An L^2 -index formula of monopoles with Dirac-type singularities

Masaki Yoshino

January 8, 2019

Abstract

We prove the Fredholmness of Dirac operators of monopoles with Dirac-type singularities on oriented complete Riemannian 3-folds, and we also calculate the L^2 -indices of them.

1 Introduction

Let (X,g) be a complete oriented Riemannian 3-fold with the bounded scalar curvature. Let $Z \,\subset X$ be a finite subset. We fix a spin structure on X. Let (V,h) be a Hermitian vector bundle on $X \setminus Z$ and A a connection on (V,h). Let $\Phi \in \text{End}(V)$ be a skew-Hermitian endomorphism of (V,h). The tuple (V,h,A,Φ) is said to be a monopole on $X \setminus Z$ if the tuple (V,h,A,Φ) satisfies the Bogomolny equation $F(A) = *\nabla_A(\Phi)$, where F(A) is the curvature of A and * is the Hodge operator. Moreover, A point $p \in Z$ is a Dirac-type singularity of (V,h,A,Φ) of weight $\vec{k}_p = (k_{p,i}) \in \mathbb{Z}^{\text{rank}(V)}$ if the monopole (V,h,A,Φ) satisfies a certain asymptotic behavior around $p \in Z$ (See Definition 2.1 (ii).). We set the Dirac operators $\vartheta_{(A,\Phi)}^{\pm} : \Gamma(X \setminus Z, V \otimes S_X) \to \Gamma(X \setminus Z, V \otimes S_X)$ of (V,h,A,Φ) to be $\vartheta_{(A,\Phi)}^{\pm}(s) := \vartheta_A(s) \pm \Phi \otimes \text{Id}_{S_X}$, where S_X is the spinor bundle on X and ϑ_A is the Dirac operator of (V,h,A). We regard $\vartheta_{(A,\Phi)}^{\pm}$ as a closed operator $L^2(X \setminus Z, V \otimes S_X) \to L^2(X \setminus Z, V \otimes S_X)$ by considering derivation as a current. The main result is the following.

Theorem 1.1 (Theorem 4.4). Let (V, h, A, Φ) be a monopole of rank r on $X \setminus Z$ such that each $p \in Z$ is a Dirac-type singularity of (V, h, A, Φ) with weight $\vec{k}_p = (k_{p,i}) \in \mathbb{Z}^r$. We assume that (V, h, A, Φ) satisfies the following conditions (the Råde condition).

- Both Φ and F(A) are bounded.
- We have $\nabla_A(\Phi)|_x = o(1)$ as $x \to \infty$.
- There exists a compact religion $Y \supset Z$ such that Y has a smooth boundary ∂Y , and the inequality $\inf_{x \in X \setminus Y} \{ |\lambda| \mid \lambda \text{ is an eigenvalue of } \Phi(x) \} > 0$ is satisfied.

Then the Dirac operators $\partial_{(A,\Phi)}^{\pm}$ are Fredholm and adjoint to each other. Moreover, their indices $\operatorname{Ind}(\partial_{(A,\Phi)}^{\pm})$ are given as follows:

$$\operatorname{Ind}(\partial_{(A,\Phi)}^{\pm}) = \mp \left\{ \sum_{p \in \mathbb{Z}} \sum_{k_{p,i} > 0} k_{p,i} + \int_{\partial Y} ch(V^+) \right\} = \pm \left\{ \sum_{p \in \mathbb{Z}} \sum_{k_{p,i} < 0} k_{p,i} + \int_{\partial Y} ch(V^-) \right\},$$

where V^{\pm} is a subbundle of $V|_{\partial Y}$ spanned by the eigenvectors of $\pm \sqrt{-1}\Phi$ with positive eigenvalues.

The celebrated index theorem proved by Atiyah and Singer have been applied in a wide range including gauge theory, differential topology and complex geometry. However, The indices of elliptic differential operators on odd-dimensional closed manifolds are always 0. Therefore we consider the index theorems of elliptic operators on odd-dimensional open manifolds. On one hand, Callias [3] proved the index theorem of the Dirac operators of SU(2)-bundles on \mathbb{R}^{2n+1} that satisfies a certain asymptotic behavior at infinity. Callias's index theorem is generalized to the Dirac operators of vector bundles on odd-dimensional complete spin manifolds by Råde [10]. On the other hand, Kronheimer [6] defined the notion of Dirac-type singularities of monopoles on flat Riemannian 3-folds, and Pauly [9] generalize it to any Riemannian 3-folds. Moreover, Pauly proved the index theorem of the deformation complexes on SU(2)-monopoles with Dirac-type singularities on closed oriented 3-folds. However, Pauly's argument essentially needs the condition $\sum_i k_{p,i} = 0$ for any $p \in Z$, and it is difficult to apply the argument to calculate the indices of the Dirac operators of (V, h, A, Φ) even if X is a closed manifold.

The proof of the main result is divided into two parts. First we extend Pauly's argument and calculate the indices of $\partial_{(A,\Phi)}^{\pm}$ when X is a closed manifold (Theorem 3.4 and Corollary 3.12), by constructing a lift of (V, h, A, Φ) on a 4-dimensional closed manifold equipped with an S^1 -action. Next we combine our result and Råde's index theorem in [10], and obtain the index formula on general complete Riemannian 3-folds (Theorem 4.4).

This result was obtained in the study of the inverse transform of the Nahm transform from L^2 -finite instantons on the product of \mathbb{R} and a 3-dimensional torus T^3 to Dirac-type singular monopoles on the dual torus \hat{T}^3 of T^3 in [11].

Acknowledgments

I am deeply grateful to my supervisor Takuro Mochizuki for insightful and helpful discussions and advices. I thank Tsuyoshi Kato for kindly answering to my question about the S^1 equivariant index theorem.

2 Preliminary

2.1 Monopoles with Dirac-type singularities

We recall the definition of monopoles with Dirac-type singularities by following [5].

Definition 2.1. Let (X, g) be an oriented Riemannian 3-fold and $*_g$ be the Hodge operator on X. If there is no risk of confusion, then we abbreviate $*_g$ to just *.

- (i) Let (V, h) be a Hermitian vector bundle with a unitary connection A on X. Let Φ be a skew-Hermitian endomorphism of V. The tuple (V, h, A, Φ) is said to be a monopole on X if it satisfies the Bogomolny equation $F(A) = *\nabla_A(\Phi)$.
- (ii) Let $Z \subset X$ be a discrete subset. Let (V, h, A, Φ) be a monopole of rank $r \in \mathbb{N}$ on $X \setminus Z$. A point $p \in Z$ is called a Dirac-type singularity of the monopole (V, h, A, Φ) with weight $\vec{k_p} = (k_{p,i}) \in \mathbb{Z}^r$ if the following holds.
 - There exists a small neighborhood B of p such that $(V,h)|_{B \setminus \{p\}}$ is decomposed into a sum of Hermitian line bundles $\bigoplus_{i=1}^{r} F_{p,i}$ with $\deg(F_{p,i}) = \int_{\partial B} c_1(F_{p,i}) = k_{p,i}$.

• In the above decomposition, we have the following estimates,

$$\begin{cases} \Phi = \frac{\sqrt{-1}}{2R_p} \sum_{i=1}^r k_{p,i} \cdot Id_{F_{p,i}} + O(1) \\ \nabla_A(R_p \Phi) = O(1), \end{cases}$$

where R_p is the distance from p.

For a monopole (V, h, A, Φ) on $X \setminus Z$, if each point $p \in Z$ is a Dirac-type singularity, then we call (V, h, A, Φ) a Dirac-type singular monopole on (X, Z).

Remark 2.2. Let X be a compact manifold and $Z \subset X$ a finite subset. For a Dirac-type singular monopole (V, h, A, Φ) on (X, Z), we have $\sum_{p \in Z} \sum_i k_{p,i} = 0$ by the Stokes theorem, where $\vec{k} = (k_{p,i}) \in \mathbb{Z}^{\operatorname{rank}(V)}$ is the weight of (V, h, A, Φ) at $p \in Z$.

We also recall the notion of instantons.

