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ON THE OPTIMAL INVESTMENT-CONSUMPTION AND LIFE

INSURANCE SELECTION PROBLEM WITH AN EXTERNAL

STOCHASTIC FACTOR

CALISTO GUAMBE AND RODWELL KUFAKUNESU

Abstract. In this paper, we study a stochastic optimal control problem with stochastic
volatility. We prove the sufficient and necessary maximum principle for the proposed
problem. Then we apply the results to solve an investment, consumption and life insurance
problem with stochastic volatility, that is, we consider a wage earner investing in one risk-
free asset and one risky asset described by a jump-diffusion process and has to decide
concerning consumption and life insurance purchase. We assume that the life insurance
for the wage earner is bought from a market composed of M > 1 life insurance companies
offering pairwise distinct life insurance contracts. The goal is to maximize the expected
utilities derived from the consumption, the legacy in the case of a premature death and
the investor’s terminal wealth.

1. Introduction

The problem of a wage earner who wants to invest and protect his dependents for a
possible premature death has gained much interest in recent times. Since the research
paper on portfolio optimization and life insurance purchase by Richard [17] appeared, a
number of works in this direction have been reported in the literature. For instance, Pliska
and Ye [15] studied an optimal consumption and life insurance contract for a problem
described by a risk-free asset. Duarte et al. [6] considered a problem of a wage earner who
invests and buys a life insurance in a financial market with n diffusion risky shares. Similar
works include (Guambe and Kufakunesu [8], Huang et al. [9], Liang and Guo [10], Shen
and Wei [18], among others). In all the above-mentioned papers, a single life insurance
contract was considered.

Recently, Mousa et al. [12], extended Duarte et al. [6] to consider a wage earner who buys
life insurance contracts from M > 1 life insurance companies. Each insurance company
offers pairwise distinct contracts. This allows the wage earner to compare the premiums
insurance ratio of the companies and buy the amount of life insurance from the one offering
the smallest premium-payout ratio at each time. Using a dynamic programming approach,
they solved the optimal investment, consumption and life insurance contracts in a financial
market comprised by one risk-free asset and n risky shares driven by diffusion processes.
In this paper, we extend their work to a jump-diffusion setup with stochastic volatility.
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This extension is motivated by the following reasons: First, the existence of high frequency
data on the empirical studies carried out by Cont [4], Tankov [19] and references therein,
have shown that the analysis of price evolution reveals some sudden changes that cannot
be explained by models driven by diffusion processes. Another reason is related to the
presence of volatility clustering in the distribution of the risky share process, i.e., large
changes in prices are often followed by large changes and small changes tend to be followed
by small changes.

To enable a full capture of these and other aspects, we consider a jump diffusion model
with stochastic volatility similar to that in Mnif [11]. Using Dynamic programming
approach, Mnif [11] proved the existence of a smooth solution of a semi-linear integro-
Hamilton-Jacobi-Bellman (HJB) for the exponential utility function. Zeghal and Mnif [20]
considered the same problem for power utility case. Under some particular assumptions,
they also derived the backward stochastic differential equation (BSDE) associated with the
semi-linear HJB. The drawback of the dynamic programming approach is that it requires
the system to be Markovian. To overcome this limitation, a maximum principle approach
is proposed to solve this stochastic volatility jump-diffusion problem. This approach allows
to solve this problem in a more general setting. We prove a sufficient and necessary max-
imum principle in a general stochastic volatility problem. Then we apply this framework
to solve the wage earner investment, consumption and life insurance problem described
earlier. In the literature, the maximum principle approach has been widely reported, see,
for instance, Framstad et. al. [7], Øksendal and Sulem [16], An and Øksendal [1], Pamen
[13], Pamen and Momeya [14], among others. The main contribution of this paper is the
use of factor model in the investment, consumption and life insurance contract problem as
well as the inclusion of jumps in the modeling framework.

The rest of the paper is organized as follows: in Section 2, we introduce our control
problem and state the sufficient and necessary maximum principle for a stochastic control
problem with stochastic volatility, where the proofs are given in the Appendix. In Section
3, we give the characterization of the optimal strategies for an investment, consumption
and life insurance problem applying the results of Theorem 2.1. Finally, we consider an
example of a linear pure jump stochastic volatility model of Ornstein-Uhlenbeck type and
derive an explicit optimal portfolio.

2. Maximum principle for stochastic optimal control problem with

stochastic volatility

Let T < ∞ be a finite time horizon investment period, which can be viewed as a retire-
ment time of an investor. Consider two independent Brownian motions {W1(t);W2(t), 0 ≤
t ≤ T} associated to the complete filtered probability space (ΩW ,FW , {FW

t },PW ). Fur-
thermore, we consider a Poisson process N independent of W1 and W2, associated with
the complete filtered probability space (ΩN ,FN , {FN

t },PN) with the intensity measure
dt × dν(z), where ν is the σ-finite Borel measure on R \ {0}. A P

N -martingale compen-
sated Poisson random measure is given by:

Ñ(dt, dz) := N(dt, dz)− ν(dz)dt .
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We define the product space:

(Ω,F , {Ft}0≤t≤T ,P) := (ΩW ⊗ ΩN ,FW ⊗ FN , {FW ⊗ FN},PW ⊗ P
N )

where {Ft}t∈[0,T ] is a filtration satisfying the usual conditions.
Suppose that the dynamics of the state process is given by the following stochastic

differential equation (SDE)

dX(t) = b(t, X(t), Y (t), π(t))dt+ σ(t, X(t), Y (t), π(t))dW1(t)(2.1)

+β(t, X(t), Y (t), π(t))dW2(t) +

∫

R

γ(t, X(t), Y (t), π(t), z)Ñ(dt, dz) ;

X(0) = x ∈ R ,

where the external economic factor Y is given by

(2.2) dY (t) = ϕ(Y (t))dt+ φ(Y (t))dW2(t) .

We assume that the functions b, σ, β : [0, T ]×R×R×A → R; γ : [0, T ]×R×R×A×R →
R; ϕ, φ : R → R are given predictable processes, such that (2.1) and (2.2) are well defined
and (2.1) has a unique solution for each π ∈ A. Here, A is a given closed set in R.

Let f : [0, T ]× R× R×A → R be a continuous function and g : R× R → R a concave
function. We define the performance criterion by

(2.3) J (π) = E

[∫ T

0

f(t, X(t), Y (t), π(t))dt+ g(X(T ), Y (T ))
]
.

We say that π ∈ A is an admissible strategy if (2.1) has a unique strong solution and

E

[∫ T

0

|f(t, X(t), Y (t), π(t))|dt+ |g(X(T ), Y (T ))|
]
< ∞ .

