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Abstract. In 1962 Jézef Siciak introduced in Transactions of the AMS [SiI] his famous polynomial
extremal function, which was intensively investigated and applied in pluripotential theory and polynomial
approximations related to the Chebyshev norm on the compacts in CV. In particular, starting from middle
seventies the Siciak extremal function was one of the most important tool to investigate the behavior of
derivatives of polynomials. The pioneer was Wiestaw Pleéniak in his researches of quasianalytic functions
in the sense of Bernstein. In the circle of papers (most important joint with Wiestaw Pawlucki) there
were shawn deep connections between behavior Siciak extremal function near compact K and bounds
for derivatives of polynomials. In particular, in 1990 W. Plesniak [PI1] introduced condition (P) which
is equivalent to Markov property of compact K. In the same paper there was stated a problem which
property of Siciak’s extremal function are necessary to Markov’s property. In particular, thus Markov
sets are non pluripolar that is Siciak’s extremal function is finite at every point. Much more stronger
question is on Holder continuity of the logarithm of the Siciak extremal function, which plays a role of the
pluricomplex Green function (see [K] for excelent presentation). This problem can be formulate in more
general case of arbitrary norms g on the space of polynomials. In the present paper we, continuing our
earlier researches, investigate the connection between behavior of generalizations of Siciak’s function and
the behavior of norms of derivatives of polynomials. In particular we get some deep properties of Markov
factors M, (q, k) related to the main problems. One of the main result is the Kolmogorov-Landau type
property of M,,(q, k)l/ k¥ which is a condition on the triangle sequence of family of derivatives of polynomials
not for particular polynomials as for direct analogons of the Kolmogorov-Landau remarkable inequalities:
log My, (q,k)/* < log const. + (1 — %ggﬁ)log M,(q,1) + iggﬁMn(q,n)l/", 1 < k < n.t seems that this
condition is satisfied for arbitrary norm ¢. Separately this condition (a weaker version is sufficient) gives
nothing. But if we assume that ¢ has A. Markov’s property with respect to ¢ and satisfies a condition
C(q) > 0 then ¢ posseses Vladimir Markov property. In the case ¢(P) = ||P||g this means that non
pluripolar Markov sets possese Holder continuous pluricomplex Green function (in the one dimensional
case Markov sets are not polar [B-C]). This is presented in last section. Earlier we investigate a number
of extremal functions, between them related to Plesniak condition and to V. Markov’s property. We shall

consider mainly one dimensional case, but there is no problem to generalize for many variables.
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1. INTRODUCTION.

The vector space of polynomials of N variables with complex coefficients we shall denote by
P(CY). Then P,(CY) = {P € P(C") : deg P < n}. If we consider a norm ¢(P) = ||P|| in P(C")
we shall get a normed space X, = (P(CV),¢) and finite dimensional spaces X,,, = (P,(C"),q)
with the dual X7 . Thus, as it is well known, ¢(P) = sup{|A(P)|: A e X7, ||A]]" =1}

A main motlvatlon of this paper and a lot of earlier researches is to get bounds of partial
derivatives of polynomials in spaces X, and to investigate them. We can consider a bound for
|IA(D*P)|, where A € X7, or a supremum |[A(D*P|), A € A C X/, where A is a bounded set.
In particular we shall consider ||D*P||.

A basic observation is an obvious fact

PE+O= Y DUPEK,

|o|<deg P
— a _ a1 AN
where as usually a! = a;!---an!, (“ =" G-

Next step is a choice of a norm in CV, consider the unit ball B with respect to this norm and
next we can take a Borel probabilistic measure which is supported on 9,B the Shilov boundary of
B. Actually there is well known that the complex equilibrum measure pg = (27)~" (dd“Vg)™ has
this property.

We shall present a few examples. To do this let us recall some standard notations. The unit
disk in C is D, the unit ciricle is T, Dy is the polidisk in CV, while TV is the N dimensional tori,
which is equal TV = extr(Dy). By By is denoted the unit Euclidean ball (with respect to the
standard inner product), Sy = 0By = extr(By).

Example 1.1. ||z]| = ||2]|ec = max(|z1],..., |2n5]), B =Dy, 0B = 0,Dy =TV,
to.g = doy - - -doy,

where do; is the normalized arclength mesure on T, that is

1\" . .
/ o(2)dugp(z) = (2—> / (e, ..., e")dh; ... dfy.
CN T [0,27]N

Now we have (equivalently Cauchy integral formula can be used)

1 N N —i0-« aq an 1 a
(%) /[027@ P(z 4 (re®, . rye®™))e 0 dg = vt Y aD P(2).

Hence

N
DP(z) = alry® -y (—> / P(z+ (rie, .. .rye™))e~qp,
[0,27]

IA(DP(2))| < alry® - p®y <—) /{W IA(P(z 4 (re”™, ... rye™)))|do,



o (1YY .
ID°P)|| < alry™ - ry™ (z—) [ PG e s
@ [0,27]N
1\ 1/p
||DQP<z>||Sa!r;m-~ﬁ‘v”((a_) |G w~>>||pd"> el
m [0,27]V
In particular
ID"PEIII < alr™ - ™ o 1P+ (e, ore ™))
€|0,2mr|m

S Oé!’l"l_al tee T]:faNSOn(Qa (Tla' <. ,TN))HP(Z)H,

where
Son(qv (Tlv"'er)) = Sup{||P(z—|—§)|| : |C1‘ < T1ye0 ey |CN| < N, degP < nuHP(Z)H < 1}
=sup{[A(P(z+ Q)| Ae X0, [[A"=1, |G| <71, |Gy S 7w, deg P <, [|P(2)]] < 1}
Simirally, if A € X7, ,||A|[* =1 then we put
(pn(Q7A7 (Tlu"'vrn)) = sup{|A(P(z—|—§))| : |C1‘ < T1ye0es |CN| < TN, degP < n, HP(’Z)H < 1}
Thus
(pn(qa (7“1, st >TN)) = Sup{(pn(qua (7“1, st )) Ae X;m ||A||* = 1}

Finally, if 1 < p < oo then we define ¢, (q,p, A, (r1, ... ,rn)) by

1 N 1/p
sup — / IA(P(z+ (7’16 , rNewN) |Pde
2T [0,27] N

and ¢, (q,p, (11, ...,7,)) to being equal to

LAY 1/p
s, () L P vty

) N 1/p
<ow( () [ 1PGH0e e
2 [0,27] N

where in both cases the supremum is taken over all polynomials P with 1 < deg P < n,||P(z)|| < 1.
A specially important is the case p = 2.

