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Abstract

The theory of versal normal form has been playing a role in normal form since the
introduction of the concept by V.I. Arnol’d in [1, 2]. But there has been no systematic
use of it that is in line with the semidirect character of the group of formal trans-
formations on formal vector fields, that is, the linear part should be done completely
first, before one computes the nonlinear terms. In this paper we address this issue by
giving a complete description of a first order calculation in the case of the two- and
three-dimensional irreducible nilpotent cases, which is then followed up by an explicit
almost symplectic calculation to find the transformation to versal normal form in a
particular fluid dynamics problem and in the celestial mechanics L4 problem.

Keywords: Versal normal form; L4 problem; Nilpotent; sl2 representation.

1 Introduction

In normal form theory for general differential equations or symplectic systems around equilib-
ria, not much attention is usually given to the linear part of the problem. A typical approach
in bifurcation theory is to compute the normal form of a general system with respect to a
given organizing center and add versal deformation terms (as first considered in [1, 2]). One
can then analyze all possible bifurcations in a neighborhood of the organizing center. While
there is nothing wrong with this approach, it does not answer the question where a given
system fits in the analysis. In other words, how does one compute where the given system
is in this neighborhood of the organizing center?

It is this question that we attempt to answer for a number of examples. Some of these
examples will be very concrete, with only one or two parameters to give us a possibility to
actually, see the bifurcations, others are completely general systems where one can use the
computation by just filling in the parameter values of a given system with the same type of
organizing center.

Ideally, before starting the nonlinear computation, the linear system should be brought
in versal normal form in a finite number of steps, as is attempted in [17]. In practice what
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one does is to put the linear part in normal form in the same way as one does the nonlinear
part of the equation, but this may involve infinitely many steps. Since the linear terms
influence the computation in every step, this is not very desirable (contrary to the nonlinear
computations, which cannot influence the linear part unless there is also a constant term to
take into account).

In this paper, we address this problem for a very particular system that has been the
subject of several papers already from the versal deformation point of view, namely the L4-
problem as described in [6]. This paper contains a very clear discussion of the arguments
involved in the versal deformation computation and we will not repeat these here. The
issue we want to address here is to change the infinite series approach into a finite explicit
computation. Apart from the L4-problem, we have added several examples to illustrate the
method and to show that it is indeed a method, not a computation that happens to work
in the one example. We treat the 2- and 3-dimensional irreducible nilpotent case in section
3 and 4, respectively. We started this research by computing exponential maps using the
generators of the Chevalley normal form of the Lie algebra. In the specific L4-problem this
leads to quartic equations in the flow parameters and even if one is able to explicitly solve
these equations the result is a map full of radical expressions which will be very hard to use
if one applies the result to the full nonlinear problem as is our goal. We should mention
that in the general linear case this does not occur and one can expect that for simply laced
simple Lie algebras this approach will work without problems.

In order to simplify the resulting map that puts the linear system in versal normal form,
we then decided to drop the requirement that the symplectic form be preserved. As remarked
in [12] there is a strong belief that the symplectic form should be preserved, which is a bit
strange if one considers the fact that in order to put the symplectic form in its Darboux
normal form, one has to use (by definition) transformations that are not symplectic.

Dropping this requirement, which has anyway no consequence for the further analysis
since we work with the symplectic vector fields, not with the Hamiltonians, we then proceed
as follows. We first determine a theoretical form of the versal normal form, depending on a
finite number of versal deformation parameters. Since we want to reach the versal normal
form by conjugation, the characteristic polynomial of the original linear vector field and the
versal deformation should be equal. From this equality, we determine the versal deformation
parameters (this is in the symplectic case the only nonlinear part of the procedure, in the
general linear case this part is completely straightforward).

Once we have, given a linear vector field X
ε
0, which consists of an organizing center X0

0 plus
terms in a neighborhood of the organizing center, in order to compute its versal deformation
X̄
ε
0, we need to solve the linear problem Xε

0T
ε = T εX̄ε

0 in such a way that T 0 reduces to the
identity and X̄

ε
0 is in versal normal form. We then can obtain reasonable expressions for the

transformation, which can then be put to good use in the nonlinear normal form analysis.

2 The algorithm

We start with polynomials R[x1, · · · , xn]. We then add to these commuting derivations
∂1, · · · , ∂n and consider these as a left R[x1, · · · , xn] module, such that [∂i, xj ] = δij. (One

could write ∂i as
∂
∂xi

). We write ∂P
∂xi

∈ R[x1, · · · , xn] for [∂i, P ]. We then define a multi-

plication Pi∂i ⋆ Pj∂j = Pi
∂Pj

∂xi
∂j . This defines a non-associative algebra with an associator
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α(x, y, z) = (x ⋆ y) ⋆ z − x ⋆ (y ⋆ z) which is symmetric in its first two variables (this ensures
that the Jacobi identity holds, [9]) and from it we can define a Lie algebra, the Polynomial
Lie algebra by defining the Lie bracket as [x, y] = x ⋆ y − y ⋆ x. Apart possibly from the
notation, this is the usual way of defining polynomial vector fields. We can put a grading
on the polynomial vector field by assigning degree 1 to the xi’s and degree −1 to the ∂j ’s.
We remark that the ⋆-product is a graded product, that is, the degree of U ⋆ V is the sum
of the degree of U and the degree of V, and this makes the Lie algebra into a graded Lie
algebra g =

∏∞
k=0 gk. Among the elements in this Lie algebra, as special position is reserved

for those of degree zero. They form a Lie subalgebra gl(n,R).
We start with a given linear vector field which we consider as an element in a reductive

Lie algebra g0. In our examples, g0 will be gl(n,R) or sp(n,R). We chose an organizing
center (in all our example this will be characterized by the fact that the real part of all its
eigenvalues is zero, since this is where bifurcations happen) and introduce for organizational
reasons a deformation parameter ε, which at the end of the computation can be set back
to 1. In our first two examples we assume that the organizing center X

0
0 is in real Jordan

normal form as is usually done in normal form theory. This is not really necessary and might
need the knowledge of the spectrum of X0

0, something we try to avoid in this paper, so we
stress the fact that the whole construction works well without this choice. Alternatively one
might want to put X

0
0 in rational normal form before starting the computation, or not all,

as in Section 5. All this is a matter of taste and convenience.
We then split X

0
0 into a semisimple and nilpotent part, X0

0 = s0 + n0, with s0 and n0

commuting, s0, n0 ∈ g0. We remark that this only needs the characteristic polynomial of
X
0
0 [10, 16]. In ker ad(s0) (where ad(X)Y = [X, Y ], as usual) we construct around n0 an

sl2-triple 〈n0, h0,m0〉 as follows, cf. [11]. Let zµ0 ∈ g0 be a solution (with free parameter µ)
of n0 = ad2(n0)z

µ
0 . Put m0 = −2z00 and h0 = [m0, n0]. Then solve [h0, z

µ
0 ] = 2zµ0 . If zµ0

0 is
a solution, put m0 = z

µ0

0 and let h0 = [m0, n0]. Then [h0, n0] = −2n0. As in the s0 + n0-
decomposition, this is a completely rational procedure [7]. The existence of solutions to the
equations is guaranteed by the Jacobson-Morozow theorem, see [11].

Remark 2.1. This construction determines the style of the normal form, since we will choose
ker ad(m0) as the complement to im ad(n0) and costyle of the normal form transformation,
since we will choose im ad(m0) as the complement to ker ad(n0). The costyle of normal form
transformation is the way we choose the free parameters in transformations. As suggested
by the terminology, other choices of style are also possible and may in specific problems be
preferable.

The versal normal form should be equivalent to the rational (or Frobenius) normal form
of the matrix of Xε

0 , although for that normal form one usually chooses a different style. The
computation of X̄ε

0 from Xε
0 has already been described. The T ε can be computed by linear

elimination. If for some ε0, T
ε fails to be invertible, then we should take |Y ε

0 | < |Y ε0
0 |.

Definition 2.2. We say that Xε
0 = X

0
0 + Ȳ

ε
0 is in normal form (in sl2-style) with respect to

X
0
0 if Ȳε

0 ∈ ker s0 ∩ kerm0. We say that X̄ε
0 = X

0
0 + Ȳ

ε
0 is a versal normal form with respect

to X
0
0 if Ȳε

0 is in normal form with respect to X
0
0 and there exists a T ε ∈ GL(n,R) such that

Xε
0T

ε = T εX̄ε
0 and T 0

0 = I.

If the Lie algebra is defined by an invariant bilinear form Ω0 (for instance, a symplectic
form), one has to compute the induced form Ω̄ε

0 = (T ε)tΩ0T
ε. In this case we write gΩ and
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gΩ̄. Similar remarks apply to invariant trilinear forms in the less popular (in dynamics) case
g2, the Lie algebra of G2, cf. [3], not to be confused with an element of grade two in g.
This ensures that the versal deformation vector field behaves correctly with respect to Ω̄ε

0,
that is, X̄ε

0 ∈ gΩ̄0 . Here we trade symplecticness of the maps involved against computational
convenience.

Definition 2.3. Let T ε ∈ GL(2n,R). Then this induces a new symplectic form Ω̄ε
0 and a

new vector field X̄ε
0 as follows

Ω̄ε
0 = (T ε)tΩ0T

ε, (2.1)

Xε
0T

ε = T εX̄ε
0 . (2.2)

Lemma 2.4. The vector field X̄
ε
0 is Ω̄ε

0-symplectic iff X
ε
0 is an Ω0-symplectic vector field.

The claim is that X̄ε
0 is a Ω̄ε

0-symplectic vector field, that is, we have to prove that

(X̄ε
0)

tΩ̄ε
0 + Ω̄ε

0X̄
ε
0 = 0. (2.3)

Proof. Assume (Xε
0)

tΩ0 + Ω0X
ε
0 = 0. Then

(X̄ε
0)

tΩ̄ε
0 + Ω̄ε

0X̄
ε
0

= (X̄ε
0)

t(T ε)tΩ0T
ε + (T ε)tΩ0T

εX̄ε
0

= (T εX̄ε
0)

tΩ0T
ε + (T ε)tΩ0T

εX̄ε
0

= (Xε
0T

ε)tΩ0T
ε + (T ε)tΩ0X

ε
0T

ε

= (T ε)t
(

(Xε
0)

tΩ0 + Ω0X
ε
0

)

T ε

= 0,

proving the statement of the Lemma.