Definition 2.3. Let (Y,g) be an oriented Riemannian 4-fold. For a Hermitian vector bundle (V,h) on Y and a connection A on (V,h), the tuple (V,h,A) is an instanton if the ASD equation F(A) = -*F(A) is satisfied.

Remark 2.4. If (Y,g) is a Kähler surface with the Kähler form ω , the condition that a tuple (V, h, A) is an instanton on Y is equivalent to the one that $(V, \overline{\partial}_A, h)$ is a holomorphic Hermitian vector bundle satisfying the Hermite-Einstein condition $F(A) \wedge \omega = 0$, where $\overline{\partial}_A$ is the (0, 1)-part of ∇_A .

For example, we recall the flat Dirac monopole of weight $k \in \mathbb{Z}$. Let $g_{i,\text{Euc}}$ denote the canonical metric on \mathbb{R}^i . For $i \in \mathbb{N}$, we denote by $r_i : \mathbb{R}^i \to \mathbb{R}$ the distance from $0 \in \mathbb{R}^i$. Let $p : \mathbb{R}^3 \setminus \{0\} \to S^2(\simeq \mathbb{P}^1)$ be the projection. Let $\mathcal{O}(k)$ be a holomorphic line bundle on \mathbb{P}^1 of degree k. Let $h_{\mathcal{O}(k)}$ be a Hermitian metric of $\mathcal{O}(k)$ that the Chern connection $A_{\mathcal{O}(k)}$ of $(\mathcal{O}_k, h_{\mathcal{O}(k)})$ has a constant mean curvature. Then $(p^*\mathcal{O}(k), p^*h_{\mathcal{O}(k)}, p^*A_{\mathcal{O}(k)}, \sqrt{-1k/2r})$ is a Dirac-type singular monopole on $(\mathbb{R}^3, \{0\})$, where r is the distance from the origin. We call this monopole the flat Dirac monopole of weight k, and denote by (L_k, h_k, A_k, Φ_k) .

We will recall the equivalent condition proved by Pauly [9]. Let $U \subset \mathbb{R}^3$ be a neighborhood of $0 \in \mathbb{R}^3$. Let g be a Riemannian metric on U. We assume that the canonical coordinate of \mathbb{R}^3 is a normal coordinate of g at 0. Set the Hopf map $\pi : \mathbb{R}^4 = \mathbb{C}^2 \to \mathbb{R}^3 = \mathbb{R} \times \mathbb{C}$ to be $\pi(z_1, z_2) = (|z_1|^2 - |z_2|^2, 2z_1z_2)$, where we set $z_i = x_i + \sqrt{-1}y_i$. We also set the $S^1(=\mathbb{R}/2\pi\mathbb{Z})$ -action on \mathbb{C}^2 to be $\theta \cdot (z_1, z_2) := (e^{\sqrt{-1}\theta}z_1, e^{-\sqrt{-1}\theta}z_2)$. Then the restriction $\pi : \mathbb{R}^4 \setminus \{0\} \to \mathbb{R}^3 \setminus \{0\}$ forms a principal S^1 -bundle. Then we have $\pi^*r_3 = r_4^2$.

Lemma 2.5. There exist a harmonic function $f : U \setminus \{0\} \to \mathbb{R}$ with respect to the metric g and a 1-form ξ on $\pi^{-1}(U)$ such that the following hold.

- The 1-form $\omega := \xi/\pi^* f$ is a connection of $\pi : \mathbb{R}^4 \setminus \{0\} \to \mathbb{R}^3 \setminus \{0\}$, *i.e.* ω is S^1 -invariant, and we have $\omega(\partial_\theta) = 1$. Here ∂_θ is the generating vector field of the S^1 -action on $\mathbb{R}^4 \setminus \{0\}$.
- We have $d\omega = \pi^*(* df)$.
- We have the following estimates:

$$\begin{cases} f = 1/2r_3 + o(1) \\ \xi = 2(-y_1dx_1 + x_1dy_1 + y_2dx_2 - x_2dy_2) + O(r_4^2). \end{cases}$$

• The symmetric tensor $g_4 = \pi^* f(\pi^* g + \xi^2)$ is a Riemannian metric of $L^2_{5,\text{loc}}$ -class on $\pi^{-1}(U)$, and we have an estimate $|g_4 - 2g_{4,\text{Euc}}|_{g_{4,\text{Euc}}} = O(r_4)$. Here a function on $\pi^{-1}(U)$ is of $L^2_{k,\text{loc}}$ -class if every derivative of f up to order k has a finite L^2 -norm on any compact subset of $\pi^{-1}(U)$.

Proposition 2.6 (Proposition 5 in [9]). Let (V, h, A) be a Hermitian vector bundle on $U \setminus \{0\}$ of rank r, and $\Phi \in \text{End}(V)$ be a skew-Hermitian endomorphism. The tuple (V, h, A, Φ) is a monopole on $U \setminus \{0\}$ if and only if the tuple $(\pi^*V, \pi^*h, \pi^*A + \xi \otimes \pi^*\Phi)$ is an instanton on $\pi^{-1}(U) \setminus \{0\}$ with respect to the metric $g_4 = \pi^*f(\pi^*g + \xi^2)$. Moreover, 0 is a Dirac-type singularity of (V, h, A, Φ) of weight $\vec{k} = (k_i) \in \mathbb{Z}^r$ if and only if the following hold.

- The instanton $(\pi^*V, \pi^*h, \pi^*A \pi^*\Phi \otimes \xi)$ can be prolonged over $\pi^{-1}(U)$, and the prolonged connection is represented by an $L^2_{6,\text{loc}}$ -valued connection matrix. We will denote by (V_4, h_4, A_4) the prolonged instanton.
- The weight of the S¹-action on the fiber $V_4|_0$ agrees with \vec{k} up to a suitable permutation.

Remark 2.7.

- If $g = g_{3,\text{Euc}}$, we can choose $f = 1/2r_3$ and $\xi = 2(-y_1dx_1 + x_1dy_1 + y_2dx_2 x_2dy_2)$. Then we have $g_4 = 2g_{4,\text{Euc}}$.
- By the Sobolev embedding theorem, the connection matrix of A_4 is of C^3 class.

Let $h_{\mathbb{C}}$ be the canonical Hermitian metric on \mathbb{C} . We set the Hermitian line bundle $(\tilde{L}, \tilde{h}) := (\pi^{-1}(U) \setminus \{0\}) \times_{U(1)} (\mathbb{C}, h_{\mathbb{C}})$ on $U \setminus \{0\}$ and take the connection \tilde{A} induced by ω . Then $(\tilde{L}, \tilde{h}, \tilde{A}, \sqrt{-1}f)$ is a monopole on U with respect to g, and 0 is the Dirac-type singularity of weight 1. We call the monopole $(\tilde{L}_k, \tilde{h}_k, \tilde{A}_k, \sqrt{-1}kf) := (\tilde{L}^{\otimes k}, \tilde{h}^{\otimes k}, \tilde{A}^{\otimes k}, \sqrt{-1}kf)$ a Dirac monopole of weight k with respect to g. The following proposition is a partial generalization of [7, Proposition 5.2].

