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Abstract

We prove the Fredholmness of Dirac operators of monopoles with Dirac-type singu-
larities on oriented complete Riemannian 3-folds, and we also calculate the L2-indices of
them.

1 Introduction

Let (X, g) be a complete oriented Riemannian 3-fold with the bounded scalar curvature.
Let Z ⊂ X be a finite subset. We fix a spin structure on X. Let (V, h) be a Hermitian
vector bundle on X \ Z and A a connection on (V, h). Let Φ ∈ End(V ) be a skew-Hermitian
endomorphism of (V, h). The tuple (V, h,A,Φ) is said to be a monopole on X \Z if the tuple
(V, h,A,Φ) satisfies the Bogomolny equation F (A) = ∗∇A(Φ), where F (A) is the curvature
of A and ∗ is the Hodge operator. Moreover, A point p ∈ Z is a Dirac-type singularity of
(V, h,A,Φ) of weight ~kp = (kp,i) ∈ Z

rank(V ) if the monopole (V, h,A,Φ) satisfies a certain
asymptotic behavior around p ∈ Z (See Definition 2.1 (ii).). We set the Dirac operators
/∂
±
(A,Φ) : Γ(X\Z, V ⊗SX) → Γ(X\Z, V ⊗SX) of (V, h,A,Φ) to be /∂

±
(A,Φ)(s) := /∂A(s)±Φ⊗IdSX

,

where SX is the spinor bundle on X and /∂A is the Dirac operator of (V, h,A). We regard
/∂
±
(A,Φ) as a closed operator L2(X \Z, V ⊗SX) → L2(X \Z, V ⊗SX) by considering derivation

as a current. The main result is the following.

Theorem 1.1 (Theorem 4.4). Let (V, h,A,Φ) be a monopole of rank r on X \ Z such that
each p ∈ Z is a Dirac-type singularity of (V, h,A,Φ) with weight ~kp = (kp,i) ∈ Z

r. We assume
that (V, h,A,Φ) satisfies the following conditions (the R̊ade condition).

• Both Φ and F (A) are bounded.

• We have ∇A(Φ)|x = o(1) as x→ ∞.

• There exists a compact religion Y ⊃ Z such that Y has a smooth boundary ∂Y , and
the inequality infx∈X\Y

{
|λ| | λ is an eigenvalue of Φ(x)

}
> 0 is satisfied.

Then the Dirac operators /∂
±
(A,Φ) are Fredholm and adjoint to each other. Moreover, their

indices Ind(/∂
±
(A,Φ)) are given as follows:

Ind(/∂
±
(A,Φ)) = ∓




∑

p∈Z

∑

kp,i>0

kp,i +

∫

∂Y
ch(V +)



 = ±




∑

p∈Z

∑

kp,i<0

kp,i +

∫

∂Y
ch(V −)



 ,

where V ± is a subbundle of V |∂Y spanned by the eigenvectors of ∓
√
−1Φ with positive

eigenvalues.
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The celebrated index theorem proved by Atiyah and Singer have been applied in a wide
range including gauge theory, differential topology and complex geometry. However, The in-
dices of elliptic differential operators on odd-dimensional closed manifolds are always 0. There-
fore we consider the index theorems of elliptic operators on odd-dimensional open manifolds.
On one hand, Callias [3] proved the index theorem of the Dirac operators of SU(2)-bundles
on R

2n+1 that satisfies a certain asymptotic behavior at infinity. Callias’s index theorem is
generalized to the Dirac operators of vector bundles on odd-dimensional complete spin man-
ifolds by R̊ade [10]. On the other hand, Kronheimer [6] defined the notion of Dirac-type
singularities of monopoles on flat Riemannian 3-folds, and Pauly [9] generalize it to any Rie-
mannian 3-folds. Moreover, Pauly proved the index theorem of the deformation complexes on
SU(2)-monopoles with Dirac-type singularities on closed oriented 3-folds. However, Pauly’s
argument essentially needs the condition

∑
i kp,i = 0 for any p ∈ Z, and it is difficult to apply

the argument to calculate the indices of the Dirac operators of (V, h,A,Φ) even if X is a
closed manifold.

The proof of the main result is divided into two parts. First we extend Pauly’s argument
and calculate the indices of /∂

±
(A,Φ) when X is a closed manifold (Theorem 3.4 and Corollary

3.12), by constructing a lift of (V, h,A,Φ) on a 4-dimensional closed manifold equipped with
an S1-action. Next we combine our result and R̊ade’s index theorem in [10], and obtain the
index formula on general complete Riemannian 3-folds (Theorem 4.4).

This result was obtained in the study of the inverse transform of the Nahm transform from
L2-finite instantons on the product of R and a 3-dimensional torus T 3 to Dirac-type singular
monopoles on the dual torus T̂ 3 of T 3 in [11].
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2 Preliminary

2.1 Monopoles with Dirac-type singularities

We recall the definition of monopoles with Dirac-type singularities by following [5].

Definition 2.1. Let (X, g) be an oriented Riemannian 3-fold and ∗g be the Hodge operator
on X. If there is no risk of confusion, then we abbreviate ∗g to just ∗.

(i) Let (V, h) be a Hermitian vector bundle with a unitary connection A on X. Let Φ be
a skew-Hermitian endomorphism of V . The tuple (V, h,A,Φ) is said to be a monopole
on X if it satisfies the Bogomolny equation F (A) = ∗∇A(Φ).

(ii) Let Z ⊂ X be a discrete subset. Let (V, h,A,Φ) be a monopole of rank r ∈ N on X \Z.
A point p ∈ Z is called a Dirac-type singularity of the monopole (V, h,A,Φ) with weight
~kp = (kp,i) ∈ Z

r if the following holds.

• There exists a small neighborhood B of p such that (V, h)|B\{p} is decomposed into
a sum of Hermitian line bundles

⊕r
i=1 Fp,i with deg(Fp,i) =

∫
∂B c1(Fp,i) = kp,i.
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• In the above decomposition, we have the following estimates,




Φ =

√
−1

2Rp

r∑

i=1

kp,i · IdFp,i
+O(1)

∇A(RpΦ) = O(1),

where Rp is the distance from p.

For a monopole (V, h,A,Φ) on X \ Z, if each point p ∈ Z is a Dirac-type singularity,
then we call (V, h,A,Φ) a Dirac-type singular monopole on (X,Z).

Remark 2.2. Let X be a compact manifold and Z ⊂ X a finite subset. For a Dirac-type
singular monopole (V, h,A,Φ) on (X,Z), we have

∑
p∈Z

∑
i kp,i = 0 by the Stokes theorem,

where ~k = (kp,i) ∈ Z
rank(V ) is the weight of (V, h,A,Φ) at p ∈ Z.

We also recall the notion of instantons.

Definition 2.3. Let (Y, g) be an oriented Riemannian 4-fold. For a Hermitian vector bundle
(V, h) on Y and a connection A on (V, h), the tuple (V, h,A) is an instanton if the ASD
equation F (A) = − ∗ F (A) is satisfied.
Remark 2.4. If (Y, g) is a Kähler surface with the Kähler form ω, the condition that a
tuple (V, h,A) is an instanton on Y is equivalent to the one that (V, ∂A, h) is a holomorphic
Hermitian vector bundle satisfying the Hermite-Einstein condition F (A) ∧ ω = 0, where ∂A
is the (0, 1)-part of ∇A.

For example, we recall the flat Dirac monopole of weight k ∈ Z. Let gi,Euc denote the
canonical metric on R

i. For i ∈ N, we denote by ri : R
i → R the distance from 0 ∈ R

i. Let
p : R3 \ {0} → S2(≃ P

1) be the projection. Let O(k) be a holomorphic line bundle on P
1

of degree k. Let hO(k) be a Hermitian metric of O(k) that the Chern connection AO(k) of

(Ok, hO(k)) has a constant mean curvature. Then (p∗O(k), p∗hO(k), p
∗AO(k),

√
−1k/2r) is a

Dirac-type singular monopole on (R3, {0}), where r is the distance from the origin. We call
this monopole the flat Dirac monopole of weight k, and denote by (Lk, hk, Ak,Φk).

We will recall the equivalent condition proved by Pauly [9]. Let U ⊂ R
3 be a neighborhood

of 0 ∈ R
3. Let g be a Riemannian metric on U . We assume that the canonical coordinate

of R3 is a normal coordinate of g at 0. Set the Hopf map π : R4 = C
2 → R

3 = R × C

to be π(z1, z2) = (|z1|2 − |z2|2, 2z1z2), where we set zi = xi +
√
−1yi. We also set the

S1(= R/2πZ)-action on C
2 to be θ · (z1, z2) := (e

√
−1θz1, e

−
√
−1θz2). Then the restriction

π : R4 \ {0} → R
3 \ {0} forms a principal S1-bundle. Then we have π∗r3 = r24.

Lemma 2.5. There exist a harmonic function f : U \ {0} → R with respect to the metric g
and a 1-form ξ on π−1(U) such that the following hold.

• The 1-form ω := ξ/π∗f is a connection of π : R4 \{0} → R
3 \{0}, i.e. ω is S1-invariant,

and we have ω(∂θ) = 1. Here ∂θ is the generating vector field of the S1-action on
R
4 \ {0}.

• We have dω = π∗(∗ − df).