The next order step is to compute

exp(ad(tε1))(X̄
ε
0 + X

ε
1 + · · · ) = X̄

ε
0 + X

ε
1 + [tε1, X̄

ε
0] + · · · . (2.4)

Then we solve

ad(s0 +m0)(X
ε
1 + [tε1, X̄

ε
0]) = 0, (2.5)

in order to obtain X̄
ε
0 + X̄

ε
1 + · · · in gΩ̄, or, in the general linear case, in g, where X

ε
1 is the

first order nonlinear term and, with t
ε
1 a general vector field of order 1 and X̄

ε
1 is in normal

form with respect to X
0
0 in the sl2-style.

This procedure can then be repeated until the full system is in normal form up to the
fixed degree. The ad(s0 + m0) ensures that the normal form will automatically have the
sl2-style with respect to X

0
0.

We should remark here that if we start with a general tε1, there may be free parameters in
the normal form corresponding to elements in ker ad(s0)∩ ker ad(n0) in t

ε
1. This is analogous

to the way unique normal forms are computed [4, 18]. The free parameters may be used
to simplify the normal form by removing (typically) higher order ε-terms. There is no style
known to us that would be preferable to this simple free-costyle). In most of our examples
the transformation turns out to be in sl2-costyle.
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Remark 2.5. In some problems, when one wants to do the calculations by hand, it pays to
view the gk, the polynomial vector fields as representation spaces of g0, and more specifically
of representation spaces of 〈s0, n0, h0,m0〉. For instance, in [4] the gk is shown to be a direct
sum (as vector spaces, not as Lie algebras) of two irreducible representations of sl2, ak and
bk and this gives rise to a basis that is completely natural with respect to the action of the
given sl2 and such that [zk, zl] ⊂ zk+l for z = a, b.

As formulated, the algorithm follows what might be called the rational approach: no
eigenvalues need to be computed, only characteristic polynomials, cf [5]. This makes it suit-
able not only for Computer Algebra Systems, but also for Symbolic Formula Manipulation
Systems like FORM [13] or FERMAT [14], which is nice if the problems get big.

An alternative method, which might also work when the vector fields are not finitely
generated at any given order and might be called the spectral approach, is to use the spectrum
of s0 and h0, as is done in the averaging method; we refer for this method to [16].

2.1 Nonlinear nilpotent versal normal form

Lemma 2.6. For given Xk ∈ gk, k > 0, and parametric vector field X̄
ε
0 = s0 + n0 + v̄

ε
0 in

which v̄ε0 ∈ ker ad(m0) ∩ ker ad(s0) there exists a transformation t
ε
k ∈ gk to the following

problem

ad(X̄ε
0)t

ε
k = Xk − X̄

ε
k,

where X̄
ε
k ∈ ker ad(m0) ∩ gk. The transformation t

ε
k and the normal form X̄

ε
k can be found

explicitly from equations (2.7) and (2.8), respectively.

Proof. It should be noted that this proof follows (but with some minor corrections and
clarifications) the proof given in [17, Section 2.3].

Our problem is that to find the admissible transformation t
ε
k and the obstruction term

X̄
ε
0 ∈ ker ad(m0) ∩ gk such that the following hold

ad(X̄ε
0)t

ε
k = Xk − X̄

ε
k.

From [16, Chapters 11-12] the procedure is given to solve the following linear problem

ad(n0)t
0
k = Xk − X̄k. (2.6)

Denote the transformation t
0
k in equation (2.6) by N̄Xk. Hence from the fact that V =

ker ad(m0)⊕ im ad(n0) one has

ad(n0)N̄ = πim ad(n0) = 1− πker ad(m0).

Note that the notation N̄Xk shows that the operator N̄ acts on Xk. Let now Q = ad(s0+v̄ε0)N̄
and Q̂ = N̄ad(s0+ v̄ε0). We will show that Q and Q̂ are nilpotent operators, so that (1+Q)−1

and (1 + Q̂)−1 are both well defined. Observe that N̄Q = Q̂N̄ .

Lemma 2.7. N̄(1 +Q)−1 = (1 + Q̂)−1N̄ .
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Proof. We compute

N̄(1 +Q)−1 =
∞
∑

i=0

(−1)iN̄Qi =
∞
∑

i=0

(−1)iQ̂iN̄ = (1 + Q̂)−1N̄ ,

and the Lemma is proved.

We claim that tεk is given by

t
ε
k = N̄(1 +Q)−1

Xk = (1 + Q̂)−1N̄Xk = (1 + Q̂)−1
t
0
k. (2.7)

Therefore we have to first show that Q and Q̂ are nilpotent and Xk−ad(X̄ε
0)t

ε
k ∈ ker ad(m0)∩

gk. Assume that the Xk has ad(h0)-eigenvalue λ; then the N̄Xk has ad(h0)-eigenvalue λ + 2
since ad(h0)n0 = −2n0.

By assumption, v̄ε0 ∈ ker ad(m0)∩ ker ad(s0); hence ad(m0)v̄
ε
0 = ad(s0)v̄

ε
0 = 0. Therefore

the ad(h0)-degree of all terms in v̄ε0 is ≥ 0. Since ad(h0)s0 = ad(m0)s0 = 0 then its ad(h0)-
degree is zero. This implies that the ad(h0)-degree of Q = ad(s0 + v̄ε0)N̄ ≥ 2 hence Q is
nilpotent. The proof for Q̂ is the almost the same. It follows that 1 + Q and 1 + Q̂ are
invertible. What remains to be done is to show Xk − ad(X̄ε

0)t
ε
k ∈ ker ad(m0) ∩ gk:

ad(s0 + n0 + v̄ε0)t
ε
k = ad(s0 + n0 + v̄ε0)N̄(1 +Q)−1

Xk

=
(

ad(n0)N̄ +Q
)

(1 +Q)−1
Xk

= (1 +Q− (1− ad(n0)N̄))(1 +Q)−1
Xk

= Xk − (1− ad(n0)N̄)(1 +Q)−1
Xk

= Xk − πker ad(m0)(1 +Q)−1
Xk.

We rewrite this as

Xk = πker ad(m0)(1 +Q)−1
Xk + ad(s0 + n0 + v̄ε0)N̄(1 +Q)−1

Xk,

and we define

X̄
ε
k = πker ad(m0)(1 +Q)−1

Xk. (2.8)

This concludes the proof of Lemma 2.6.

2.2 Nonsemisimple versal normal form

We now extend the versal normal form computation problem from the nilpotent to the
nonsemisimple case. We follow [17, Section 2.4]. We consider the problem

ad(Xε
0)t

ε
k = X̄

ε
k − ¯̄

X
ε
k, X̄

ε
k ∈ ker ad(m0),

¯̄
X
ε
k ∈ ker ad(m0) ∩ ker ad(s0).

We observe that the right hand side is by definition in ker ad(m0)∩ im ad(s0) and ad(s0+n0)
is invertible on this subspace. We define operators Kk : ker ad(m0)|gk → ker ad(m0)|gk such
that Kk 6= Iker ad(m0)|gk for ε 6= 0. Let

Kk = ad(X̄ε
0)(1 + Q̂)−1πker ad(n0).
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The projection on ker ad(n0) is necessary, in order not to interfere with the previous normal
form calculation in Section 2. We now show that Kk : ker ad(m0)|gk → ker ad(m0)|gk:

Kk = ad(X̄ε
0)(1 + Q̂)−1πker ad(n0)

= ad(X̄ε
0)(1 + Q̂)−1(1− N̄ad(n0))

= ad(X̄ε
0)(1 + Q̂)−1(1 + Q̂− N̄ad(Xε

0))

= ad(X̄ε
0)(1− (1 + Q̂)−1N̄ad(Xε

0))

= ad(X̄ε
0)(1− N̄(1 +Q)−1ad(Xε

0))

= (1− ad(X̄ε
0)N̄(1 +Q)−1)ad(Xε

0)

= (1− (1− πker ad(m0))(1 + Q)−1 −Q(1 +Q)−1)ad(Xε
0)

= (1− (1 +Q)−1 + πker ad(m0)(1 +Q)−1 −Q(1 +Q)−1)ad(Xε
0)

= πker ad(m0)(1 +Q)−1ad(Xε
0).

The map K̂k = Kkad
−1(s0 + n0) is well defined on ker ad(m0) ∩ im ad(s0)|gk and reduces to

1− ad(s0 + n0)N̄(1 +Q)−1 = 1− ad(s0 + n0)(1 + Q̂)−1N̄ when the perturbation is zero and
this reduces to 1 on ker ad(m0). This in turn implies that K̂k is invertible in a neighborhood
of ε = 0, which means we can find a transformation generator to bring X̄

ε
k into the normal

form ¯̄
X
ε
k. The values of ε for which K̂k fails to be invertible are called resonances; they play

a role in the bifurcation analysis of the L4-problem, cf. Section 6.
The method we describe here does prove that it is possible to compute the transformation

explicitly and if the dimension of gk is a bit higher, it may help to reduce the dimension of
the linear algebra problem, since one can restrict to ker ad(m0).

3 2D nilpotent – invariant formulation

3.1 The versal normal form of the linear system

In this section, we intend to study the versal normal form of two-dimensional nilpotent
singularities. We use this example to illustrate the method in great detail. This leads at
times to statements that sound a bit simplistic; these are nevertheless stated explicitly so
that it is clear what the flow of the argument is in the later examples, where the complexity
of the calculation can obscure what is going on.

Consider the following two-dimensional perturbed singular system.

(

ẋ

ẏ

)

=

(

ε m̃1,1 εm̃1,2

m̃2,1 ε m̃2,2

)(

x

y

)

= X̃ε
0

(

x

y

)

, (3.1)

where we regard m̃i,j for all i, j = 1, 2 as elements of a commutative ring R of functions
of certain parameters taking their values in R (since we want to work with real differential
equations) and m̃2,1 ∈ R∗ where R∗ denotes the invertible elements in the ring R. Invertible
in this context means that if we use asymptotic estimates, dividing by an invertible element
does not produce big numbers, which could ruin the asymptotic estimate. As a consequence
one is not allowed to divide by the noninvertible elements in the course of the normal form
computation.
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Since m̃2,1 is invertible, there exists an invertible linear transformation

T ε
(0) =

(

−m̃−1
2,1 0

0 1

)

,

that takes (3.1) (with X̃ε
0T

ε
(0) = T ε

(0)X
ε
0) to the following

(

ẋ

ẏ

)

=

(

εm1,1 εm1,2

−1 εm2,2

)(

x

y

)

= Xε
0

(

x

y

)

, (3.2)

(where m1,1 = m̃1,1, m2,2 = m̃2,2, and m1,2 = −m̃1,2m̃2,1), so that −X0
0 is in Jordan normal

form (the minus sign is there to be consistent with the definitions of the A and B-families to
follow shortly).