The main problem is to find π∗ ∈ A such that

J (π∗) = sup
π∈A

J (π) .

The control π∗ is called an optimal control if it exists.
In order to solve this stochastic optimal control problem with stochastic volatility, we

use the so called maximum principle approach. The beauty of this method is that it solves
a stochastic control problem in a more general situation, that is, for both Markovian and
non-Markovian cases. For the Markovian case, this problem has been solved using dynamic
programming approach by Mnif [11]. Our approach may be considered as an extension of
the maximum approach in Framstad et. al. [7] to the stochastic volatility case.

We define the Hamiltonian H : [0, T ]× R× R× A× R× R× R× R× R → R by:

H(t, X(t), Y (t), π(t), A1(t), A2(t), B1(t), B2(t), D1(t, ·))(2.4)

= f(t, X(t), Y (t), π(t)) + b(t, X(t), Y (t), π(t))A1(t) + ϕ(Y (t))A2(t)

+σ(t, X(t), Y (t), π(t))B1(t) + β(t, X(t), Y (t), π(t))B2(t) + φ(Y (t))B3(t)
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+

∫

R

γ(t, X(t), Y (t), π(t), z)D1(t, z)ν(dz) ,

provided that the integral in (2.4) converges. From now on, we assume that the Hamiltonian
H is continuously differentiable w.r.t. x and y. Then, the adjoint equations corresponding
to the admissible strategy π ∈ A are given by the following backward stochastic differential
equations (BSDEs)

dA1(t) = −
∂H

∂x
(t, X(t), Y (t), π(t), A1(t), A2(t), B1(t), B2(t), D1(t, ·))dt

+B1(t)dW1(t) +B2(t)dW2(t) +

∫

R

D1(t, z)Ñ(dt, dz) ,(2.5)

A1(T ) =
∂g

∂x
(X(T ), Y (T ))(2.6)

and

dA2(t) = −
∂H

∂y
(t, X(t), Y (t), π(t), A1(t), A2(t), B1(t), B2(t), D1(t, ·))dt

+B3(t)dW1(t) +B4(t)dW2(t) +

∫

R

D2(t, z)Ñ(dt, dz) ,(2.7)

A2(T ) =
∂g

∂y
(X(T ), Y (T )) .(2.8)

The verification theorem associated to our problem is stated as follows:

Theorem 2.1. (Sufficient maximum principle) Let π∗ ∈ A with the corresponding wealth

process X∗. Suppose that the pairs (A∗
1(t), B

∗
1(t), B

∗
2(t), D

∗
1(t, z)) and

(A∗
2(t), B

∗
3(t), B

∗
4(t), D

∗
2(t, z)) are the solutions of the adjoint equations (2.5) and (2.7),

respectively. Moreover, suppose that the following inequalities hold:

(i) The function (x, y) → g(x, y) is concave;
(ii) The function H(t) = supπ∈AH(t, X(t), Y (t), π, A∗

1(t), A
∗
2(t), B

∗
1(t), B

∗
2(t), D

∗
1(t, z))

is concave and

H∗(t, X, Y, π∗, A∗
1, A

∗
2, B

∗
1 , B

∗
2 , D

∗
1) = sup

(π,c,p)∈A

H(t, X, Y, π, A∗
1, A

∗
2, B

∗
1 , B

∗
2 , D

∗
1) .

Furthermore, we assume the following:

E

[∫ T

0

(X∗(t))2
(
(B∗

1(t))
2 + (B∗

2(t))
2 +

∫

R

(D∗
1(t, z))

2ν(dz)
)
dt
]
< ∞ ;

E

[∫ T

0

(Y (t))2
(
(B∗

3(t))
2 + (B∗

4(t))
2 +

∫

R

(D∗
2(t, z))

2ν(dz)
)
dt
]
< ∞ ;

E

[∫ T

0

{
(A∗

1(t))
2
(
(σ(t, X(t), Y (t), π∗(t)))2 + (β(t, X(t), Y (t), π∗(t)))2

+

∫

R

(γ(t, X(t), Y (t), π∗(t), z))2ν(dz)
)
+(A∗

2(t))
2(φ(Y (t)))2

]
dt
]

< ∞ .
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Then, π∗ ∈ A is an optimal strategy with the corresponding optimal state process X∗.

Proof. See Appendix.
�

Note that the sufficient maximum principle presented in Theorem 2.1 is based on the
concavity of the Hamiltonian, however, this condition does not hold in many concrete
situations. Below, we relax this condition and state the necessary maximum principle for
our control problem. Thus, we further consider the following assumptions.

• For all s ∈ [0, T ] and all bounded Fs-measurable random variable α(ω), the control
ξ(t) := 1[s,T ](t)α(ω) belongs to the admissible strategy A.

• For all π, ζ ∈ A, with ζ bounded, there exists ǫ > 0 such that the control π(t) +
ℓζ(t) ∈ A, for all ℓ ∈ (−ǫ; ǫ).

• We define the derivative processes

x1(t) :=
d

dℓ
Xπ+ℓζ(t)

∣∣∣
ℓ=0

and y1(t) :=
d

dℓ
Yπ+ℓζ(t)

∣∣∣
ℓ=0

.

Then, for all π, ζ ∈ A, with ζ bounded, the above derivatives exist and belong to
L2([0, T ]× Ω), and (2.1) and (2.2),

dx1(t) = x1(t)
[ ∂b
∂x

(t)dt+
∂σ

∂x
(t)dW1(t) +

∂β

∂x
(t)dW2(t) +

∫

R

∂γ

∂x
(t, z)Ñ(dt, dz)

]

+y1(t)
[∂b
∂y

(t)dt+
∂σ

∂y
(t)dW1(t) +

∂β

∂y
(t)dW2(t) +

∫

R

∂γ

∂y
(t, z)Ñ(dt, dz)

]

+ζ(t)
[ ∂b
∂π

(t)dt+
∂σ

∂π
(t)dW1(t) +

∂β

∂π
(t)dW2(t) +

∫

R

∂γ

∂π
(t, z)Ñ(dt, dz)

]
,

where we have used the notation ∂b
∂x
(t) = ∂b

∂x
(t, X(t), Y (t), π(t)),

∂σ
∂x
(t) = ∂σ

∂x
(t, X(t), Y (t), π(t)), etc. Moreover,

dy1(t) = y1(t)[ϕ
′(Y (t))dt+ φ′(Y (t))dW2(t)] .

