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SOME PROPERTIES OF MCE OPERATORS BETWEEN

DIFFERENT ORLICZ SPACES

Y. ESTAREMI

Abstract. In this paper we study some basic properties, like boundedness and

closedness of range, of multiplication conditional expectation(MCE) operators

between different Orlicz spaces.

1. Introduction

Our concern in this paper is to provide some necessary conditions, sufficient

conditions, and some simultaneously necessary and sufficient conditions for the

multiplication conditional expectation or briefly MCE operators between distinct

Orlicz spaces to be bounded or to have closed range or finite rank. Our results

generalize and improve on some recent results to be found in the literature. One of

the most important properties of MCE operators is that a large class of bounded

operators on measurable functions spaces as well as on Lp- spaces are of the form

of MCE operators. One can find many great papers that are about MCE operators

on Lp- spaces. For instance the more important ones are [3, 4, 6, 7, 9, 10, 11].

In addition, we investigated boundedness and compactness of MCE operators on

Orlicz spaces in [5]. In this paper we continue our project to characterize closed

range MCE operators between different Orlicz spaces.

2. Preliminaries and basic lemmas

In this section, for the convenience of the reader, we gather some essential facts

on Orlicz spaces and prove two basic lemmas for later use. For more details on

Orlicz spaces, see [8, 13].

A function Φ : R → [0,∞] is called a Young function if Φ is convex, even, and

Φ(0) = 0; we will also assume that Φ is neither identically zero nor identically

infinite on (0,∞). The fact that Φ(0) = 0, along with the convexity of Φ, implies

that limx→0+ Φ(x) = 0; while Φ 6= 0, again along with the convexity of Φ, implies

that limx→∞ Φ(x) = ∞. We set aΦ := sup{x ≥ 0 : Φ(x) = 0} and bΦ := sup{x >

0 : Φ(x) < ∞}. Then it can be checked that Φ is continuous and nondecreasing on

2010 Mathematics Subject Classification. 47B38.

Key words and phrases. multiplication operator, Conditional expectation, continuous opera-

tors, closed-range operators, finite-rank operators, Orlicz space.
1

http://arxiv.org/abs/1808.03061v1


2 Y. ESTAREMI

[0, bΦ) and strictly increasing on [aΦ, bΦ). We also assume the left-continuity of the

function Φ at bΦ, i.e. limx→b
−
Φ
Φ(x) = Φ(bΦ).

To each Young function Φ is associated another convex function Ψ : R → [0,∞)

with similar properties, defined by

Φ∗(y) = sup{x|y| − Φ(x) : x ≥ 0} (y ∈ R).

The function Φ∗ is called the function complementary to Φ in the sense of Young.

Any pair of complementary functions (Φ,Φ∗) satisfies Young’s inequality xy ≤

Φ(x) + Φ∗(y) (x, y ≥ 0).

The generalized inverse of the Young function Φ is defined by

Φ−1(y) = inf{x ≥ 0 : Φ(x) > y} (y ∈ [0,∞)).

Notice that if x ≥ 0, then Φ
(

Φ−1(x)
)

≤ x, and if Φ(x) < ∞, we also have x ≤

Φ−1
(

Φ(x)
)

. There are equalities in either case when Φ is a Young function vanishing

only at zero and taking only finite values. Also, if (Φ,Φ∗) is a pair of complementary

Young functions, then

(2.1) x < Φ−1(x)Φ∗−1

(x) ≤ 2x

for all x ≥ 0 (Proposition 2.1.1(ii) [13]).

By an N -function we mean a Young function vanishing only at zero, taking only

finite values, and such that limx→∞ Φ(x)/x = ∞ and limx→0+ Φ(x)/x = 0. Note

that then aΦ = 0, bΦ = ∞, and, as we said above, Φ is continuous and strictly

increasing on [0,∞). Moreover, a function complementary to an N -function is

again an N -function.

A Young function Φ is said to satisfy the ∆2-condition at∞ if Φ(2x) ≤ KΦ(x) (x ≥

x0) for some constants K > 0 and x0 > 0. A Young function Φ satisfies the ∆2-

condition globally if Φ(2x) ≤ KΦ(x) (x ≥ 0) for some K > 0.