We now rewrite Equation (3.2) to the operator form

X
ε
0 = (εm1,1x+ εm1,2y)

∂

∂x
+ (−x+ εm2,2y)

∂

∂y
,

and express X
ε
0 to the A and B families introduced by [4] (but with A and B interchanged)

as

X
ε
0 = B

1
0 +

ε

2
(m1,1 + m2,2)A

0
0 + ε (m1,1 − m2,2)B

0
0 + εm1,2B

−1
0 .

We now want (this is the choice of normal form style) X
ε
0 − B

1
0 to commute with B

−1
0 ; a

general expression of linear vector fields commuting is εBB
−1
0 + εAA

0
0, corresponding to the

differential equation

(

ẋ

ẏ

)

=

(

εA εB

−1 εA

)(

x

y

)

= X̄ε
0

(

x

y

)

, (3.3)

(the fact that the εA are on the diagonal and will stay there if we go to higher dimensions
prompted the interchange of A and B with respect to the definitions in [4]) and the differential
operator

X̄
ε
0 = B

1
0 + εAA

0
0 + εBB

−1
0 . (3.4)

We want to find the transformation that is named T ε
(1) such that Xε

0T
ε
(1) = T ε

(1)X̄
ε
0 . The neces-

sary condition under which such transformation exists is that the characteristic polynomial
of Xε

0 and X̄ε
0 be the same. In what follows using the characteristic polynomial of Xε

0 and
X̄ε

0 we find the εA, εB. The characteristic polynomial of Xε
0 and X̄ε

0 are given, respectively by

χ(Xε
0) = λ2 − ε (m1,1 +m2,2)λ+ ε2m2,2m1,1 + εm1,2,

χ(X̄ε
0) = λ2 − 2 εAλ+ εA

2 + εB.

We define the invariants of Xε
0 as

χ(Xε
0) = λ2 −∆1λ+∆2.
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and we identify ∆1 as the trace of Xε
0 and ∆2 as the determinant. Since the equivalent

matrices have the same characteristic polynomial then we find that

εA =
1

2
∆1, (3.5)

εB = ∆2 −
1

4
∆2

1. (3.6)

We close this part by the following theorem (this is not much of a theorem in this particular
problem, but we formulate it as such because it is a basic step in this paper).

Theorem 3.1. There exists an invertible transformation T ε
(1), defined by

T ε
(1) =

(

1 0

ε
2
(m2,2 −m1,1) 1

)

, (3.7)

which brings the matrix (3.1) to (3.3).

Proof. The transformation (3.7) is obtained using equation Xε
0T

ε
(1) = T ε

(1)X̄
ε
0 . This is a linear

equation in T ε
(1) and the existence of a solution is shown here explicitly.

3.2 Some representation theory

Following [4] we describe vector fields of arbitrary order in a bigraded infinite dimensional Lie
algebra a⊕ b, where a and b are bigraded Lie subalgebras and the ⊕ denotes the direct sum
of modules, not of Lie algebras, as can be seen from the Lie brackets below, and spanned
by elements A

n
m ∈ am, 0 ≤ n ≤ m,Bl

k ∈ bk,−1 ≤ l ≤ k + 1 (i.e. dim am = m + 1 and
dim bk = k + 3 ) where A

n
m and B

l
k are defined as

A
n
m := xnym−n

(

x
∂

∂x
+ y

∂

∂y

)

, (0 ≤ n ≤ m), (3.8)

B
l
k :=

xlyk−l

k + 2

(

(k − l + 1)x
∂

∂x
− (l + 1)y

∂

∂y

)

, (−1 ≤ l ≤ k + 1), (3.9)

with brackets

[Al
k,A

n
m] = (m− k)Al+n

k+m, (3.10)

[Bl
k,A

n
m] =

m(m+ 1)

m+ k + 2

(

n

m
− l + 1

k + 2

)

A
l+n
k+m − k Bl+n

k+m, (3.11)

[Bl
k,B

n
m] = (k +m+ 2)

(

n+ 1

m+ 2
− l + 1

k + 2

)

B
l+n
k+m. (3.12)

We can now write an arbitrary order s vector field as

Xs :=
s
∑

l=0

alsA
l
s +

s+1
∑

l=−1

blsB
l
s.

A general element of order s in ker ad(B−1
0 ) can be written as

X̄s = ā0sA
0
s + b̄−1

s B
−1
s . (3.13)
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3.3 Nonlinear normal form reduction

We now have to solve the equation (in tεs)

ad(B−1
0 )(ad(X̄ε

0)t
ε
s − Xs) = 0, (3.14)

where

t
ε
s =

s
∑

l=0

αl
sA

l
s +

s+1
∑

l=−1

βl
sB

l
s. (3.15)

Recall that

X̄s = ā0sA
0
s + b̄−1

s B
−1
s , Xs =

s
∑

l=0

alsA
l
s +

s+1
∑

l=−1

blsB
l
s.

We have to solve

ā0sA
0
s + b̄−1

s B
−1
s =

s+1
∑

l=−1

blsB
l
s +

s
∑

l=0

alsA
l
s

+βs
sB

s+1
s − 2sεAβ

s+1
s B

s+1
s + αs−1

s A
s
s − 2sεAα

s
sA

s
s

−
s
∑

k=0

(

−(s + 2− k)βk−1
s + 2sεAβ

k
s − (k + 2)εBβ

k+1
s

)

B
k
s

−
s−1
∑

k=1

(

−(s + 1− k)αk−1
s + 2sεAα

k
s − (k + 1)εBα

k+1
s

)

A
k
s

−
(

2sεAβ
−1
s − εBβ

0
s

)

B
−1
s −

(

2sεAα
0
s − εBα

1
s

)

A
0
s.

Thus we find, if we look at the B
s+1
s -term, that

βs
s = 2sεAβ

s+1
s − bs+1

s , (3.16)

where βs+1
s is a free parameter, to be determined later at our convenience.

Similarly, looking at the A
s
s terms we find

αs−1
s = 2sεAα

s
s − ass, (3.17)

where αs
s is the free parameter. For 0 ≤ k ≤ s we find, looking at the B

k
s ,

(s+ 2− k)βk−1
s = 2sεAβ

k
s − (k + 2)εBβ

k+1
s − bks . (3.18)

For 1 ≤ k ≤ s− 1 we find, looking at the A
k
s ,

(s+ 1− k)αk−1
s = 2sεAα

k
s − (k + 1)εBα

k+1
s − aks . (3.19)

Then

X̄s =
(

b−1
s − 2sεAβ

−1
s + εBβ

0
s

)

B
−1
s +

(

a0s − 2sεAα
0
s + εBα

1
s

)

A
0
s. (3.20)
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Let us now specialize to s = 1. We find

α0
1 = 2εAα

1
1 − a11,

β1
1 = 2εAβ

2
1 − b21,

β0
1 =

1

2

(

4ε2
A
− 3εB

)

β2
1 −

1

2
b11 − εAb

2
1,

β−1
1 =

1

3
εA
(

4ε2
A
− 7εB

)

β2
1 +

2

3
(εB − ε2

A
)b21 −

1

3

(

εAb
1
1 + b01

)

,

and

X̄1 =
(

b−1
1 − 2εAβ

−1
1 + εBβ

0
1

)

B
−1
1 +

(

a01 − 2εAα
0
s + εBα

1
1

)

A
0
1

=

(

b−1
1 +

2

3
εAb

0
1 − (−4

3
ε2A + εB)

1

2
b11 +

7

3
(εB − 4

7
ε2A)εAb

2
1 +(

20

3
ε2AεB − 8

3
ε4A − 3

2
ε2B)β

2
1

)

B
−1
1

+
(

a01 + 2εAa
1
1 + (−4ε2

A
+ εB)α

1
1

)

A
0
1.

Choosing β2
1 = 0 and α1

1 = 0 (in accordance with the sl2-costyle) we find

X̄1 =

(

b−1
1 +

2

3
εAb

0
1 −

1

2
(−4

3
ε2
A
+ εB)b

1
1 +

7

3
(εB − 4

7
ε2
A
)εAb

2
1

)

B
−1
1 +

(

a01 + 2εAa
1
1

)

A
0
1

=

(

b−1
1 +

1

3
(Tr Xε

0)b
0
1 +

1

2
(
1

12
Tr 2Xε

0 +Det Xε
0)b

1
1 +

7

6
(
3

28
Tr 2Xε

0 −Det Xε
0)(Tr X

ε
0)b

2
1

)

B
−1
1

+
(

a01 + (Tr Xε
0)a

1
1

)

A
0
1. (3.21)

It follows from the definitions in [4] that

A
0
1 = ι2(a

1
0) = ι2(x) = x

(

x

y

)

, (3.22)

B
−1
1 =

1

3
ι1(b

−1
1 ) =

1

3
ι1(x

3) = x2

(

0
1

)

. (3.23)

4 3D irreducible nilpotent

4.1 The versal normal form of the linear system

In this section, we discuss versal deformation of three-dimensional nilpotent singularities.
Consider the deformed nilpotent system









ẋ

ẏ

ż









=









ε m̃1,1 εm̃1,2 ε m̃1,3

m̃2,1 ε m̃2,2 εm̃2,3

ε m̃3,1 m̃3,2 ε m̃3,3

















x

y

z









= X̃ε
0









x

y

z









, (4.1)

where the elements m̃2,1, m̃3,2 ∈ R∗. By applying the following invertible transformation

T ε
(0) =









m̃2,1 0 0

0 −m̃2
2,1 0

0 −ε m̃3,1m̃21 α









, (4.2)
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where

α = −1

2
ε2m̃3,1 (ε m̃2,3m̃3,1 + m̃2,1 m̃2,2) +

1

2
m̃2,1

(

ε2m̃3,1m̃3,3 + m̃2,1 m̃3,2

)

,

the system (4.1) transforms to the following system








ẋ

ẏ

ż









=









εm1,1 εm1,2 εm1,3

−1 εm2,2 εm2,3

0 −2 εm3,3

















x

y

z









= Xε
0









x

y

z









, (4.3)

in which

m1,1 = m̃1,1,

m1,2 = −ε2m̃1,3m̃3,1 − m̃2,1 ε m̃1,2,

m1,3 =
m̃1,3α

m̃2,1

,

m2,2 =
ε (ε m̃2,3m̃3,1 + m̃2,1m2,2)

m̃2,1
,

m2,3 = −m̃2,3α

m̃2
2,1

,

m3,3 =
ε (−ε m̃2,3m̃3,1 + m̃2,1 m3,3)

m̃2,1
.

Remark 4.1. Note that due to the assumption m̃2,1, m̃3,2 ∈ R∗ the transformation given by
(4.2) when ε = 0 is invertible.