Example 1.2. Now let ||z]| = ||z|[> = (|z1]* + -+ ZN|N>1/2, B = By, 0.B = Sy = S*V-1
N={zeRY: ||lz| <1} =ByNRY, B ={2€By: z; >0, j=1,...,N}
Ny = do,
where do is the normalized surfaces mesure on Sy (|Sy| = [S?V 7| = 272V /(N — 1)!), that is

L, e () =

N —1)! . ,
( 2 N) / /N 1So(plelelv"’7pN€Z€N>p1"'depdel...deN.
[0,2m ST
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Here SY ' ={z € S¥"': 2; >0, j =1,...,N}, dp is the standard surface measure on S¥=1.
Let us recall that

f(pla"'apN—la\/1_p%_”'_p?\[—1)
/Nl f(plaapN)dp_/+ dpl"-de—l-
s N (N

Now we can write

@ s P(z+rn)(m/|m[)=*" - (an/Inn|) "N do(n) =

S2N - 1/ ]N/B P(z+r(pe™, ... pya@™ 1 (1= pf — . )1 2e™)
0,27 N1

pr-epy-1€ P dpy -+ py_1dfy - dOy
L T2 Taw/2) .,

— 5 (2),
20 (Ve I'(lal/2)
where
Xa(pla'-'apN—l) :p(lﬁq—i-l : p?\{;N 11+1(1—p1 _”'_p?\f—l)aN/2'
Hence
Lo (N =14 |al/2 I'(lal/2)
DYP(z) = 2r~lel _
(2) r ( N1 [(ay/2)---T(an/2)
1 . .
] Jyu o DT/ G )™ do ()
and

14 \a|/2) I(jal/2) 1
N—1 JT(a1/2)---T(an/2) 525 1] Jens
(N =14 |a]/2 (|| /2)
<2 ( N1 )F(a1/2)-~-F(aN/2)
D2 Pl < 2t (N0 e [ PG rilidao)

(N —1tlal2y  T(al/2)
S”'( N1 )r<a1/2> T(an/2

[A(D*P(2))] < 2071 (N IA(P(z +1n))|do(n)

gon(]B%N,q,A,r),

)Son(]BNa q, T)v

where

en(By,q,7) = sup{||[P(z+ ()|l : ¢ €rBy, degP <n,||P(z)]| <1},
en(Br, g, A, r) i= sup{[A(P(z + ()| - ¢ € rBy, deg P <n,[|P(z)[| <1}.

Remark 1.3. If ¢ is the supremum norm with respect to a compact K C C" then in definitions
of ¢, we shall replace ¢ by K and if 2y € K, A(P(z)) = P(z), then we shall replace A by z.

Example 1.4.



Let K =D,2) € T, A(P(2)) = P(z), ||P|lp=1, 1 <degP <n. Then

(%) 2 (n(n—1)---(n—k+1))*r*

3

n

o ioy 12 40 1) (k) 2. 2k
PP =3 () PP <
k=1 ’ k=0

n 2
210l

with equality if P(z) = z". (Here we use Bernstein inequality for derivative of polynomials on the

unit circle). Hence
n 2 1/2
n
on(D, 20,2,7) = (Z (k) 7“%)

and -
on(D,D,2,7) = (g <Z) 2#’“) / < (147"
Moreover,
inf 140 (D, D, 2,7) < <1/(7;) /> <Z (1) or(}) w)?’f) :
< (?) <1 + 1/(7) 1/1)% < (7)(1 /)" < ¢ (?)
Therefore

n n
< inf r~ <)
(l) < mfr7p,(D,D,2,r) <e (l>
Example 1.5. Let K = [—1,1], 2 € [-1,1], A(P(2)) = P(2), ||P||c11=1, 1 < deg P <n.

27 . do n 1 2 1 2 n
/0 |P(20 + Te 6)|2% = Z (E) | P*(2)|?r?* < (H) TW(1)2r2% = Z(Ték)(l)/k!)%%.
k=1 ’ k=0 ’ k=0

Hence
n

2w
sup {/ |P(20 + 7‘6”’)\23—9, 20 € [—1, 1]} < Z(Tflk)(l)//ﬁ!)zr%
0 T k=0
with equality for P(z) = T,,(z). This gives equality
" 1/2
on(D,[-1,1],2,7) = (Z(Tg“u)/l{;!)?r%) < To(1+7).
k=0
Moreover,
inf r~p,(D, [-1,1],2,7)

n 1/2
< (1/(TO ) (Z(Té’“)(1)/k!)2(1/(T£”(1)/“)1”)2’“>

0] 0
< 207, (1 oyt = 50 (b (14 a0y m”)




_ Ty;!a)g (hn (1 + (1/n2l (n +2ll— 1))1/l>>

(l) n @
{! 21 —1 {!