• We have the following estimates:
{
f = 1/2r3 + o(1)
ξ = 2(−y1dx1 + x1dy1 + y2dx2 − x2dy2) +O(r24).
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• The symmetric tensor g4 = π∗f(π∗g + ξ2) is a Riemannian metric of L2
5,loc-class on

π−1(U), and we have an estimate |g4 − 2g4,Euc|g4,Euc
= O(r4). Here a function on

π−1(U) is of L2
k,loc-class if every derivative of f up to order k has a finite L2-norm on

any compact subset of π−1(U).

Proposition 2.6 (Proposition 5 in [9]). Let (V, h,A) be a Hermitian vector bundle on U \{0}
of rank r, and Φ ∈ End(V ) be a skew-Hermitian endomorphism. The tuple (V, h,A,Φ) is a
monopole on U \ {0} if and only if the tuple (π∗V, π∗h, π∗A + ξ ⊗ π∗Φ) is an instanton on
π−1(U) \ {0} with respect to the metric g4 = π∗f(π∗g + ξ2). Moreover, 0 is a Dirac-type
singularity of (V, h,A,Φ) of weight ~k = (ki) ∈ Z

r if and only if the following hold.

• The instanton (π∗V, π∗h, π∗A−π∗Φ⊗ξ) can be prolonged over π−1(U), and the prolonged
connection is represented by an L2

6,loc-valued connection matrix. We will denote by
(V4, h4, A4) the prolonged instanton.

• The weight of the S1-action on the fiber V4|0 agrees with ~k up to a suitable permutation.

Remark 2.7.

• If g = g3,Euc, we can choose f = 1/2r3 and ξ = 2(−y1dx1 + x1dy1 + y2dx2 − x2dy2).
Then we have g4 = 2g4,Euc.

• By the Sobolev embedding theorem, the connection matrix of A4 is of C3 class.

Let hC be the canonical Hermitian metric on C. We set the Hermitian line bundle (L̃, h̃) :=
(π−1(U) \ {0}) ×U(1) (C, hC) on U \ {0} and take the connection Ã induced by ω. Then

(L̃, h̃, Ã,
√
−1f) is a monopole on U with respect to g, and 0 is the Dirac-type singularity

of weight 1. We call the monopole (L̃k, h̃k, Ãk,
√
−1kf) := (L̃⊗k, h̃⊗k, Ã⊗k,

√
−1kf) a Dirac

monopole of weight k with respect to g. The following proposition is a partial generalization
of [7, Proposition 5.2].

Proposition 2.8. Let (V, h,A,Φ) be a monopole on U \ {0}, and assume that the point 0 is
a Dirac-type singularity of weight ~k = (ki) ∈ Z

r. Then there exist a neighborhood U ′ ⊂ U
and a unitary isomorphism ϕ : V |U ′\{0} ≃ (

⊕r
i=1 L̃ki)|U ′\{0} such that the following estimates

hold.

|A− ϕ∗(
⊕

Ãki)| = O(1).

|Φ− ϕ∗(
∑√

−1kif IdLki
)| = O(1).

Proof. Let (V ′, h′, A′,Φ′) be the monopole
⊕r

i=1(L̃ki , h̃ki , Ãki ,
√
−1kif). By Proposition 2.6,

the instantons (π∗V, π∗h, π∗A− π∗Φ ⊗ ξ) and(π∗V ′, π∗h′, π∗A′ − π∗Φ′ ⊗ ξ) can be prolonged
over π−1(U), and denote by (V4, h4, A4) and (V ′

4 , h
′
4, A

′
4) respectively. Then the weights of

S1-actions on the fiber of V4 and V
′
4 at the origin coincide with each other, and the connections

A4 and A′
4 are S1-invariant. Hence there exist an S1-invariant neighborhood U ′

4 ⊂ π−1(U)
of 0 and an S1-equivariant unitary isomorphism ϕ4 : V4|U ′

4
→ V ′

4 |U ′

4
such that A4 − ϕ∗

4(A
′
4)

vanishes at the origin. Hence we have |A4 − ϕ∗
4(A

′
4)| = O(r4). Since f = 1/2r3 + o(1) and

ξ is orthogonal to π∗(T ∗
R
3) with the metric g4 = π∗f(π∗g + ξ2), the unitary isomorphism

ϕ : V |U ′\{0} → V ′|U ′\{0} induced by ϕ4 satisfies the desired estimates, where we put U ′ :=
π(U ′

4).
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By the estimates in Lemma 2.5, we also obtain the following approximation.

Corollary 2.9. Let (V, h,A,Φ) be a monopole on U \ {0}, and assume that the point 0 is a
Dirac-type singularity of weight ~k = (ki) ∈ Z

r. Then there exist a neighborhood U ′ ⊂ U and
a unitary isomorphism ϕ : V |U ′ ≃ (

⊕r
i=1 Lki)|U ′ such that the following estimates hold.

|A− ϕ∗(
⊕

Aki)| = O(1).

|Φ− ϕ∗(

√
−1

2r3

∑
kiIdLki

)| = O(1).

2.2 Local properties of harmonic spinors of the flat Dirac monopoles

Let (X, g) be an n-dimensional oriented spin manifold with a fixed spin structure. We denote
by SX the spinor bundle on X, and by clif : T ∗X → End(SX) the Clifford product. If n
is an odd number, then we assume (

√
−1)(n+1)/2clif(vol(X,g)) = −IdSX

, where we use the
canonical linear isomorphism between the exterior algebra and the Clifford algebra. The
spinor bundle SX has the induced connection ASX

by the Levi-Civita connection on X, and
we set the Dirac operator /∂X : Γ(X,SX) → Γ(X,SX) to be /∂X(f) := clif ◦ ∇ASX

(f). For
a vector bundle (V, h) on X and a connection A on (V, h), we also set the Dirac operator
/∂A : Γ(X,SX ⊗ V ) → Γ(X,SX ⊗ V ) to be /∂A(s) := clif ◦ ∇ASX

⊗A(s). If n is even, then we

have the decomposition SX = S+
X ⊕ S−

X , and the Dirac operator /∂A is also decomposed into

sum of the positive and negative Dirac operators /∂
±
A : Γ(X,S±

X ⊗ V ) → Γ(X,S∓
X ⊗ V ). If

dim(X) = 3, then for a monopole (V, h,A,Φ) on X we also set the Dirac operators /∂
±
(A,Φ) :

Γ(X,V ⊗ SX) → Γ(X,V ⊗ SX) to be /∂
±
(A,Φ)(f) := /∂A(f)± (Φ ⊗ IdSX

)(f).
For a differential operator P : Γ(X,V1) → Γ(X,V2) between Hermitian vector bundles

(V1, h1) and (V2, h2) on X, we regard P as the closed operator P : L2(X,V1) → L2(X,V2)
with the domain Dom(P ) := {s ∈ L2(X,V1) | P (s) ∈ L2}, where P (s) is the derivative as
a current. We regard Dom(P ) as a Banach space equipped with the graph norm ||s||P :=
||s||L2 + ||P (s)||L2 .

Remark 2.10. Any 3-dimensional oriented manifolds are parallelizable, and hence they have
spin structures.

Let SR3 be the spinor bundle on R
3 with respect to the trivial spin structure, and d be

the trivial connection on SR3 . By using the projection p : R3 \ {0} → S2, We combine the
Dirac operators of the Dirac monopole (Lk, hk, Ak,Φk) = (p∗O(k), p∗hO(k), p

∗AO(k)

√
−1k/2r)

with the Dirac operators of O(k) on P
1 = S2. Let SS2 = S+

S2 ⊕ S−
S2 be the spinor bundle

on (S2, gS2), and /∂
±
S2 : Γ(S2, S±

S2) → Γ(S2, S∓
S2) the Dirac operators on S2. By the isometry

R
3 ≃

(
R+ × S2, (dr3)

2 + r23gS2

)
we obtain the unitary isomorphisms SR3 |R3\{0} ≃ p∗SS2 .

According to Nakajima [8], under the identification SR3 |R3\{0} ≃ p∗SS2 the Dirac operator
/∂R3 on R

3 \ {0} is written as follows:

/∂R3 =
1

r3




√
−1(r3

∂

∂r3
+ 1) /∂

−
S2

/∂
+
S2 −

√
−1(r3

∂

∂r3
+ 1)


 .
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Therefore we obtain the following equality.

/∂
±
(Ak ,Φk)

=
1

r3




√
−1(r3

∂

∂r3
+

2± k

2
) /∂

−
O(k)

/∂
+
O(k) −

√
−1(r3

∂

∂r3
+

2∓ k

2
)


 .

By the isomorphisms S+
S2 ≃ Ω0,0(O(−1)), S−

S2 ≃ Ω0,1(O(−1)) and /∂S2 = /∂
+
S2 + /∂

−
S2 =√

2(∂O(−1)+∂
⋆

O(−1)), we obtain Ker(/∂
+
O(k)) ≃ H0(P1,O(k−1)) and Ker(/∂

−
O(k)) ≃ H1(P1,O(k−

1)), where ∂
⋆

O(−1) is the formal adjoint of ∂O(−1). Let f±ν ∈ L2(S2, S±
S2 ⊗ O(k)) (ν ∈ N) be

the all eigenvectors of the operators /∂
−
O(k) ◦ /∂

+
O(k) and /∂

+
O(k) ◦ /∂

−
O(k) with non-zero eigenvalues

respectively. We set nν > 0 to be the eigenvalue of f±ν . Then, According to [1], we have
{nν} = {q2 + |k|q ; q ∈ N}. We set qν > 0 to satisfy nν = q2ν + |k|qν . We may assume

that {f±ν } forms an orthonormal system and satisfies the relations /∂
±
O(k)(f

±
ν ) =

√
nνf

∓
ν for

any ν ∈ N. By the elliptic inequality and the Sobolev inequality, there exist C ′, C ′′ > 0
such that ||f±ν ||L6 < C ′′||f±ν ||L2

1

≤ C ′(||f±ν ||L2 + ||/∂±O(k)(f
∓
ν )||L2) = C ′(1 +

√
nν). Then by

the interpolation inequality we obtain ||f±ν ||L3 ≤ (||f±ν ||L2)1/2 · (||f±ν ||L6)1/2 = C
√
1 +

√
nν ,

where we put C :=
√
C ′. Hence we obtain the following lemma.