Now, we writing down (4.3) in terms of vector fields from A ,B,C given in [8] to find
the following

X
ε
0 = B

1
0,0 + εm1,3C

−2
0,0 +

1

2
ε (m1,2 − 2m2,3)C

−1
0,0 −

1

2
εm2,2C

0
0,0 +

1

4
ε (m1,2 + 2m2,3)B

−1
0,0

+
1

2
ε (2m1,1 +m2,2)B

0
0,0 + ε (m1,1 +m2,2 +m3,3)A

0
0,0.

Due to sl2-style normal form, in order to find the versal normal form of Xε
0 we seek the vector

fields which belong to ker ad(B−1
0,0). Hence the following special structure constants associated

to the B
−1
0,0 are given

[B−1
0,0,B

l
i,k] = (l + 1)Bl−1

i,k ,

[B−1
0,0,A

l
i,k] = lAl−1

i,k ,

[B−1
0,0,C

l
i,k] =

(l + 2)(2i+ 3− l)

(2i− l + 1)
C
l−1
i,k , for l < 2i+ 1,

[B−1
0,0,C

l
i,k] = 0, for l = 2i+ 1,

[B−1
0,0,C

l
i,k] = (2i+ 4)C2i+1

i,k , for l = 2i+ 2.

Therefore we obtain that

X̄
ε
0 = B

1
0,0 + εAA

0
0,0 + εBB

−1
0,0 + εCC

−2
0,0, (4.4)
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and the correspondence differential equation of X̄ε
0 is









ẋ

ẏ

ż









=









εA 2εB εC

−1 εA εB

0 −2 εA

















x

y

z









= X̄ε
0









x

y

z









. (4.5)

Now we are ready to find the versal parameters εA, εB and εC. As before by computing the
characteristic polynomial of X̄ε

0 and X̄ε
0 we get

χ(X̄ε
0) = λ3 − 3 εAλ

2 +
(

3 ε2
A
+ 4 εB

)

λ− ε3
A
− 4 εAεB − 2 εC,

χ(Xε
0) = λ3 − ε (m1,1 +m2,2 +m3,3)λ

2 + ε
(

εm1,1m2,2 + εm1,1m3,3 + ε 2,2m3,3

+m1,2 + 2m2,3

)

λ− ε
(

ε2m1,1m2,2m3,3 + 2 εm1,1m2,3 + εm1,2m3,3 + 2m1,3

)

.

These define the invariants ∆i, i = 1, 2, 3 by

χ(Xε
0) = λ3 −∆1λ

2 +∆2λ−∆3.

Hence we find

εA =
1

3
∆1,

εB =
1

4
∆2 −

1

12
∆2

1,

εC =
1

2
∆3 −

1

6
∆1∆2 +

1

27
∆3

1.

Theorem 4.2. There exists invertible transformation T ε
(1) as

T ε
(1) =









1 εt1 εt2

0 1 εt3

0 0 1









, (4.6)

in which

t1 =
1

3
(m3,3 +m2,2 − 2m1,1) ,

t2 =
5

36
εm1,1 (m1,1 −m2,2 −m3,3)−

1

36
εm2,2 (m2,2 − 7m3,3)−

1

36
εm3,3

2

+
1

2
m2,3 −

1

4
m1,2,

t3 =
1

3

(

m3,3 −
1

2
m2,2 −

1

2
m1,1

)

,

which brings the matrix (4.3) to (4.5).

Proof. The transformation T ε
(1) is obtained using equation Xε

0T
ε
(1) = T ε

(1)X̄
ε
0 .
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4.2 Quadratic nonlinear versal normal form of triple-zero

In this part we shall compute the nonlinear normal form of the following parametric vector
fields with triple zero bifurcation point

X̄
ε
0 + X1, (4.7)

where

X1 =

2
∑

j=0

ajA
j
1,0 +

3
∑

j=−1

bjB
j
1,0 +

0
∑

j=−2

c
j
1C

j
−1,1 +

4
∑

j=−2

c
j
0C

j
1,0, (4.8)

or equivalently

X1 =
∑

i+j+k=2

a
(1)
i,j,kx

i
1x

j
2x

k
3

∂

∂x1
+

∑

i+j+k=2

a
(2)
i,j,kx

i
1x

j
2x

k
3

∂

∂x1
+

∑

i+j+k=2

a
(3)
i,j,kx

i
1x

j
2x

k
3

∂

∂x3
.(4.9)

The coefficients of (4.8) and (4.9) are related by these relations:

a
(1)
0,0,2 = c−2

1 , a
(1)
2,0,0 =

1

2
b2 + c20 + a2, a

(1)
0,2,0 = b0 − c−2

1 +
2

3
c00,

a
(2)
0,2,0 = c−1

1 − c10 + a1, a
(2)
0,0,2 = b−1 −

1

4
c−1
0 , a

(3)
2,0,0 = 30 c40,

a
(3)
0,0,2 = −1

2
b0 +

1

6
c00 + a0, a

(1)
1,1,0 = b1 + c10 + a1, a

(1)
1,0,1 =

1

3
c00 +

1

2
b0 + a0 + a−2

1 ,

a
(2)
1,1,0 = −1

2
b2 − 4 c20 + a2, a

(2)
1,0,1 = −1

2
c10 − c−1

1 , a
(2)
0,1,1 = −2

3
c00 +

1

2
b0 + a0,

a
(3)
1,1,0 = −2 b3 + 20 c30, a

(3)
1,0,1 = −1

2
b2 + 2 c20 + a2 + 2 a01, c

(1)
0,1,1 = 2 b−1 + c−1

0 ,

a
(3)
0,1,1 = −b1 + a1 + c10, a

(3)
0,2,0 = −b2 − 2 c01 + 4 c20, c

(2)
2,0,0 = −b3 − 5 c30.

Theorem 4.3. The normal form of (4.7) is given by

X̄
ε
0 = B

1
0,0 + εAA

0
0,0 + εBB

−1
0,0 + εCC

−2
0,0 + c̄01C

−2
1,0 + c̄0−1C

−2
−1,1 + b̄11B

−1
1,0 + ā10A

0
1,0, (4.10)

or equivalently

X̄1 =
(

x3εC + 2 x2εB + x1εA + c̄01x3
2 + c̄0−1

(

x1x3 − x2
2
)

+ 2b̄11x2x3 + ā10x3x1

) ∂

∂x1

+
(

−x1 + εAx2 + εBx3 + b̄11x3
2 + ā10x3x2

) ∂

∂x2
+
(

−2 x2 + εAx3 + ā10x
2
3

) ∂

∂x3
,

where

5c̄0−1 := 3 a
(1)
1,0,1 − 2 a

(3)
0,0,2 − a

(2)
0,1,1 − 2 a

(1)
0,2,0 −

(

5

2
a
(3)
1,1,0 + 6 a

(2)
2,0,0

)

εC −
(

2 a
(1)
2,0,0 − 3 a

(3)
1,0,1 + 2 a

(3)
0,2,0

+a
(2)
1,1,0

)

εB −
(

1

2
a
(1)
1,1,0 − a

(2)
0,2,0 + 4 a

(2)
1,0,1 + a

(3)
0,1,1

)

εA +
(

4a
(2)
2,0,0 + 3a

(3)
1,1,0

)

εBεA

−5

2
a
(3)
2,0,0εCεA −

(

1

2
a
(2)
1,1,0 −

3

2
a
(3)
1,0,1 + a

(3)
0,2,0 + a

(1)
2,0,0

)

ε2
A
+

(

3

4
a
(3)
1,1,0 + a

(2)
2,0,0

)

ε3
A

+3 a
(3)
2,0,0εBε

2
A +

3

4
a
(3)
2,0,0ε

4
A,
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10ā10 :=
(

a
(1)
0,2,0 + a

(1)
1,0,1 + 3 a

(2)
0,1,1 + 6 a

(3)
0,0,2

)

+

(

−2 a
(2)
2,0,0 +

5

2
a
(3)
1,1,0

)

εC

+
(

6a
(1)
2,0,0 + 3a

(2)
1,1,0 + a

(3)
0,2,0 + a

(3)
1,0,1

)

εB + 2

(

3

4
a
(1)
1,1,0 + a

(2)
0,2,0 + a

(2)
1,0,1 +

3

4
a
(3)
0,1,1

)

εA

+
5

2
a
(3)
2,0,0εCεA +

(

−12 a
(2)
2,0,0 + a

(3)
1,1,0

)

εAεB +

(

−3a
(2)
2,0,0 +

1

4
a
(3)
1,1,0

)

ε3
A
+ a

(3)
2,0,0ε

2
A
εB

+
1

4
a
(3)
2,0,0ε

4
A,

6b̄11 := a
(1)
0,1,1 + 4 a

(2)
0,0,2 +

1

18

(

4 a
(1)
2,0,0 + a

(2)
1,1,0 + a

(3)
0,2,0 − 5 a

(3)
1,0,1

)

εC +
(

a
(1)
1,1,0 − a

(3)
0,1,1

)

εB

+
1

2

(

a
(1)
0,2,0 + a

(1)
1,0,1 + a

(2)
0,1,1 − 2 a

(3)
0,0,2

)

εA − 1

12

(

28 a
(2)
2,0,0 + 19 a

(3)
1,1,0

)

εCεA − 10

3
a
(3)
2,0,0εBεC

−
(

4 a
(2)
2,0,0 + a

(3)
1,1,0

)

ε2
B
+

5

6

(

2 a
(1)
2,0,0 − a

(2)
1,1,0 − a

(3)
0,2,0 − a

(3)
1,0,1

)

εAεB +
1

4

(

a
(1)
1,1,0 − a

(3)
0,1,1

)

ε2
A

−2

3

(

4 a
(2)
2,0,0 + a

(3)
1,1,0

)

ε2
A
εB − 4

9
a
(3)
2,0,0εAεB

2 +
1

12

(

2 a
(1)
2,0,0 − b1,1,0 − a

(3)
0,2,0 − a

(3)
1,0,1

)

ε3
A

−25

12
a
(3)
2,0,0ε

2
A
εC − 5

6
a
(3)
2,0,0ε

3
A
εB − 1

24

(

4 a
(2)
2,0,0 + a

(3)
1,1,0

)

ε4
A
− 1

24
a
(3)
2,0,0ε

5
A
,

c̄01 := a
(1)
0,0,2 +

1

12

(

a
(1)
1,1,0 + 2 a

(2)
0,2,0 − 10 a

(2)
1,0,1 − 3 a

(3)
0,1,1

)

εC +
1

3

(

1

2
a
(1)
0,1,1 − a

(2)
0,0,2

)

εA − 1

3
a
(3)
2,0,0εC

2

+
1

5

(

a
(1)
0,2,0 + a

(1)
1,0,1 − 2 a

(2)
0,1,1 + a

(3)
0,0,2

)