A Young function Φ is said to satisfy the ∆′-condition (respectively, the ∇′-

condition) at ∞, if there exist c > 0 (respectively, b > 0) and x0 > 0 such that

Φ(xy) ≤ cΦ(x)Φ(y) (x, y ≥ x0)

(respectively, Φ(bxy) ≥ Φ(x)Φ(y) (x, y ≥ x0)).

If x0 = 0, these conditions are said to hold globally. Notice that if Φ ∈ ∆′, then

Φ ∈ ∆2 (both at ∞ and globally).

Let Φ,Ψ be Young functions. Then Φ is called stronger than Ψ at ∞, which is

denoted by Φ
ℓ
≻ Ψ [or Ψ

ℓ
≺ Φ], if

Ψ(x) ≤ Φ(ax) (x ≥ x0)
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for some a ≥ 0 and x0 > 0; if x0 = 0, this condition is said to hold globally and is

then denoted by Φ
a
≻ Ψ [or Ψ

a
≺ Φ]. We record the following observation for later

use.

Lemma 2.1. If Φ,Ψ,Θ are Young functions vanishing only at zero, taking only

finite values, and such that

Φ(xy) ≤ Ψ(x) + Θ(y) (x, y ≥ 0),

then Ψ
ℓ

⊀ Φ, and hence also Ψ
a

⊀ Φ.

Let (X,Σ, µ) be a complete σ-finite measure space and let L0(Σ) be the linear

space of equivalence classes of Σ-measurable real-valued functions on X , that is,

we identify functions equal µ-almost everywhere on X . The support S(f) of a

measurable function f is defined by S(f) := {x ∈ X : f(x) 6= 0}. For a Young

function Φ, the space

LΦ(Σ) =

{

f ∈ L0(Σ) : ∃k > 0,

∫

X

Φ(kf)dµ < ∞

}

is a Banach space if it is equipped with the norm

‖f‖Φ = inf

{

k > 0 :

∫

X

Φ(f/k)dµ ≤ 1

}

.

The couple (LΦ(Σ), ‖·‖Φ) is called the Orlicz space generated by a Young function Φ.

Let Φ(x) = |x|p/p with 1 < p < ∞; Φ is then a Young function and Ψ(x) = |x|p
′

/p′,

with 1/p+ 1/p′ = 1, is the Young function complementary to Φ. Thus, with this

function Φ we retrieve the classical Lebesgue space Lp(Σ), i.e. LΦ(Σ) = Lp(Σ).

Recall that an atom of the measure space (X,Σ, µ) is a set A ∈ Σ with µ(A) > 0

such that if F ∈ Σ and F ⊂ A, then either µ(F ) = 0 or µ(F ) = µ(A). A measure

space (X,Σ, µ) with no atoms is called a non-atomic measure space. It is well-known

that if (X,Σ, µ) is a σ-finite measure space, then for every measurable real-valued

function f on X and every atom A, there is a real number, denoted by f(A), such

that f = f(A) µ-a.e. on A. Also, if (X,Σ, µ) is a σ-finite measure space that fails

to be non-atomic, there is a non-empty countable set of pairwise disjoint atoms

{An}n∈N with the property that B := X \
⋃

n∈N
An contains no atoms [14].

Here we recall the next lemma that is a key tool in our investigations.

Lemma 2.2. [2] Let Φ,Ψ be Young functions such that Ψ
ℓ

⊀ Φ. If E is a non-

atomic Σ-measurable set with positive measure, then there exists f ∈ LΦ(Σ) such

that f|E /∈ LΨ(E).

For a sub-σ-finite algebraA ⊆ Σ, the conditional expectation operator associated

with A is the mapping f → EAf , defined for all non-negative, measurable function
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f as well as for all f ∈ L1(Σ) and f ∈ L∞(Σ), where EAf , by the Radon-Nikodym

theorem, is the unique A-measurable function satisfying
∫

A

fdµ =

∫

A

EAfdµ, ∀A ∈ A.