Lemma 2.11. We have the estimate ||f±ν ||L3 = O(
√
qν).

Through the above arguments, we obtain the following proposition.

Proposition 2.12. Let s be a section of Lk ⊗ SR3 on a punctured ball B(r)∗ := {x ∈ R
3 |

0 < |x| < r} for some r > 0.

(i) If we have s ∈ L2(B(r)∗, Lk⊗SR3)∩Ker(/∂
+
(Ak,Φk)

), then there exists a sequence {cν} ⊂ C

such that we have

s =
∑

ν∈N
cν

(
a+ν (r)f

+
ν + a−ν (r)f

−
ν

)
.

Here the functions a±ν are given as follows:

a+ν (r) = r−1+qν+|k|/2.

a−ν (r) =
qν +max(0, k)√
−1

√
q2ν + |k|qν

r−1+qν+|k|/2.

(ii) If we have s ∈ L2(B(r)∗, Lk⊗SR3)∩Ker(/∂
−
(Ak,Φk)

), then there exist a sequence {cν} ⊂ C,

α+ ∈ Ker(/∂
+
O(k)) = H0(P1,O(k − 1)) and α− ∈ Ker(/∂

−
O(k)) = H1(P1,O(k − 1)) such

that we have

s =
∑

+,−
α±ρ±(r) +

∑

ν∈N
cν

(
b+ν (r)f

+
ν + b−ν (r)f

−
ν

)
.

Here the functions ρ± and b±ν are given as follows:

ρ±(r) = r−1±k/2.

b+ν (r) = r−1+qν+|k|/2.

b−ν (r) =
qν +max(0,−k)√
−1

√
q2ν + |k|qν

r−1+qν+|k|/2.

6



By the above proposition, we obtain the following corollary.

Corollary 2.13. For arbitrary positive numbers r > r′ > 0, the restriction map L2(B(r)∗, Lk⊗
SR3) ∩Ker(/∂

±
(Ak,Φk)

) → L2(B(r′)∗, Lk ⊗ SR3) is a compact map.

As a preparation of Proposition 2.15, we prove the following lemma.

Lemma 2.14. Let t0 > 0 be a positive number and α a real number. Set the constant Cα is
given by

Cα =

{
|2α − 1|−1/2 (α 6= 1/2)
1 (α = 1/2).

There exists a compact operator Kα : L2(0, t0) → C0([0, t0]) such that for any f ∈ L2(0, t0),
the function g := Kα(f) satisfies the estimate |g(t)| ≤ Cα||f ||L2 · t1/2(1 + log(t0/t)

1/2) ≤
Cα||f ||L2 ·√t0(1+1/

√
e) and the differential equation t∂t(g/t)+α(g/t) = f , where C0([0, t0])

is the Banach space consisting of bounded continuous functions on [0, t0].

Proof. We set g = Kα(f) to be

g(t) :=





t−α+1

∫ t

0
f(x)xα−1dx (α > 1/2)

−t−α+1

∫ t0

t
f(x)xα−1dx (α ≤ 1/2).

Then, by a direct calculation we have t∂t(g/t) + α(g/t) = f . If α 6= 1/2, then we obtain
|g(t)| ≤ t−α+1||f ||L2

√
t2α−1/|2α − 1| = |2α − 1|−1/2||g||L2 · t1/2. If α = 1/2, then we have

|g(t)| ≤ ||f ||L2 · t1/2 log(t0/t)1/2. As a consequence of the above inequalities, we obtain the
desired estimate. By this estimate, the compactness of Kα follows from the Ascoli-Arzelà
theorem and the differential equation.

Proposition 2.15. Let r > 0 be a positive number. There exists a compact map G± :
L2(B(r)∗, Lk ⊗ SR3) → L2(B(r)∗, Lk ⊗ SR3) such that we have R(G±) ⊂ Dom(/∂

±
(Ak,Φk)

) and

/∂
±
(Ak,Φk)

◦G± = Id. Moreover, we have R(G±) ⊂ L3(B(r)∗, Lk⊗SR3), and hence G± : L2 → L3

is bounded.

Proof. The proof for /∂
+
(Ak,Φk)

remains valid for /∂
−
(Ak ,Φk)

. Hence we prove only for /∂
+
(Ak ,Φk)

.

The subspace that is spanned by Ker(/∂
±
O(k)) and {f±ν } is dense in L2(S2, SS2 ⊗O(k)). Hence

for any s ∈ L2(B(r)∗, Lk ⊗ SR3) there exist measurable maps α± : (0, r) → Ker(/∂
±
O(k)) and

s±ν : (0, r) → C such that we have

s = α+ + α− +
∑

ν

(
s+ν f

+
ν + s−ν f

−
ν

)

and

||s||2L2 = ||r3α+||2L2 + ||r3α−||2L2 +
∑

ν

(
||r3s+ν ||2L2 + ||r3s−ν ||2L2

)
.

7



By some linear-algebraic operations and Lemma 2.14, we can take an element t = β+ + β− +∑
ν (t

+
ν f

+
ν + t−ν f

−
ν ) ∈ L2(B(r)∗, Lk ⊗ SR3) such that we have /∂

+
(Ak,Φk)

(t) = s and

||t||2L2 = ||r3β+||2L2 + ||r3β−||2L2 +
∑

ν

(
||r3t+ν ||2L2 + ||rt−ν ||2L2

)

≤ ||r3α+||2L2 + ||r3α−||2L2

+
∑

ν

{
max(C1+(2qν+k)/2, C1−(2qν+k)/2)

2
(
||r3s+ν ||2L2 + ||r3s−ν ||2L2

)}
,

where Cα is the constant in Lemma 2.14. Then We set G+(s) := t, and G+ is linear because
all constructions of G+ are linear. Since C1±(2qν+k)/2 = o(1) (ν → ∞), the compactness of
G+ is deduced from the compactness of Kα in Lemma 2.14.

By the definition we have 2
√
qν ·C1±(2qν+k)/2 → 1 (ν → ∞). Hence ||f±ν ||L3 ·C1±(2qν+k)/2 =

O(1) by Lemma 2.11. Therefore we obtain ||t||L3 <∞ and the proof is complete.

Corollary 2.16. For any positive numbers r > r′ > 0, the restriction map L2(B(r)∗, Lk ⊗
SR3) ∩Dom(/∂

±
(Ak,Φk)

) → L2(B(r′)∗, Lk ⊗ SR3) is a compact operator.

Proof. Let {fn} be a bounded sequence in L2(B(r)∗, Lk ⊗ SR3) ∩ Dom(/∂
±
(Ak,Φk)

). By using

G± in Proposition 2.15, we set f̃n := G±(/∂
±
(Ak,Φk)

(fn)). Since G± is compact, there exists

a subsequence {fnk
} such that {f̃nk

} is convergent. Hence we may assume that {f̃n} is

convergent. Then we have /∂
±
(Ak,Φk)

(fn − f̃n) = 0. By Corollary 2.13, {(fn − f̃n)|B(r′)} has a
convergent subsequence. Therefore {fn|B(r′)} also has a convergent subsequence.

2.3 A local lift of the Dirac operators of the flat Dirac monopoles

Let k ∈ Z be an integer. For the flat Dirac monopole (V, h,A,Φ) := (Lk, hk, Ak,
√
−1k/2r3) on

(R3, {0}), we denote by (V4, h4, A4) the prolongation of the instanton (π∗V, π∗h, π∗A−ξ⊗π∗Φ)
over R

4, where ξ = 2{(x1dy1 − y1dx1) − (x2dy2 − y2dx2)}. We compare the Dirac operators
/∂
±
(A,Φ) and /∂

±
A4

.

We denote by X and P the punctured spaces R
3 \ {0} and R

4 \ {0} respectively. Set
the function f : R3 \ {0} → R+ to be f(t, x, y) := 1/2r3. We also set gP := 2g4,Euc. Since
gP = 2g4,Euc = π∗f(π∗g + ξ2), we have the orthogonal decomposition TP ≃ R∂θ ⊕ π∗TX.
Let S be the spin structure of R3 i.e. S is a principal Spin(3)-bundle on R

3 that satisfies
S ×Spin(3) (R

3, g3,Euc) ≃ TR3. Let ρ : Spin(3) → Spin(4) be the lift of the homomorphism
SO(3) → SO(4) which is induced by R

3 ∋ p→ (0, p) ∈ R
4. We set S4 := π∗(S )×ρ Spin(4).

Then we have S4 ×Spin(4) (R
4 \ {0}) ≃ (P × R) ⊕ π∗TX, and hence S4 is a spin structure

on P . Under the isomorphisms Spin(3) ≃ SU(2) and Spin(4) ≃ SU(2)+ × SU(2)−, the
homomorphism ρ is written as ρ(g) = (g, g). Therefore we have the following proposition.

Proposition 2.17. The following claims are satisfied.

• We have the unitary isomorphisms π∗SX ≃ S±
P .