Theorem 2.2. (Necessary maximum principle) Let π ∈ A with corresponding solutions

X(t), (A1(t), B1(t), B2(t), D1(t, ·)), (A2(t), B3(t), B4(t), D2(t.·)) of (2.1), (2.5) and (2.7)
respectively, and the derivative processes x1(t) and y1(t) given above. Moreover, assume

the following integrability conditions:

E

{∫ T

0

A2
1(t)
[
x2
1(t)
((∂σ

∂x
(t)
)2
+
(∂β
∂x

(t)
)2
+

∫

R

(∂γ
∂x

(t, z)
)2

ν(dz)
)

y21(t)
((∂σ

∂y
(t)
)2
+
(∂β
∂y

(t)
)2
+

∫

R

(∂γ
∂y

(t, z)
)2

ν(dz)
)

ζ2(t)
((∂σ

∂π
(t)
)2
+
(∂β
∂π

(t)
)2
+

∫

R

(∂γ
∂π

(t, z)
)2

ν(dz)
)]

dt

+

∫ T

0

A2
2(t)y

2
1(t)(φ

′(Y (t)))2dt
}
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< ∞

and

E

{∫ T

0

x2
1(t)
[
B2

1(t) +B2
2(t) +

∫

R

D2
1(t, z)ν(dz)

]
dt

∫ T

0

y21(t)
[
B2

3(t) +B2
4(t) +

∫

R

D2
2(t, z)ν(dz)

]
dt
}

< ∞ .

Then following are equivalent

(1) d
dℓ
J (π + ℓζ)

∣∣∣
ℓ=0

= 0 for all bounded ζ ∈ A;

(2) dH
dπ
(t, X∗(t), Y (t), π∗(t), A∗

1(t), A
∗
2(t), B

∗
1(t), B

∗
2(t), D

∗
1(t, z)) = 0, for all t ∈ [0, T ].

Proof. See Appendix. �

3. Application to optimal investment-consumption and life insurance

selection problem

We consider a financial market consisting of one risk-free asset (B(t))0≤t≤T and one risky
asset (S(t))0≤t≤T . Their respective prices are given by the following SDE:

dB(t) = r(t)B(t)dt , B(0) = 1 ,(3.1)

dS(t) = S(t)
[
α(t, Y (t))dt+ β(t, Y (t))dW1(t) + σ(t, Y (t))dW2(t)(3.2)

+

∫

R

γ(t, Y (t), z)Ñ(dt, dz)
]
, S(0) = s > 0 ,

where Y is a continuous time economic external factor governed by

(3.3) dY (t) = g(Y (t))dt+ dW1(t) .

Here, the associated parameters in the model satisfy the following assumptions:

(A1) The interest rate r(t) is positive, deterministic and integrable for all t ∈ [0, T ]. The
mean rate of return α, the volatilities β , σ and the dispersion rate γ > −1, are
R-valued functions are assumed to be continuously differentiable functions (∈ C1)
and bounded. Note that, by the continuity of Y , the process S in (3.3) is well
defined on [0, T ]. We also assume the following integrability condition:

E

[∫ T

0

(β2(t, y) + σ2(t, y) +

∫

R\{0}

|γ(t, y, z)|2ν(dz))dt

]
< ∞ .

Suppose that g ∈ C1(R) with the first derivative bounded, i.e., |g′(y)| ≤ K and satisfy a
Lipschitz condition on the R-valued function g:

(A2) There exists a positive constant C such that:

|g(y)− g(w)| ≤ C|y − w| , y, w ∈ R .
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Consider a wage earner whose life time is a nonnegative random variable τ defined on
the probability space (Ω,F , {Ft}0≤t≤T ,P). The distribution function F (t) of the random
lifetime τ with the probability density function f(t) is given by

F (t) := P(τ < t) =

∫ t

0

f(s)ds .

Thus, the probability that the lifetime τ > t is given by:

F̄ (t) := P(τ ≥ t | Ft) = 1− F (t) .

We introduce the instantaneous force of mortality λ(t) for the wage earner to be alive at
time t. By definition, λ(t) is given by:

λ(t) := lim
∆t→0

P(t ≤ τ < t+∆t|τ ≥ t)

∆t

= lim
∆t→0

P(t ≤ τ < t+∆t)

∆tP(τ ≥ t)

=
1

F̄ (t)
lim
∆t→0

F (t+∆t)− F (t)

∆t

=
f(t)

F̄ (t)
= −

d

dt
(ln(F̄ (t))) .

Then, the conditional survival probability of the wage earner is given by:

(3.4) F̄ (t) = P(τ > t|Ft) = exp

(
−

∫ t

0

λ(s)ds

)
,

and the conditional survival probability density of the death of the wage earner by:

(3.5) f(t) := λ(t) exp

(
−

∫ t

0

λ(s)ds

)
.

As in Mousa et al. [12], we suppose the existence of an insurance market composed of
M insurance companies, with each insurance company continuously offering life insurance
contracts. We assume that the wage earner is paying premium insurance rate pn(t), at
time t for each company n = 1, 2, . . . ,M . If the wage earner dies, the insurance companies
will pay pn(τ)/ηn(τ) to his/her beneficiary. Here, ηn > 0 is the nth deterministic insurance
company premium-payout ratio. Additionally, we assume that the M insurance companies
under consideration offer pairwise distinct contracts in the sense that ηn1

(t) 6= ηn2
(t), for

every n1 6= n2, a.e. When he/she dies, the total legacy is given by:

(3.6) Jn(τ) := X(τ) +
M∑

n=1

pn(τ)

ηn(τ)
,

where X(τ) is the wealth process of the wage earner at time τ ∈ [0, T ].
Let c(t) denote the consumption rate of the wage earner and π(t) the fraction of the wage

earner’s wealth invested in the risky share at time t, satisfying the following integrability
condition.
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(3.7)

∫ T

0

[c(t) + π2(t)]dt < ∞, a.s.

Moreover, we assume that the shares are divisible, continuously traded and there is no
transaction costs, taxes or short-selling constraints in the trading. Then the wealth process
X(t) is defined by the following (SDE):

dX(t) =

[
X(t)(r(t) + π(t)µ(t, Y (t)))− c(t)−

M∑

n=1

pn(t)

]
dt(3.8)

+π(t)β(t, Y (t))X(t)dW1(t) + π(t)X(t)σ(t, Y (t))dW2(t)

+π(t)X(t)

∫

R

γ(t, Y (t), z)Ñ(dt, dz) , t ∈ (0, τ ∧ T ] ,

X(0) = x > 0 ,

where µ(t, Y (t)) := α(t, Y (t))− r(t) is the appreciation rate and τ ∧ T := min{τ, T}. We
assume that µ(t, Y (t)) > 0, i.e., the expected return of the risk share is higher than the
interest rate.