As an operator on L1(Σ) and L∞(Σ), EA is idempotent and EA(L∞(Σ)) = L∞(A)

and EA(L1(Σ)) = L1(A). Thus it can be defined on all interpolation spaces of L1

and L∞ such as, Orlicz spaces [1]. If there is no possibility of confusion, we write

E(f) in place of EA(f). This operator will play a major role in our work and we

list here some of its useful properties:

• If g is A-measurable, then E(fg) = E(f)g.

• ϕ(E(f)) ≤ E(ϕ(f)), where ϕ is a convex function.

• If f ≥ 0, then E(f) ≥ 0; if f > 0, then E(f) > 0.

• For each f ≥ 0, S(f) ⊆ S(E(f)), where S(f) = {x ∈ X ; f(x) 6= 0}.

A detailed discussion and verification of most of these properties may be found in

[12].

Let f ∈ LΦ(Σ). It is not difficult to see that Φ(E(f)) ≤ E(Φ(f)) and so by some

elementary computations we get that NΦ(E(f)) ≤ NΦ(f) i.e, E is a contraction

on the Orlicz spaces. As we defined in [5], we say that the pair (E,Φ) satisfies

the generalized conditional-type Hölder-inequality (or briefly GCH-inequality) if

there exists some positive constant C such that for all f ∈ LΦ(Ω,Σ, µ) and g ∈

LΨ(Ω,Σ, µ) we have

E(|fg|) ≤ CΦ−1(E(Φ(|f |)))Φ∗−1

(E(Φ∗(|g|))),

where Ψ is the complementary Young function of Φ. There are many examples of

the pair (E,Φ) that satisfy GCH-inequality in [5].

Finally in the following we give another key lemma that is important in our

investigation. The proof is an easy exercise.

Lemma 2.3. If Φ is a Young’s function and f is a Σ-measurable function such

that E(f) and E(Φ(f)) are defined, then S(E(f)) = S(E(Φ(f))).

We keep the above notations throughout the paper.

3. Boundedness of the MCE operators

In the section we state various necessary conditions and sufficient conditions

under which the MCE operator EMu between distinct Orlicz spaces is bounded.

First we give a definition of MCE operators.

Definition 3.1. Let Φ, Ψ be Young functions and u : X → C be a measurable

function on the measure space (X,Σ, µ). The multiplication conditional expectation
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operator (MCE operator) from LΦ(Σ) into LΨ(Σ) is defined by EMu(f) = E(uf)

for every f ∈ LΦ(Σ) such that E(uf) ∈ LΨ(Σ).

Here we find that there is no non-zero bounded MCE operator from LΦ(Σ) into

LΨ(A), when the measure space (X,A, µ) is non-atomic.

Theorem 3.2. Let Φ,Ψ be Young functions such that Ψ
ℓ

⊀ Φ and let (X,A, µ) be

a non-atomic measure space. Then there are no non-zero bounded MCE operators

EMu from LΦ(Σ) into LΨ(A).

Proof. Suppose, to the contrary, that EMu is a non-zero bounded linear operator

from LΦ(X) into LΨ(X) and let

En =

{

x ∈ X : E(u)(x) >
1

n

}

.

Then {En}n∈N is an increasing sequence of A-measurable sets. Since EMu is non-

zero, µ(Em) > 0 for some m ∈ N, whence also µ(En) > 0 for all n ≥ m. We assume

without loss of generality that µ(En) > 0 for all n ∈ N. Let F ⊂ E :=
⋃

n En and

0 < µ(F ) < ∞. The assumption that Ψ
ℓ

⊀ Φ implies that an increasing sequence

of positive numbers {yn} can be found such that Ψ(yn) > Φ(2nn3yn). Since the

measure space (X,A, µ) is non-atomic, we can choose a sequence {Fn} of pairwise

disjoint measurable subsets of F such that Fn ⊂ En and µ(Fn) =
Φ(y1)µ(F )
2nΦ(n3yn)

. This is

possible because Φ(n3yn) ≥ Φ(yn) ≥ Φ(y1), and so µ(Fn) ≤
µ(F )
2n , and

∑∞
n=1

µ(F )
2n =

µ(F ).