• Under the above isomorphisms, the Clifford product on P can be represented as follows:

clifP (ξ) =(π∗f)−1/2

(
0 Id

−Id 0

)
.

clifP (π
∗α) =(π∗f)−1/2

(
0 clifX(α)

clifX(α) 0

)
(α ∈ Γ(X,Ω1(X))).
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Since the isomorphisms π∗SX ≃ S±
P are unitary, we have ||π∗s||2L2(P ) =

∫
P |π∗s|2(−π∗f2 ·

ξ ∧ π∗dvolX) = 2π||f1/2s||2L2(X) for any s ∈ Γ(X,V ⊗ SX). Hence the operator π†(s) :=

π∗((2πf)−1/2 s) are isometric isomorphisms between L2(X,V ⊗ SX) and L2(P, V4 ⊗ S±
P )

S1

.
On one hand, we take a global flat unitary frame e

3 = (e31, e
3
2) of SX that satisfies the

following.

clifX(dt)e3 =e
3

( √
−1 0
0 −

√
−1

)
.

clifX(dx)e3=e
3

(
0 −1
1 0

)
.

clifX(dt)e3 =e
3

(
0

√
−1√

−1 0

)
.

On the other hand, we have the isomorphisms S+
P ≃ Ω0,0

C2 ⊕ Ω0,2
C2 and S−

P ≃ Ω0,1
C2 . Moreover,

under the isomorphisms we also have /∂A4
=

√
2(∂A4

+ ∂
⋆

A4
) and clifP (α) =

√
2(α(0,1) ∧

−y(α(1,0))♭) for a 1-form α on P , where y means the interior product and (α)♭ is the image of
α under the isomorphism Ω1,0

C2 ≃ T (0,1)
C
2 induced by the metric gP . Here we set S1-invariant

global unitary frames e± = (e±1 , e
±
2 ) of S

±
P to be the following.

e+1 :=1.

e+2 :=−
(
π∗(−ξ)0,1/|π∗(−ξ)0,1|

)
∧ (π∗(dz̄)/|π∗(dz̄)|) .

e−1 := π∗(−ξ)0,1/|π∗(−ξ)0,1|.
e+2 := π∗(dz̄)/|π∗(dz̄)|.

Then, with respect to the frames e± and e
3, the representations of Clifford products of X and

P coincide as in the sense of Proposition 2.17. Therefore we may assume π∗e3 = e
±. Hence

by a direct calculation we obtain the following proposition.

Proposition 2.18. For the flat Dirac monopole (V, h,A,Φ), the equalities

π† ◦
(
/∂
+
(A,Φ)f

−1/2
)
(s) = /∂

+
A4

◦ π†(s)

and

π† ◦
(
f−1/2/∂

−
(A,Φ)

)
(s) = /∂

+
A4

◦ π†(s)

are satisfied for any s ∈ Γ(X,V ⊗ SX).

3 An index formula of Dirac operators on compact 3-folds

Let (X, g) be a closed oriented spin 3-fold and Z a finite subset. Let S be a spin structure on
(X, g) i.e. S is a principal Spin(3)-bundle on X such that S ×Spin(3) (R

3, g3,Euc) ≃ (TX, g).
Let (V, h,A,Φ) be a Dirac-type singular monopole on (X,Z) of rank r, and we denote by
~kp = (kp,i) ∈ Z

r the weight of (V, h,A,Φ) at each p ∈ Z.
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3.1 Fredholmness of Dirac operators

For a sufficiently small ε > 0, we set B(Z, ε) :=
∐

p∈Z B(p, ε) =
∐

p∈Z{x ∈ X | dg(x, p) < ε},
where dg : X×X → R is the distance function with respect to g. Let (x1p, x

2
p, x

3
p) be a normal

coordinate at p on B(p, ε), and set the flat metric g′ on B(Z, ε) to be g′|B(p,ε) :=
∑

i(dx
i
p)

2.
We take a smooth bump function ρ : X → [0, 1] satisfying ρ(B(Z, ε/2)) = 1 and ρ(X \
B(Z, 3ε/4)) = 0, and set a metric g̃ := (1− ρ)g + ρ · g′. Then we have g|X\B(Z,ε) = g̃|X\B(Z,ε)

and |g − g̃|g = O(R2
p) on B(p, ε) for any p ∈ Z, where Rp is the distance from p. Hence

there exists an isometric isomorphism µ : (TX, g) ≃ (TM, g̃) such that µ|X\B(Z,ε) = IdTM

and |µ− IdTM |g = O(R2
p) on B(p, ε) for any p ∈ Z. Therefore we obtain the following lemma.

Lemma 3.1. For a 1-form α, we have an equality clif (X,g)(α)|X\B(Z,ε) = clif (X,g̃)(α)|X\B(Z,ε)

and an estimate |clif (X,g)(α) − clif (X,g̃)(α)| = |α| · O(R2
p) on B(p, ε) for any p ∈ Z, where

clif(X,g) and clif (X,g̃) denote the Clifford product with respect to g and g̃ respectively.

We also take a direct sum of the flat Dirac monopoles (V ′, h′, A′,Φ′) on (B(Z, ε) \ Z, g′)
to be (V ′, h′, A′,Φ′)|B(p,ε) =

⊕r
i=1(Lkp,i , hkp,i , Akp,i ,Φkp,i) for any p ∈ Z. By Corollary 2.9,

there exists a unitary isomorphism ϕ : V |B(Z,ε)\Z ≃ V ′ such that the estimates in Corollary

2.9 are satisfied. We set a connection Ã := (1 − ρ)A + ρ · ϕ∗A′ and an endomorphism
Φ̃ := (1−ρ)Φ+ρ ·ϕ∗Φ′. Then for each p ∈ Z the restriction (V, h, Ã, Φ̃)|B(p,ε/2)\{p} is a direct

sum of the flat Dirac monopoles, and |A− Ã| and |Φ− Φ̃| are bounded on X \ Z.
We denote by /̃∂

±
(A,Φ) and /̃∂

±
(Ã,Φ̃) the Dirac operators of the tuples (V, h,A,Φ) and (V, h, Ã, Φ̃)

with respect to the metrics g̃ respectively. In Proposition 3.3, we show the Fredholmness of

/̃∂
±
(Ã,Φ̃). Consequently, we will prove the Fredholmness of /∂

±
(A,Φ) in Theorem 3.4.

Proposition 3.2. The injection maps Dom( /̃∂
±
(Ã,Φ̃)) → L2(X,V ⊗ SX) are compact.

Proof. The norm ||s||1 := ||s|X\B(Z,ε/8)||L2 + ||s|B(Z,ε/4)∗ ||L2 on L2(X,V ⊗ SX) is equivalent
to the ordinary L2-norm on X. By the Rellich-Kondrachov theorem, the restriction maps

Dom( /̃∂
±
(Ã,Φ̃)) ∋ s → s|X\B(Z,ε/8) ∈ L2(X \ B(Z, ε/8), SX ⊗ V ) are compact. By Corollary

2.16, the restriction maps Dom( /̃∂
±
(Ã,Φ̃)) ∋ s → s|B(Z,ε/4)∗ ∈ L2(B(Z, ε/4), SX ⊗ V ) are also

compact. Hence the injection maps Dom( /̃∂
±
(Ã,Φ̃)) → L2(X,V ⊗ SX) are compact.

Proposition 3.3. The Dirac operators /̃∂
±
(Ã,Φ̃) : L

2(X \Z, V ⊗ SX) → L2(X \Z, V ⊗ SX) are
closed Fredholm operators and adjoint to each other.

Proof. We show that /̃∂
±
(Ã,Φ̃) are adjoint to each other. For a densely defined closed oper-

ator F , we denote by F ∗ the adjoint of F . Take α ∈ Dom
(
( /̃∂

±
(Ã,Φ̃))

∗
)
. Then we have

ı < ( /̃∂
±
(Ã,Φ̃))

∗(α), ϕ >L2= ı < α, /̃∂
±
(Ã,Φ̃)(ϕ) >L2 for any ϕ ∈ C∞

0 (X \ Z, V ⊗ SX), where
C∞
0 (X \ Z, V ⊗ SX) denotes the set of compact-supported smooth sections. Therefore α ∈

Dom( /̃∂
∓
(Ã,Φ̃)) and ( /̃∂

±
(Ã,Φ̃))

∗(α) = /̃∂
∓
(Ã,Φ̃)(α). We show the converse. Take a ∈ Dom( /̃∂

∓
(Ã,Φ̃))

and b ∈ Dom( /̃∂
±
(Ã,Φ̃)). Because of the elliptic regularity, Proposition 2.12 and Proposition

2.15, we obtain |a|, |b| ∈ L3(X \ Z). Let κ : R → [0, 1] be a smooth function that satisfies
the conditions κ((−∞,−1]) = {0}, κ([−1/2,∞)) = {1}. Set ψn(x) = κ(n · log(dg̃(x,Z))) for
n ∈ N, where we set dg̃(x,Z) := min{dg̃(x, p) | p ∈ Z}. Since ψna has a compact support on

X \ Z, we have ı < ψna, /̃∂
±
(Ã,Φ̃)(b) >L2= ı < /̃∂

∓
(Ã,Φ̃)(ψna), b >L2= ı < ψn /̃∂

∓
(Ã,Φ̃)(a), b >L2 +ı <
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clifX(dψn)a, b >L2 . Since we have |(κ(nx))′| ≤ (x| log(x)|)−1 · ||κ′||L∞ for 0 < x < 1, |dψn| is
dominated by an L3-function that is independent of n. Hence we obtain ı < a, /̃∂

±
(Ã,Φ̃)(b) >L2=

ı < /̃∂
∓
(Ã,Φ̃)(a), b >L2 by the dominated convergence theorem. Therefore a ∈ Dom

(
( /̃∂

±
(Ã,Φ̃))

∗
)

and ( /̃∂
±
(Ã,Φ̃))

∗(a) = /̃∂
∓
(Ã,Φ̃)(a).