Let ρ(t) > 0 be deterministic process denoting the discount rate process. We define
the utility functions Ui : [0, T ] × R+ → R+ , i = 1, 2, 3 as the concave, non-decreasing,
continuous and differentiable functions with respect to the second variable, and the strictly
decreasing continuous inverse functions Ii : [0, T ]× R+ → R+ , i = 1, 2, 3 , by

(3.9) Ii(t, x) =

(
∂Ui(t, x)

∂x

)−1

, i = 1, 2, 3 .

Let p(t) := (p1(t), . . . , pM(t)) be the vector of the insurance rates paid at the insurance
companies. The wage earner faces the problem of choosing the optimal strategy A :=
{(π, c, p) := (π(t), c(t), p(t))t∈[0,T ]} which maximizes the discounted expected utilities from
the consumption during his/her lifetime [0, τ ∧ T ], from the wealth if he/she is alive until
the terminal time T and from the legacy if he/she dies before time T . This problem can
be defined by the following performance functional (for more details see, e.g., Pliska and
Ye [15], Oksendal and Sulem [16], Azevedo et. al. [2], Guambe and Kufakunesu [8]).

J(0, x, π, c, p)

:= sup
(π,c,p)∈A

E

[∫ τ∧T

0

e−
∫
s

0
ρ(u)duU1(s, c(s))ds

+e−
∫
τ

0
ρ(u)duU2(τ,Jn(τ))1{τ≤T} + e−

∫
T

0
ρ(u)duU3(X(T ))1{τ>T}

]
,(3.10)

where 1A is a characteristic function of the set A.
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The set of strategies A := {(π, c, p) := (π(t), c(t), p(t))t∈[0,T ]} is said to be admissible if,
in addition to the integrability condition (3.7), the SDE (3.8) has a unique strong solution
such that X(t) ≥ 0, P-a.s. and

E

[∫ τ∧T

0

e−
∫
s

0
ρ(u)duU1(s, c(s))ds+ e−

∫
τ

0
ρ(u)duU2(τ,J (τ))1{τ≤T}

+e−
∫
T

0
ρ(u)duU3(X(T ))1{τ>T}

]
< ∞ .

Note that from the conditional survival probability of the wage earner (3.4) and the
conditional survival probability density of death of the wage earner (3.5), we can write the
dynamic version of the functional (3.10) by:

J(t, x, π, c, p) = Et,x

[∫ T

t

e−
∫
s

t
(ρ(u)+λ(u))du[U1(s, c(s)) + λ(s)U2(s,J (s))]ds

+e−
∫
T

t
(ρ(u)+λ(u))duU3(X(T ))

]
.(3.11)

Thus, the problem of the wage earner is to maximize the above dynamic performance
functional under the admissible strategy A. Therefore, the value function V (t, x, y) can be
restated in the following form:

(3.12) V (t, x, y) = sup
(π,c,p)∈A

J(t, x, π, c, p) .

Applying the results in the previous section to solve the above problem, we define the
Hamiltonian H : [0, T ]× R× R× R× (0, 1)× R

M × R× R× R× R× R → R by:

H(t, X(t), Y (t), c(t), π(t), p(t), A1(t), A2(t), B1(t), B2(t), B3(t), D1(t))(3.13)

= e−
∫
t

0
(ρ(s)+λ(s))ds[U1(t, c(t)) + λ(t)U2(t,J (t))]

+

[
X(t)(r(t) + π(t)µ(t, Y (t)))− c(t)−

M∑

n=1

pn(t)

]
A1(t) + g(Y (t))A2(t)

+π(t)X(t)(β(t, Y (t))B1(t) + σ(t, Y (t))B2(t)) +B3(t)

+π(t)X(t)

∫

R

γ(t, Y (t), z)D1(t, z)ν(dz) .

The adjoint equations corresponding to the admissible strategy (π, c, p) are given by the
following BSDEs

dA1(t) = −
∂H

∂x
(t, X(t), Y (t), c(t), π(t), p(t), A1(t), A2(t), B1(t), B2(t), B3(t), D1(t))dt

+B1(t)dW1(t) +B2(t)dW2(t) +

∫

R

D1(t, z)Ñ(dt, dz) ;(3.14)

A1(T ) = e−
∫
T

0
(ρ(s)+λ(s))dsU ′

3(X(T )) ,
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where U ′ := Ux and

dA2(t) = −
∂H

∂y
(t, X(t), Y (t), c(t), π(t), p(t), A1(t), A2(t), B1(t), B2(t), B3(t), D1(t))dt

+B1(t)dW3(t) +B4(t)dW2(t) +

∫

R

D2(t, z)Ñ(dt, dz) ;(3.15)

A2(T ) = 0 .

To solve our optimization problem, we consider the power utility functions of the con-
stant relative risk aversion type defined as follows Ui(t, x) = Ui(x) = κi

xδ

δ
, i = 1, 2, 3,

where δ ∈ (−∞, 1)\{0} and κi > 0 are constants. Thus, the inverse function (3.9) is given

by Ii(t, x) = Ii(x) =
(

x
κi

)− 1

1−δ

.

The following theorem gives the characterization of the optimal strategy.

Theorem 3.1. Suppose that the assumptions (A1)− (A2) and the integrability condition

(3.7) hold. Then the optimal strategy (c∗, p∗, π∗) ∈ A for the problem (3.12) is given by:

(i) the optimal consumption process is given by

c∗(t, x, y) = I1

(
t,
A∗

1(t)

κ1
(t)e

∫
t

0
(ρ(s)+λ(s))ds

)

=

(
A∗

1(t)

κ1

) 1

δ−1

e
1

δ−1

∫
t

0
(ρ(s)+λ(s))ds ;(3.16)

(ii) for each n ∈ {1, 2, . . . ,M}, the optimal premium insurance pn(t, x, y) is given by

p∗n(t, x, y) =

{
max

{
0,
[
I2

(
t, ηn(t)

κ2λ(t)
A∗

1(t)e
∫
t

0
(ρ(s)+λ(s))ds

)
− x
]}

, if n = n∗(t)

0, otherwise ,

=





max

{
0, ηn(t)

[(
ηn(t)A∗

1
(t)

κ2λ(t)

) 1

δ−1

e
1

δ−1

∫
t

0
(ρ(s)+λ(s))ds − x

]}
, if n = n∗(t)

0, otherwise ,
(3.17)

where n∗(t) = argminn∈{1,2,...,M}{ηn(t)}
(iii) and, the optimal allocation π∗(t, x, y) ∈ (0, 1) is the solution of the following equa-

tion

β(t, y)hy(t, y)−
{
µ(t, y)− (1− δ)

(
β2(t, y) + σ2(t, y)

)
π

−

∫

R

[
1− (1 + πγ(t, y, z))δ−1

]
γ(t, y, z)ν(dz)

}
h(t, y) = 0 ,

where h ∈ C1,2([0, T ]× R).
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Proof. From the Hamiltonian function (3.13) and the definition of the utility functions
U1, U2, we can deduce the following conditions:

Hcc = e−
∫
t

0
(ρ(s)+λ(s))ds ∂

2U1

∂c2
(t, c) < 0 ,

Hpn1
pn2

= e−
∫
t

0
(ρ(s)+λ(s))ds λ(t)

ηn1
ηn2

∂2U2

∂x2

(
t, x+

M∑

n=1

pn
ηn(t)

)
< 0 .