εB +

(

−11

15
a
(2)
2,0,0 +

1

6
a
(3)
1,1,0

)

εBεC

+
2

15

(

a
(1)
1,1,0 − 2 a

(2)
0,2,0 − 2 a

(2)
1,0,1 + a

(3)
0,1,1

)

εAεB +
1

30

(

a
(1)
0,2,0 + a

(1)
1,0,1 − 2 a

(2)
0,1,1 + a

(3)
0,0,2

)

ε2
A

+
1

36

(

− a
(1)
2,0,0 − 10 a

(2)
1,1,0 − 13 a

(3)
0,2,0 + 11 a

(3)
1,0,1

)

εAεC +
1

5

(

a
(1)
2,0,0 − 2 a

(2)
1,1,0 + a

(3)
0,2,0

+ a
(3)
1,0,1

)

εB
2 +

1

36
a
(3)
2,0,0εAεBεC + a

(3)
2,0,0εB

3 +
7

90

(

a
(1)
2,0,0 − 2 a

(2)
1,1,0 + a

(3)
0,2,0 + a

(3)
1,0,1

)

ε2AεB

+
1

120

(

a
(1)
1,1,0 − 2a

(2)
0,2,0 − 2a

(2)
1,0,1 + a

(3)
0,1,1

)

ε3A +

(

− 7

180
a
(2)
2,0,0 +

11

72
a
(3)
1,1,0

)

ε2AεC

+
11

15

(

− a
(2)
2,0,0 +

1

2
a
(3)
1,1,0

)

εAε
2
B +

1

9

(

− a
(2)
2,0,0 +

1

2
a
(3)
1,1,0

)

εBε
3
A +

11

72
a
(3)
2,0,0ε

3
AεC

+
34

45
a
(3)
2,0,0ε

2
A
εB

2 +
1

360

(

a
(1)
2,0,0 − 2a

(2)
1,1,0 + a

(3)
0,2,0 + a

(3)
1,0,1

)

ε4
A
+

1

720

(

−2a
(2)
2,0,0 + a

(3)
1,1,0

)

ε5
A

+
5

72
a
(3)
2,0,0εBε

4
A
+

1

720
a
(3)
2,0,0ε

6
A
.

Proof. In order to find the transformation the following linear system should be solved

ad(B−1
0 )(ad(X̄ε

0)t
ε
B
− X2) = 0, (4.11)

where

t
ε
1 =

2
∑

j=0

αjA
j
1,0 +

3
∑

j=−1

βjB
j
1,0 +

0
∑

j=−2

γ
j
1C

j
−1,1 +

4
∑

j=−2

γ
j
0C

j
1,0,
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or in the different basis it equals to

t
ε
1 =

∑

i+j+k=2

α
(1)
i,j,kx

i
1x

j
2x

k
3

∂

∂x1
+

∑

i+j+k=2

α
(2)
i,j,kx

i
1x

j
2x

k
3

∂

∂x1
(4.12)

+
∑

i+j+k=2

α
(3)
i,j,kx

i
1x

j
2x

k
3

∂

∂x3
.

By solving Equation (4.11) one can find the coefficients of transformation t
ε
1 as are given in

Appendix A, see Equation (A.1). On the other hand, by solving the equation below

ā10A
0
1,0 ++b̄11B

−1
1,0 + c̄01C

−2
1,0 + c̄0−1C

−2
−1,1 = ad(X̄ε

0)t
ε
B
− X2,

we find the coefficients of normal form which has four free parameters as α
(3)
2,0,0, α

(2)
2,0,0, α

(3)
0,2,0

and α
(2)
2,0,0. In accordance to the sl2-costyle we can take all of them zero and we get the

coefficients as given in the theorem. These coefficients with those free parameters are given
in Appendix A, see equations (A.2)-(A.3).

5 An example on sp(4,R)

In [15, Equation (48)] the versal deformation problem is studied using formal power series.
We refer to this paper for more references to the literature and a general introduction of
the importance of the versal deformation in applied mathematics. We mention that to keep
things simple, we use an almost symplectic map to obtain the versal normal form, a trade
off we have discussed in Section 2.

In this section we shall find the near identity transformation T ε as discussed in the
previous section to bring the symplectic matrices given by [15, Equation (48)], describing
oscillations of a simply supported elastic pipe conveying fluid, to its versal normal form. Set

ρ :=
1

4

√

(4 + ε p1) (3 + 4ε p2),

where p1, p2 are two real parameters. Define

Xε
0 :=













0 ρ 1 0

−ρ 0 0 1

ε p1 − ρ2 + 3 0 0 ρ

0 4 ε p1 − ρ2 −ρ 0













. (5.1)

Set r :=
√
3
2

and define n0 = X0
0 and apply the Jacobson-Morozov construction to find

n0 :=













0 r 1 0

−r 0 0 1

9
4

0 0 r

0 −3
4

−r 0













, m0 :=













0 −r 1 0

r 0 0 −1
3

9
4

0 0 −r

0 9
4

r 0













,
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one can see that m0
4 = n

4
0 = 0. Now define

h0 := [m0, n0] =















0 0 0 −2
3

√
3

0 2 −2
3

√
3 0

0 −
√
3 0 0

−3
2

√
3 0 0 −2















,

and we have [h0,m0]− 2m0 = 0, [h0, n0] + 2n0 = 0. The normal form of Xε
0 consists of those

elements which are in ker ad(m0); in fact

V1 =















0
√
3
2

−1 0

−
√
3
2

0 0 1
3

−9
4

0 0
√
3
2

0 −9
4

−
√
3
2

0















, V2 =















0 9
√
3

4
−3

2
0

0 0 0 0

0 0 0 0

0 81
4

−9
√
3

4
0















.

Hence the normal form is given by

X̄ε
0 = n0 + ε1V1 + ε2V2. (5.2)

The characteristic polynomial of Xε
0 given in the (5.1) and X̄ε

0 are as

χ(Xε
0) = λ4 +

(

−17 ε p1
4

+ ε2p1p2 + 4 ε p2

)

λ2 + 4p1ε ( εp1 + 3 ) ,

χ(X̄ε
0) = λ4 + 10 ε1λ

2 + 9 ε1
2 + 54 ε2.

Therefore we obtain

ε1 =
1

5
ε

(

2p2 −
17

8
p1

)

+
1

10
p1p2ε

2,

ε2 =
1

86400
ε2 (29 p1 + 48 p2) (131 p1 − 48 p2)−

1

3600
εp1
(

6 ε3p1p2
2 − 51 ε2p1p2 + 48 ε2p2

2 − 800
)

.

With χ(Xε
0) = λ4 +∆2λ

2 +∆4, we see that

∆2 = −17

4
ε p1 + ε2p1p2 + 4 ε p2,

∆4 = 4 ε2p1
2 + 12 ε p1.

To go from p1, p2 to ∆2,∆4 is less simple then in the earlier examples.

Theorem 5.1. There exists invertible transformation T ε such that brings (5.1) to (5.2),

T ε =

















1 0 0 0

0 1 +
√
3

76800ρ
εt1 − 1

115200ρ
εt2 0

0
√
3

76800
εt3 1 + 1

115200
εt4 0

1
25600ρ

εt5 0 0 1 +
√
3

115200ρ
εt6

















, (5.3)
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in which

t1 = 320 (29 p1 + 48 p2) +
(

1079 p1
2 + 11296 p1p2 − 2304 p2

2
)

ε+ 8 p1p2 (233 p1 − 144 p2) ε
2

−144 ε3p2
2p1

2,

t2 = 1920 (3p1 + 16p2) +
(

1079 p1
2 + 15136 p1p2 − 2304 p2

2
)

ε+ 8 p1p2 (233 p1 − 144 p2) ε
2

−144 ε3p2
2p1

2,

t3 = 12800 p1 +
(

6519 p1
2 + 2336 p1p2 − 2304 p2

2
)

ε+ 8 p1p2 (73 p1 − 144 p2) ε
2 − 144 ε3p2

2p1
2,

t4 = 960 (17p1 − 16p2)−
(

6519 p1
2 + 6176 p1p2 − 2304 p2

2
)

ε− 8 p1p2 (73 p1 − 144 p2) ε
2

+144 ε3p2
2p1

2,

t5 = 320 (17p1 − 16p2)−
(

331 p1
2 + 12704 p1p2 − 5376 p2

2
)

ε− 168 p1p2 (17 p1 − 16 p2) ε
2

+336 ε3p2
2p1

2,

t6 = 960 (3p1 + 16 p2) +
(

331 p1
2 + 15264 p1p2 − 5376 p2

2
)

ε+ 168 p1p2 (17 p1 − 16 p2) ε
2

−336 ε3p2
2p1

2.

Proof. The transformation (5.3) is obtained using equation Xε
0T

ε = T εX̄ε
0 .

Remark 5.2. In this example, we did not put the X0
0 into the symplectic normal form.

6 Three body problem

6.1 The versal normal form at L4

In the theory of the restricted three body problem, the Langrange equilibria play a very
practical role, since they are used to park satellites in orbit, as has been the case for L1 and
L2. The Trojan points L4 and L5 are considered as positions for space colonies, since they
are stable, unlike L3 which only made it into science fiction sofar.

Consider (Cf. [6, Equation 1.8]) the four-dimensional L4-singularity

Xδ
0 := X0

0 + (4
√
2− 3 δ)















0 −γ2

4
γ2

2
0

1
8γ2 0 0 − 1

4γ2

1
16γ2 0 0 − 1

8γ2

0 −γ2

8
γ2

4
0















, (6.1)

where γ = (1−
√
2
2
)
1

2 and

X0
0 :=















0 −1
2

√
2 0 0

1
2

√
2 0 0 0

0 0 0 −1
2

√
2

0 0 1
2

√
2 0















+













0 0 0 0

0 0 0 0

−1 0 0 0

0 −1 0 0













= s0 + n0.
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The bifurcation point of Xδ
0 is δ = δ0 :=

4
√
2

3
. Set δ = δ0 + ε to find

Xε
0 = X0

0 + ε















0 3
4
− 3

8

√
2 −3

2
+ 3

4

√
2 0

−3
4
− 3

8

√
2 0 0 3

2
+ 3

4

√
2

−3
8
− 3

16

√
2 0 0 3

4
+ 3

8

√
2

0 3
8
− 3

16

√
2 −3

4
+ 3

8

√
2 0















. (6.2)

The normal form of (6.1) is given by

X̄ε
0 = X0

0 −
√
2εSs0 + εNn0,

where εN, εS are obtained as follows. The characteristic polynomial of Xε
0 is

λ4 + λ2 − 1

16

(

3 ε+ 6 + 4
√
2
)(

3 ε− 6 + 4
√
2
)

. (6.3)

Comparing the characteristic polynomial of Xε
0 with characteristic polynomial of X̄ε

0 as

λ4 +
(

2 εN + 2εS
2 − 2

√
2εS + 1

)

λ2 +
1

4

(

−2 εS
2 + 2

√
2εS + 2εN − 1

)2

. (6.4)

Then equations (6.3) and (6.4) imply that

2εS

(√
2− εS

)

= 2 εN, (6.5)

(4 εN − 1)2 = −1

4

(

3 ε− 6 + 4
√
2
)(

3 ε+ 6 + 4
√
2
)

. (6.6)

Now, by solving Equation (6.6) respect to εN we find two solutions. The negative root is the
right solution, since for ε = 0 we have

εN =
3
√
2

4
ε+

81

32
ε2 +O

(

ε3
)

,

hence,

εN = −

√

−
(

3 ε− 6 + 4
√
2
) (

3 ε+ 6 + 4
√
2
)

8
+

1

4
.