Therefore
(1) TP (1)

7 < ingr_lgon(]D), [—1,1],2,7) < eVZHVAIZIE L
! r>

Remark 1.6. In two above examples we have obtained the following.
Let M, (K,1) := sup{||PY||x : deg P < n,||P||x = 1}. Then

on(D, K,2,7) < (i (W)Zm) 1/2’

k=0

M (K, D) < infrp,(D, K,2,r) < e(K)lM

r>0 l'

n 1/21
Mn(K, /{J)l/k (l!)l/l )2k
e(K) <sup s
(5) < sup swp. (kzzo ( M,y (K, DVE (RD)UF
n 1/1
M (K, k)VE (1)1 )k
<s S
= 12 (kzzo ( M, (K, ) (k)1F

Remark 1.7. We can repeat constructions from the above examples by considering another norms
in CV, for example ||z||, = (|z1? + - - - + |zv[?)"/". We shall consider below the general case.

with

Definition 1.8. Fix a norm ¢(P) = || P|| in P(CY), a circular and absorbing set B ¢ CV (for any
compact C' there exists an 7 > 0 such that K C [0,7]B) and a linear functional A € X with
||A|]* = 1. Then for any r > 0 define

en(B, ¢, A7) == sup{|A(P(z + ()| - ¢ €rB,deg P <n,[|[P(z)]| <1},

#(B, g A1) = sup ou(B, g, A, r'm,

v(B,q, A, r) :=logp(B,q, A, 7“), (B, ¢, A t) :=v(B,q, A e'),t €R,

on(B,q,7) == sup{[[P(z + ()| : ¢ €rB,deg P <, |[P(2)|| <1},

¢(B,q,7) := sup . (B, q,7)"/",

n>1
v(B,q,7) :=logp(B,q,7), u(B,q,t) :=v(B,qe)t €R.
Definition 1.9. If a norm ¢(P) = || P|| in P(C") is fixed then define
M, (q, @) := sup{||DP|| : deg P <mn, [[P|[= 1},

1/le
(.AJn(q7 ﬁ)l/W\ (a!)l/|a\ ) 18

e(q) :=sup sup
n>1 1<la|<n

1lel (BN11/18]



Remark 1.10.

o If we define M?(q, k) := sup{||[D*P|/1*l : |a| <k, deg P < n, ||P| =1} then one cane
easily check that M2 (q, k) = max;—1__n M,(q,€;).
e If ¢(q) < oo then

Mn(qaa) M : —k k Mn(Q>a) M
r(g'gg(ia! ) < mfr o By, q,7) < elg) max | — — ) -

Let us note that in the case ¢(P) = || P||puj2; we have e(q) = oco. Thus condition e(g) < oo

gives a some restriction. Here we can ask that condition e(q) < oo is equivalent to exits a

1/k 1/k
constant C' such that max (W) < ing r*p,(By,q,r) < C¥ma (M> )
: r>

lal=k jal=k \

The second question is that condition sup max log Mn(g,e5)

X, logn < 00 is necessary to satisfy
n>2 1<5<

the condition e(q) < oc.

Proposition 1.11. Let B, and By be two unit closed balls in CN such that A\B; C By C AsB;.
Then

k : —k <3 —k < k - —k )
Afinfr wn(Bl,q,r)_ggr wn(Bz,q,r)_Azggr on(By,q,7)

Applying arguments from [BB-CI] one can prove the following important facts.

Theorem 1.12. The following functions are convex functions on R (possibly some of them are
equal to +00):

log on(B,q, A, e"), logp(B,q, A, e"), logp,(B,q,e"), logp(B,q,e").

Remark 1.13. Since log ¢,(B, ¢, €') is a convex function, we get inequality

1 1
Spn(]Ba Q>T8) S SON(B> q, ,,,.p)l/pgon(B’ q, Sq)l/q’ -+ - = 1.
p q

As a direct consequence of this theorem and known properties of convex functions we get an
important properties (c.f. [BB-CI]).

Corollary 1.14. The following functions if are finite then are continuous and increasing on
(0,00):

log on (B, q, A, 7), log(B,q,A, ), logp,(B,q,r), loge(B,q,r).

Applying known (but still dificult to prove) we get one of reasons that introduced notions can
be helpful.

Corollary 1.15. If logp(B,q, A, r) or log (B, q,r) is finite then this function is differentiable
except possibly countable set of points and is twice differentiable almost everywhere (Alexandrov’s
theorem,).



2. RADIAL MODIFICATIONS OF SICIAK’S EXTREMAL FUNCTION.

If E C CV is a compact set then Siciak’s extremal function ®5(2) = ®(F, 2) is usually defined
as

O(E, z) == sup{| P ()| %" . degP > 1, ||P||p <1}, z € CV.
In connection with ®(E, z) there are also considered functions ®,,(E, z), where
®,(E, 2) =sup{|P(2)| : degP <n, ||P||p <1}, 2 € C".
There is known that (c.f. 3.2 in [Si3]) for all z € CV
O(E, 2) = sup &, (E, 2)V/" = lim &, (E, 2)"/.

The L — capacity is defined as C(E) := liminf, . ||z||2/P(E, 2) (cf. [K],[Si2],[Si3]), which is
Choquet capacity [Ko] and has product property C'(E x F') = min(C(£), C(F)) [BB-CI].
Analogously we can define C,(F) := liminf, ., v(z)/®(E, z), where v is a norm in CV. We
refer to [BB-CI1] for examples, where C,(F) is explicitely computed. In the case v(z) = ||z||, we
also have product property: C,(E X F) = min(C,, (E), C,,(F)), where v;(2;) = ||||,-
Now for r > 0 define

on(r) = on(E,7) :==sup{|P(z+ ()| : z€ E, [[(|]]2 <7, degP < n, [|P||g <1}
= on(By, E,1r) =sup{P®,(F,z+ () : z€ E,||C||]2 <r},

p(r) = p(B,r) = sup g, (B,r)" = sup{®(E, 2 +¢) : z € E,|[¢|l2 < 7},

n>1
and
v(r) =v(E,r) =log@(E,r), v,(r) =logen(E£,r), r>1,

u(t) = u(E,1) = o(e), un(t) = vale?), t € R.
An important tool in polynomial approximation theory plays the homogeneous capacityo(E)
related to the homogeneous Siciak extremal function V(E, z):

U(E,z) =sup ¥, (E, 2)Y" = lim U, (E, 2)"/",
n—oo

n>1

where
U, (E,z) =sup{|P(z)| : P homogeneous of degree n, ||P||g <1}, z € CV,
v(z) . 1 1

,(E) ;= liminf = = .
ou(E) oo U(E, z) V)1 U(E,z)  sup VU(E,z)
v(z)=1

There is known(c.f. [Korl] - [Kord]) the following description of homogeneus capacity in the case
u(2) = ||zl | |

oy (E) = 711r21f1 Bu(E) = nh_{roloﬁn(E%
where

. . a 1/n
f(E) = inf inf 2" M_Z[# bs2” || ".
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The constants (,(E) are optimal in the following deep result, which was proved by Koreavaar
refining earlier joint lemma with Wiegerinck (cf. [Korl] - [Kor4]).