We show that the kernel of /̃∂
±
(Ã,Φ̃) is finite-dimensional. By Proposition 3.2, the identity

map of Ker( /̃∂
±
(Ã,Φ̃)) is a compact operator. Hence we obtain dim(Ker( /̃∂

±
(Ã,Φ̃))) < ∞. Since

the Dirac operators /̃∂
±
(Ã,Φ̃) are adjoint to each other, the claim dim(R( /̃∂

±
(Ã,Φ̃))

⊥) < ∞ can

be deduced from dim(Ker( /̃∂
±
(Ã,Φ̃))) < ∞, where R(·) means the range of the operator and ⊥

means the orthogonal complement in L2.

To prove that R( /̃∂
±
(Ã,Φ̃)) is closed, it suffices to show that there exists a constant C > 0 such

that the condition ||s||L2 < C|| /̃∂
±
(Ã,Φ̃)(s)||L2 holds for any s ∈ Dom( /̃∂

±
(Ã,Φ̃)) ∩

(
Ker( /̃∂

±
(Ã,Φ̃))

)⊥
.

Suppose that there is no such a constant C > 0, then we can take a sequence {sn} ⊂
Dom( /̃∂

±
(Ã,Φ̃)) ∩

(
Ker( /̃∂

±
(Ã,Φ̃))

)⊥
such that the conditions ||sn|| = 1 and || /̃∂

±
(Ã,Φ̃)(sn)||L2 < 1/n

are satisfied. By Proposition 3.2, we may assume that {sn} converges to some s∞ ∈ L2.

Since ||sn||L2 = 1 for any n ∈ N, we have s∞ ∈
(
Ker( /̃∂

±
(Ã,Φ̃))

)⊥
\ {0}. However, we also have

/̃∂
±
(Ã,Φ̃)(sn) → 0, and hence /̃∂

±
(Ã,Φ̃)(s∞) = 0, which is impossible. Therefore the condition holds

for some C > 0 and R( /̃∂
±
(Ã,Φ̃)) is closed.

Theorem 3.4. The Dirac operators /∂
±
(A,Φ) are closed Fredholm operators and adjoint to each

other, and they have the same indices of /̃∂
±
(Ã,Φ̃).

Proof. Since |A−Ã| and |Φ−Φ̃| are bounded on X \Z, by Proposition 3.2 the operators /̃∂
±
(A,Φ)

are closed Fredholm operators and adjoint to each other, and they have the same indices of

/̃∂
±
(Ã,Φ̃).

We will prove that /̃∂
±
(A,Φ) and /∂

±
(A,Φ) have the same domains and indices. First we show

Dom(/∂
±
(A,Φ)) ⊂ Dom( /̃∂

±
(A,Φ)). By Lemma 3.1, there exists C0 > 0 such that the estimate

| /̃∂
±
(A,Φ)(s)− /∂

±
(A,Φ)(s)| < C0R

2
p · |∇AX⊗A(s)| (1)

holds on a neighborhood of p ∈ Z for any s ∈ Γ(X \ Z,SX ⊗ V ). Let κ : [0,∞] :→ [0, 1] be a
smooth bump function satisfying

κ(x) =





0 (1 ≤ x)
1 (3/8 ≤ x ≤ 3/4)
0 (x ≤ 1/3).

For δ > 0, we set a function ϕδ : X → [0, 1] to be ϕδ(x) = κ(δ−1dg(x,Z)). By the Weitzenböck

formula∇⋆g

AX⊗A∇AX⊗A = /∂
−
(A,Φ)/∂

+
(A,Φ)−Φ2+Sc(g), we have ||∇ASX

⊗A(ϕδs)||2L2 = ||/∂+(A,Φ)(ϕδs)||2L2+

||Φ(ϕδs)||2L2 +
∫
X Sc(g)|ϕδs|2dvolM for any s ∈ Γ(X \Z, V ⊗SX), where ∇⋆g

AX⊗A is the formal
adjoint of ∇AX⊗A with respect to g and Sc(g) is the scalar curvature of g. Therefore, there ex-
ists C1 > 0 such that for any sufficiently small δ > 0 we have ||∇ASX

⊗A(s)||L2(Up(3δ/8,3δ/4)) ≤
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C1(||/∂±(A,Φ)(s)||L2(Up(δ/3,δ)) + δ−1||s||L2(Up(δ/3,δ))) holds for any s ∈ Γ(X \ Z, V ⊗ SX), where

we put Up(δ1, δ2) := {x ∈ X | δ1 < dg(p, x) < δ2}. We set δi := 4ε/(3 · 2i) for i ∈ Z≥0. Then
we have

|| /̃∂
±
(A,Φ)(s)− /∂

±
(A,Φ)(s)||L2(B(p,ε))

≤C0||R2
p · ∇AX⊗A(s)||L2(B(p,ε))

≤C0

∞∑

i=0

||R2
p · ∇AX⊗A(s)||L2(Up(3δi/8,3δi/4))

≤C0C1

∞∑

i=0

{
δ2i ||/∂

±
(A,Φ)(s)||L2(Up(δi/3,δi)) + δi||s||L2(Up(δi/3,δi))

}

≤C0C1

(
δ20 ||/∂

±
(A,Φ)(s)||L2(B(p,δ0)) + δ0||s||L2(B(p,δ0))

)

Hence there exists C2 = C2(ε) > 0 such that || /̃∂
±
(A,Φ)(s) − /∂

±
(A,Φ)(s)||L2 ≤ C2(||s||L2 +

||/∂±(A,Φ)(s)||L2), and we have C2 = O(ε) (ε→ 0). Hence we obtain Dom(/∂
±
(A,Φ)) ⊂ Dom( /̃∂

±
(A,Φ)).

We show the converse. Let ÃX denote the connection on SX induced by the Levi-Civita con-
nection of (X, g̃). By the definition of Dirac-type singularity, we have |∇A(Φ)| = |F (A)| =
O(R−2

p ) around p ∈ Z. Therefore from theWeitzenböck formula∇⋆g̃

ÃX⊗A
∇ÃX⊗A = /∂

−
(A,Φ)/∂

+
(A,Φ)−

Φ2 + clif(∇A(Φ) − ∗g̃F (A)) and a similar argument as above, it follows that there exists

C3 = C3(ε) > 0 such that || /̃∂
±
(A,Φ)(s) − /∂

±
(A,Φ)(s)||L2 ≤ C3(||s||L2 + || /̃∂

±
(A,Φ)(s)||L2), and

C3 = O(ε) (ε → 0). Therefore Dom(/∂
±
(A,Φ)) = Dom( /̃∂

±
(A,Φ)). Moreover, Their graph norms

are also equivalent. It is a well-known fact that sufficiently small deformations of Fredholm
operators remain Fredholm. Hence the operators /∂

±
(A,Φ) are closed Fredholm operators, and

they have the same indices as ones of /̃∂
±
(Ã,Φ̃).

3.2 An index calculation on a compact 3-folds

3.2.1 A lift of singular monopoles to closed 4-folds

For an arbitrary 3-fold N and a principal S1-bundle P defined on outside of a point x ∈ N ,
we set degx(P ) :=

∫
∂B c1(P ), where B is a small neighborhood of x.

We take a finite subset Z ′ ⊂ X satisfying the conditions |Z ′| = |Z| and Z ∩ Z ′ = ∅,
and set Z̃ = Z ∪ Z ′. By the Mayer-Vietoris exact sequence induced by the open covering
X = Bε(Z̃) ∪ (X \ Z̃), we can prove that there exists a principal S1-bundle π : P → X \ Z̃
such that we have degp(P ) = −1 for p ∈ Z and degp′(P ) = 1 for p′ ∈ Z ′. We take a

metric ĝ on X that is flat on B(Z̃, ε/2). Let f : X \ Z̃ → R+ be a smooth function.
Let ω ∈ Ω1(P,R) be a connection of P . We assume that for any p ∈ Z (resp. Z ′) the tuple
((P, ω)×S1 (C, hC),−

√
−1f)|B(p,ε/2) (resp. ((P, ω)×S1 (C, hC),

√
−1f)|B(p,ε/2)) is the flat Dirac

monopole of weight −1 (resp. 1) with respect to ĝ. Set a one-form ξ := ω/π∗f and a metric
gP := π∗ĝ + ξ2 on P. We choose the global 4-form −ξ ∧ π∗vol(X,ĝ) as the orientation of P .

Proposition 3.5. The following claims are satisfied.

• The 4-fold P has the spin structure induced by the one of X.

• Let v be a vector field on X. By the isomorphism TP = R∂θ ⊕ π∗TX induced by ω, we
regard π∗v as a vector field on P . Then for F ∈ C∞(X) we have π∗(v · F ) = π∗v · π∗F .
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• For the spinor bundles S±, we have the unitary isomorphism S±
P ≃ π∗(SX).

• Under the above isomorphisms, the Clifford product on P can be represented as follows:

clifP (ξ) =

(
0 Id

−Id 0

)

clifP (π
∗α) =

(
0 clifX(α)

clifX(α) 0

)
(α ∈ Γ(X,Ω1(X))).