Now substitute εN into (6.5) and solve for εS to get

εS :=
1

2





√
2− 1

2

√

4 + 2

√

−
(

3 ε− 6 + 4
√
2
)(

3 ε+ 6 + 4
√
2
)



 .

Here also we choose the negative root, since from ε = 0 we obtain

εS =
3

4
ε+

99
√
2

64
ε2 +O

(

ε3
)

.

Note that to have a real normal form we should make this restriction:

−3.885618082 ≈ −6 − 4
√
2

3
< ε <

6− 4
√
2

3
≈ 0.114381918.
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6.2 Finding the transformation generator t
ε
0

Let tε0 ∈ GL(4,R)

t
ε
0 =

1

(α1 + 6)













t1 t2 t3 −1
ε
t4

t5 t6
1
ε
t7 t8

−1
ε
t9

1
ε2
t10 − 1

ε2
t11

1
ε
t12

− 1
ε2
t13

1
ε
t14

1
ε
t15 − 1

ε2
t16













. (6.7)

We solve the following equation

(I + εtε0)X̄
ε
0 = Xε

0(I + εtε0), (6.8)

for {ti, i = 1 · · ·16}.The solutions of above equation respect to four free parameters t1, t2, t5, t6
are given in Appendix B. Now we should find parameters t1, t2, t5, t6. By substituting pa-
rameters in t

ε
0 and Taylor expansion around ε = 0 we find

t
ε
0 =















t1 t2 0 0

t5 t6 0 0

−
√
2(t2+t5)

3ε

√
2(4 t1−4 t6−9)

12ε
0 0

−
√
2(4 t1−4 t6−9)

12ε
−

√
2(t2+t5)

3ε
0 0















+O(ε0).

Due to Equation (6.8) transformation T ε should be near identity. Hence, it requires t2 =
−t5, t1 = t6 +

9
4
. We have two free parameters t5, t6 which can be taken as t5 = 0, t6 = −9

4
.

Hence t1 = t2 = 0. Thereby we find

t
ε
0 =













0 0 0 0

0 −9
4

0 0

0 0 0 0

0 0 0 0













+O(ε0).

Theorem 6.1. The following transformation takes Xδ
0 to its versal normal from X̄ε

0 through
of equation Xε

0(I + t
ε
0) = (I + t

ε
0)X̄

ε
0 .

t
ε
0 =

1

(6 + α1)













0 0 0 1
8ε
t4

0 −9
4

1
6ε
t7 0

0 1
24ε2

t10
1

96 ε2
t11 0

1
24ε2

t13 0 0 1
24ε2

t16













,

where

α1 =

√

−
(

3 ε− 6 + 4
√
2
)(

3 ε+ 6 + 4
√
2
)

, α2 =
√
4 + 2α1,
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and

t4 = 8

(

2 +
√
2 + α1 −

√
2α2 −

1

2
α1

√
2

)

+ 6

(

3

2
α1

√
2− 2− α2 − 5

√
2− 3α1

)

ε

+27
(√

2− 2
)

ε2,

t7 = 16

(

α1 −
√
2 +

1

2
α1

√
2−

√
2α2

)

+ 384
(

3
√
2α2 − α2 − 2

√
2− 4

)

ε+ 27α2ε
2,

t10 = 8

(

1

2
α1

√
2α2 −

√
2α2 − 4

√
2 + 2α2 + α1α2 − 2α1

√
2

)

+ 12
(

10 + 3α1

√
2−

√
2α2 + α1

+6
√
2− 2α2

)

ε− 27 (α1 − 10) ε2,

t11 = 16 (2 − α1)α2 +
(

48α1

√
2 + 36α1α2 − 96

√
2− 72α2 − 384

)

ε− 36
(

8 + 4
√
2 + α2

)

ε2

+81α2ε
3,

t13 = 4α2 +
√
2α2 − 2α1

√
2 + 2α1α2 − α1α2

√
2 + 12

(3

4

√
2α2α1 −

3

2
α1α2 −

5

2

√
2α2 − 8

√
2

+α1 − α2 + 10
)

ε+ 27
(√

2− 2
)

α2ε
2,

t16 = 4α2 (2− α1)− 12
(

α1

√
2 + 12 + 2

√
2
)

ε+ 9
(

3α1

√
2− 6α1 − 10

√
2− 4− α2

)

ε2

+81
(√

2− 2
)

ε3.

Note that t4, t7 are in order ε and t10, t11, t13, t16 are in order ε2.

7 Concluding remarks

We have shown that the correct implementation of versal normal form in normal form com-
putations is possible. It does give, and this was to be expected, an added level of complexity.
In any practical computation, this will have to be balanced against the added level of cor-
rectness.

It will be interesting to see whether these considerations can also be applied in practice
to the theory of unique normal form. This would, after all, be the holy grail of normal form
theory: unique versal normal forms!



22

Appendices

A The coefficients of normal form and transformation

of triple-zero

The coefficients of transformation t
ε
1 given in the Equation (4.12) respect to four free param-

eters are as follows:

α
(3)
1,1,0 = 2α

(2)
2,0,0 + a

(3)
2,0,0 + α

(3)
2,0,0εA, (A.1)

α
(1)
2,0,0 = α

(2)
1,1,0 − a

(2)
2,0,0 − α

(2)
2,0,0εA + α

(3)
2,0,0εB,

α
(1)
1,1,0 = a

(1)
2,0,0 − α

(3)
2,0,0εC − 2α

(2)
2,0,0εB +

(

α
(2)
1,1,0 − a

(2)
2,0,0

)

εA + α
(3)
2,0,0εBεA − α

(2)
2,0,0ε

2
A
,

α
(3)
1,0,1 = α

(2)
1,1,0 +

1

2
a
(3)
1,1,0 − α

(3)
0,2,0 + 2α

(3)
2,0,0εB +

(

α
(2)
2,0,0 +

1

2
a
(3)
2,0,0

)

εA +
1

2
α
(3)
2,0,0ε

2
A
,

3α
(2)
0,2,0 = a

(3)
1,0,1 + a

(1)
2,0,0 + a

(2)
1,1,0 −

1

2
a
(3)
0,2,0 +

(

3α
(2)
1,1,0 − a

(2)
2,0,0 +

1

2
a
(3)
1,1,0 −

1

2
α
(3)
0,2,0

)

εA

+α
(3)
2,0,0εC − a

(3)
2,0,0εB +

1

2
a
(3)
2,0,0ε

2
A +

2

3
α
(3)
2,0,0εAεB +

1

2
α
(3)
2,0,0ε

3
A,

3α
(3)
0,1,1 = a

(1)
2,0,0 + a

(2)
1,1,0 + a

(3)
0,2,0 + a

(3)
1,0,1 + α

(3)
2,0,0εC +

(

1

2
a
(3)
1,1,0 − a

(2)
2,0,0 + 3α

(2)
1,1,0

)

εA

+2
(

a
(3)
2,0,0 + 3α

(2)
2,0,0

)

εB + 5α
(3)
2,0,0εAεB +

1

2
a
(3)
2,0,0ε

2
A
+

1

2
α
(3)
2,0,0ε

3
A
,

6α
(2)
1,0,1 = a

(1)
2,0,0 + a

(2)
1,1,0 + a

(3)
0,2,0 − 2a

(3)
1,0,1 − 5α

(3)
2,0,0εC − a

(3)
2,0,0εB +

(

−a
(2)
2,0,0 − a

(3)
1,1,0 + 3α

(3)
0,2,0

)

εA

−4α
(3)
2,0,0εAεB +

(

−3α
(2)
2,0,0 − a

(3)
2,0,0

)

εA
2 − ε3Aα

(3)
2,0,0,

3α
(2)
0,1,1 =

1

2
a
(1)
1,1,0 + a

(2)
0,2,0 + a

(2)
1,0,1 +

(

−1

2
a
(3)
2,0,0 + α

(2)
2,0,0

)

εC +

(

−1

2
a
(3)
1,1,0 + α

(2)
1,1,0 − 2 a

(2)
2,0,0

)

εB

+

(

a
(1)
2,0,0 +

1

2
a
(2)
1,1,0

)

εA −
(

a
(3)
2,0,0 + 4α

(2)
2,0,0

)

εAεB − 3

2
α
(3)
2,0,0εAεC +

(

−a
(2)
2,0,0 +

3

2
α
(2)
1,1,0

)

ε2A

−α
(2)
2,0,0ε

3
A
,

3α
(1)
0,2,0 = a

(1)
1,1,0 + 2a

(2)
1,0,1 − a

(2)
0,2,0 +

(

−a
(3)
2,0,0 + 2α

(2)
2,0,0

)

εC +
1

3

(

α
(3)
0,2,0 − a

(3)
1,1,0 − 4a

(2)
2,0,0

)

εB

+

(

−a
(3)
1,0,1 +

1

2
a
(3)
0,2,0 + a

(1)
2,0,0

)

εA −
(

8α
(2)
2,0,0 + a

(3)
2,0,0

)

εAεB − 4α
(3)
2,0,0εAεC

+

(

3

2
α
(3)
0,2,0 −

1

2
a
(3)
1,1,0 − a

(2)
2,0,0

)

ε23 − 2α
(3)
2,0,0ε

2
AεB −

(

1

2
a
(3)
2,0,0 + 2α

(2)
2,0,0

)

ε3A − 1

2
ε4Aα

(3)
2,0,0,

12α
(3)
0,0,2 = a

(1)
1,1,0 + 3a

(3)
0,1,1 + 2a

(2)
1,0,1 + 2a

(2)
0,2,0 +

(

2a
(3)
2,0,0 + 8α

(2)
2,0,0

)

εC + α
(3)
2,0,0ε

2
B
+ α

(3)
2,0,0εAεC

+
(

12α
(2)
1,1,0 + 2a

(3)
1,1,0 − 4a

(2)
2,0,0

)