Proposition 2.1. If E ¢ SN=! c RY satisfy B,(E) > 0 then for any f C™ function on a
neighborhood of some point a € RN one has inequality:

ma (1) 1D°s@)] < sup | () fa+ o) 508" < sup (£) s+ )l

lor|=n yeE
Remark 2.2. The proposition fails in the most interesting case £ = {ej,...,ex}, especially in
the case of polynomials. However if we consider family of constants M, (¢, «) then probably the
following is true:
if ¢ is an arbitrary norm in P(C?) then there exists a positive constant a = a(q) such that
< a(q)k ).
max M, (g, @) < a(q)" max Mx(q, ke;)

|al=k

Jo(E)".

Let us note, as an example, that for ¢(P) = || P||p, one can take a(q) = e”. Similarly, in the
case ¢(P) = ||P||j_11~ we can put a(q) = e*".

Example 2.3.
() If E={2eCN: ||z]| <1} (]|z|| is a norm in CV) then p(E,r) =1+ r/C(E). By [Md]

aresew 0" =5 (0 () (iem) o

lim 2% ||2| 3V (ddlog (B, ||2]]2) = C(E).

Z—00

2)UHE={:eRVcCN= RN + RN +iRY 1 p(2) < 1} then o(E,r) = h(1 +r/(2C(E))),
where h(t) =t +Vt2—1, t > 1. (We also have h(t) = g|[_1}+oo)(t), g(t) = st +1/t) =
t—9g(t), 9(t) = 3(t - 1/t).) In this case we can calculate

L1/l N-1 1\ 32 1 N/2+1
dd‘log o(E, =— (= T 20(E),
(dd"Tog o(E, 1]l 4(2) <||z||2> <||z||2+4O(E)) (&)

lim 287 |2|[7 1 (dd log (B, ||2]]2)™ = 2C(E).
Z—00

(3) If E is the closed unit ball in C with respect to a norm n(z) = ||z|| then there is known
(cf. [Si2],[Si3]) that W(E, z) = ||2|| (while ®(FE, z) = max(1,]|z||)), whence
1
C,(E)=0,(E)= —.
B =)=

(4) A situation is much more complicated if E is a convex symmetric body in RY. There
was known in the case E is the unit Euclidean ball in RY than U(E,z) = L(z) =
z z 4 1/2 . . . .
(M) is the Lie norm (which gives o(E) = % >3 =C(E)).
If N > 2 asituation is quite unclear. But in the case N = 2 there is known the following
result [BI] (cf. [B2]):
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Let S be the unit ball with respect to a norm N in R2. If u(t) = log N(1,t) then
(S, (21, 22)) = |21] exp Pu(zz/21),
with

Pulc) = (301 [ le—tuttde =< [ utty+ o) E

- 1+¢2’
where ( =z 41y, y > 0.

In particular, ff Ny, (z) = (22 + 22™)®™ and S, = {z € R? : N, (z) = 1}, then for
all z € C2,

m

1/m
(S, 2) = [H (l21]? = 20;R(2172) + |2 + 2|ﬁj\s(z1z—2>|)”2] ,
j=1
where (; = a; +i; € X/—1, j=1,...,m, with ; # ( for j # k.

If Noo(x) = max(|zy],|z2|) and So = {z € R?: N, (z) = 1}, then for all z € C?

2

Since S1 = {z € R? : |z1| + |z2| = 1} = L7 (S), where L(z21,22) = (21 — 29, 21 + 22), We
get

2m
W(Sec, 2) = exp {/ log (|21]* = 2 cos OR(2173) + |22]* + 2| 81n6’\s(2122)|)1/2 d@} .
0

W(Sy,2) = U(Sa, L(2))

2
do
= exp [/ log (2]21]* + 2|z2|* — 2 cos 0(| 21> — |22]*) + 4] sin 03 (21%2)|) E} .
0

Example 2.4.

(1) E={z€C: |z <R}, ut) =logp(E,e") = log(1 +ce'), ¢ = ol = &, 40 = L
u"(t) 1
11mt—>oo et w'(t) c
Alog (B, |2)) = e iteeo [2[PAlog p(E, |2]) =
(2) E = a,b], u(t) =logh(1l + ce'), ¢ = T(E) =2, Z,éf)) = ﬁ limy o etz,—((f)) =1

Alogp(E,|z]) = Wv lim, o |2]*Alog o(E, |2]) =

3) E ={z e C: &(-11,2) <R}, R>1, ut) = logh(g(R) + ¢') — log R, 71!

Yo/ (t =
g(R)+1 g(R)—1 ®

tu/((t)) = g(R).

Alogp(E, |2]) = A ZBDEL Tim. o [P Alog (B, |2]) = g(R).
(4) E = [-1,1] x Dy

2 + 2 3
g(R)+1+et g(R)—1+et"

logh(1+¢'), R> 1
u(t) = max (log h(1 + €'),log(1 + €'/R)) = log h(1 +¢€'), t <log ﬁ 7O<R<%7
(1/R-1)

log(1+¢€'/R), t > log (W
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u//(t) 2+t7t<10g<W)70<R<%7

w(t) 1+et/R’ t > log <(1/R—21)2—1>
(5) E = DU {2}, 20 ¢ D. Then ¢(E,r) = |z| +r, r > 0 and ¢(£,0) = 1. Further,
log o(E, 1) =log(1 4 r/|z0|) + log |20| = log ¢(|z0|D, 1) + log |20/, Whence u—(()) ‘Z‘OZI‘L,
1/]z0] s (1)
Al E = 1 Al E = =1 .
OgQO( 7|Z‘) |Z|(1 + |Z|/|ZO|)27 zl{go |Z‘ Og(p( 7‘Z|> ‘Z0| tigée u’(t)

Let us note (for zy = 2) that applying the formula ¢(FE,r) = 2 + r and considering

polynomials P,(z) = (z — a,)z""!, where a, = 327?”1“ 1 we get bounds

(n—1)---(n—k+1)2"%n+ 2(2” —1)) £ M,(E, k) < eF2nFnF,

Let us recall mentioned above David Monn result from [Mo] (it is only one paper published by
this mathematician).