Thus, it is sufficient to obtain the optimal consumption and insurance (c∗, p∗) by applying
the first order conditions of optimality. Then from (3.13) we have the following:

(i) The optimal consumption c∗(t, x, y) is obtained from the following

−A1(t) + e−
∫
t

0
(ρ(s)+λ(s))ds ∂U1

∂c
(t, c) = 0 .

From (3.9), the optimal consumption can explicitly be obtained by

c∗(t, x, y) = I1

(
t,
A∗

1(t)

κ1
e
∫
t

0
(ρ(s)+λ(s))ds

)

=

(
A∗

1(t)

κ1

) 1

δ−1

e
1

δ−1

∫
t

0
(ρ(s)+λ(s))ds ;

(ii) The optimal premium insurance p∗n(t, x, y) is obtained using the Kuhn-Tucker con-
ditions of optimality. As in Mousa et al. [12], we are looking for the solutions
(p1(t, x, y); . . . ; pM(t, x, y); ξ1(t, x, y); . . . ; ξM(t, x, y)) in the following system:

(3.18)





−A1(t) +
λ(t)
ηn(t)

e−
∫
0

t
(ρ(s)+λ(s))ds ∂U2

∂x

(
t, x+

∑M
n=1

pn
ηn(t)

)
= −ξn(t, x, y)

pn(t, x, y) ≥ 0 ; ξn(t, x, y) ≥ 0 ;
pn(t, x, y)ξn(t, x, y) = 0, ∀n = 1, 2, . . .M .

First, suppose that n1 6= n2. If we have ξn1
(t, x, y) = ξn2

(t, x, y), for some (t, x, y) ∈
[0, T ]× R× R, one must have ηn1

(t) = ηn2
(t). Thus, from the assumption that all

the insurance companies offer distinct contracts, we obtain that for every n1, n2 ∈
{1, 2, . . . ,M}, such that n1 6= n2, then ξn1

(t, x, y) 6= ξn2
(t, x, y); (t, x, y) ∈ [0, T ] ×

R×R, a.e. Therefore, there is at most one n ∈ {1, 2, . . . ,M} such that pn(t, x, y) 6=
0.
Then from the first equation in the system (3.18),

ηn1
(A1(t)− ξn1

(t, x, y)) = ηn2
(A1(t)− ξn2

(t, x, y)) .

Hence, we can conclude that if ξn1
(t, x, y) > ξn2

(t, x, y), then ηn1
(t) > ηn2

(t). More-
over, if ξn1

(t, x, y) = 0 for some t ∈ [0, T ], ηn1
(t) < ηn2

(t), ∀n2 ∈ {1, 2, . . . ,M} such
that n1 6= n2. From this point, let n∗(t) = argminn∈{1,2,...,M}{ηn(t)}, then either
pn(t, x, y) = 0 or pn∗(t, x, y) > 0 is the solution to the equation

−A1(t) +
λ(t)

ηn∗(t)
e−

∫
0

t
(ρ(s)+λ(s))ds ∂U2

∂x

(
t, x+

pn∗

ηn∗(t)

)
= 0,
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which gives the required solution

p∗n(t, x, y) =

{
max

{
0,
[
I2

(
t, ηn(t)

κ2λ(t)
A∗

1(t)e
∫
t

0
(ρ(s)+λ(s))ds

)
− x
]}

, if n = n∗(t)

0, otherwise ,

=





max

{
0, ηn(t)

[(
ηn(t)A∗

1
(t)

κ2λ(t)

) 1

δ−1

e
1

δ−1

∫
t

0
(ρ(s)+λ(s))ds − x

]}
, if n = n∗(t)

0, otherwise ;

(iii) Since the expression involving π in the Hamiltonian H (3.13) is linear, for the
maximum investment π∗, we have the following relation:

(3.19) µ(t, y)A∗
1(t) + β(t, y)B∗

1(t) + σ(t, y)B∗
2(t) +

∫

R

γ(t, y, z)D∗
1(t, z)ν(dz) = 0 .

To obtain the optimal portfolio, we first solve the adjoint BSDE equations (3.14) and
(3.15). From the terminal condition of the adjoint equation (3.14), we try the solution of
the first adjoint equation A∗

1(t) of the form

(3.20) A∗
1(t) = X(t)δ−1e−h(t,Y (t)) , h(T, Y (T )) =

∫ T

0

(ρ(u) + λ(u))du .

On the other hand, for the optimal strategy (c∗, p∗n, π
∗), we have

(3.21) dA∗
1(t) = −ηn∗A∗

1(t)dt+B∗
1(t)dW1(t) +B∗

2(t)dW2(t) +

∫

R

D∗
1(t, z)Ñ (dt, dz) .

Applying the Itô’s product rule in (3.20) and from (3.8), (3.16) and (3.17), we obtain

dA∗
1(t) = −x(t)δ−1e−h(t,y)

{
ht(t, y) + g(y)hy(t, y) +

1

2
hyy(t, y)−

1

2
(hy(t, y))

2

+
1

2
(δ − 1)π∗(t)β(t, y)hy(t, y)−

[
(δ − 1)[r(t) + µ(t, y)π∗(t) + ηn∗(t)]

+
1

2
(δ − 1)(δ − 2)(π∗(t))2(β2(t, y) + σ2(t, y))

+

∫

R

[
(1 + π∗(t)γ(t, y, z))δ−1 − 1− (δ − 1)π∗(t)γ(t, y, z)

]
ν(dz)

]

+(1− δ)e
1

1−δ
h(t,y)e

∫
t

0
(ρ(s)+λ(s))ds

[
1 + ηn∗(t)

(
ηn∗(t)

κ2λ(t)

) 1

δ−1
]}

dt

+((δ − 1)π∗(t)β(t, y)− hy(t, y))x(t)
δ−1e−h(t,y)dW1(t)

+(δ − 1)π∗(t)x(t)δ−1σ(t, y)e−h(t,y)dW2(t)

+x(t)δ−1e−h(t,y)

∫

R

[
(1 + π∗(t)γ(t, y, z))δ−1 − 1

]
Ñ(dt, dz) .