Proof. Let i : SO(3) → SO(4) be the injection induced by R
3 ∋ x → (0, x) ∈ R

4, and take
the homomorphism ρ : Spin(3) → Spin(4) to be the lift of i. Set SP := π∗S ×ρ Spin(4).
Then we have SP ×Spin(4) (R

4, g4,Euc) ≃ (P × (R, g1,Euc))⊕ (π∗TX, π∗g) ≃ TP . Hence SP is
a spin structure on P . The second claim is trivial from some direct calculations.

We have the isomorphisms Spin(3) ≃ SU(2) and Spin(4) ≃ SU(2)+×SU(2)−. Under this
isomorphism, we have ρ(g) = (g, g). Hence we obtain the unitary isomorphism S±

P ≃ π∗(SX).
The last claim easily follows from the third one.

We take another metric g̃P := π∗f ·gP . For p ∈ Z, the restriction π : π∗(B(p, ε/2)\{p}) →
B(p, ε/2) \ {p} can be identified with the Hopf fibration (R4 \ {0}) → (R3 \ {0}). For p′ ∈ Z ′,
we can also identify π : π∗(B(p′, ε/2)\{p′}) → B(p′, ε/2)\{p′} with the inverse-oriented Hopf
fibration (−R

4 \ {0}) → (R3 \ {0}), where −R
4 is the differentiable manifold R

4 with the
inverse orientation of the standard one of R4. Hence by taking the one-point compactification
on the closure of each π∗(B(p, ε/2) \ {p}), we obtain a closed 4-fold P̃ equipped with an
S1-action. Then g̃P can be prolonged to a metric on P̃ as in Lemma 2.5. We extend the
projection π : P → X \ Z̃ to the smooth map P̃ → X, and we denote this map by the same
letter π by abuse of notation. Set Z4 := π−1(Z), Z ′

4 := π−1(Z ′) and Z̃4 := π−1(Z̃). Then
π|Z̃4

: Z̃4 → Z4 is a bijection. We have P̃ = P ⊔ Z̃4 and codim(P̃ , Z̃) = 4. Hence we obtain

isomorphisms π1(P ) ≃ π1(P̃ ) and H2(P,Z/2Z) ≃ H2(P̃ ,Z/2Z). Therefore the orientation
and the spin structure of P induce the unique ones of P̃ . Hence we obtain the following
lemma.

Lemma 3.6. We have the unitary isomorphisms S±
P̃
|P ≃ (π∗SX)|P . Under these isomor-

phisms, we have clif P̃ (v)|P = π∗f−1/2 · clifP (v) for v ∈ Ω1(P̃ ).

For the Dirac-type singular monopole (V, h,A,Φ) on (X,Z), we take a connection Â and
a skew-Hermitian endomorphism Φ̂ that satisfy the following conditions.

• For any p ∈ Z, (V, h, Â, Φ̂)|B(p,ε/2)\{p} is a direct sum of the flat Dirac monopoles with
respect to the metric ĝ.

• For any p′ ∈ Z ′, (V, h, Â)|B(p′,ε/2) is a flat unitary bundle and Φ̂|B(p′,ε/2) = 0.

• The differences |A− Â|, |Φ− Φ̂| are bounded on X \ Z̃.

We denote by /̂∂
±
(Â,Φ̂) the Dirac operators of (V, h, Â, Φ̂) with respect to the metric ĝ. By the

same argument as Proposition 3.3 and Theorem 3.4, /̂∂
±
(Â,Φ̂) are Fredholm and adjoint to each

other, and the indices of /̂∂
±
(Â,Φ̂) are the same as the ones of /∂

±
(A,Φ).

We set (V4, h4, A4) := (π∗V, π∗h, π∗Â−ξ⊗π∗Φ̂) on P ⊔Z ′
4. By Proposition 2.6, (V4, h4, A4)

can be prolonged over P̃ , and we denote it by the same symbols. Let /∂
±
A4

: Γ(P̃ , S±
P̃
⊗ V4) →
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Γ(P̃ , S∓
P̃
⊗ V4) be the Dirac operators of (V4, h4, A4). For a section s ∈ Γ(X \ Z, V ⊗ SX), we

have ||π∗s||2
L2(P̃ ,g̃P )

= 2π||√fs||2L2(X,ĝ). Hence the operator π†(s) := π∗(
√

2πf−1 s) preserves

the L2-norms. Since P is a principal S1-bundle on X, π† is an isometric isomorphism from
L2(X \ Z̃, V ⊗ SX) to L2(P̃ , V4 ⊗ S±

P̃
)S

1

, where L2(P̃ , V4 ⊗ SP̃ )
S1

is the closed subspace

of L2(P̃ , V4 ⊗ SP̃ ) consisting of S1-invariant sections. For i = 1, 2, take smooth functions

λ±i : X \ Z̃ → R+ satisfying the following conditions.

• The equality λ±1 λ
±
2 = f−1/2 holds.

• The equality λ±1 = λ∓2 holds.

• For any p ∈ Z, λ+1 |B(p,ε)\{p} = 1.

• For any p′ ∈ Z ′, λ+2 |B(p′,ε)\{p′} = 1.

By Lemma 3.6 and Proposition 2.18, there exist compact-supported smooth endomorphisms

ǫ± ∈ Γ(X \ Z̃,End(SX ⊗V )) such that we have π†(ǫ±)(s) = /∂
±
A4

◦π†(s)−π† ◦ (λ±1 /̂∂
±
(Â,Φ̂)λ

±
2 )(s)

for any s ∈ Γ(X \ Z,SX ⊗ V ). Let D± be the differential operator λ±1 /̂∂
±
(Â,Φ̂)λ

±
2 + ǫ± on

X \ Z̃. We denote by Ind(/∂
±
A4

)S
1

the S1-equivariant index of the closed operator /∂
±
A4

:

L2(P̃ , V4 ⊗ S±
P̃
)S

1 → L2(P̃ , V4 ⊗ S∓
P̃
)S

1

.

Proposition 3.7. Under the isometric isomorphism π†, the operators D± and /∂
±
A4

determine
the same closed operators respectively. In particular, the operators D± are closed Fredholm
operator adjoint to each other, and satisfy Ind(D±) = Ind(/∂

±
A4

)S
1

.

Proof. We take an arbitrary a ∈ Dom(/∂
±
A4

)S
1

, and set b := /∂
±
A4

(a). We will show (π†)−1(a) ∈
Dom(D±) and D±((π†)−1(a)) = (π†)−1(b). Let ϕ be a compact-supported smooth sec-
tion of V ⊗ SX on X \ Z̃. Then π†(ϕ) also has a compact support. Hence we have ı <

a, (/∂
±
A4

)⋆(π†(ϕ)) >L2= ı < b, π†(ϕ) >L2 . Since (π†)−1 is isometric, we obtain ı < (π†)−1(a), (D±)⋆(ϕ) >=
ı < (π†)−1(b), ϕ >. Therefore we have (π†)−1(a) ∈ Dom(D±) and D±((π†)−1(a)) = (π†)−1(b).
We prove the converse. We take an arbitrary c ∈ Dom(D±), and set d := D±(c). Let χ be a
compact-supported smooth section of V4 ⊗ SP̃ on P̃ \ Z̃4. We take the orthogonal decompo-

sition χ = χS1

+ χ⊥ ∈ L2(P̃ , V4 ⊗ S∓
P̃
)S

1 ⊕ (L2(P̃ , V4 ⊗ S∓
P̃
)S

1

)⊥. Then χS1

and χ⊥ are also

compact-supported smooth sections on P̃ \ Z̃4, and we have (/∂
±
A4

)⋆(χS1

) ∈ L2(P̃ , V4 ⊗ S∓
P̃
)S

1

and (/∂
±
A4

)⋆(χ⊥) ∈ (L2(P̃ , V4 ⊗ S∓
P̃
)S

1

)⊥. Hence we obtain ı < π†(c), (/∂
±
A4

)⋆(χ) >L2= ı <

π†(c), (/∂
±
A4

)⋆(χS1

) >L2= ı < c, (π†)−1((/∂
±
A4

)⋆(χS1

)) >L2= ı < c, (D±)⋆((π†)−1(χS1

)) >L2=

ı < d, (π†)−1(χS1

) >L2= ı < π†(d), χS1

>L2= ı < π†(d), χ >L2 . Therefore /∂
±
A4

(π†(c)) = π†(d)
holds on P = P̃ \ Z̃4. Here we prepare the following lemma.

Lemma 3.8. Take arbitrary u ∈ L2(P̃ , V4 ⊗ S±
P̃
) and v ∈ L2(P̃ , V4 ⊗ S∓

P̃
). If u and v satisfy

/∂
±
A4

(u) = v on P , then we have /∂
±
A4

(u) = v on whole P̃ .

If we admit this lemma, then we obtain /∂
±
A4

(π†(c)) = π†(d) on P̃ . Hence the proof is
complete.

proof of Lemma 3.8. Take ϕ ∈ Γ(P̃ , V4 ⊗ S∓
P̃
). Let κ : R → [0, 1] be a smooth function

that satisfies κ((−∞,−1)) = {0} and κ((−1/2,∞)) = {1}. Set ψn : P̃ → [0, 1] to be
ψn(x) := κ(n log(dg̃P (x, Z̃4))) for n ∈ N. Then ψn ·ϕ has a compact support on P̃ \ Z̃4. Hence
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we obtain ı < u, (/∂
±
A4

)⋆(ψn · ϕ) >L2= ı < u,ψn · (/∂±A4
)⋆(ϕ) >L2 +ı < u, clif P̃ (dψn)ϕ >L2=

ı < v,ψn · ϕ >L2 . Since we have an estimate |κ′(nx)| ≤ (x| log(x)|)−1||κ′||L∞ for 0 < x < 1,
|dψn| is dominated by an L2-function that is independent of n. Therefore we obtain ı <

u, (/∂
±
A4

)⋆(ϕ) >L2= ı < v,ϕ > by the dominated convergence theorem.