Define the function f :=

∞
∑

n=1

bnχFn
, where bn := n2yn, and take arbitrary α > 0.

Then for a natural number n0 > α we have

IΦ(αf) =

∫

X

Φ(αf)dµ =
∞
∑

n=1

∫

X

Φ(α bn)χFn
dµ

≤
n0
∑

n=1

Φ(α bn)µ(Fn) + µ(F )
∑

n>n0

Φ(n3yn)Φ(y1)

2nΦ(n3yn)
< ∞.

This implies that f ∈ LΦ(A). But for m0 > 0 such that 1
m0

< α, we obtain

IΨ(αEMuf) =

∫

X

Ψ(αEMuf)dµ =
∑

n≥0

∫

Fn

Ψ(αE(u)f)dµ

≥
∑

n≥m0

1

n
2nΦ(n3yn)µ(Fn) ≥ µ(F )

∑

n≥m0

1

n
Φ(y1) = ∞,

which contradicts the boundedness of EMu. (In fact, we even proved that EMu

does not act from LΦ(Σ) into LΨ(A)). �
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Now we provide some necessary conditions for the boundedness of the MCE

operator EMu from LΦ(Σ) into LΨ(Σ) in the case Φ(xy) ≤ Ψ(x) + Θ(y) for some

Young function Θ and for all x, y ≥ 0.

Theorem 3.3. Let Φ,Ψ,Θ be Young functions as are defined in the first section,

and such that Φ(xy) ≤ Ψ(x)+Θ(y) for all x, y ≥ 0. If u ∈ L0(Σ) induces a bounded

MCE operator EMu : LΦ(Σ) → LΨ(Σ), then

(i) E(u) = 0, µ-a.e. on B, the non-atomic part of X;

(ii) sup
n∈N

E(u)(An)Θ
−1( 1

µ(An)
) < ∞.

Proof. Suppose that EMu is bounded. First we prove (i). If µ{x ∈ B : E(u)(x) 6=

0} > 0, then we can find a constant δ > 0 such that for F = {x ∈ B : E(u)(x) > δ}

we have µ(F ) > 0. Since F is non-atomic A-measurable set, µ(F ) > 0, and

Φ(xy) ≤ Ψ(x) + Θ(y) for all x, y ≥ 0, by Lemmas 2.1 and 2.2 we have that there

exists f ∈ LΦ(A) such that f|F /∈ LΨ(F,AF ), and so

∞ =

∫

F

Ψ

(

δf

‖EMuf‖Ψ

)

dµ

≤

∫

X

Ψ

(

E(u)f

‖EMuf‖Ψ

)

dµ =

∫

X

Ψ

(

E(uf)

‖EMuf‖Ψ

)

dµ ≤ 1,

which is a contradiction. Thus (i) holds.

Now we prove (ii). We may assume that the function u is not identically zero. For

each n ∈ N, put fn = Φ−1( 1
µ(An)

)χAn
. It is clear that fn ∈ LΦ(Σ) and IΦ(fn) = 1,

whence ‖fn‖Φ = 1. Since the operator Mu is bounded, we have

1 ≥

∫

X

Ψ

(

E(u.fn)

‖E(u.fn)‖Ψ

)

dµ =

∫

An

Ψ

(

E(u)Φ−1( 1
µ(An)

)

‖E(u.fn)‖Ψ

)

dµ

= Ψ

(

E(u)(An)Φ
−1( 1

µ(An)
)

‖E(u.fn)‖Ψ

)

µ(An).

Therefore

E(u)(An)Φ
−1( 1

µ(An)
)

Ψ−1(1/µ(An))
≤ ‖E(u.fn)‖Ψ.(3.1)

Plug x = 1/µ(An) in the inequality Ψ−1(x)Θ−1(x) ≤ 2Φ−1(x) derived in lines 2-3

of the proof of Lemma 2.1 and use inequality (3.1) to obtain

E(u)(An)Θ
−1(

1

µ(An)
) ≤ E(u)(An)

2Φ−1(1/µ(An))

Ψ−1(1/µ(An))
≤ 2‖E(u.fn)‖Ψ ≤ 2‖EMu‖ < ∞.