Proposition 2.8. Let (V, h, A, Φ) be a monopole on $U \setminus \{0\}$, and assume that the point 0 is a Dirac-type singularity of weight $\vec{k} = (k_i) \in \mathbb{Z}^r$. Then there exist a neighborhood $U' \subset U$ and a unitary isomorphism $\varphi : V|_{U' \setminus \{0\}} \simeq (\bigoplus_{i=1}^r \tilde{L}_{k_i})|_{U' \setminus \{0\}}$ such that the following estimates hold.

$$|A - \varphi^*(\bigoplus \tilde{A}_{k_i})| = O(1).$$
$$|\Phi - \varphi^*(\sum \sqrt{-1}k_i f \operatorname{Id}_{L_{k_i}})| = O(1).$$

Proof. Let (V', h', A', Φ') be the monopole $\bigoplus_{i=1}^{r} (\tilde{L}_{k_i}, \tilde{h}_{k_i}, \tilde{A}_{k_i}, \sqrt{-1}k_i f)$. By Proposition 2.6, the instantons $(\pi^*V, \pi^*h, \pi^*A - \pi^*\Phi \otimes \xi)$ and $(\pi^*V', \pi^*h', \pi^*A' - \pi^*\Phi' \otimes \xi)$ can be prolonged over $\pi^{-1}(U)$, and denote by (V_4, h_4, A_4) and (V'_4, h'_4, A'_4) respectively. Then the weights of S^1 -actions on the fiber of V_4 and V'_4 at the origin coincide with each other, and the connections A_4 and A'_4 are S^1 -invariant. Hence there exist an S^1 -invariant neighborhood $U'_4 \subset \pi^{-1}(U)$ of 0 and an S^1 -equivariant unitary isomorphism $\varphi_4 : V_4|_{U'_4} \to V'_4|_{U'_4}$ such that $A_4 - \varphi_4^*(A'_4)$ vanishes at the origin. Hence we have $|A_4 - \varphi_4^*(A'_4)| = O(r_4)$. Since $f = 1/2r_3 + o(1)$ and ξ is orthogonal to $\pi^*(T^*\mathbb{R}^3)$ with the metric $g_4 = \pi^*f(\pi^*g + \xi^2)$, the unitary isomorphism $\varphi : V|_{U'\setminus\{0\}} \to V'|_{U'\setminus\{0\}}$ induced by φ_4 satisfies the desired estimates, where we put $U' := \pi(U'_4)$.

By the estimates in Lemma 2.5, we also obtain the following approximation.

Corollary 2.9. Let (V, h, A, Φ) be a monopole on $U \setminus \{0\}$, and assume that the point 0 is a Dirac-type singularity of weight $\vec{k} = (k_i) \in \mathbb{Z}^r$. Then there exist a neighborhood $U' \subset U$ and a unitary isomorphism $\varphi : V|_{U'} \simeq (\bigoplus_{i=1}^r L_{k_i})|_{U'}$ such that the following estimates hold.

$$|A - \varphi^*(\bigoplus A_{k_i})| = O(1).$$

$$|\Phi - \varphi^*(\frac{\sqrt{-1}}{2r_3}\sum k_i \mathrm{Id}_{L_{k_i}})| = O(1).$$

2.2 Local properties of harmonic spinors of the flat Dirac monopoles

Let (X, g) be an *n*-dimensional oriented spin manifold with a fixed spin structure. We denote by S_X the spinor bundle on X, and by clif: $T^*X \to \operatorname{End}(S_X)$ the Clifford product. If nis an odd number, then we assume $(\sqrt{-1})^{(n+1)/2}\operatorname{clif}(\operatorname{vol}_{(X,g)}) = -\operatorname{Id}_{S_X}$, where we use the canonical linear isomorphism between the exterior algebra and the Clifford algebra. The spinor bundle S_X has the induced connection A_{S_X} by the Levi-Civita connection on X, and we set the Dirac operator $\partial_X : \Gamma(X, S_X) \to \Gamma(X, S_X)$ to be $\partial_X(f) := \operatorname{clif} \circ \nabla_{A_{S_X}}(f)$. For a vector bundle (V,h) on X and a connection A on (V,h), we also set the Dirac operator $\partial_A : \Gamma(X, S_X \otimes V) \to \Gamma(X, S_X \otimes V)$ to be $\partial_A(s) := \operatorname{clif} \circ \nabla_{A_{S_X} \otimes A}(s)$. If n is even, then we have the decomposition $S_X = S_X^+ \oplus S_X^-$, and the Dirac operator ∂_A is also decomposed into sum of the positive and negative Dirac operators $\partial_A^{\pm} : \Gamma(X, S_X^{\pm} \otimes V) \to \Gamma(X, S_X^{\mp} \otimes V)$. If $\dim(X) = 3$, then for a monopole (V, h, A, Φ) on X we also set the Dirac operators $\partial_{(A,\Phi)}^{\pm} :$ $\Gamma(X, V \otimes S_X) \to \Gamma(X, V \otimes S_X)$ to be $\partial_{(A,\Phi)}^{\pm}(f) := \partial_A(f) \pm (\Phi \otimes \operatorname{Id}_{S_X})(f)$.

For a differential operator $P : \Gamma(X, V_1) \to \Gamma(X, V_2)$ between Hermitian vector bundles (V_1, h_1) and (V_2, h_2) on X, we regard P as the closed operator $P : L^2(X, V_1) \to L^2(X, V_2)$ with the domain $\text{Dom}(P) := \{s \in L^2(X, V_1) \mid P(s) \in L^2\}$, where P(s) is the derivative as a current. We regard Dom(P) as a Banach space equipped with the graph norm $||s||_P := ||s||_{L^2} + ||P(s)||_{L^2}$.

Remark 2.10. Any 3-dimensional oriented manifolds are parallelizable, and hence they have spin structures.

Let $S_{\mathbb{R}^3}$ be the spinor bundle on \mathbb{R}^3 with respect to the trivial spin structure, and d be the trivial connection on $S_{\mathbb{R}^3}$. By using the projection $p: \mathbb{R}^3 \setminus \{0\} \to S^2$, We combine the Dirac operators of the Dirac monopole $(L_k, h_k, A_k, \Phi_k) = (p^*\mathcal{O}(k), p^*h_{\mathcal{O}(k)}, p^*A_{\mathcal{O}(k)}\sqrt{-1k/2r})$ with the Dirac operators of $\mathcal{O}(k)$ on $\mathbb{P}^1 = S^2$. Let $S_{S^2} = S_{S^2}^+ \oplus S_{S^2}^-$ be the spinor bundle on (S^2, g_{S^2}) , and $\mathscr{Y}_{S^2}^{\pm}: \Gamma(S^2, S_{S^2}^{\pm}) \to \Gamma(S^2, S_{S^2}^{\pm})$ the Dirac operators on S^2 . By the isometry $\mathbb{R}^3 \simeq (\mathbb{R}_+ \times S^2, (dr_3)^2 + r_3^2 g_{S^2})$ we obtain the unitary isomorphisms $S_{\mathbb{R}^3}|_{\mathbb{R}^3 \setminus \{0\}} \simeq p^* S_{S^2}$. According to Nakajima [8], under the identification $S_{\mathbb{R}^3}|_{\mathbb{R}^3 \setminus \{0\}} \simeq p^* S_{S^2}$ the Dirac operator $\mathscr{Y}_{\mathbb{R}^3}$ on $\mathbb{R}^3 \setminus \{0\}$ is written as follows:

$$\mathcal{\partial}_{\mathbb{R}^3} = \frac{1}{r_3} \left(\begin{array}{cc} \sqrt{-1}(r_3 \frac{\partial}{\partial r_3} + 1) & \mathcal{\partial}_{S^2}^- \\ \\ \\ \mathcal{\partial}_{S^2}^+ & -\sqrt{-1}(r_3 \frac{\partial}{\partial r_3} + 1) \end{array} \right).$$

Therefore we obtain the following equality.

$$\vartheta_{(A_k,\Phi_k)}^{\pm} = \frac{1}{r_3} \begin{pmatrix} \sqrt{-1}(r_3\frac{\partial}{\partial r_3} + \frac{2\pm k}{2}) & \vartheta_{\mathcal{O}(k)}^- \\ \\ \\ \vartheta_{\mathcal{O}(k)}^+ & -\sqrt{-1}(r_3\frac{\partial}{\partial r_3} + \frac{2\mp k}{2}) \end{pmatrix}$$