We will associate the S1-invariant indices of /∂
±
A4

and the indices of /̂∂
±
(Â,Φ̂).

Proposition 3.9. We have Ind(/∂
±
A4

)S
1

= Ind( /̂∂
±
(Â,Φ̂)).

Proof. If we prove Ind(/∂
+
A4

)S
1

= Ind( /̂∂
+

(Â,Φ̂)), then we obtain Ind(/∂
−
A4

)S
1

= −Ind(/∂
+
A4

)S
1

=

−Ind( /̂∂
+

(Â,Φ̂)) = Ind( /̂∂
−
(Â,Φ̂)) because /̂∂

±
(Â,Φ̂) are adjoint to each other. Hence we only need

to prove Ind(/∂
+
A4

)S
1

= Ind( /̂∂
+

(Â,Φ̂)). By Proposition 3.7, it suffices to show Ind( /̂∂
+

(Â,Φ̂)) =

Ind(D+). Since the support of ǫ+ is compact in X \ Z, λ+1 /̂∂
+

(Â,Φ̂)λ
+
2 is a closed Fredholm

operator and it has the same index as D+. By the same asymptotic analysis in Proposition

2.12, for any solutions s ∈ Γ(X \ Z̃, SX ⊗ V ) of the equation /̂∂
+

(Â,Φ̂)(s) = 0, we have s ∈ L2

if and only if (λ+2 )
−1s ∈ L2. Hence we have the natural equality Ker(λ+1 /̂∂

+

(Â,Φ̂)λ
+
2 ) ∩ L2 =

(λ+2 )
−1 · (Ker( /̂∂

+

(Â,Φ̂)) ∩ L2), where (λ+2 )
−1 · (Ker( /̂∂

+

(Â,Φ̂)) ∩L2) means the set {(λ+2 )−1 · s | s ∈
Ker( /̂∂

+

(Â,Φ̂)) ∩ L2}. By a similar way, we also have Cok( /̂∂
+

(Â,Φ̂)) ∩ L2 = Ker( /̂∂
−
(Â,Φ̂)) ∩ L2 and

Cok(λ+1 /̂∂
+

(Â,Φ̂)λ
+
2 ) ∩ L2 = Ker(λ−1 /̂∂

−
(Â,Φ̂)λ

−
2 ) ∩ L2 = (λ−2 )

−1 · (Ker( /̂∂
−
(Â,Φ̂)) ∩ L2). Therefore we

obtain Ind( /̂∂
+

(Â,Φ̂)) = Ind(λ+1 /̂∂
+

(Â,Φ̂)λ
+
2 ) = Ind(D+), which completes the proof.

By following [2], we calculate the S1-equivariant index Ind(/∂
±
A4

)S
1

.

Lemma 3.10. For p ∈ Z4 (resp. Z
′), the weights of the fiber S+

P̃
|p and S−

P̃
|p are (0, 0) and

(−1, 1) (resp. (−1, 1) and (0, 0)) respectively.

Proof. For p ∈ Z4, the projection π|B(p,ε) : B(p, ε) → π(B(p, ε)) can be identified with the

Hopf fibration R
4 = C

2 → R
3 in Section 1. By the natural isomorphisms S+

C2 ≃ Ω0,0
C2 ⊕ Ω0,2

C2

and S−
C2 ≃ Ω0,1

C2 , the weights of S
+
P̃
|p and S−

P̃
|p are (0, 0) and (−1, 1) respectively. As a similar

way, for p′ ∈ Z ′
4, the projection π|B(p′,ε) : B(p′, ε) → π(B(p′, ε)) can be identified with the

inverse-oriented Hopf fibration −R
4 → R

3. Therefore the weights of S+
P̃
|p′ and S−

P̃
|p′ are

(−1, 1) and (0, 0) respectively.

Proposition 3.11. The S1-invariant index Ind(/∂
±
A4

)S
1

is given as

Ind(/∂
±
A4

)S
1

= ∓
∑

p∈Z

∑

kp,i>0

kp,i,

where ~kp = (kp,i) ∈ Z
r is the weight of the monopole (V, h,A,Φ) at p ∈ Z.

Proof. According to [2], The S1-invariant index Ind(/∂
±
A4

)S
1

is given as

Ind(/∂
±
A4

)S
1

= (2π)−1

∫

S1

∑

p∈Z̃4

trθ((S
±
P̃
⊗ V4)|p)− trθ((S

∓
P̃
⊗ V4)|p)

trθ(
∧−1 TpP̃ )

dθ,
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where trθ is trace of the action of θ ∈ S1 and
∧−1 TpP̃ means the virtual vector space⊕∞

i=0(−1)i
∧i TpP̃ . Then by Lemma 3.10 we have

trθ((S
±
P̃
⊗ V4)|p)− trθ((S

∓
P̃
⊗ V4)|p) = ±2(1 + cos θ)

∑

i

exp(2π
√
−1kp,iθ) (p ∈ Z)

trθ((S
±
P̃
⊗ V4)|p′)− trθ((S

∓
P̃
⊗ V4)|p′) = ∓2r(1− cos θ) (p′ ∈ Z ′)

trθ(
∧−1 Tp̃P̃ ) = 4(1 − cos θ)2 (p̃ ∈ Z̃).

Hence by straightforward computation we obtain the conclusion.

Hence we obtain the following corollary.

Corollary 3.12. The indices of the Dirac operators /∂
±
(A,Φ) are given as follows:

Ind(/∂
±
(A,Φ)) = ∓

∑

p∈Z

∑

kp,i>0

kp,i = ±
∑

p∈Z

∑

kp,i<0

kp,i,

where ~kp = (kp,i) ∈ Z
r is the weight of the monopole (V, h,A,Φ) at p ∈ Z.

4 An index formula of Dirac operators on complete 3-folds

Let (X, g) be a complete oriented Riemannian 3-fold such that the scalar curvature Sc(g) is
bounded. We fix a spin structure on X. Let i : Y →֒ X be a relative compact region with a
smooth boundary ∂Y . We take the orientation of ∂Y to satisfy that ν ∧ vol∂Y is positive for
the inward normal unit 1-form ν ∈ i∗Ω1(X).

4.1 The non-singular case

Following [10], we recall the non-singular case. Let (V, h,A) be a Hermitian bundle with a
connection on X and Φ be a skew-Hermitian endomorphism on V . We assume the following
conditions.

• Both Φ and F (A) are bounded.

• We have ∇A(Φ)|x = o(1) as x→ ∞.

• The inequality infx∈X\Y
{
|λ| | λ is an eigenvalue of Φ(x)

}
> 0 is satisfied.

We call this conditions the R̊ade condition. In [10], R̊ade proved the following theorem.

Theorem 4.1. The differential operators /∂
±
(A,Φ) = /∂A±Φ : L2(X,V ⊗SX) → L2(X,V ⊗SX)

are closed Fredholm, and their indices are given as follows:

Ind(/∂
±
(A,Φ)) = ∓

∫

∂Y
ch(V +) = ±

∫

∂Y
ch(V −),

where V ± is a subbundle of V |∂Y spanned by the eigenvectors of ∓
√
−1Φ with positive

eigenvalues.
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4.2 The indices of twisted flat Dirac monopoles

Let (Lk, hk, Ak,Φk) be the flat Dirac monopole of weight k ∈ Z. For a ∈ R \ {0}, we
set Φa,k :=

√
−1 (a+ (k/2r3)). Then (Lk, hk, Ak,Φa,k) is also a Dirac-type monopole on

(R3, {0}).

Proposition 4.2. The operators /∂
±
(Ak,Φa,k)

are Fredholm. Moreover, we have Ind(/∂
±
(Ak,Φa,k)

) =
0 if ak > 0.

Proof. The Fredholmness of /∂
±
(Ak,Φa,k)

follows from Corollary 2.16 and some standard argu-
ments. The proof for the case a > 0 and k > 0 works for the case a < 0 and k < 0 mutatis
mutandis. Hence we may assume a > 0 and k > 0. We take f±ν ∈ L2(S2, S±

S2 ⊗O(k)) (ν ∈ N)
and nν > 0 as in subsection 2.2. We set vector subspaces W0 := H0(P1,O(k − 1)) × {0}
and Wν := (f+ν , 0)C ⊕ (0, f−ν )C of L2(S2,O(k)⊗ SS2) = L2(S2,O(k)⊗ S+

S2)× L2(S2,O(k)⊗
S−
S2). Then we have a decomposition L2(S2,O(k) ⊗ SS2) =

⊕̂
ν≥0Wν , where

⊕̂
means L2-

completion of the direct sum. Hence we obtain the decomposition L2(R3 \ {0}, Lk ⊗ SR3) =⊕̂
ν≥0Wν ⊗ L2(R>0, r

2dr), where L2(R>0, r
2dr) is the weighted L2-space on R>0 with the

norm ||f ||2 =
∫
R>0

r2|f(r)|2dr. We denote by Eν the space Wν ⊗ L2(R>0, r
2dr). The Dirac

operators /∂
±
(Ak ,Φa,k)

preserves this decomposition, and hence we obtain Ind(/∂
±
(Ak,Φa,k)

) =
∑

ν Ind
(
/∂
±
(Ak,Φa,k)

|Eν : Eν → Eν

)
. Here we prepare the following lemma.