This completes the proof. �

By using the Lemma 2.3 we have the next straightforward consequence.
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Corollary 3.4. Under the assumptions of Theorem 3.3, if (X,Σ, µ) is a non-atomic

measure space, then the MCE operator EMu is bounded from LΦ(Σ) into LΨ(Σ) if

and only if EMu = 0.

Proof. Since S(E(uf)) ⊆ S(E(u)) = S(E(Ψ(u))), for each f ∈ LΦ(Σ), then we get

the result. �

Now we present some sufficient conditions of the continuity of the operator EMu

from one Orlicz space into another.

Theorem 3.5. Let Φ,Ψ be Young functions such that Φ,Ψ ∈ ∆′, Ψ ◦ Φ−1 is a

Young function and GCH inequality holds for the pair (Φ,Φ∗). Then for u ∈ L0(Σ)

the MCE operator EMu : LΦ(Σ) → LΨ(A) if

(i) E(Φ∗(u)) = 0 µ-a.e. on B;

(ii) M = sup
n∈N

Ψ

[

Cc1Φ
∗−1

(E(Φ∗(u)))(An)
Φ−1(µ(An))

]

µ(An) < ∞, in which C comes from

the GCH- inequality and c1 comes from the fact that Φ ∈ ∆′.

Proof. Suppose that (i) and (ii) hold and setM := sup
n∈N

Ψ

(

Cc1
Φ∗−1

(E(Φ∗(u)))(An)
Φ−1(µ(An))

)

µ(An).

Then for each f ∈ LΦ(Σ) with ‖f‖Φ ≤ 1 we have

IΦ2(EMuf) =

∫

X

Ψ(EMuf)dµ

≤

∫

X

Ψ(CΦ∗−1

(E(Φ∗(u)))Φ−1(E(Φ(f))))dµ

=

∫

⋃
n
An

Ψ(CΦ∗−1

(E(Φ∗(u)))Φ−1(E(Φ(f))))dµ

=
∑

n∈N

Ψ(CΦ∗−1

(E(Φ∗(u)))Φ−1(E(Φ(f))))(An)µ(An)

=
∑

n∈N

Ψ

(

C
Φ∗−1

(E(Φ∗(u)))(An)

Φ−1(µ(An))
c1Φ

−1(µ(An)E(Φ(f))(An))

)

µ(An)

≤ c2
∑

n∈N

Ψ

(

Cc1
Φ∗−1

(E(Φ∗(u)))(An)

Φ−1(µ(An))

)

µ(An)Ψ ◦ Φ−1(µ(An)E(Φ(f))(An))

≤ c2M
∑

n∈N

Ψ ◦ Φ−1(µ(An)E(Φ(f))(An))

≤ c2MΨ ◦ Φ−1(
∑

n∈N

µ(An)E(Φ(f))(An))

≤ c2MΨ ◦ Φ−1(1),

where C, c1, c2 come from from GCH-inequality and the fact that Φ,Ψ ∈ ∆′. Also

we used the superadditivity of the convex function Ψ ◦ Φ−1 on the interval [0,∞).
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Therefore we have ‖EMuf‖Ψ ≤ max(c2M Ψ ◦Φ−1(1), 1), and so EMu is bounded.

�

Theorem 3.6. Let Φ and Ψ be Young functions an EMu : D ⊆ LΦ(Σ) → LΨ(Σ)

be well defined. Then the followings hold:

(i) Suppose that there exists a Young function Θ such that Φ−1(x)Θ−1(x) ≤

Ψ−1(x) for x ≥ 0 and (E,Φ) satisfies GCH-inequality. In this case if Φ∗−1

(E(Φ∗(u))) ∈

LΘ(A), then EMu from LΦ(Σ) into LΨ(Σ) is bounded.

(ii) Let Θ = Ψ∗◦Φ∗−1

be a Young function, Θ ∈ △2 and Φ∗ ∈ △2. In this case if

EMu is bounded from LΦ(Σ) into LΨ(Σ), then E(Φ∗(ū)) ∈ LΘ∗

(A). Consequently

Φ∗−1

(E(Φ∗(ū))) ∈ LΘ∗◦Φ∗

(A).