By the isomorphisms $S_{S^2}^+ \simeq \Omega^{0,0}(\mathcal{O}(-1)), S_{S^2}^- \simeq \Omega^{0,1}(\mathcal{O}(-1))$ and $\vartheta_{S^2} = \vartheta_{S^2}^+ + \vartheta_{S^2}^- = \sqrt{2}(\overline{\partial}_{\mathcal{O}(-1)} + \overline{\partial}_{\mathcal{O}(-1)}^+)$, we obtain $\operatorname{Ker}(\vartheta_{\mathcal{O}(k)}^+) \simeq H^0(\mathbb{P}^1, \mathcal{O}(k-1))$ and $\operatorname{Ker}(\vartheta_{\mathcal{O}(k)}^-) \simeq H^1(\mathbb{P}^1, \mathcal{O}(k-1))$, where $\overline{\partial}_{\mathcal{O}(-1)}^{\bigstar}$ is the formal adjoint of $\overline{\partial}_{\mathcal{O}(-1)}$. Let $f_{\nu}^{\pm} \in L^2(S^2, S_{S^2}^{\pm} \otimes \mathcal{O}(k))$ ($\nu \in \mathbb{N}$) be the all eigenvectors of the operators $\vartheta_{\mathcal{O}(k)}^- \circ \vartheta_{\mathcal{O}(k)}^+$ and $\vartheta_{\mathcal{O}(k)}^+ \circ \vartheta_{\mathcal{O}(k)}^-$ with non-zero eigenvalues respectively. We set $n_{\nu} > 0$ to be the eigenvalue of f_{ν}^{\pm} . Then, According to [1], we have $\{n_{\nu}\} = \{q^2 + |k|q ; q \in \mathbb{N}\}$. We set $q_{\nu} > 0$ to satisfy $n_{\nu} = q_{\nu}^2 + |k|q_{\nu}$. We may assume that $\{f_{\nu}^{\pm}\}$ forms an orthonormal system and satisfies the relations $\vartheta_{\mathcal{O}(k)}^{\pm}(f_{\nu}^{\pm}) = \sqrt{n_{\nu}}f_{\nu}^{\pm}$ for any $\nu \in \mathbb{N}$. By the elliptic inequality and the Sobolev inequality, there exist C', C'' > 0 such that $||f_{\nu}^{\pm}||_{L^6} < C''||f_{\nu}^{\pm}||_{L^2}^2 \leq C'(||f_{\nu}^{\pm}||_{L^2} + ||\vartheta_{\mathcal{O}(k)}^{\pm}(f_{\nu}^{\pm})||_{L^2}) = C'(1 + \sqrt{n_{\nu}})$. Then by the interpolation inequality we obtain $||f_{\nu}^{\pm}||_{L^3} \leq (||f_{\nu}^{\pm}||_{L^2})^{1/2} \cdot (||f_{\nu}^{\pm}||_{L^6})^{1/2} = C\sqrt{1 + \sqrt{n_{\nu}}}$, where we put $C := \sqrt{C'}$. Hence we obtain the following lemma.

Lemma 2.11. We have the estimate $||f_{\nu}^{\pm}||_{L^3} = O(\sqrt{q_{\nu}})$.

Through the above arguments, we obtain the following proposition.

Proposition 2.12. Let s be a section of $L_k \otimes S_{\mathbb{R}^3}$ on a punctured ball $B(r)^* := \{x \in \mathbb{R}^3 \mid 0 < |x| < r\}$ for some r > 0.

(i) If we have $s \in L^2(B(r)^*, L_k \otimes S_{\mathbb{R}^3}) \cap \operatorname{Ker}(\partial^+_{(A_k, \Phi_k)})$, then there exists a sequence $\{c_\nu\} \subset \mathbb{C}$ such that we have

$$s = \sum_{\nu \in \mathbb{N}} c_{\nu} \left(a_{\nu}^{+}(r) f_{\nu}^{+} + a_{\nu}^{-}(r) f_{\nu}^{-} \right).$$

Here the functions a_{ν}^{\pm} are given as follows:

$$a_{\nu}^{+}(r) = r^{-1+q_{\nu}+|k|/2}.$$

$$a_{\nu}^{-}(r) = \frac{q_{\nu} + \max(0,k)}{\sqrt{-1}\sqrt{q_{\nu}^{2} + |k|q_{\nu}}} r^{-1+q_{\nu}+|k|/2}.$$

(ii) If we have $s \in L^2(B(r)^*, L_k \otimes S_{\mathbb{R}^3}) \cap \operatorname{Ker}(\partial^-_{(A_k, \Phi_k)})$, then there exist a sequence $\{c_\nu\} \subset \mathbb{C}$, $\alpha^+ \in \operatorname{Ker}(\partial^+_{\mathcal{O}(k)}) = H^0(\mathbb{P}^1, \mathcal{O}(k-1))$ and $\alpha^- \in \operatorname{Ker}(\partial^-_{\mathcal{O}(k)}) = H^1(\mathbb{P}^1, \mathcal{O}(k-1))$ such that we have

$$s = \sum_{+,-} \alpha^{\pm} \rho^{\pm}(r) + \sum_{\nu \in \mathbb{N}} c_{\nu} \left(b_{\nu}^{+}(r) f_{\nu}^{+} + b_{\nu}^{-}(r) f_{\nu}^{-} \right).$$

Here the functions ρ^{\pm} and b_{ν}^{\pm} are given as follows:

$$\begin{aligned} \rho^{\pm}(r) &= r^{-1\pm k/2}.\\ b^{+}_{\nu}(r) &= r^{-1+q_{\nu}+|k|/2}.\\ b^{-}_{\nu}(r) &= \frac{q_{\nu} + \max(0, -k)}{\sqrt{-1}\sqrt{q_{\nu}^{2} + |k|q_{\nu}}} r^{-1+q_{\nu}+|k|/2}. \end{aligned}$$

By the above proposition, we obtain the following corollary.

Corollary 2.13. For arbitrary positive numbers r > r' > 0, the restriction map $L^2(B(r)^*, L_k \otimes S_{\mathbb{R}^3}) \cap \operatorname{Ker}(\partial_{(A_k, \Phi_k)}^{\pm}) \to L^2(B(r')^*, L_k \otimes S_{\mathbb{R}^3})$ is a compact map.

As a preparation of Proposition 2.15, we prove the following lemma.

Lemma 2.14. Let $t_0 > 0$ be a positive number and α a real number. Set the constant C_{α} is given by

$$C_{\alpha} = \begin{cases} |2\alpha - 1|^{-1/2} & (\alpha \neq 1/2) \\ 1 & (\alpha = 1/2). \end{cases}$$

There exists a compact operator $K_{\alpha} : L^2(0, t_0) \to C^0([0, t_0])$ such that for any $f \in L^2(0, t_0)$, the function $g := K_{\alpha}(f)$ satisfies the estimate $|g(t)| \leq C_{\alpha}||f||_{L^2} \cdot t^{1/2}(1 + \log(t_0/t)^{1/2}) \leq C_{\alpha}||f||_{L^2} \cdot \sqrt{t_0}(1 + 1/\sqrt{e})$ and the differential equation $t\partial_t(g/t) + \alpha(g/t) = f$, where $C^0([0, t_0])$ is the Banach space consisting of bounded continuous functions on $[0, t_0]$.

Proof. We set $g = K_{\alpha}(f)$ to be

$$g(t) := \begin{cases} t^{-\alpha+1} \int_0^t f(x) x^{\alpha-1} dx & (\alpha > 1/2) \\ \\ -t^{-\alpha+1} \int_t^{t_0} f(x) x^{\alpha-1} dx & (\alpha \le 1/2). \end{cases}$$

Then, by a direct calculation we have $t\partial_t(g/t) + \alpha(g/t) = f$. If $\alpha \neq 1/2$, then we obtain $|g(t)| \leq t^{-\alpha+1}||f||_{L^2}\sqrt{t^{2\alpha-1}/|2\alpha-1|} = |2\alpha-1|^{-1/2}||g||_{L^2} \cdot t^{1/2}$. If $\alpha = 1/2$, then we have $|g(t)| \leq ||f||_{L^2} \cdot t^{1/2} \log(t_0/t)^{1/2}$. As a consequence of the above inequalities, we obtain the desired estimate. By this estimate, the compactness of K_α follows from the Ascoli-Arzelà theorem and the differential equation.

Proposition 2.15. Let r > 0 be a positive number. There exists a compact map G^{\pm} : $L^{2}(B(r)^{*}, L_{k} \otimes S_{\mathbb{R}^{3}}) \rightarrow L^{2}(B(r)^{*}, L_{k} \otimes S_{\mathbb{R}^{3}})$ such that we have $R(G^{\pm}) \subset \text{Dom}(\partial_{(A_{k}, \Phi_{k})}^{\pm})$ and $\partial_{(A_{k}, \Phi_{k})}^{\pm} \circ G^{\pm} = \text{Id.}$ Moreover, we have $R(G^{\pm}) \subset L^{3}(B(r)^{*}, L_{k} \otimes S_{\mathbb{R}^{3}})$, and hence $G^{\pm} : L^{2} \rightarrow L^{3}$ is bounded.