Proposition 2.5. If U is the C? plurisubharmonic funcion on CN that is radial (U(z) = u(]|z||2)
with u € C*(Ry ) then

vy ) = & (SN gy et ).

Corollary 2.6. If lim, ., ru/(r) =1 then

v(t) = u(e).

Remark 2.7. Let use notice some observations in the one dimensional case.
e We have ¢y (E,r) =1+ M, (E)r, where

M(E) = sup{||P||g = P € P1(C), [|P|lg = 1}.

,U//(t>
lim 2| 2||3N T (dd°U)™ () = lim €' -,
2—00 t—o0 v (t)

Hence
(1+ M(E)r)" < p,(E, 1), n>1,
or equivalently (14 r)" < p,(E,r/M(E)). As an application we get the following:
For all r,s >0
n(E,18) < on(E,1)on(E, s/Mi(E)).
Moreover, if r > 1/M;(E) then
on(E,7 4 5) < on(E,7)on(E, s).

Proof. As a consequence of Bernstein’s inequality we get

en(E,75) < pn(E,r)max(1,s)" < @n(E,7)(1+5)" < on(E,7)en(E, s/Mi(E)).
Analogously
en(E,1+5) < @u(E,7)(1+5/1)" < @u(E,7)(1+ Mi(E)s)" < on(E,r)pn(E, ).
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e Let E be a Bernstein set, that is

M(E1) = Sup{‘(‘ifg/H]f’ degP > 1, ||P||lg = 1} < 400.
Then
(1+ M (E)r)" < ou(E,r) < (14 M(E,1)r)"
and

on(E, 1+ 5) < on(E, (M(E,1)/M(E))r)en(E, (M(E,1)/M(E))s).
e Define (cf. [BKMO])

o0

1
1Pl =2 I PPllsr, 720, [IPllo = 1P|
k=0
Then
swp 1P+ Ol < [1Pl, < (deg P +1) sup 1P+ Q)
CI<r <r
Hence

on(E, 1) <sup{||P[], : P €P,(C),|[P|lo <1} < (n+ Dpu(E,7)
and therefore

p(E,7) = lim sup{[|P||, : P € B,(C),||Plly < 1}'"

If E is a compact subset of CV with C'(E) > then there is known (c.f. [BB=CT]) that u(t) =
log p(F, €') is a convex increasing function and A(t) = u(t) — ¢ is a (convex) decreasing one with
A(t) \ —log C(FE). In particular

lim £E0) — 1 and “D(f’r) N C(lE

rooo T CE) )’

Proposition 2.8. Assume that v,(E,r) is finite for r > 0. Then there is a positive constant
Cn(E) such that

v (B, 1) —logr N\, —log C,,(F)

and thus C,(E) = TETOO T = Srlilo) oo(Ey, which implies on(E, 1) > NI
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3. A RADIAL EXTREMAL FUNCTION RELATED TO A NORM IN P(C)

Proposition 3.1. Assume that v,(q,r) is finite for r > 0. Then there is a positive constant Cy,(q)
such that

Un(g,7) —logr N\, —log Cy(q)
which implies @, (q,7) >

T

Ch (Q)

and thus C,(q) = lim . Moreover

r T
—— = SuUp ——
oo Prla:T) r>IO) en(qr)’

tn(@)" > Culq), n>1, t(q) > min C(q)  and  #(q) = C(q).

Here C(q) := lim ﬁ or equivalently —logC(q) = lim (v(q,7) — logr) and more precisely
r—00 ) T—00

v(g,r) —logr \, —logC(q).

Proof. Fix n > 1 and a polynomial P € P,(C), ||P|| = 1, and a continuous functional | with
|7]|* = 1. Consider the function

9(0) = - logI(P(x +)) ~ log¢| € SH(C\ D), ro > 0.

Since g is bounded from above, we have, by the maximum principle for subharmonic functions,
the inequality ¢(¢) < lmax g(¢). Taking the supremum we get the bound

¢l=ro
n(¢,7) < vn(q, 7o) +logr —logro, 1 = ro.
Now consider the function ¥ (t) = v,(q, e') —t. It is a convex function that is bounded from above
which implies l}m +inf %1&(1&) < 0 and by Lemma 1 is a decreasing function. In particular the limit
—+00
lim (v,(q,7) — logr) =: —log C,(q) exists and —log C,(q) = igg(vn(q, r) —logr).
r—00 T

Similarly, assuming v(q,rg) is finite for an ro > 0 and applying analogous arguments we get
existence of the limit lim (v(q,r) —logr) =: —log C(q) and —log C(q) = ing(v(q, r) —logr).
r—00 r>

Now let T,,(q) = T,.(q, -) be n — th Chebyshev polynomial for ¢: T},(¢) is a monic polynomial of
degree n such that

to(q) = ||T(q)|| =: inf{||P,|| : P, is a monic polynomial of degree n}.
Then

Hnmw+<my”
1 < v,(q,
E£°g< @ < oalg,7)

which easily gives —logC,(q) > —log]||T.(q)||'/". Analogously we get inequality —logC(q) >
—log ||T(q)||*™ and therefore t(q) > C(q). O
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4. MARKOV’S INEQUALITY IN C

Let E be a compact subset of C. Applying Cauchy’s integral formula one can easily prove the
following.

Proposition 4.1. If P € P, (C), n > 1 with ||P||g =1 then

1 1
/ < . - < . -
|P'||e < }11;% . exp(nv,(E, 1)) < 712% . exp(nv(E,1)).