Proof. (i) Let f ∈ LΦ(Σ) such that ‖f‖Φ ≤ 1. This means that
∫

X

Φ(Φ−1(E(Φ(f))))dµ =

∫

X

Φ(f)dµ ≤ 1

and so ‖(Φ−1(E(Φ(f))))‖Φ ≤ 1. Therefore by using GCH-inequality we have

‖(E(uf))‖Ψ ≤ ‖(Φ−1(E(Φ(f))))‖Φ‖(Φ
∗−1

(E(Φ∗(u))))‖Θ

≤ ‖(Φ∗−1

(E(Φ∗(u))))‖Θ.

Thus for all f ∈ LΦ(Σ) we have

‖(E(uf))‖Ψ ≤ ‖f‖Φ‖Φ∗
−1E(Φ∗(u)‖Θ.

And so the operator EMu is bounded.

(ii) Suppose that EMu is bounded. So the adjoint operator Mū = (EMu)
∗ :

LΨ∗

(A) → LΦ∗

(Σ) is bounded. For f ∈ LΘ(A) we have Φ∗−1

(f) ∈ LΨ∗

(A).

Consequently we get that
∫

X

E(Φ∗(ū))fdµ =

∫

X

Φ∗(ū)Φ∗(Φ∗−1

(f))dµ

≤ b

∫

X

Φ∗(ūΦ∗−1

(f))dµ

= b

∫

X

Φ∗(Mū(Φ
∗−1

(f)))dµ < ∞.

Therefore
∫

X
E(Φ∗(ū))fdµ < ∞ for all f ∈ LΘ(A). This implies that E(Φ∗(ū)) ∈

LΘ∗

(A). This completes the proof. �

Remark 3.7. The following results on the classical Lebesgue spaces, presented in

[6], are an immediate consequence of Theorems 3.5, 3.3 and 3.6.

(1) Taking Φ(x) = |x|p/p and Ψ(x) = |x|q/q, where 1 < p < q < ∞ and
1
p
+ 1

p′ = 1, 1
q
+ 1

q′
= 1, by we obtain that the operator EMu induced by
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a function u ∈ L0
+(Σ) is bounded from Lp(Σ) into Lq(Σ) if and only if the

following conditions hold:

(i) E(up′

)(x) = 0 for µ-almost all x ∈ B;

(ii) supn∈N

(E(up′ )(An))
q

p′

(µ(An))
q
p

< ∞, where q−1 + r−1 = p−1.

(2) Similarly, taking Φ(x) = |x|p/p and Ψ(x) = |x|q/q, where 1 < q < p < ∞.

Let EMu : D ⊆ Lp(Σ) → Lq(Σ) be well defined. Then the operator EMu

from Lp(Σ) into Lq(Σ), where 1 < q < p < ∞, is bounded if and only if

(E(|u|p
′

))
1
p′ ∈ Lr(A), where r = pq

p−q
.

Specially, if A = Σ, then E = I and so the multiplication operator Mu

from Lp(Σ) into Lq(Σ) is bounded if and only if u ∈ Lr(Σ).

4. MCE operators with closed-range and/or finite rank

In this section we are going to investigate closed-range MCE operators between

distinct Orlicz spaces.

First we characterize closed-range MCE operatorsEMu : LΦ(Σ) → LΨ(Σ) under

the assumption Ψ(xy) ≤ Φ(x) + Θ(y) for all x, y ≥ 0.

Theorem 4.1. Let Φ,Ψ,Θ be Young functions vanishing only at zero, taking only

finite values, and such that Ψ,Θ ∈ ∆2 and Ψ(xy) ≤ Φ(x) + Θ(y) for all x, y ≥ 0.

If u ∈ LΘ
+(Σ), then the MCE operator EMu is a bounded operator from LΦ(Σ) into

LΨ(A) and the following assertions are equivalent:

(a) E(Φ∗(u)) = 0 a.e. on B and the set E = {n ∈ N : E(Φ∗(u))(An) 6= 0} is

finite.