Proof. The proof for $\partial^+_{(A_k,\Phi_k)}$ remains valid for $\partial^-_{(A_k,\Phi_k)}$. Hence we prove only for $\partial^+_{(A_k,\Phi_k)}$. The subspace that is spanned by $\operatorname{Ker}(\partial^\pm_{\mathcal{O}(k)})$ and $\{f^\pm_\nu\}$ is dense in $L^2(S^2, S_{S^2} \otimes \mathcal{O}(k))$. Hence for any $s \in L^2(B(r)^*, L_k \otimes S_{\mathbb{R}^3})$ there exist measurable maps $\alpha^\pm : (0, r) \to \operatorname{Ker}(\partial^\pm_{\mathcal{O}(k)})$ and $s^\pm_\nu : (0, r) \to \mathbb{C}$ such that we have

$$s = \alpha^{+} + \alpha^{-} + \sum_{\nu} \left(s_{\nu}^{+} f_{\nu}^{+} + s_{\nu}^{-} f_{\nu}^{-} \right)$$

and

$$||s||_{L^2}^2 = ||r_3\alpha^+||_{L^2}^2 + ||r_3\alpha^-||_{L^2}^2 + \sum_{\nu} \left(||r_3s_{\nu}^+||_{L^2}^2 + ||r_3s_{\nu}^-||_{L^2}^2 \right)$$

By some linear-algebraic operations and Lemma 2.14, we can take an element $t = \beta^+ + \beta^- + \sum_{\nu} (t_{\nu}^+ f_{\nu}^+ + t_{\nu}^- f_{\nu}^-) \in L^2(B(r)^*, L_k \otimes S_{\mathbb{R}^3})$ such that we have $\partial_{(A_k, \Phi_k)}^+(t) = s$ and

$$\begin{split} ||t||_{L^{2}}^{2} &= ||r_{3}\beta^{+}||_{L^{2}}^{2} + ||r_{3}\beta^{-}||_{L^{2}}^{2} + \sum_{\nu} \left(||r_{3}t_{\nu}^{+}||_{L^{2}}^{2} + ||rt_{\nu}^{-}||_{L^{2}}^{2} \right) \\ &\leq ||r_{3}\alpha^{+}||_{L^{2}}^{2} + ||r_{3}\alpha^{-}||_{L^{2}}^{2} \\ &+ \sum_{\nu} \left\{ \max(C_{1+(2q_{\nu}+k)/2}, C_{1-(2q_{\nu}+k)/2})^{2} \left(||r_{3}s_{\nu}^{+}||_{L^{2}}^{2} + ||r_{3}s_{\nu}^{-}||_{L^{2}}^{2} \right) \right\}, \end{split}$$

where C_{α} is the constant in Lemma 2.14. Then We set $G^+(s) := t$, and G^+ is linear because all constructions of G^+ are linear. Since $C_{1\pm(2q_{\nu}+k)/2} = o(1)$ ($\nu \to \infty$), the compactness of G^+ is deduced from the compactness of K_{α} in Lemma 2.14.

By the definition we have $2\sqrt{q_{\nu}} \cdot C_{1\pm(2q_{\nu}+k)/2} \to 1 \quad (\nu \to \infty)$. Hence $||f_{\nu}^{\pm}||_{L^3} \cdot C_{1\pm(2q_{\nu}+k)/2} = O(1)$ by Lemma 2.11. Therefore we obtain $||t||_{L^3} < \infty$ and the proof is complete.

Corollary 2.16. For any positive numbers r > r' > 0, the restriction map $L^2(B(r)^*, L_k \otimes S_{\mathbb{R}^3}) \cap \text{Dom}(\partial_{(A_k,\Phi_k)}^{\pm}) \to L^2(B(r')^*, L_k \otimes S_{\mathbb{R}^3})$ is a compact operator.

Proof. Let $\{f_n\}$ be a bounded sequence in $L^2(B(r)^*, L_k \otimes S_{\mathbb{R}^3}) \cap \text{Dom}(\emptyset_{(A_k, \Phi_k)}^{\pm})$. By using G^{\pm} in Proposition 2.15, we set $\tilde{f}_n := G^{\pm}(\emptyset_{(A_k, \Phi_k)}^{\pm}(f_n))$. Since G^{\pm} is compact, there exists a subsequence $\{f_{n_k}\}$ such that $\{\tilde{f}_{n_k}\}$ is convergent. Hence we may assume that $\{\tilde{f}_n\}$ is convergent. Then we have $\emptyset_{(A_k, \Phi_k)}^{\pm}(f_n - \tilde{f}_n) = 0$. By Corollary 2.13, $\{(f_n - \tilde{f}_n)|_{B(r')}\}$ has a convergent subsequence. Therefore $\{f_n|_{B(r')}\}$ also has a convergent subsequence.

2.3 A local lift of the Dirac operators of the flat Dirac monopoles

Let $k \in \mathbb{Z}$ be an integer. For the flat Dirac monopole $(V, h, A, \Phi) := (L_k, h_k, A_k, \sqrt{-1k/2r_3})$ on $(\mathbb{R}^3, \{0\})$, we denote by (V_4, h_4, A_4) the prolongation of the instanton $(\pi^*V, \pi^*h, \pi^*A - \xi \otimes \pi^*\Phi)$ over \mathbb{R}^4 , where $\xi = 2\{(x_1dy_1 - y_1dx_1) - (x_2dy_2 - y_2dx_2)\}$. We compare the Dirac operators $\partial_{(A,\Phi)}^{\pm}$ and $\partial_{A_4}^{\pm}$.

We denote by X and P the punctured spaces $\mathbb{R}^3 \setminus \{0\}$ and $\mathbb{R}^4 \setminus \{0\}$ respectively. Set the function $f : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}_+$ to be $f(t, x, y) := 1/2r_3$. We also set $g_P := 2g_{4, \text{Euc}}$. Since $g_P = 2g_{4, \text{Euc}} = \pi^* f(\pi^* g + \xi^2)$, we have the orthogonal decomposition $TP \simeq \mathbb{R}\partial_\theta \oplus \pi^* TX$. Let \mathscr{S} be the spin structure of \mathbb{R}^3 *i.e.* \mathscr{S} is a principal Spin(3)-bundle on \mathbb{R}^3 that satisfies $\mathscr{S} \times_{Spin(3)} (\mathbb{R}^3, g_{3, Euc}) \simeq T\mathbb{R}^3$. Let $\rho : Spin(3) \to Spin(4)$ be the lift of the homomorphism $SO(3) \to SO(4)$ which is induced by $\mathbb{R}^3 \ni p \to (0, p) \in \mathbb{R}^4$. We set $\mathscr{S}_4 := \pi^*(\mathscr{S}) \times_{\rho} Spin(4)$. Then we have $\mathscr{S}_4 \times_{Spin(4)} (\mathbb{R}^4 \setminus \{0\}) \simeq (P \times \mathbb{R}) \oplus \pi^*TX$, and hence \mathscr{S}_4 is a spin structure on P. Under the isomorphisms $Spin(3) \simeq SU(2)$ and $Spin(4) \simeq SU(2)_+ \times SU(2)_-$, the homomorphism ρ is written as $\rho(g) = (g, g)$. Therefore we have the following proposition.

Proposition 2.17. The following claims are satisfied.