εB +
(

a
(3)
1,0,1 + a

(3)
0,2,0 + 2a

(2)
1,1,0 + 3a

(1)
2,0,0

)

εA

+
(

4α
(2)
2,0,0 + 3a

(3)
2,0,0

)

εAεB +
(

2a
(3)
1,1,0 − 3a

(2)
2,0,0 + 6α

(2)
1,1,0

)

ε2
A
+ 2

(

a
(3)
2,0,0 − α

(2)
2,0,0

)

ε3
A

+8α
(3)
2,0,0εBε

2
A
+ α

(3)
2,0,0ε

4
A
,
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15α
(1)
0,1,1 =

3

2

(

3a
(1)
0,2,0 + 3a

(1)
1,0,1 − 2a

(3)
0,0,2 − a

(2)
0,1,1

)

−
(

a
(2)
0,2,0 + a

(2)
1,0,1 −

7

4
a
(1)
1,1,0 +

3

4
a
(3)
0,1,1

)

εA

+
1

2

(

−a
(3)
0,2,0 + 14 a

(1)
2,0,0 − 13 a

(2)
1,1,0 − a

(3)
1,0,1

)

εB + 3

(

α
(3)
0,2,0 −

5

4
a
(3)
1,1,0 − 3a

(2)
2,0,0

)

εC

+15

(

−2α
(2)
2,0,0 +

1

3
a
(3)
2,0,0

)

ε2B − 15

(

5 a
(3)
2,0,0

12
+

47α
(2)
2,0,0

30

)

εAεC − 2
(

7a
(2)
2,0,0 + a

(3)
1,1,0

)

εAεB

+
1

4

(

4a
(1)
2,0,0 − 3a

(2)
1,1,0 − a

(3)
1,0,1 − a

(3)
0,2,0

)

ε2
A
− 14α

(3)
2,0,0εCεB − 31

4
α
(3)
2,0,0εCε

2
A
+ 17α

(3)
2,0,0ε

2
B
εA

−1

2

(

a
(3)
2,0,0 + 10α

(2)
2,0,0

)

εBε
2
3 −

(

a
(2)
2,0,0 +

a
(3)
1,1,0

8

)

ε3A − 1

4

(

5α
(2)
2,0,0 +

1

2
a
(3)
2,0,0

)

ε4A −
α
(3)
2,0,0

8
ε5A,

6α
(1)
1,0,1 = a

(1)
1,1,0 − 4a

(2)
1,0,1 + 2a

(2)
0,2,0 +

(

2a
(3)
1,0,1 − a

(3)
0,2,0 + a

(1)
2,0,0

)

εA −
(

a
(3)
2,0,0 + 10α

(2)
2,0,0

)

εC

+6

(

−α
(3)
0,2,0 + α

(2)
1,1,0 +

1

3
a
(3)
1,1,0 −

2

3
a
(2)
2,0,0

)

εB + 12α
(3)
2,0,0ε

2
B
+ 2α

(3)
2,0,0εAεC

−2
(

α
(2)
2,0,0 − a

(3)
2,0,0

)

εAεB +
(

−3α
(3)
0,2,0a

(3)
1,1,0 − a

(2)
2,0,0 + 3α

(2)
1,1,0

)

εA
2 + 7α

(3)
2,0,0ε

2
AεB

+
(

a
(3)
2,0,0 + α

(2)
2,0,0

)

ε3
A
+ ε4

A
α
(3)
2,0,0,

60α
(2)
0,0,2 = 3

(

a
(1)
0,2,0 + a

(1)
1,0,1 + 3a

(2)
0,1,1 − 4a

(3)
0,0,2

)

+ 60

(

− 1

10
a
(2)
2,0,0 −

1

8
a
(3)
1,1,0 +

1

5
α
(3)
0,2,0

)

εC

+
(

8 a
(1)
2,0,0 − a

(2)
1,1,0 − 7 a

(3)
0,2,0 − 7 a

(3)
1,0,1

)

εB +
(

2a
(1)
1,1,0 + a

(2)
0,2,0 + a

(2)
1,0,1 − 3a

(3)
0,1,1

)

εA

−
(

29α
(2)
2,0,0 +

25

2
a
(3)
2,0,0

)

εAεC − 46α
(3)
2,0,0εBεC − 60

(

α
(2)
2,0,0 +

1

3
a
(3)
2,0,0

)

ε2
B

−
(

16a
(2)
2,0,0 + 7 a

(3)
1,1,0

)

εAεB +

(

3

2
a
(1)
2,0,0 − 2a

(2)
1,1,0 − a

(3)
0,2,0 − a

(3)
1,0,1

)

ε2
A

−
(

40α
(2)
2,0,0 +

19

2
a
(3)
2,0,0

)

ε2AεB − 10α
(3)
2,0,0ε

3
AεB − 8α

(3)
2,0,0ε

2
AεC − 32α

(3)
2,0,0εAε

2
B

−
(

3

2
a
(2)
2,0,0 + 2a

(3)
1,1,0

)

ε3A −
(

5

2
α
(2)
2,0,0 + 2a

(3)
2,0,0

)

ε4A − 2α
(3)
2,0,0ε

5
A,
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α
(1)
0,0,2 =

1

3

(

1

2
a
(1)
0,1,1 − a

(2)
0,0,2

)

+
1

30

(

a
(3)
0,0,2 + a

(1)
1,0,1 − 2a

(2)
0,1,1 + a

(1)
0,2,0

)

εA

+
1

18

(

a
(1)
2,0,0 − 2 a

(3)
0,2,0 − 2 a

(2)
1,1,0 + a

(3)
1,0,1

)

εC +
1

12

(

a
(3)
0,1,1 + a

(1)
1,1,0 − 2 a

(2)
0,2,0 − 2a

(2)
1,0,1

)

εB

+

(

−1

5
α
(3)
0,2,0 −

11

90
a
(2)
2,0,0 +

1

36
a
(3)
1,1,0

)

εAεC +
1

60

(

2a
(1)
1,1,0 + 2a

(3)
0,1,1 − a

(2)
1,0,1 − a

(2)
0,2,0

)

ε2
A

+
1

6

(

−2 a
(2)
2,0,0 + a

(3)
1,1,0

)

ε2B +
11

180

(

a
(1)
2,0,0 − 2a

(2)
1,1,0 + a

(3)
1,0,1 + a

(3)
0,2,0

)

εAεB +
1

18
α
(3)
2,0,0ε

2
C

−18

(

a
(3)
2,0,0 +

1

18
α
(2)
2,0,0

)

εBεC +

(

1

36
a
(3)
2,0,0 −

1

10
α
(2)
2,0,0

)

ε2AεC +
17

360

(

a
(3)
1,1,0 − 2a

(2)
2,0,0

)

εBε
2
A

+
1

360

(

a
(1)
2,0,0 + a

(3)
1,0,1 + a

(3)
0,2,0 − 2a

(2)
1,1,0

)

ε3
A
+

43

180
α
(3)
2,0,0εAεBεC + α

(3)
2,0,0ε

3
B
+

17

36
a
(3)
2,0,0εAε

2
B

+
11

180
a
(3)
2,0,0εBε

3
A
+

11

360
α
(3)
2,0,0ε

3
A
εC +

34

45
α
(3)
2,0,0ε

2
A
ε2
B
+

5

72
α
(3)
2,0,0εBε

4
A
+

1

720

(

a
(3)
1,1,0 − 2a

(2)
2,0,0

)

ε4
A

+
1

720
a
(3)
2,0,0ε

5
A
+

1

720
α
(3)
2,0,0ε

6
A
,

where the coefficients of the normal form are given by

10ā10 = a
(1)
0,2,0 + a

(1)
1,0,1 + 6a

(3)
0,0,2 + 3a

(2)
0,1,1 +

(

−6α
(3)
0,2,0 +

5

2
a
(3)
1,1,0 − 2a

(2)
2,0,0 + α

(2)
1,1,0

)

εC

+

(

2a
(2)
0,2,0 + 2a

(2)
1,0,1 +

3

2
a
(1)
1,1,0 +

3 a
(3)
0,1,1

2

)

εA +
(

a
(3)
0,2,0 + 6a

(1)
2,0,0 + 3a

(2)
1,1,0 + a

(3)
1,0,1

)

εB

+
(

30a
(1)
2,0,0 + 3 a

(2)
1,1,0 + a

(3)
1,0,1 + a

(3)
0,2,0

)

ε2A + 8
(

α
(3)
2,0,0εCεB + 2α

(3)
2,0,0εAε

2
B

)

+

(

5

2
a
(3)
2,0,0 + 7α

(2)
2,0,0

)

εAεC +
(

−12a
(2)
2,0,0 + a

(3)
1,1,0 + 20α

(2)
1,1,0

)

εAε2 +
(

a
(3)
2,0,0 − 10α

(2)
2,0,0

)

ε2
A
εB

+2α
(3)
2,0,0εCε

2
A + 5α

(3)
2,0,0ε

3
AεB +

(

5α
(2)
1,1,0 − 3a

(2)
2,0,0 +

1

4
a
(3)
1,1,0

)

ε3A +

(

−5

2
α
(2)
2,0,0 +

1

4
a
(3)
2,0,0

)

ε4A

+
1

4
α
(3)
2,0,0ε

5
A
, (A.2)

c̄0−1 =
1

5

(

−2 a
(1)
0,2,0 + 3 a

(1)
1,0,1 − 2 a

(3)
0,0,2 − a

(2)
0,1,1

)

+
1

5

(

a
(2)
0,2,0 − 4a

(2)
1,0,1 −

1

2
a
(1)
1,1,0 − a

(3)
0,1,1

)

εA

+

(

7

5
α
(3)
0,2,0 −

1

2
a
(3)
1,1,0 −

6

5
a
(2)
2,0,0

)

εC − 2

5

(

a
(3)
0,2,0 + a

(1)
2,0,0 −

1

2
a
(2)
1,1,0 +

3

2
a
(3)
1,0,1

)

εB

−
(

1

2
a
(3)
2,0,0 +

19

5
α
(2)
2,0,0

)

εCεA +
1

5

(

−10α
(3)
0,2,0 + 4 a

(2)
2,0,0 + 3 a

(3)
1,1,0

)

εAεB

+

(

3

5
a
(3)
2,0,0 + 2α

(2)
2,0,0

)

ε2
A
εB + α

(3)
2,0,0ε

3
A
εB +

4

5
α
(3)
2,0,0εCεB +

8

5
α
(3)
2,0,0εAε

2
B
+

3

10
α
(3)
2,0,0ε

2
A
εC

+
1

5

(

− a
(1)
2,0,0 −

1

2
a
(2)
1,1,0 +

3

10
a
(3)
1,0,1 −

1

5
a
(3)
0,2,0

)