(b) EMu has finite rank.

(c) EMu has closed range.

Proof. Let S be the support ofE(Φ∗(u)). By GCH inequality we get that S(E(uf)) ⊆

S for all f ∈ LΦ(Σ). We may assume that µ(S) > 0, since otherwise EMu is a zero

operator and there is nothing to prove.

We prove the implication (a) ⇒ (b). Assume that (a) holds. Hence there is

r ∈ N such that

S =
⋃

n∈E

An = An1 ∪ . . . ∪Anr
.

Since Ψ ∈ ∆2, the set {χAn1
, . . . , χAnr

} of characteristic functions generates the

subspace

{g ∈ LΨ(X,A) : g(x) = 0 for µ-a.e. x ∈ X \ S} ∼= LΨ(S,AS).

The range of EMu is contained in the r-dimensional subspace LΨ(AS), hence EMu

has finite rank.
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(b) ⇒ (c). If the range of the operator EMu in LΨ(A) is finite-dimensional, then

it is also closed, as any finite-dimensional subspace of a Banach space is a closed

subspace of this space.

(c)⇒ (a). LetEMu have closed range and assume that µ{x ∈ B : E(Φ∗(u))(x) 6=

0} > 0. Then there is δ > 0 such that the set G = {x ∈ B : E(Φ∗(u))(x) ≥ δ} has

positive measure. Since G is an A- measurable set, then EMu(L
Φ(G)) ⊆ LΨ(G).

It is easy to see that the restriction E(u)|G induces a bounded MCE operator

EMu|G
= EME(u)|G

from LΦ(G,AG, µAG
) into LΨ(G,AG, µAG

), and that if EMu

has closed range, then EMu|G
has closed range as well.

We will show that EMu|G
(LΦ(G)) = LΨ(G). Let A be any A-measurable subset

of G with µ(A) < ∞, and define the function fA := 1
E(u|G

)χA in which E(u|G) =

E(u)|G . We get

IΦ(fA) =

∫

G

Φ ◦ fA dµ =

∫

A

Φ ◦
1

u|G

dµ ≤ Φ(1/δ)µ(A) < ∞,

and so fA ∈ LΦ(G). Moreover, EMu|G
fA = χA, which implies that the linear

space EMu|G
(LΦ(G)) contains the set F of all linear combinations of characteristic

functions of measurable subsets of G with positive and finite measure.

Now F is a dense subset of LΨ(G) and, by assumption, EMu|G
(LΦ(G)) is a

closed subspace of LΨ(G), therefore

LΨ(G) = F ⊂ EMu|G
(LΦ(G)) ⊂ LΨ(G),

and so EMu|G
(LΦ(G)) = LΨ(G), as claimed.

Consequently, we can define the inverse MCE operator

EM 1
E(u|G)

: LΨ(G) → LΦ(G), EM 1
E(u|G)

f :=
1

E(u|G)
f.

The operator EM 1
E(u|G)

is bounded and, since Ψ(xy) ≤ Φ(x) + Θ(y) (x, y ≥ 0),

we can apply Theorem 3.3 to conclude that 1
E(u) = 0 µ-a.e. on G, which is absurd.

This contradiction shows that E(u) = 0 µ-a.e. on B.

Next we show that the set

E = {n ∈ N : E(Φ∗(u))(An) 6= 0} = {n ∈ N : E(u)(An) 6= 0}

is finite if EMu has closed range. If E = ∅, we have nothing to prove. So let us

assume that E 6= ∅. Define S =
⋃

n∈E

An.

Analogously as above, we can show that EMu|S
(LΦ(S)) = LΨ(S). Indeed, let

A be an A-measurable subset of S with µ(A) < ∞. Define the function fA :=
1

E(u)|S
χA. The set A having finite measure, we get

IΦ(fA) =

∫

A

Φ ◦
1

E(u)|S
dµ =

∑

An⊂A

Φ(1/E(u)(An))µ(An) < ∞.
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Hence fA ∈ LΦ(S). Since EMu|S
fA = χA, we conclude that EMu|S

(LΦ(S)) con-

tains the set ℓ0f of all linear combinations of characteristic functions of subsets of S

with positive and finite measure.