Proposition 4.2. Assume that E € AM(M,m), which means that for an arbitrary P € P(C) the
following A. Markov type inequality is satisfied: ||P'||g < M(deg P)™||P||g (here M > 0,m > 1
are constants). Then we have the following bounds

v (B, 7r) < Mn™ r, v > 0.
Proposition 4.3. Assume that E € AM(M, m). Then
vn(E,1) < M+ (m—1)logn.
Proof. Fix an « € E and P € P,,(C). Consider the function

9(0) = log| Pz + ) ~ log|¢] € SH(C\ B,,), 7> 0,

Since g is bounded from above, we have by the maximum principle for subharmonic functions, the
inequality ¢(¢) < Imax g(¢). Taking the supremum we get the bound

¢l=ro

U”(Ev 7’) < Un(E, 7’0) —logrg +logr, r>rg

and for ro = (%)m_l we obtain v,(E,1) < M + (m — 1) logn.

Proposition 4.4. Assume that ¢ € AM(M,m), which means that for an arbitrary P € P(C) the
following A. Markov type inequality is satisfied: ||P'|| < M(deg P)™||P|| (here M > 0,m > 1 are
constants). Then we have the following bounds

vn(g,r) < Mn™ Y r>0.

Proposition 4.5. Assume that ¢ € VM(M,m), which means that for an arbitrary P € P(C)
the following V. Markov type inequality is satisfied: ||P'®|| < MP* (%)m_l (deg P)*™||P|| (here
M > 0,m > 1 are constants). Then we have the following bounds

vn(g, ) < mMYT >0,
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Proof. Applying Taylor’s expansion to P € P,,(C) with ||P|| = 1 we can write

1 1 1\
1P+ Ol < 3 gllPP@llcr < g () rict

k<n k<n

k!

k<n

< (Z i(M”mnw/m)k) < [exp(M/™n|¢[™)]" = exp(mM /™),

which implies
va(q, ) < mMYmptm,
O

We shall write ¢ € HCP(vy, B) (v, B positive constants) if inequality v(q,r) < Br? holds for
an arbitrary r > 0.

Theorem 4.6. Let q be a fized norm in P(C). Then we have implications

1
qEVM(m,M) = q¢€ HCP(E, mMY™),

1
g€ HCP(y,B) = q¢€ VM(;; (763)1/7)’

Moreover, if ¢ € HCP(~, B) then
veB-C(q)" > 1.

Hence, if ¢ € VM (m, M) then
1

Clq) > Wi

e ™.

Proof. The proof of the first implication was done. Assume ¢ € HCP(y,B) and take P €
P,.(C), ||P|| = 1. Then

1
® < Flinf — Y — Ll Y _
[|P™]] < kigg e exp(nBr?) l{;.?lnggexp(nBr klogr).
The minimum is attained for r = (k/nBv)Y” which gives inequality

k/ 1 1/v-1
POl <k (5) " (Bre) < (Bae) <H) n*/7,

Assume again ¢ € HCP(v, B). Since v(g,r) is continuous then v(g, [0, 4+00)) = [0, +00) and
.N

we can take a positive r such that v(q,r) = % ow
r r r
C(q) > = —
D2 e ~ @ = Geolg A
T 1

> = .
= (eBr)17n ~ (eB)
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5. EXTREMAL FUNCTIONS RELATED TO PLESNIAK’S PROPERTIES.

Definition 5.1. Fix a norm ¢ in P(C") we define a family of extremal radial functions
1/k
Ri(4:7) := sup n (g, r(k!/Mal, YR

and
R(q7) = sup sup o (g r(K!/Mu(a, K))""

n>1 1<k<n
As an example consider F = . Since ¢, (E,r) = (1 +17)" we get

Ri(E,r)=sup(l+7r/n)" =¢€",
n>1

and since @n(E,r/(Z)l/k)l/k < (1 +7k/n)"* < e, we obtain
R(D,r) =Ry(D,r)=c¢€", r>0.
In the case £ = [—1, 1] we can estimate
coshvV2r < Ry(E,r) < V¥, R(E,r) = eV

Let Er ={z€C: |h(z)| <R} ={2€C: &(-1,1],2) <R}, R> 1.
Then ¢(Eg,7) = h(g(R) +r)/R. One can check that
sup p(Eg,r/n)" = lim @(Eg,r/n)" = e¥/\E-V/R) — or/v/*(R)-1
n21 n—o0

Hence

Py(Eg,r) < e/V&UE-L
Remark 5.2. We can define
_ "1
Qpn(% T) = Z EMH(E? k:)rk
k=0

We have ¢,,(q,7) < ¢n(g,r) and thus

1 n 1/k
on (@, 7(k /M, (g, k) )" < (Z (k'z)' (Mala, ' /Ml k)l/k)lrl> |

=0

Hence, if sup sup M, (q, )" /M,(q, k)"/* := a(q) < oo then R(q,r) < e,
n>1 1<k, l<n

Definition 5.3. Let us recall that ¢ € AM(m, M) iff M,(¢,1) < Mn™ and ¢ € VM(m, M) iff
M, (q, k) < M*n*m/(k1)™=1. This is a motivation to consider Plesniak’s extremal functions

Pu(q,r) = sup g, ( ! ) ,

q, —
n>1 n
B\ @ 1/k
B.(q,7) := supsup ¢, (q,r (—) ) :
n>1 k>1 n

Let us observe that
Punl(q,7) < Bu(q,7) = sup P (q, 7k™)"/*.

k>1



Remark 5.4. If £ € M(E m, M) then

(B r) < Z c(n—k+ 1) MR < Zk" ™ MErF < exp(Mrn™).

k=0
Theorem 5.5. If E C C then for an arbitrary P € P,(C) and m > 1

. Pm(E, )
/ m )
1P < wiug (P20

and

t
If there exist constants M > 0,m > 1 such that for all P € P,,(C)

1P|z < Mn™||P][g,

1P®)] < k! (E> <1§£¥> [1Pl]e-

then
Pp(E,t) < Mt
If there exist constants M > 0,m > 1 such that for all P € P,,(C)

1 m—1 .
10l <A () wlIPe

then
Bm(E7 t) S eli/mtl/m'
Definition 5.6. Define

t
Cp(E,
P(E,m) = o0 Pr(E, 1)

and

t
Cs(E, =
s(Eym) i=sup gy

Since P,,(E,t) < B,,(E,t) we get inequality
Cs(E,m) < Cp(E,m).
Let us note that

1P||le < n™ 1Plle

CP(E>m)

1Pt ||E<k'(k)'“m(m>k|wuﬂ

As a corollary (to Theorem ) we get

and

1

CB(E>m) > 6_mM
and )
E >e .