- We have the unitary isomorphisms $\pi^* S_X \simeq S_P^{\pm}$.
- Under the above isomorphisms, the Clifford product on P can be represented as follows:

$$\operatorname{clif}_{P}(\xi) = (\pi^{*}f)^{-1/2} \begin{pmatrix} 0 & \operatorname{Id} \\ -\operatorname{Id} & 0 \end{pmatrix}.$$

$$\operatorname{clif}_{P}(\pi^{*}\alpha) = (\pi^{*}f)^{-1/2} \begin{pmatrix} 0 & \operatorname{clif}_{X}(\alpha) \\ \operatorname{clif}_{X}(\alpha) & 0 \end{pmatrix} \quad (\alpha \in \Gamma(X, \Omega^{1}(X))).$$

Since the isomorphisms $\pi^* S_X \simeq S_P^{\pm}$ are unitary, we have $||\pi^* s||_{L^2(P)}^2 = \int_P |\pi^* s|^2 (-\pi^* f^2 \cdot \xi \wedge \pi^* d \operatorname{vol}_X) = 2\pi ||f^{1/2} s||_{L^2(X)}^2$ for any $s \in \Gamma(X, V \otimes S_X)$. Hence the operator $\pi^{\dagger}(s) := \pi^* ((2\pi f)^{-1/2} s)$ are isometric isomorphisms between $L^2(X, V \otimes S_X)$ and $L^2(P, V_A \otimes S_T^{\pm})^{S^1}$.

 $\pi^*((2\pi f)^{-1/2} s)$ are isometric isomorphisms between $L^2(X, V \otimes S_X)$ and $L^2(P, V_4 \otimes S_P^{\pm})^{S^1}$. On one hand, we take a global flat unitary frame $e^3 = (e_1^3, e_2^3)$ of S_X that satisfies the following.

$$\operatorname{clif}_{X}(dt)\boldsymbol{e}^{3} = \boldsymbol{e}^{3} \begin{pmatrix} \sqrt{-1} & 0\\ 0 & -\sqrt{-1} \end{pmatrix}.$$
$$\operatorname{clif}_{X}(dx)\boldsymbol{e}^{3} = \boldsymbol{e}^{3} \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}.$$
$$\operatorname{clif}_{X}(dt)\boldsymbol{e}^{3} = \boldsymbol{e}^{3} \begin{pmatrix} 0 & \sqrt{-1}\\ \sqrt{-1} & 0 \end{pmatrix}.$$

On the other hand, we have the isomorphisms $S_P^+ \simeq \Omega_{\mathbb{C}^2}^{0,0} \oplus \Omega_{\mathbb{C}^2}^{0,2}$ and $S_P^- \simeq \Omega_{\mathbb{C}^2}^{0,1}$. Moreover, under the isomorphisms we also have $\partial_{A_4} = \sqrt{2}(\overline{\partial}_{A_4} + \overline{\partial}_{A_4}^{\bigstar})$ and $\operatorname{clif}_P(\alpha) = \sqrt{2}(\alpha^{(0,1)} \wedge - (\alpha^{(1,0)})^{\flat})$ for a 1-form α on P, where \square means the interior product and $(\alpha)^{\flat}$ is the image of α under the isomorphism $\Omega_{\mathbb{C}^2}^{1,0} \simeq T^{(0,1)}\mathbb{C}^2$ induced by the metric g_P . Here we set S^1 -invariant global unitary frames $e^{\pm} = (e_1^{\pm}, e_2^{\pm})$ of S_P^{\pm} to be the following.

$$\begin{aligned} e_1^+ &:= 1. \\ e_2^+ &:= - \left(\pi^* (-\xi)^{0,1} / |\pi^* (-\xi)^{0,1}| \right) \wedge \left(\pi^* (d\bar{z}) / |\pi^* (d\bar{z})| \right). \\ e_1^- &:= \pi^* (-\xi)^{0,1} / |\pi^* (-\xi)^{0,1}|. \\ e_2^+ &:= \pi^* (d\bar{z}) / |\pi^* (d\bar{z})|. \end{aligned}$$

Then, with respect to the frames e^{\pm} and e^3 , the representations of Clifford products of X and P coincide as in the sense of Proposition 2.17. Therefore we may assume $\pi^* e^3 = e^{\pm}$. Hence by a direct calculation we obtain the following proposition.

Proposition 2.18. For the flat Dirac monopole (V, h, A, Φ) , the equalities

$$\pi^{\dagger} \circ \left(\mathscr{Y}^{+}_{(A,\Phi)} f^{-1/2} \right)(s) = \mathscr{Y}^{+}_{A_{4}} \circ \pi^{\dagger}(s)$$

and

$$\pi^{\dagger} \circ \left(f^{-1/2} \mathscr{J}_{(A,\Phi)}^{-} \right)(s) = \mathscr{J}_{A_4}^{+} \circ \pi^{\dagger}(s)$$

are satisfied for any $s \in \Gamma(X, V \otimes S_X)$.

3 An index formula of Dirac operators on compact 3-folds

Let (X, g) be a closed oriented spin 3-fold and Z a finite subset. Let \mathscr{S} be a spin structure on (X, g) *i.e.* \mathscr{S} is a principal Spin(3)-bundle on X such that $\mathscr{S} \times_{Spin(3)} (\mathbb{R}^3, g_{3, \text{Euc}}) \simeq (TX, g)$. Let (V, h, A, Φ) be a Dirac-type singular monopole on (X, Z) of rank r, and we denote by $\vec{k_p} = (k_{p,i}) \in \mathbb{Z}^r$ the weight of (V, h, A, Φ) at each $p \in Z$.

3.1 Fredholmness of Dirac operators

For a sufficiently small $\varepsilon > 0$, we set $B(Z, \varepsilon) := \coprod_{p \in Z} B(p, \varepsilon) = \coprod_{p \in Z} \{x \in X \mid d_g(x, p) < \varepsilon\}$, where $d_g : X \times X \to \mathbb{R}$ is the distance function with respect to g. Let (x_p^1, x_p^2, x_p^3) be a normal coordinate at p on $B(p, \varepsilon)$, and set the flat metric g' on $B(Z, \varepsilon)$ to be $g'|_{B(p,\varepsilon)} := \sum_i (dx_p^i)^2$. We take a smooth bump function $\rho : X \to [0, 1]$ satisfying $\rho(B(Z, \varepsilon/2)) = 1$ and $\rho(X \setminus B(Z, 3\varepsilon/4)) = 0$, and set a metric $\tilde{g} := (1 - \rho)g + \rho \cdot g'$. Then we have $g|_{X \setminus B(Z,\varepsilon)} = \tilde{g}|_{X \setminus B(Z,\varepsilon)}$ and $|g - \tilde{g}|_g = O(R_p^2)$ on $B(p, \varepsilon)$ for any $p \in Z$, where R_p is the distance from p. Hence there exists an isometric isomorphism $\mu : (TX, g) \simeq (TM, \tilde{g})$ such that $\mu|_{X \setminus B(Z,\varepsilon)} = \mathrm{Id}_{TM}$ and $|\mu - \mathrm{Id}_{TM}|_g = O(R_p^2)$ on $B(p, \varepsilon)$ for any $p \in Z$. Therefore we obtain the following lemma.

Lemma 3.1. For a 1-form α , we have an equality $\operatorname{clif}_{(X,g)}(\alpha)|_{X \setminus B(Z,\varepsilon)} = \operatorname{clif}_{(X,\tilde{g})}(\alpha)|_{X \setminus B(Z,\varepsilon)}$ and an estimate $|\operatorname{clif}_{(X,g)}(\alpha) - \operatorname{clif}_{(X,\tilde{g})}(\alpha)| = |\alpha| \cdot O(R_p^2)$ on $B(p,\varepsilon)$ for any $p \in Z$, where $\operatorname{clif}_{(X,g)}$ and $\operatorname{clif}_{(X,\tilde{g})}$ denote the Clifford product with respect to g and \tilde{g} respectively.

We also take a direct sum of the flat Dirac monopoles (V', h', A', Φ') on $(B(Z, \varepsilon) \setminus Z, g')$ to be $(V', h', A', \Phi')|_{B(p,\varepsilon)} = \bigoplus_{i=1}^{r} (L_{k_{p,i}}, h_{k_{p,i}}, A_{k_{p,i}}, \Phi_{k_{p,i}})$ for any $p \in Z$. By Corollary 2.9, there exists a unitary isomorphism $\varphi : V|_{B(Z,\varepsilon)\setminus Z} \simeq V'$ such that the estimates in Corollary 2.9 are satisfied. We set a connection $\tilde{A} := (1 - \rho)A + \rho \cdot \varphi^*A'$ and an endomorphism $\tilde{\Phi} := (1 - \rho)\Phi + \rho \cdot \varphi^*\Phi'$. Then for each $p \in Z$ the restriction $(V, h, \tilde{A}, \tilde{\Phi})|_{B(p,\varepsilon/2)\setminus\{p\}}$ is a direct sum of the flat Dirac monopoles, and $|A - \tilde{A}|$ and $|\Phi - \tilde{\Phi}|$ are bounded on $X \setminus Z$.

