ZaH,th,ha fan= ((®H_£+hd:171) s (®k_h_H+Zd:E2)) ® ((@hdxl) R (®5_hdx2)),

h=0
By an analogous recursive argument as before, we find that f = Aw, for some w € S*~1M x S*1 M.
This completes the proof. O
By the proof of the previous Lemma we can write any f € S*M x S*M in the form
k+¢
(29) f=M+> rufuo, rue€C®M),
H=0

for some w € S¥M x S“"1M. Next, we prove that
(30) ASymAfpo = (-1 fuo+Iw, He{l,... k+0}



MIXED RAY TRANSFORM 9

We assume first that H < min{k, ¢}. Then
fro = (®"d2?) @ (@ Hdz') ®, (2" dz?)).
This implies
SymAfpo =(-1) (@7 da' @, (@FHdx?))

1

_(_1\¢ ol oFh Heh 1 (—H+h 52
=(=1) [l ZAh dz' @, (@ "d2?)) @ (@7 "da' ® (® dz?)),

where Etho Ap = (k+¢)!. Using (28)) we obtain

H
1
ASymA fr = k; +€ , Z D" Ap frp = (1) G0 (};f%) fro+ v

=(-1)" JHo+ )\w.
If min{k, ¢} < H < max{k, ¢} it follows by a similar argument that ASymAfy o = (—1)"fmo + .
Therefore, we proved (30).

Equation (23] follows from Lemma 2] and (29)—(30).

4.2. Analysis of operator Ad®. We note that S¥*¢M < S¥M x S*M. Therefore, we can extend
the inner derivative, d*, to an operator d* : S¥~1M x S*M — S*¥M x S*M and evaluate d* — d’. In
this subsection, we show that for any v € S¥~1M x S*M the following equations hold,

(31) A(d*u — d'u) = M for some w € S¥1M x S
(32) dA=Ad.
Since Ad® and Ad’ are linear it suffices to prove the claims for
u= r(:n)((@h_ldxl) ®s (®k_hdx2)) ® ((@“d:pl) s (®Z_adx2)), re C>®(M).
By (@) and ([IT) we have
(33) Adu = (—1)““((%7‘(‘%) - R1> ((®hd:171) ®s (®k_hd:172)) ® ((®€_“d:p1) ®s (®dz?))

+ (%T(x) - R2> (@"ldat) &, (8" da?)) ® (@ da’) @, (®ada’2))>’

k+0—1
where R;;, = Zsil ril7---77:sflp:7:s+17~~~:7:k+£]‘—‘7p;7,’i5’ m € {1,2} and Vi1 i 1Dyis 1yt € {0, 7} depend-
ing on (i1,...,%k+¢)- N
We write H = h + a, assume that H < min{k,¢} and denote R,, = awimr(a;) — R,,. Then we

obtain from (7)) and (22)),

s @k dz2 H—j .1 0+j—H ;.2
d’u = k:—l—ﬁ Z ®Jda; ®Rs (@ Vdx ))@((@ Ida') @4 (@ Hdy ))

il Z Bi((®'da') @, (@ 'da?)) @ (@7 dat) @y (@ dz?)),
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where E]HZO A; =3 BPSY = (k +0)!. This yields

(34)
H
Adu=Hy (k i 0 DDA (@ det) @ (4 de?)) @ (@ dat) @, (97 da?))
" j=0
-~ = 2, » N N
TG0l & (=D B ((@'dat) @, (@M 'da?)) @ (@7 dat) @4 (9777 da?)).

We define
gu; = ((&7da') ©, (8" da?)) © (O da') @, (2777 da?)), j€{0,.... H},
and
vy = (®da') ®s (%771 da?)) @ (@7 Hda') @5 (27777 da?)), je{l,....H}.
Then (24) implies that vy ; = e2a(x) (9H,; + g j+1). We obtain

gHj = AMWHj + (—1)H_ng7H, for some w; € SEIM x S

Thus
dA'y =(—1)¢ <§19H,h + EZQH—I,h—l)
:(—1)5 (ElgH,H + EggH_LH_1> + Mw’, for some w' € SEIM x St
and
- 1 H . :
Ad*u = R, > (=D A; Qws + (1) g )
(k+20)! =
- 1 i . .
+ Ry ()" B wi g1 + (DT g ma)
(k+0)! par

:(_1)6 Elg}LH + EQQH_LH_l) + )\w”, for some w” € SFIM x S

These identities imply
A(d*u — d'u) = Mw, we SFIM x 1M
For the case min{k, ¢} < H < max{k, ¢}, the proof is similar and is omitted. Therefore have

proved (BI).

Finally we prove equation (32]). We note that

dAu= (—1)"° <E1 ((@"dat) @5 (2F"da?)) ® (@ dat) @5 (@%dz?))

+ Ry (@ ldat) @4 (@7 " da?)) @ (@ %dat) @4 (®“dm2))>.

Thus ([B2)) holds since the previous equation coincides with (B3]).
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