Lemma 4.3. We take Hermitian matrices

Aν =

(
−(2 + k)/2

√
−1nν

−
√
−1nν −(2− k)/2

)
, B =

(
a 0
0 −a

)
.

We set the closed operator Pν : C2 ⊗ L2(R>0, r
2dr) → C

2 ⊗ L2(R>0, r
2dr) to be Pν(v) :=

∂rv − (Aνv/r +Bv). Then Pν is closed Fredholm and Ind(Pν) = 0.

By this lemma we have Ind
(
/∂
±
(Ak,Φa,k)

|Eν

)
= 0 unless i = 0. Hence Ind(/∂

±
(Ak ,Φa,k)

) =

Ind
(
/∂
±
(Ak ,Φa,k)

|E0

)
. Moreover, we obtain Ind

(
/∂
±
(Ak ,Φa,k)

|E0

)
= 0 by a straight calculation.

(proof of Lemma 4.3). The Fredholmness can be easily seen. We take a function Cν :
R>0 → Mat(2,C) as

Cν(r) :=

{
Aν/r (r ≤ 1)
B (r > 1)

and set a differential operator P̃ν to be P̃ (v) := ∂rv − Cν(r)v. Since a compact perturbation
does not change the index, Pν and P̃ν have the same indices. We can write any elements of the
kernels of P̃ν and the adjoint operator P̃⋆

ν explicitly, and there are no non-zero L2-solutions
of P̃ν(v) = 0 and P̃⋆

ν (v) = 0. Hence we obtain Ind(Pν) = 0, which is the desired equality.

4.3 The general case

Let Z ⊂ Y \ ∂Y be a finite subset. Let (V, h,A,Φ) be a Dirac-type singular monopole on
(X,Z) of rank r which satisfies the R̊ade condition. We denote by ~kp = (kp,i) ∈ Z

r the weight
of (V, h,A,Φ) at p ∈ Z.
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Theorem 4.4. The Dirac operators /∂
±
(A,Φ) are Fredholm and adjoint each other. The indices

of /∂
±
(A,Φ) are given as follows:

Ind(/∂
±
(A,Φ)) = ∓




∑

p∈Z

∑

kp,i>0

kp,i +

∫

∂Y
ch(V +)



 = ±




∑

p∈Z

∑

kp,i<0

kp,i +

∫

∂Y
ch(V −)



 .

Proof. We may assume that X is connected. The former claims are easy consequences of
Corollary 2.16 and results in [10]. We calculate the indices of /∂

±
(A,Φ) by using the excision

formula in [4, Appendix B]. We set k :=
∑

p∈Z
∑

i kp,i.
First we consider the case k = 0. Let (V0, h0, A0) be a trivial Hermitian bundle of rank r

with the trivial connection on S3 and Φ0 the zero endomorphism on V0. Let UN be the north-
ern closed hall ball of S3. We take a compact neighborhood U of Z that is diffeomorphic to a
closed ball. We replace (V, h,A,Φ)|U and (V0, h0, A0,Φ0)|UN

, and obtain (Ṽ 0, h̃0, Ã0, Φ̃0) on X

and (Ṽ0, h̃0, Ã0, Φ̃0) on S
3. Then by the excision formula we have ind(/∂

±
(A,Φ))+ind(/∂

±
(A0,Φ0)) =

ind(/∂
±
(Ã0,Φ̃0)) + ind(/∂

±
(Ã0,Φ̃0)

). Hence we obtain ind(/∂
±
(A,Φ)) = ∓

(∑
kp,i>0 kp,i +

∫
∂Y ch(V +)

)

by Corollary 3.12 and Theorem 4.1.
Next we consider the case k 6= 0. The proof for the case k > 0 remain valid for k < 0

mutatis mutandis. Hence we may assume k > 0. Let (V1, h1, A1) be a Hermitian bundle
of rank r with a connection on S3 outside the north pole pN and the south pole pS , and
Φ1 be a skew-Hermitian endomorphism of V1. We assume that (V1, h1, A1,Φ1) is a Dirac-
type singular monopole of weight (k, 0, . . . , 0) (resp. (−k, 0, . . . , 0)) on a neighborhood of
pN (resp. pS). We replace (V, h,A,Φ)|U and (V1, h1, A1,Φ1)|UN

, and obtain (Ṽ 1, h̃1, Ã1, Φ̃1)

on X and (Ṽ1, h̃1, Ã1, Φ̃) on S
3. Then the excision formula shows ind(/∂

±
(A,Φ))+ind(/∂

±
(A1,Φ1)) =

ind(/∂
±
(Ã1,Φ̃1)) + ind(/∂

±
(Ã1,Φ̃1)

). Hence ind(/∂
±
(A,Φ)) ∓ k = ind(/∂

±
(Ã1,Φ̃1)) ∓

∑
kp,i>0 kp,i. We set

(V2, h2, A2,Φ2) := (L−k, h−k, A−k,Φ−k,−1) ⊕ (Cr−1, hCr−1 , d, 0) on R
3, where (Cr−1, hCr−1 , d)

be a trivial Hermitian bundle with the trivial connection on R
3. We denote by p ∈ X the sin-

gular point of (Ṽ 1, h̃1, Ã1, Φ̃1). We glue (Ṽ 1, h̃1, Ã1, Φ̃1)|X\B(p,ε) and (V2, h2, A2,Φ2)|R3\B(0,ε),

and obtain (Ṽ 2, h̃2, Ã2, Φ̃2) on X̃ =
(
(X \B(p, ε)) ⊔R

3 \B(0, ε)
)
/ ∼, where ∼ is an iden-

tification of their boundaries. We also glue (Ṽ 1, h̃1, Ã1, Φ̃1)|B(p,ε) and (V2, h2, A2,Φ2)|B(0,ε)

and obtain (Ṽ2, h̃2, Ã2, Φ̃2) on S3
ε := (B(p, ε) ⊔ B(0, ε))/ ∼, where over-line means the clo-

sure. Then by the excision formula we have ind(/∂
±
(Ã1,Φ̃1)) = ind(/∂

±
(Ã1,Φ̃1)) + ind(/∂

±
(A2,Φ2)) =

ind(/∂
±
(Ã2,Φ̃2)) + ind(/∂

±
(Ã2,Φ̃2)

) = ind(/∂
±
(Ã2,Φ̃2))∓ k. Since the tuple (Ṽ 2, h̃2, Ã2, Φ̃2) satisfies the

R̊ade condition, we obtain ind(/∂
±
(Ã2,Φ̃2)) = ∓

∫
∂Y ch(V

+). As a consequence of the above

arguments, we obtain ind(/∂
±
(A,Φ)) = ∓(

∫
∂Y ch(V

+) +
∑

kp,i>0 kp,i), which is the desired equa-
tion.
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[1] Antonio López Almorox and Carlos Tejero Prieto, “Holomorphic spectrum of twisted
Dirac operators on compact Riemann surfaces”, Journal of Geometry and Physics (2006),
Vol.56, 2069–2091.

[2] Michael Francis Atiyah and Isadore Manuel Singer, “The Index of Elliptic operators
(III)”, Annals of Mathematics (1968), Vol.87, no.3, 546–604.

18



[3] Constantine Callias, “Axial anomalies and index theorems on open spaces”, Communi-
cations in Mathematical Physics (1978), vol. 62, 213–234.

[4] Benoit Charbonneau, “Analytic aspects of Periodic Instantons”, Ph.D Theis, Mas-
sachusetts Institute of Technology (2004)

[5] Benoit Charbonneau and Jacques Hurtubise, “Singular Hermitian-Einstein Monopoles
on the Product of a Circle and a Riemann Surface”, International mathematics research
notices (2011), no. 1, 175–216.

[6] Peter Kronheimer, “Monopoles and Taub-NUT metrics”, Master Thesis, University of
Oxford (1985)

[7] Takuro Mochizuki and Masaki Yoshino, “Some Characterizations of Dirac Type Singular-
ity of Monopoles”, Communications in mathematical physics (2017), vol. 356, 613–625.

[8] Hiraku Nakajima, “Monopoles and Nahm’s equations”, Lecture Notes in Pure and Appl.
Math, vol. 145, (1993)

[9] Marc Pauly, “Monopole moduli spaces for compact 3-manifolds”, Mathematische An-
nalen (1998), vol. 311, 125–146.

[10] Johan R̊ade, “Callias’ index theorem, elliptic boundary conditions, and cutting and glu-
ing”, Communications in mathematical physics (1994), vol. 161, 51–61.

[11] Masaki Yoshino, “The Nahm transform of spatially periodic instantons”,
arXiv:1804.05565 (2018).

19

http://arxiv.org/abs/1804.05565

	1 Introduction
	2 Preliminary
	2.1 Monopoles with Dirac-type singularities
	2.2 Local properties of harmonic spinors of the flat Dirac monopoles
	2.3 A local lift of the Dirac operators of the flat Dirac monopoles

	3 An index formula of Dirac operators on compact 3-folds
	3.1 Fredholmness of Dirac operators
	3.2 An index calculation on a compact 3-folds
	3.2.1 A lift of singular monopoles to closed 4-folds


	4 An index formula of Dirac operators on complete 3-folds
	4.1 The non-singular case
	4.2 The indices of twisted flat Dirac monopoles
	4.3 The general case