Comparing with the adjoint equation (3.21), we get:
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B∗
1(t) = ((δ − 1)π∗(t)β(t, y)− hy(t, y))x(t)

δ−1e−h(t,y) ;(3.22)

B∗
2(t) = (δ − 1)π∗(t)σ(t, y)x(t)δ−1e−h(t,y) ;(3.23)

D∗
1(t) = x(t)δ−1e−h(t,y)

[
(1 + π∗(t)γ(t, y, z))δ−1 − 1

]
.(3.24)

Furthermore, h is a solution of the following backward partial differential equation (PDE)

ht(t, y) + (g(y) +
1

2
(δ − 1)π∗(t)β(t, y))hy(t, y) +

1

2
hyy(t, y)−

1

2
(hy(t, y))

2

+K(t) + (1− δ)e
1

1−δ
h(t,y)e

∫
t

0
(ρ(s)+λ(s))ds

[
1 + ηn∗(t)

(
ηn∗(t)

κ2λ(t)

) 1

δ−1
]

= 0 ,(3.25)

with a terminal condition h(T, Y (T )) = e−
∫
T

0
(ρ(u)+λ(u))du, where

K(t) = −(δ − 1)[r(t) + µ(t, y)π∗(t) + δηn∗(t)

+
1

2
(δ − 1)(δ − 2)(π∗(t))2(β2(t, y) + σ2(t, y))

+

∫

R

[
(1 + π∗(t)γ(t, y, z))δ−1 − 1− (δ − 1)π∗(t)γ(t, y, z)

]
ν(dz) .

The solution of the above equation can be approximated by a fixed point algorithm. To
that end, we define a Feynman-Kac operator Φ, acting on functions h as follows

(Φh)(t, Y (t)) = E

[
eQ(t,Y (t)) +

∫ T

t

eQ(s,Y (s))
{
K(s)

+(1− δ)e
1

1−δ
h(s,Y (s))e

∫
s

0
(ρ(u)+λ(u))du

[
1 + ηn∗(s)

(
ηn∗(s)

κ2λ(s)

) 1

δ−1
]}

ds
]
,

where Q(t, Y (t)) = g(Y (t)) + 1
2
(δ − 1)π∗(t)β(t, Y (t)).

To solve (3.25), one need to find a fixed point solution, for the following fixed point
equation

(Φh)(t, y) = h(t, y).

Then, under the Assumptions (A1) and (A2), there exists a unique solution h ∈ C1,2([0, T ]×
R) of the PDE (3.25). (See, Berdjane and Pergamenshchikov [3], Theorem 3.1.)

Now, substituting (3.20), (3.22), (3.23), (3.24) into (3.19), we obtain

β(t, y)hy(t, y)−
{
µ(t, y) + (δ − 1)π∗(t)(β2(t, y) + σ2(t, y))

+

∫

R

γ(t, y, z)
[
(1 + π∗(t)γ(t, y, z))δ−1 − 1

]
ν(dz)

}
= 0 .

Note that the second derivative in π, for the optimal A∗
1, B

∗
1 , B

∗
2 and D∗

1 is negative, i.e.,

−(1 − δ)
[
β2(t, y) + σ2(t, y) +

∫

R

(1 + π(t)γ(t, y, z))δ−2γ2(t, y, z)ν(dz)
]
< 0.
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Hence, there exists an optimal π∗(t) ∈ (0, 1).
�

For the second adjoint equation, note that from (3.19), we obtain the following relation

(3.26)
∂µ

∂y
(t, y)A∗

1(t) +
∂β

∂y
(t, y)B∗

1(t) +
∂σ(t, y)

∂y
B∗

2(t) +

∫

R

∂γ

∂y
(t, y, z)D∗

1(t, z)ν(dz) = 0 .

Then, for optimal strategy, the second adjoint equation (3.15), can be written as

(3.27) dA∗
2(t) = −g′(y)A∗

2(t)dt+B∗
3(t)dW1(t) +B∗

4(t)dW1(t) +

∫

R

D∗
2(t, z)Ñ(dt, dz) ,

which is a linear BSDE with jumps. Since the terminal condition is A∗(T ) = 0, by applying
the techniques for solving linear BSDE with jumps (Delong [5], Propositions 3.3.1 and
3.4.1), we obtain A∗

2(t) = B∗
3(t) = B∗

4(t) = D∗
2(t, z) = 0.

The corresponding wealth process equation (3.8) for the optimal solutions becomes

dX∗(t) = X(t)
[
G(t)dt+ π∗(t)[β(t, y)dW1(t) + σ(t, y)dW2(t)] + π∗(t)

∫

R

γ(t, y, z)Ñ(dt, dz)
]
,

where

G(t) = r(t) + π∗(t)µ(t, y) + ηn∗(t)− h(t)
1

δ−1

[
κ
− 1

δ−1

1 +

(
ηn∗(t)

κ2λ(t)

) 1

δ−1

e
1

δ−1

∫
t

0
(ρ(s)+λ(s))ds

]
,

which gives the following solution

X(t) = x exp
{∫ t

0

[G(s)−
1

2
(π∗(s))2(β2(s, y) + σ2(s, y))]ds

+

∫ t

0

∫

R

[ln(1 + π∗(s)γ(s, y, z))− π∗(s)γ(s, y, z)]ν(dz)ds

+

∫ t

0

π∗(s)[β(s, y)dW1(s) + σ(s, y)dW2(s)]

+

∫ t

0

∫

R

ln(1 + π∗(s)γ(s, y, z))Ñ(ds, dz)
}
.