We denote by $\tilde{\vartheta}^{\pm}_{(A,\Phi)}$ and $\tilde{\vartheta}^{\pm}_{(\tilde{A},\tilde{\Phi})}$ the Dirac operators of the tuples (V, h, A, Φ) and $(V, h, \tilde{A}, \tilde{\Phi})$ with respect to the metrics \tilde{g} respectively. In Proposition 3.3, we show the Fredholmness of $\tilde{\vartheta}^{\pm}_{(\tilde{A},\tilde{\Phi})}$. Consequently, we will prove the Fredholmness of $\vartheta^{\pm}_{(A,\Phi)}$ in Theorem 3.4.

Proposition 3.2. The injection maps $\text{Dom}(\tilde{\partial}^{\pm}_{(\tilde{A},\tilde{\Phi})}) \to L^2(X, V \otimes S_X)$ are compact.

Proof. The norm $||s||_1 := ||s|_{X \setminus B(Z,\varepsilon/8)}||_{L^2} + ||s|_{B(Z,\varepsilon/4)^*}||_{L^2}$ on $L^2(X, V \otimes S_X)$ is equivalent to the ordinary L^2 -norm on X. By the Rellich-Kondrachov theorem, the restriction maps $\operatorname{Dom}(\tilde{\partial}_{(\tilde{A},\tilde{\Phi})}^{\pm}) \ni s \to s|_{X \setminus B(Z,\varepsilon/8)} \in L^2(X \setminus B(Z,\varepsilon/8), S_X \otimes V)$ are compact. By Corollary 2.16, the restriction maps $\operatorname{Dom}(\tilde{\partial}_{(\tilde{A},\tilde{\Phi})}^{\pm}) \ni s \to s|_{B(Z,\varepsilon/4)^*} \in L^2(B(Z,\varepsilon/4), S_X \otimes V)$ are also compact. Hence the injection maps $\operatorname{Dom}(\tilde{\partial}_{(\tilde{A},\tilde{\Phi})}^{\pm}) \to L^2(X, V \otimes S_X)$ are compact. \Box

Proposition 3.3. The Dirac operators $\tilde{\partial}_{(\tilde{A},\tilde{\Phi})}^{\pm}: L^2(X \setminus Z, V \otimes S_X) \to L^2(X \setminus Z, V \otimes S_X)$ are closed Fredholm operators and adjoint to each other.

Proof. We show that $\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}$ are adjoint to each other. For a densely defined closed operator F, we denote by F^* the adjoint of F. Take $\alpha \in \text{Dom}\left((\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})^*\right)$. Then we have $1 < (\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})^*(\alpha), \varphi >_{L^2} = 1 < \alpha, \tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}(\varphi) >_{L^2}$ for any $\varphi \in C_0^{\infty}(X \setminus Z, V \otimes S_X)$, where $C_0^{\infty}(X \setminus Z, V \otimes S_X)$ denotes the set of compact-supported smooth sections. Therefore $\alpha \in$ $\text{Dom}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})$ and $(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})^*(\alpha) = \tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}(\alpha)$. We show the converse. Take $a \in \text{Dom}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})$ and $b \in \text{Dom}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})$. Because of the elliptic regularity, Proposition 2.12 and Proposition 2.15, we obtain $|a|, |b| \in L^3(X \setminus Z)$. Let $\kappa : \mathbb{R} \to [0,1]$ be a smooth function that satisfies the conditions $\kappa((-\infty, -1]) = \{0\}, \kappa([-1/2, \infty)) = \{1\}$. Set $\psi_n(x) = \kappa(n \cdot \log(d_{\tilde{g}}(x, Z)))$ for $n \in \mathbb{N}$, where we set $d_{\tilde{g}}(x, Z) := \min\{d_{\tilde{g}}(x, p) \mid p \in Z\}$. Since $\psi_n a$ has a compact support on $X \setminus Z$, we have $1 < \psi_n a, \tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}(b) >_{L^2} = 1 < \tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}(\psi_n a), b >_{L^2} = 1 < \psi_n \tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}(a), b >_{L^2} + 1 < 0$ $\begin{aligned} \operatorname{clif}_X(d\psi_n)a, b>_{L^2}. \text{ Since we have } |(\kappa(nx))'| &\leq (x|\log(x)|)^{-1} \cdot ||\kappa'||_{L^{\infty}} \text{ for } 0 < x < 1, \ |d\psi_n| \text{ is } \\ \operatorname{dominated by an } L^3 \text{-function that is independent of } n. \text{ Hence we obtain } 1 < a, \tilde{\partial}_{(\tilde{A}, \tilde{\Phi})}^{\pm}(b) >_{L^2} = \\ 1 < \tilde{\partial}_{(\tilde{A}, \tilde{\Phi})}^{\mp}(a), b>_{L^2} \text{ by the dominated convergence theorem. Therefore } a \in \operatorname{Dom}\left((\tilde{\partial}_{(\tilde{A}, \tilde{\Phi})}^{\pm})^*\right) \\ \operatorname{and} (\tilde{\partial}_{(\tilde{A}, \tilde{\Phi})}^{\pm})^*(a) = \tilde{\partial}_{(\tilde{A}, \tilde{\Phi})}^{\mp}(a). \end{aligned}$

We show that the kernel of $\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}$ is finite-dimensional. By Proposition 3.2, the identity map of $\operatorname{Ker}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})$ is a compact operator. Hence we obtain $\dim(\operatorname{Ker}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})) < \infty$. Since the Dirac operators $\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}$ are adjoint to each other, the claim $\dim(R(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})^{\perp}) < \infty$ can be deduced from $\dim(\operatorname{Ker}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})) < \infty$, where $R(\cdot)$ means the range of the operator and \perp means the orthogonal complement in L^2 .

To prove that $R(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})$ is closed, it suffices to show that there exists a constant C > 0 such that the condition $||s||_{L^2} < C||\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}(s)||_{L^2}$ holds for any $s \in \text{Dom}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}) \cap \left(\text{Ker}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})\right)^{\perp}$. Suppose that there is no such a constant C > 0, then we can take a sequence $\{s_n\} \subset \text{Dom}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}) \cap \left(\text{Ker}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})\right)^{\perp}$ such that the conditions $||s_n|| = 1$ and $||\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}(s_n)||_{L^2} < 1/n$ are satisfied. By Proposition 3.2, we may assume that $\{s_n\}$ converges to some $s_{\infty} \in L^2$. Since $||s_n||_{L^2} = 1$ for any $n \in \mathbb{N}$, we have $s_{\infty} \in \left(\text{Ker}(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})\right)^{\perp} \setminus \{0\}$. However, we also have $\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}(s_n) \to 0$, and hence $\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}(s_{\infty}) = 0$, which is impossible. Therefore the condition holds for some C > 0 and $R(\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm})$ is closed.

Theorem 3.4. The Dirac operators $\partial_{(A,\Phi)}^{\pm}$ are closed Fredholm operators and adjoint to each other, and they have the same indices of $\tilde{\partial}_{(\tilde{A},\tilde{\Phi})}^{\pm}$.

Proof. Since $|A - \tilde{A}|$ and $|\Phi - \tilde{\Phi}|$ are bounded on $X \setminus Z$, by Proposition 3.2 the operators $\tilde{\vartheta}^{\pm}_{(A,\Phi)}$ are closed Fredholm operators and adjoint to each other, and they have the same indices of $\tilde{\vartheta}^{\pm}_{(\tilde{A},\tilde{\Phi})}$.