CP( 7m) Z€ M

If o(E,7) < e then By o (E,t) < .

17
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If Byo(E, 1) < eA™ then o(E,r) < 11>1£ By(E,r) < Bu(E,7) <A™,

We have
C(E) > sup CB(Ea m)
m>1
Now define
* _ E\™ e _ m\1l/o __ 1/ot/m _ Agrt/m
B, (E.r) = sup o (1 (= — sup p(ro™) 17 = sup (o) e = A"
k,n>1 n >0 >0
Am = sup 71%;?(/5’6) = sup 252 ;5’2).
o>0 o>0
t

Cp(E,m) = sup ————.
5 (E.m) =sup mp s

Let us observe that
By, (E,r) = sup Py, (E, rk™)'/*,

n>1
where
Pr(E,r) :=supp(E,r/n™)".
k>1
We have P, (E,r) < Py (E,r). In the case of E = [—1,1] one can check that P;([-1,1],7) =

lim o([—1,1],7/n%)" = e¥V?" = By([—1, 1], 7). We shall see that it is a consequence of a little more
n—oo

general facts.

Proposition 5.7. We have B}, (E,r) = B,,,(E,r) and
C’B(E,m) = C’B*(E,m) = Hl/m(E),
where H,(E) was defined in [BB-C3].

Proof. 1t is clear that B,,(E,r) < B! (E,r). To prove opposite inequality let us observe that by
Zaharjuta-Siciak theorem (cf. [Si2] or Proposition 1.3 in [Si3]) w(E,r) = sup ¢;(E,7)"!. Hence
I>1

E\™ n/kl E\™ 1/kl
B (E,r)= sup ¢ (E,r (—) ) < sup ¢ (E,r (—) )
kn,>1 n kn,>1 n

EI\™ 1/kl
= Sup @Qin <E>T<m) ) SBm(Ear)

kn,l>1
(we apply inequality ¢;(E,r) < @ (£, 7))
Let us recall (cf. Definition 16 in [BB-C3]) that for v € (0, 1]
log p(E,r Er
H,(B) = /(B 7, Bl =smp BT — gy 21,

r>0 Y >0 1Y

We see that A, = B(1/m).
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Now calculate

1 1 m 1/m
GolEm = Ifexp(Ant!’™ —log?) = exp(Anty|" ~logto),

where ty = (m/A,,)™. Hence

Cpe (B, m) = <6Am%) (B,

0]

Proposition 5.8. If P*(E,r) = lim o(E,r/n™)"/" then

n—o0
Pr(E,rk™Y* =Pr(E,r), k>1
and thus B,,(E,r) =Pk (E,r).
Proof.
Pr(E,rk™Y* = lim @(E,rk™/(kn)™)*M/k =P (B, r).
n—o0

0

Remark 5.9. We know that assumption of the above proposition is satisfied if £ =D (m = 1)
or B =[-1,1] (m = 2). It is also true (with m = 1) in the case of Er = {z € C: |h(z)| < R}.
Here

PH(Ep,r) = By (Eg,1) = "/VPR-1,

In the general case we prove the following.

Theorem 5.10.
P (B, k™ Y% < max(sup (B, 7)™ o(E,r)PL(E,T)).

o>1

Proof.

Po (B, k™) = max( max @ (E,r(k/n)")""", max sup (B, rk™/(kl 4 s)")

1<n<k 0<s<k—1 >

< max(sup ¢(E, ra)l/al/m, max sup (E,rk™/(kl + s)m)Hs/k
o>1 0<s<k-1 >1

< max(sup p(E,70)" /""" o(E, 1) Py (E, 7).

o>1
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6. KOLMOGOROV-LANDAU TYPE CONDITIONS.

6.1. Kolmogorov-Landau type theorems. A problem related to the name Kolmogorov and
Landau is the following (c.f. [MPE]).

Let My(p,I) = My(p,I,f) = ||f®||,, 0 < k < n, where f is a real function on the real
interval I, ||g||, = ([, |g(z)|Pdz)"/P, 1 < p < oco. Find optimal constants C,(p, I) such that for
all f e C"(int(1)

Mi(p. 1, f) < Coi(p, )Mo(p, I, /)" My (p, I, f)7,
If we replace f by f’ we get inequalities

Sla-

0<k<n

Mk(pala.f)SCn—l,k—l(pal)Ml(p>Iaf) n IM (p>I f)n 1 0<]€<7’L

or equivalently

k—1 k—1
log My (p, I, ) <log Cpp1p—1(p, 1) + (1 - m) log Mi(p, I, f) + (m) log My (p, 1, f),

1<k <n.
All results in this direction are rather hard to prove. Let us present an example (Neder inequal-
ity, c.f. (5.1) in [MPE]):

My (+00, [a,a+ L)) < (2n)*"L* My(+o0, [a,a + L]) + L™ %M, (+o0, [a,a + L)).

Another result connected to bounded subset of RY is contained in R. Redheffer and W. Walter
theorem (c.f. [MPF] and references given there):

If G is a bounded domain belonging to a class K (0, H) (that contains a family of N
dimesional intervals),if we put for all u € C"(G), Uy, = sup{|D%u(x)|: |o| =k, = € G},
then there exists a constant A = A(n, ) such that

k k
logUy, <log A + (1 — —) log Uy + — logU*,

where U} = max(U,, h "Uy).

It is rather difficult to say something about behavior of constants A(n,#), even for special
class of functions. Our goal will be give a modification of Kolmogorov-Landau type inequalities
to polynomials, more precisely to factors M, (q, «).