Finally, the value function of the problem (3.12) can be characterized as the solution of
the following BSDE

dV (t, x, y) = −H(t, x∗, y, c∗, π∗, p∗, A∗
1, A

∗
2, B

∗
1 , B

∗
2 , D

∗
1)dt+B∗

1(t)dW1(t) +B∗
2(t)dW2(t)

+

∫

R

D∗
1(t, z)Ñ(dt, dz) ;

V (T, x, y) = κ3e
∫
T

0
[ρ(t)+λ(t)]dtX(T )δ

δ
.
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Example 3.1. The following example specifies the results in Theorem 3.1 to a well known
stochastic volatility model of Ornstein-Uhlenbeck type and an explicit portfolio strategy
is derived. Let N be the Poisson process, with intensity ν > 0. We consider the following
model dynamics

B(t) = 1 ;

dS(t) = S(t)[(α0 + α1Y (t))dt+ γY (t)dÑ(t)] ;

dY (t) = −bY (t)dt+ dW (t) ,

where α0, α1, γ ∈ R and b > 0. Suppose that we have a constant mortality rate λ > 0,
constants insurance premium rate ηn > 0, n = 1, 2, . . . ,M , discount rate ρ > 0 and
κ1 = κ1 = κ3 = 1. Then the Hamiltonian is given by

H(t, X(t), Y (t), A1(t), A2(t), B(t), D1(t), D2(t))

=
1

δ
e−(ρ+λ)t

[
(c(t))δ + λ(X +

M∑

n=1

pn(t)

ηn
)δ
]

+[X(t)π(t)(α0 + α1Y (t))− c(t)−

M∑

n=1

pn(t)

ηn
]A1(t)

−bY (t)A2(t) +B(t) + π(t)X(t)γY (t)D1(t)ν +D2(t) .

Then, following Theorem 3.1, we can easily see that the optimal portfolio is given by

π∗(t) =
1

δ

[(γνy − α0 − α1y

γνy

) 1

δ−1

−1
]
,

where y is given by Y (t) = e−bty0 +
∫ t

0
e−b(t−s)dW (s).

Moreover, the optimal consumption and insurance are given by

c∗(t) = e
1

δ−1
(ρ+λ)t(A∗

1(t))
1

δ−1 , p∗n∗(t) =
[(ηn∗

λ
A∗

1(t)
) 1

δ−1

e
1

δ−1
(ρ+λ)t − x

]
,

where A∗
1(t) is part of a solution of the following linear BSDE

dA∗
1(t) = −ηn∗A∗

1(t)dt+B∗(t)dW (t) +D∗(t)dÑ(t).

Hence, A∗
1(t) = e−ρT

E

[
eηn∗ (T−t)(X(T ))δ−1 | Ft

]
. B∗ and D∗ can be derived by the mar-

tingale representation theorem. See Delong [5], Propositions 3.3.1 and 3.4.1. Thus, for
this pure jump Poisson process of Ornstein-Uhlenbeck type, we have derived an explicit
optimal portfolio strategy.

Acknowledgment. We would like to express our deep gratitude to the NRF Project No:
CSUR 90313, the University of Pretoria and the MCTESTP Mozambique for their support.
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Appendix. Proof of the main results

Proof of Theorem 2.1. Let π ∈ A be an admissible strategy and X(t) the corresponding
wealth process. Then, following Framstad et. al. [7], Theorem 2.1., we have:

J (π∗)−J (π) = E

[∫ T

0

(f(t, X∗(t), Y ∗(t), π∗(t))− f(t, X(t), Y (t), π(t)))dt

+(g(X∗(T ), Y ∗(T ))− g(X(T ), Y (T )))
]

=: K1 +K2 .

By condition (i) and the integration by parts rule (Oksendal and Sulem [16], Lemma 3.6.),
we have

K2 = E

[
g(X∗(T ), Y ∗(T ))− g(X(T ), Y (T ))

]

≥ E

[
(X∗(T )−X(T ))A∗

1(T ) + (Y ∗(T )− Y (T ))A∗
2(T )

]

= E

[∫ T

0

(X∗(t)−X(t))dA∗
1(t) +

∫ T

0

A∗
1(t)(dX

∗(t)− dX(t))

+

∫ T

0

(Y ∗(t)− Y (t))dA∗
2(t) +

∫ T

0

A∗
2(t)(dY

∗(t)− dY (t))

+

∫ T

0

[(σ(t, X∗(t), Y ∗(t), π∗(t))− σ(t, X(t), Y (t), π(t)))B∗
1(t)

+(β(t, X∗(t), Y ∗(t), π∗(t))− σ(t, X(t), Y (t), π(t)))B∗
2(t)]dt

+

∫ T

0

∫

R

(γ(t, X∗(t), Y ∗(t), π∗(t), z)− γ(t, X∗(t), Y ∗(t), π∗(t), z))D∗
1(t, z)ν(dz)dt

+

∫ T

0

(φ(Y ∗(t))− φ(Y (t)))B∗
3(t)dt

]

= E

[
−

∫ T

0

(X∗(t)−X(t))
∂H∗

∂x
(t)dt−

∫ T

0

(Y ∗(t)− Y (t))
∂H∗

∂y
(t)dt

+

∫ T

0

(A∗
1(t)b(t, X

∗(t), Y ∗(t), π∗(t))− b(t, X(t), Y (t), π(t)))dt

+

∫ T

0

(ϕ(Y ∗(t))− ϕ(Y (t)))A∗
2(t)dt+

∫ T

0

(φ(Y ∗(t))− φ(Y (t)))B∗
3(t)dt

+

∫ T

0

[(σ(t, X∗(t), Y ∗(t), π∗(t))− σ(t, X(t), Y (t), π(t)))B∗
1(t)

+(β(t, X∗(t), Y ∗(t), π∗(t))− σ(t, X(t), Y (t), π(t)))B∗
2(t)]dt
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+

∫ T

0

∫

R

(γ(t, X∗(t), Y ∗(t), π∗(t), z)− γ(t, X∗(t), Y ∗(t), π∗(t), z))D∗
1(t, z)ν(dz)dt

]
,

where we have used the notation

H∗(t) = H(t, X∗(t), Y ∗(t), π∗(t), A∗
1(t), A

∗
2(t), B

∗
1(t), B

∗
2(t), B

∗
3(t), D

∗
1(t, ·)) .

On the other hand, by definition of H in (2.4), we see that

K1 = E

[∫ T

0

(f(t, X∗(t), Y ∗(t), π∗(t))− f(t, X(t), Y (t), π(t)))dt
]

= E

[∫ T

0

[H(t, X∗(t), Y ∗(t), π∗(t), A∗
1(t), A

∗
2(t), B

∗
1(t), B

∗
2(t), B

∗
3(t), D

∗
1(t, ·))

−H(t, X∗(t), Y ∗(t), π∗(t), A∗
1(t), A

∗
2(t), B

∗
1(t), B

∗
2(t), B

∗
3(t), D

∗
1(t, ·))]dt

−

∫ T

0

A∗
1(t)(A

∗
1(t)b(t, X

∗(t), Y ∗(t), π∗(t))− b(t, X(t), Y (t), π(t)))dt

−

∫ T

0

(ϕ(Y ∗(t))− ϕ(Y (t)))A∗
2(t)dt+

∫ T

0

(φ(Y ∗(t))− φ(Y (t)))B∗
3(t)dt

−

∫ T

0

[(σ(t, X∗(t), Y ∗(t), π∗(t))− σ(t, X(t), Y (t), π(t)))B∗
1(t)

−(β(t, X∗(t), Y ∗(t), π∗(t))− σ(t, X(t), Y (t), π(t)))B∗
2(t)]dt

−

∫ T

0

∫

R

(γ(t, X∗(t), Y ∗(t), π∗(t), z)− γ(t, X∗(t), Y ∗(t), π∗(t), z))D∗
1(t, z)ν(dz)dt

]
.