Now ℓ0f is a dense subset of LΨ(S), and EMu|S
(LΦ(S)) is a closed subspace of

LΨ(S), which implies that

LΨ(S) = ℓ0f ⊂ EMu|S
(LΦ(S)) ⊂ LΨ(S),

and so EMu|S
(LΦ(S)) = LΨ(S).

We can thus define a bounded MCE operator EM 1
u|S

from LΨ(S,AS , µAS
) into

LΦ(S,AS , µAS
). Applying Theorem 3.3 to the operator EM 1

u|S

, we obtain

sup
n∈E

1

E(u)(An)
Θ−1(

1

µ(An)
) < ∞.

Let C = sup
n∈E

1
E(u)(An)

Θ−1( 1
µ(An)

) > 0. Since E 6= ∅ and 1 ≤ Θ(Cu(An))µ(An)

for all n ∈ E, we have

∑

n∈E

1 ≤
∑

n∈E

Θ(CE(u)(An))µ(An) =
∑

n∈E

∫

An

Θ ◦ CE(u) dµ ≤

∫

X

Θ ◦ Cu dµ < ∞,

where the final inequality follows from the assumption that Θ ∈ ∆2. Thus E must

be finite. �

In the next theorem we characterize closed-rangeMCE operatorsEMu : LΦ(Σ) →

LΨ(Σ) under the condition that Φ(xy) ≤ Ψ(x) + Θ(y) for all x, y ≥ 0.

Theorem 4.2. Let Φ,Ψ,Θ be Young functions vanishing only at zero, taking only

finite values, and such that Ψ,Θ ∈ ∆2 and Φ(xy) ≤ Ψ(x) + Θ(y) for all x, y ≥ 0.

If EMu is a bounded multiplication operator from LΦ(Σ) into LΨ(Σ) and 1
E(u) ∈

LΘ
+(Σ), then the following statements are equivalent:

(a) The set E = {n ∈ N : E(u)(An) 6= 0} is finite.

(b) EMu has finite rank.

(c) EMu has closed range.

Proof. By Theorem 3.3, we have that E(u) = 0 on B. The proofs of implications

(a) ⇒ (b) and (b) ⇒ (c) are as in the proof of Theorem 4.1.

We prove the implication (c) ⇒ (a). Using the same notation as in the proof

of Theorem 4.1, let S =
⋃

n∈E

An and E 6= ∅. Since EMu : LΦ(S) → LΨ(S) is

bounded, by Theorem 3.3, we have

sup
n∈E

E(u)(An)Θ
−1

(

1

µ(An)

)

< ∞
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Let C = sup
n∈E

E(u)(An)Θ
−1( 1

µ(An)
) > 0. Since E 6= ∅, 1 ≤ Θ

(

C
E(u)(An)

)

µ(An)

for all n ∈ E, and Θ ∈ ∆2, we may write

∑

n∈E

1 ≤
∑

n∈E

Θ

(

C

E(u)(An)

)

µ(An) =
∑

n∈E

∫

An

Θ ◦
C

E(u)
dµ ≤

∫

X

Θ ◦
C

E(u)
dµ < ∞.

Thus E is finite. �

Remark 4.3. As an applications of our results we derive characterizations of bounded

and closed-range MCE operators in the special case of Lp-spaces.

(1) If for 1 < p < q < ∞ and the MCE operator EMu is bounded from

Lp(Σ) into Lq(Σ) and 1
E(u) ∈ L

pq

p−q (A), then the following assertions are

equivalent:

(a) EMu has closed range.

(b) EMu has finite rank.

(c) The set {n ∈ N : E(u)(An) 6= 0} is finite.

(2) If for 1 < q < p < ∞ the multiplication operator Mu is bounded from

Lp(Σ) into Lq(Σ), then the following assertions are equivalent:

(a) EMu has closed range.

(b) EMu has finite rank.

(c) (up′

)(x) = 0 for µ-almost all x ∈ B, and the set {n ∈ N : E(up′

)(An) 6=

0} is finite.
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