6.2. Kolmogorov-Landau triangle sequences.

Definition 6.1. Consider a triangle sequence of positive numbers

1<k<n, neZy p(nk)>0

and put ¢(n, k) s (n, k). We shall say sequence p(n, k) belongs to Kolmogorov-Landau class
ICL* iff for an arbitrary n € Z,, n > 1 and every 1 <k <n

1k _

log k log k
o8 ) log(n, 1) + o8 logt(n,n).
n logn

log (n, k) < (1 -
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In such a situation we shall write p(n, k) € KL*. Similarly, we shall say sequence ¢(n, k) belongs
to Kolmogorov-Landau class KCL iff there exitsts a positive constant C' such that for an arbitrary
n>1landevery 1 <k <n

log k log k

< - .
log(n, k) <logC + <1 logn) log¥(n,1) + log 1 log ¥ (n,n)

We shall write ¢(n, k) € KL.
Obviously ¢(n, k) € KL = ¢(n, k) € KL*. We also see that ICL" is a kind of convexity
property and thus KL is a kind of weak convexity condition.

Example 6.2. It is easy to check that the following sequences belong to KL*.

(1) (n, k) = k*

(2) ¢(n k) = e

(3) p(n, k) = ()™

(4) p(n, k) = k¥ - (2)™ k
(5) @(n, k) = e K- (2)™"
(6) ¢(n, k) = on—kpk

In the examples below we used the following simple observations.

Proposition 6.3. If ¢1(n, k), p2(k,n) € KL, m > 0 then
(a) Sol(nv k)302(n7 k) S ICE;

(b) p1(n, k)™ € KL,

(d) If there exist positive constant Ay, Ay such that A¥ < % < A% then

)
(¢) max(pi(n, k), pa(n, k)) € KL.
)

p1(k,n) € KL < po(k,n) € KL.

Example 6.4. In the following cases we can check that a sequence belongs to KL with a given con-
stant C' (usually not optimal). We refer to Mitrinovi¢ book or to Wikipedia for needed inequalities
for factorials n! and Newton symbols (Z) and left calculations to the reader.

(1) o(n, k) =k!, logC = % + i + %log(27r).

2) p(n. k)= ()", C = e

(3) o k) =k ()", logC=m+ 1 +12—1e + 1 log(2m).

(4) o(n,k) = kle Fexp((1 + 1/s)kTnT), logC = L+ L+ llog(2m) + 1 + 1/s, where
0<s<l. .

(5) (k) = (3)™" (1 +log(n/k))™.
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6.3. Kolmogorov-Landau norms. Let q(P) = ||P|| be a norm in P(C").
Put
M(n, k) = M,(n, k) :=sup{||DP|| : |a| =k, k <degP <n, ||P|| =1}

Definition 6.5.
(1) g € KL if M (n, k) € L.

(2) g € KL, if there exists p(n, k) € KL such that M,(n,k) < p(n, k) (¢(n, k) will be called
KL majorant).

Example 6.6.
(1) Let E =D, q(P) = ||P||s. There is well known that

M,n,k)=nn—-1)---(n—k+1)=k!- (Z)
By the Example 1.3 (3) we get ¢ € KL.
(2) Consider £ = [—1,1], ¢(P) = ||P||g. The famous Vladimir Markov inequality gives

(n(n—1)-(n—k+1))2 n\>
My(n.k) = =375k =) Sk!(k:) '

3

Hence, by the Example 1.3 (3) we get ¢ € KL,. One can also check that p(n, k) = (2k) €
KL, which gives ¢ € KL. Applying recent result by G. Sroka [Sr] one can check that

gy € KL, where ¢,(P) = (3 [, |P(x)|pdx)l/p, p>1

(3) Let ¢(P) = ||P|| = fj (jl) |POO)|77, 7> 0, m > 0.

0 m—1
If P(z) = ag + a1 + - - - + auz™ then ||P|| = Y (j;) ).
i=0
Put S,, = {P € P,(C) : ||P|| < 1} - this is a convex symmetric body in finite

dimensional vector space P,,(C). Then one can calculate that
extr(Sgn) = {Pj(x) = G2’ |Gl =1, j=0,...,n}.

Hence sup{||[PW||: P € S,,} =max{||[P"]|: j=1,...,n}.
Since ||2!|| = (1/1))" 17!, we get

1P = 77% (G — 1) ( — b+ 1)™

Hence
M,(n, k) = max [|[PP]] = 77 (n(n — 1) (n — k +1))™
k<j<n
Consequently g € L.
(4) If E c CV is a Bernstein set (||D*P||g < B*l(deg P)®l||P||g) then ¢ = || - ||z € KL.

(5) If E is a compact subset of C then ¢(P) = ) %||P(j)||E7'j e KL.
j=1

(6) If g € AM (M, (n, k) < B*nF™) or ¢ € VM (M,(n, k) < Bfn*™/(k!)™=1) then q € KL..
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Let us formulate the main results of this paper.

Theorem 6.7. If g € L then two conditions are equivalent

(1) g e VM;
(2) g € AM, M(n,n) < A™nl.

Theorem 6.8. Two conditions are equivalent

(1) g e VM;
(2) there exists p(n, k) a KL majorant such that p(n,1) < An®, p(n,n) < B"nl.

Remark 6.9. If ¢ is a norm in CV then we conjecture g € KL.

If the above conjecture is true, then applying [B-C| we get the following.
Corollary 6.10. If E C C then E € AM & E € VM.

Remark 6.11. Let ¢ be the norm in Example 6.6 (3) with m > 1. Then ¢ € KL, ¢ € AM but
q ¢ VM as it was proved in [BKMOJ.

Remark 6.12. Let us consider the following condition: ¢ € M, (a, m) if and only if

1/1 1/k m
(Mnl(‘q, l)) / (Mnéq', k)) <a (?) Vn>1,1<I<k<n,

where m > 1 is a constant. In particular, if £ = n, we obtain a condition

it 2 (3) O

Hence, if M,,(q,n) < b"n!, we obtain V. Markov’s inequality

M,(g,1) < (a(q)b(q))'n™ /1™,

Let us note that considered condition M, (a,m) is not satisfied if ¢(P) = || P||puzo}, With |z0] > 1.
On the other hand this condition is satisfied if ¢(P) is a norm from Example 6.6(3).

Now we can formulate the following question: thus
q€ AM(M,m) = q € M.(d,m)

or (a weaker condition)

/

Im
g € AM(M,m) = My(g,1) < a"l! (%) (M (g, n)"/" /nt/m)'2
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