Then, summing the above two expressions, we obtain

K1 +K2

= E

[∫ T

0

[H(t, X∗(t), Y ∗(t), π∗(t), A∗
1(t), A

∗
2(t), B

∗
1(t), B

∗
2(t), B

∗
3(t), D

∗
1(t, ·))

−H(t, X(t), Y (t), π(t), A∗
1(t), A

∗
2(t), B

∗
1(t), B

∗
2(t), B

∗
3(t), D

∗
1(t, ·))]dt

−

∫ T

0

(X∗(t)−X(t))
∂H∗

∂x
(t)dt−

∫ T

0

(Y ∗(t)− Y (t))
∂H∗

∂y
(t)dt .

By the concavity of H, i.e., conditions (i) and (ii), we have

E

[∫ T

0

[H(t, X∗(t), Y ∗(t), π∗(t), A∗
1(t), A

∗
2(t), B

∗
1(t), B

∗
2(t), B

∗
3(t), D

∗
1(t, ·))

−H(t, X(t), Y (t), π(t), A∗
1(t), A

∗
2(t), B

∗
1(t), B

∗
2(t), B

∗
3(t), D

∗
1(t, ·))]dt

]

≥ E

[∫ T

0

(X∗(t)−X(t))
∂H∗

∂x
(t)dt +

∫ T

0

(Y ∗(t)− Y (t))
∂H∗

∂y
(t)dt

+

∫ T

0

(π∗(t)− π(t))
∂H∗

∂π
(t)dt

]
.
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Then, by the maximality of the strategy π∗ ∈ A and the concavity of the Hamiltonian
H,

E

[∫ T

0

[H(t, X∗(t), Y ∗(t), π∗(t), A∗
1(t), A

∗
2(t), B

∗
1(t), B

∗
2(t), B

∗
3(t), D

∗
1(t, ·))

−H(t, X(t), Y (t), π(t), A∗
1(t), A

∗
2(t), B

∗
1(t), B

∗
2(t), B

∗
3(t), D

∗
1(t, ·))]dt

]

≥ E

[∫ T

0

(X∗(t)−X(t))
∂H∗

∂x
(t)dt +

∫ T

0

(Y ∗(t)− Y (t))
∂H∗

∂y
(t)dt

]
.

Hence J (π∗) − J (π) = K1 + K2 ≥ 0. Therefore, J (π∗) ≥ J (π), that is, the strategy
π∗ ∈ A is optimal.

�

Proof of Theorem 2.2. From (2.3), we have that

d

dℓ
J (π + ℓζ)

∣∣∣
ℓ=0

= E

[∫ T

0

(∂f
∂x

(t)x1(t) +
∂f

∂y
(t)y1(t) +

∂f

∂π
(t)ζ(t)

)
dt

+
∂g

∂x
(X(T ), Y (T ))x1(T ) +

∂g

∂y
(X(T ), Y (T ))y1(T )

]

ℓ=0
.

Let

I(t) := E

[∂g
∂x

(X(T ), Y (T ))x1(T ) +
∂g

∂y
(X(T ), Y (T ))y1(T )

]
.

By Itôs formula and the dynamics of x1 and y1, we get

I(t) = E

[
A1(T )x1(T ) + A2(T )y1(T )

]

= E

[∫ T

0

x1(t)
(
A1(t)

∂b

∂x
(t) +B1(t)

∂σ

∂x
(t) +B2(t)

∂β

∂x
(t)(3.28)

+

∫

R

∂γ

∂x
(t, z)D1(t, z)ν(dz) −

∂H

∂x
(t)
)
dt

+

∫ T

0

y1(t)
(
A1(t)

∂b

∂y
(t) + A2(t)ϕ

′(Y (t)) +B1(t)
∂σ

∂y
(t) +B2(t)

∂β

∂y
(t)

+B4(t)φ
′(Y (t)) +

∫

R

∂γ

∂y
(t, z)D1(t, z)ν(dz)−

∂H

∂y
(t)
)
dt

+

∫ T

0

ζ(t)
(
A1(t)

∂b

∂π
(t) +B1(t)

∂σ

∂π
(t) +B2(t)

∂β

∂π
(t)

+

∫

R

∂γ

∂π
(t, z)D1(t, z)ν(dz)(t)

)
dt
]
.

On the other hand, by definition of the Hamiltonian (2.4), we have

∇x,y,πH(t) =
∂H

∂x
(t)x1(t) +

∂H

∂y
(t)y1(t) +

∂H

∂π
(t)ζ(t)
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= x1(t)
[∂f
∂x

(t) + A1(t)
∂b

∂x
(t) +B1(t)

∂σ

∂x
(t) + B2(t)

∂β

∂x
(t)

+

∫

R

∂γ

∂x
(t, z)D1(t, z)ν(dz)

]

+y1(t)
[∂f
∂y

(t) + A1(t)
∂b

∂y
(t) + A2(t)ϕ

′(Y (t)) +B1(t)
∂σ

∂y
(t) +B2(t)

∂β

∂y
(t)

+B3(t)φ
′(Y (t)) +

∫

R

∂γ

∂x
(t, z)D1(t, z)ν(dz)

]

+ζ(t)
[∂f
∂π

(t) + A1(t)
∂b

∂π
(t) +B1(t)

∂σ

∂π
(t) +B2(t)

∂β

∂π
(t)

+

∫

R

∂γ

∂π
(t, z)D1(t, z)ν(dz)

]
.

Combining this and (3.28), we get

d

dℓ
J (π + ℓζ)

∣∣∣
ℓ=0

= E

[∫

R

∂H

∂π
(t)ζ(t)dt

]
,

Then, we conclude that

d

dℓ
J (π + ℓζ)

∣∣∣
ℓ=0

= 0 if and only if E

[∫ T

0

∂H

∂π
(t)ζ(t)dt

]
= 0 ,

for all bounded ζ ∈ A.
Applying this for a particular case ζ(t) = ξ(t), we get that

E

[∂H
∂π

(t)ζ(t) | Ft

]
= 0 ,

which completes the proof.

�
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