ε2A +

(

−1

2
α
(3)
0,2,0 +

1

5
a
(2)
2,0,0 +

3 a
(3)
1,1,0

20

)

ε3A

+
1

20

(

6a
(1)
2,0,0 + 3 a

(2)
1,1,0 + a

(3)
0,2,0 + a

(3)
1,0,1

)

ε2
A
+

(

1

2
α
(2)
2,0,0 +

3 a
(3)
2,0,0

20

)

ε4
A
+

3α
(3)
2,0,0

20
ε5
A
, (A.3)
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c̄01 = a
(1)
0,0,2 +

1

6

(

1

2
a
(1)
1,1,0 − 5, a

(2)
1,0,1 + a

(2)
0,2,0 −

3

2
a
(3)
0,1,1

)

εC +
1

5

(

a
(1)
0,2,0 + a

(1)
1,0,1 + a

(3)
0,0,2 − 2 a

(2)
0,1,1

)

εB

+
1

3

(

1

2
a
(1)
0,1,1 − a

(2)
0,0,2

)

εA +
1

5

(

a
(3)
1,0,1 + a

(1)
2,0,0 + a

(3)
0,2,0 − 2a

(2)
1,1,0

)

ε2
B

+
2

15

(

a
(1)
1,1,0 − 2 a

(2)
1,0,1 − 2 a

(2)
0,2,0 + a

(3)
0,1,1

)

εBεA +

(

−6

5
α
(3)
0,2,0 +

1

6
a
(3)
1,1,0 −

11 a
(2)
2,0,0

15

)

εCεB

+
1

36

(

−13a
(3)
0,2,0 − a

(1)
2,0,0 − 10 a

(2)
1,1,0 + 36 a

(3)
1,0,1

)

εCεA − 1

3

(

a
(3)
2,0,0 + 7α

(2)
2,0,0

)

ε21

+
1

30

(

a
(3)
0,0,2 + a

(1)
1,0,1 − 2 a

(2)
0,1,1 + a

(1)
0,2,0

)

ε2
A
+

(

− 7

10
α
(3)
0,2,0 +

11

72
a
(3)
1,1,0 −

7

180
a
(2)
2,0,0

)

ε2
A
εC

+
1

120

(

−2a
(2)
1,0,1 − 2a

(2)
0,2,0 + a

(1)
1,1,0 + a

(3)
0,1,1

)

ε3
A
+

(

1

36
a
(3)
2,0,0 −

34

15
α
(2)
2,0,0

)

εAεCεB + a
(3)
2,0,0ε

3
B

+
11

36
α
(3)
2,0,0εAε

2
C +

8

5
α
(3)
2,0,0εCε

2
B +

11

30

(

−2a
(2)
2,0,0 + a

(3)
1,1,0

)

εAε
2
B

+
7

90

(

−2a
(2)
1,1,0 + a

(3)
0,2,0 + a

(1)
2,0,0 + a

(3)
1,0,1

)

ε2AεB +
1

9

(

1

2
a
(3)
1,1,0 − a

(2)
2,0,0

)

ε3AεB +
16

5
α
(3)
2,0,0εAε

3
B

+
1

360

(

a
(1)
2,0,0 + a

(3)
1,0,1 + a

(3)
0,2,0 − 2a

(2)
1,1,0

)

ε4
A
+

34

45
a
(3)
2,0,0ε

2
A
ε2
B
+

49

45
α
(3)
2,0,0ε

3
A
ε2
B
+

5

72
a
(3)
2,0,0ε

4
A
εB

+
7

90
α
(3)
2,0,0ε

5
AεB +

7

45
α
(3)
2,0,0ε

4
AεC +

(

7α
(2)
2,0,0

30
+

11

72
a
(3)
2,0,0

)

ε3AεC +
34

45
α
(3)
2,0,0ε

2
AεCεB

+
1

360

(

a
(3)
1,1,0

2
− a

(2)
2,0,0

)

ε5
A
+

1

720
a
(3)
2,0,0ε

6
A
+

1

720
α
(3)
2,0,0ε

7
A
, (A.4)

b̄11 =
1

6
a
(1)
0,1,1 +

2

3
a
(2)
0,0,2 +

1

6

(

− a
(3)
0,1,1 + a

(1)
1,1,0

)

εB +
1

18

(

4a
(1)
2,0,0 + a

(3)
0,2,0 + a

(2)
1,1,0 − 5 a

(3)
1,0,1

)

εC

+
1

12

(

a
(2)
0,1,1 + a

(1)
0,2,0 + a

(1)
1,0,1 − 2 a

(3)
0,0,2

)

εA − 1

3

(

2a
(2)
2,0,0 +

1

2
a
(3)
1,1,0

)

εB
2 − 7

9
α
(3)
2,0,0ε

2
C

−1

3

(

−5

3
a
(3)
2,0,0 + 4α

(2)
2,0,0

)

εBεC +

(

1

2
α
(3)
0,2,0 −

7

18
a
(2)
2,0,0 −

19

72
a
(3)
1,1,0

)

εAεC

−4

3

(

2α
(2)
2,0,0 +

1

3
a
(3)
2,0,0

)

εAε
2
B − 4

9
α
(3)
2,0,0ε

2
Bε

2
A − 16

9
α
(3)
2,0,0εAεBεC − 1

12

(

13α
(2)
2,0,0 +

25

6
a
(3)
2,0,0

)

ε2AεC

−29

72
α
(3)
2,0,0ε

3
A
εC +

5

36

(

2a
(1)
2,0,0 − a

(2)
1,1,0 − a

(3)
1,0,1 − a

(3)
0,2,0

)

εAεB +
1

24

(

a
(1)
1,1,0 − a

(3)
0,1,1

)

ε2
A

−1

9

(

a
(3)
1,1,0 + a

(2)
2,0,0

)

ε2
A
εB +

1

72

(

−a
(3)
1,0,1 + 2a

(1)
2,0,0 − a

(2)
1,1,0 − a

(3)
0,2,0

)

ε3
A

− 5

36

(

a
(3)
2,0,0 + 6α

(2)
2,0,0

)

ε3AεB − 1

2

(

4a
(2)
2,0,0 + a

(3)
1,1,0

)

ε4A − 1
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(

6α
(2)
2,0,0 + a

(3)
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)

ε5A

− 5

36
α
(3)
2,0,0ε

4
AεB − 1

144
α
(3)
2,0,0ε

6
A. (A.5)
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B The coefficients of tε0 in the L4-problem

The coefficients of transformation given in Equation (6.7) with free parameters t1, t2, t5, t6
are as follows:

t3 = 2
√
2α2t2 − α1

√
2t5 + 4t5 + 2α1t5 + 2

√
2t5 +

4

3

(

4 t5 − 2
√
2t5 + α2 t2

)

ε,

t4 = 2

(

√
2α2 − 2− α1 −

√
2

2
α1

)

+
(3

2
α2 − 4t6 − 2α1t6 − 6 +

√
2
(

− 2t6 + α1t6

+2α2t1 + 3
)

)

ε+
4

3

(

2
√
2t6 + α2t1 − 4t6

)

ε2,

t8 = α1

√
2t2 + 2

√
2α2t5 + 2α1t2 − 2

√
2t2 + 4t2 +

4

3

(

2
√
2t2 + α2t5 − 3t2

)

ε,

t9 =
1

6

(

2
√
2α1α2t2 + 8α1

√
2t5 + 4α1α2t2 − 4

√
2α2t2 + 16

√
2t5 + 8α2t2

)

−
(√

2α2t2 + α1t5 + 2α2t2 + 10t5

)

ε,

t12 =
1

3
(α1 − 2)α2t5 +

(

2α1 + α1

√
2 + 2

√
2− 4

)

t2ε+ 3

(

1

4
α2t5 − 2t2 −

√
2t5

)

ε2,

t15 =
1

3
(α1 − 2)α2t2 +

(

2α1 − α1

√
2 + 2

√
2 + 4

)

t5ε+ 3

(

1

4
α2t2 + 2t5 −

√
2t5

)

ε2,

t14 =
2

3

(√
2

2
α1α2t5 − 4

√
2t2 − 2α2t5 − 2α1

√
2t2 − α1α2t5 −

√
2α2t5

)

+
(
√
2α2 t5 + α1 t2

−2α2t5 + 10 t2
)

ε,

t7 = 2α1 − 2
√
2 + 4 + α1

√
2− 2

√
2α2 +

(

α1

√
2t1 − 2

√
2α2t6 + 2α1t1 − 2

√
2 t1 − 3

√
2− 3

2
α2

+4 t1 − 6
)

ε− 3

2

(

2
√
2t1 + α2t6 + 4 t1

)

ε2,

t10 =
4

3

(

1

4
α1

√
2α2 − α1

√
2 +

1

2
α1α2 −

1

2

√
2α2 − 2

√
2 + α2

)

+
1

6

(

−
√
2α2 −

4

3

√
2t6

+
1

3
α1

√
2α2 t1 −

4

3
α1

√
2t6 +

2

3
α1α2t1 −

2

3

√
2α2t1 +

1

2
α2t1 − 2α2 + α1 + 10

)

ε

+
(

−
√
2α2t1 + α1t6 − 2α2t1 + 10t6

)

ε2,

t11 =
1

3
(α1 − 2)α2 +

(

2
√
2 + 8− 2

3
α2 t6 +

1

2
α1α2t6 − α1

√
2

)

ε−
(

α1

√
2t1 + 2α1t1 + 4t1 + 6

−2
√
2t1 − 3

√
2 +

1

2
α2

)

ε2 + 3

(√
2t1 +

1

4
α2t6 + 2t1

)

ε3,

t13 =
1

3

(

8
√
2− 2

√
2α2 − 4α2 + 4α1

√
2− 2α1α2 + α1

√
2α2

)

+
(

2α1

√
2α2t6 − 12α2 + 6

√
2α2

+8α1

√
2t1 − 60 − 6α1 − 4α1α2t6 − 4

√
2α2t6 + 16

√
2t1 − 8α2 t6

)

ε+
(
√
2α2t6 − α1t1

−2α2t6 − 10 t1
)

ε2,
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t16 =
1

3
(α1 − 2)α2 +

(

1

3
α1α2 t1 + α1

√
2− 2

3
α2t1 − 2

√
2 + 8

)

ε+
(

α1

√
2t6 − 2α1t6 − 2

√
2t6

−6 + 3
√
2 +

3

4
α2 − 4t6

)

ε2 + 3

(√
2t6 +

1

4
α2t1 − 2t6

)

ε3.
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