We will prove that $\tilde{\vartheta}^{\pm}_{(A,\Phi)}$ and $\vartheta^{\pm}_{(A,\Phi)}$ have the same domains and indices. First we show $\operatorname{Dom}(\vartheta^{\pm}_{(A,\Phi)}) \subset \operatorname{Dom}(\tilde{\vartheta}^{\pm}_{(A,\Phi)})$. By Lemma 3.1, there exists $C_0 > 0$ such that the estimate

$$|\tilde{\vartheta}_{(A,\Phi)}^{\pm}(s) - \vartheta_{(A,\Phi)}^{\pm}(s)| < C_0 R_p^2 \cdot |\nabla_{A_X \otimes A}(s)|$$

$$\tag{1}$$

holds on a neighborhood of $p \in Z$ for any $s \in \Gamma(X \setminus Z, S_X \otimes V)$. Let $\kappa : [0, \infty] :\to [0, 1]$ be a smooth bump function satisfying

$$\kappa(x) = \begin{cases} 0 & (1 \le x) \\ 1 & (3/8 \le x \le 3/4) \\ 0 & (x \le 1/3). \end{cases}$$

For $\delta > 0$, we set a function $\varphi_{\delta} : X \to [0,1]$ to be $\varphi_{\delta}(x) = \kappa(\delta^{-1}d_g(x,Z))$. By the Weitzenböck formula $\nabla_{A_X \otimes A}^{\bigstar g} \nabla_{A_X \otimes A} = \partial_{(A,\Phi)}^{-} \partial_{(A,\Phi)}^{+} - \Phi^2 + Sc(g)$, we have $||\nabla_{A_{S_X} \otimes A}(\varphi_{\delta}s)||_{L^2}^2 = ||\partial_{(A,\Phi)}^{+}(\varphi_{\delta}s)||_{L^2}^2 + ||\Phi(\varphi_{\delta}s)||_{L^2}^2 + \int_X Sc(g)|\varphi_{\delta}s|^2 d\text{vol}_M$ for any $s \in \Gamma(X \setminus Z, V \otimes S_X)$, where $\nabla_{A_X \otimes A}^{\bigstar g}$ is the formal adjoint of $\nabla_{A_X \otimes A}$ with respect to g and Sc(g) is the scalar curvature of g. Therefore, there exists $C_1 > 0$ such that for any sufficiently small $\delta > 0$ we have $||\nabla_{A_{S_X} \otimes A}(s)||_{L^2(U_p(3\delta/8, 3\delta/4))} \leq ||\nabla_{A_S} \otimes A(s)||_{L^2(U_p(3\delta/8, 3\delta/4))} \leq ||\nabla_{A_S} \otimes A(s)||_{L^2(U_p(3\delta/8, 3\delta/4))}$ $C_1(||\mathscr{D}_{(A,\Phi)}^{\pm}(s)||_{L^2(U_p(\delta/3,\delta))} + \delta^{-1}||s||_{L^2(U_p(\delta/3,\delta))}) \text{ holds for any } s \in \Gamma(X \setminus Z, V \otimes S_X), \text{ where}$ we put $U_p(\delta_1, \delta_2) := \{x \in X \mid \delta_1 < d_g(p, x) < \delta_2\}.$ We set $\delta_i := 4\varepsilon/(3 \cdot 2^i)$ for $i \in \mathbb{Z}_{\geq 0}$. Then we have

$$\begin{split} &\|\tilde{\boldsymbol{\vartheta}}_{(A,\Phi)}^{\pm}(s) - \boldsymbol{\vartheta}_{(A,\Phi)}^{\pm}(s)\|_{L^{2}(B(p,\varepsilon))} \\ &\leq C_{0}||R_{p}^{2} \cdot \nabla_{A_{X}\otimes A}(s)||_{L^{2}(B(p,\varepsilon))} \\ &\leq C_{0}\sum_{i=0}^{\infty}||R_{p}^{2} \cdot \nabla_{A_{X}\otimes A}(s)||_{L^{2}(U_{p}(3\delta_{i}/8,3\delta_{i}/4))} \\ &\leq C_{0}C_{1}\sum_{i=0}^{\infty}\left\{\delta_{i}^{2}||\boldsymbol{\vartheta}_{(A,\Phi)}^{\pm}(s)||_{L^{2}(U_{p}(\delta_{i}/3,\delta_{i}))} + \delta_{i}||s||_{L^{2}(U_{p}(\delta_{i}/3,\delta_{i}))}\right\} \\ &\leq C_{0}C_{1}\left(\delta_{0}^{2}||\boldsymbol{\vartheta}_{(A,\Phi)}^{\pm}(s)||_{L^{2}(B(p,\delta_{0}))} + \delta_{0}||s||_{L^{2}(B(p,\delta_{0}))}\right) \end{split}$$

Hence there exists $C_2 = C_2(\varepsilon) > 0$ such that $\|\tilde{\vartheta}_{(A,\Phi)}^{\pm}(s) - \vartheta_{(A,\Phi)}^{\pm}(s)\||_{L^2} \leq C_2(\|s\||_{L^2} + \|\vartheta_{(A,\Phi)}^{\pm}(s)\||_{L^2})$, and we have $C_2 = O(\varepsilon)$ $(\varepsilon \to 0)$. Hence we obtain $\operatorname{Dom}(\vartheta_{(A,\Phi)}^{\pm}) \subset \operatorname{Dom}(\tilde{\vartheta}_{(A,\Phi)}^{\pm})$. We show the converse. Let \tilde{A}_X denote the connection on S_X induced by the Levi-Civita connection of (X, \tilde{g}) . By the definition of Dirac-type singularity, we have $|\nabla_A(\Phi)| = |F(A)| = O(R_p^{-2})$ around $p \in Z$. Therefore from the Weitzenböck formula $\nabla_{\tilde{A}_X \otimes A}^{\star \tilde{g}} \nabla_{\tilde{A}_X \otimes A} = \vartheta_{(A,\Phi)}^{-} \vartheta_{(A,\Phi)}^{+} - \Phi^2 + \operatorname{clif}(\nabla_A(\Phi) - *_{\tilde{g}}F(A))$ and a similar argument as above, it follows that there exists $C_3 = C_3(\varepsilon) > 0$ such that $\|\tilde{\vartheta}_{(A,\Phi)}^{\pm}(s) - \vartheta_{(A,\Phi)}^{\pm}(s)\|_{L^2} \leq C_3(\||s\||_{L^2} + \|\tilde{\vartheta}_{(A,\Phi)}^{\pm}(s)\||_{L^2})$, and $C_3 = O(\varepsilon)$ $(\varepsilon \to 0)$. Therefore $\operatorname{Dom}(\vartheta_{(A,\Phi)}^{\pm}) = \operatorname{Dom}(\tilde{\vartheta}_{(A,\Phi)}^{\pm})$. Moreover, Their graph norms are also equivalent. It is a well-known fact that sufficiently small deformations of Fredholm operators, and they have the same indices as ones of $\tilde{\vartheta}_{(\tilde{A},\tilde{\Phi})}^{\pm}$.

3.2 An index calculation on a compact 3-folds

3.2.1 A lift of singular monopoles to closed 4-folds

For an arbitrary 3-fold N and a principal S^1 -bundle P defined on outside of a point $x \in N$, we set $\deg_x(P) := \int_{\partial B} c_1(P)$, where B is a small neighborhood of x.

We take a finite subset $Z' \subset X$ satisfying the conditions |Z'| = |Z| and $Z \cap Z' = \emptyset$, and set $\tilde{Z} = Z \cup Z'$. By the Mayer-Vietoris exact sequence induced by the open covering $X = B_{\varepsilon}(\tilde{Z}) \cup (X \setminus \tilde{Z})$, we can prove that there exists a principal S^1 -bundle $\pi : P \to X \setminus \tilde{Z}$ such that we have $\deg_p(P) = -1$ for $p \in Z$ and $\deg_{p'}(P) = 1$ for $p' \in Z'$. We take a metric \hat{g} on X that is flat on $B(\tilde{Z}, \varepsilon/2)$. Let $f : X \setminus \tilde{Z} \to \mathbb{R}_+$ be a smooth function. Let $\omega \in \Omega^1(P, \mathbb{R})$ be a connection of P. We assume that for any $p \in Z$ (resp. Z') the tuple $((P, \omega) \times_{S^1}(\mathbb{C}, h_{\mathbb{C}}), -\sqrt{-1}f)|_{B(p,\varepsilon/2)}$ (resp. $((P, \omega) \times_{S^1}(\mathbb{C}, h_{\mathbb{C}}), \sqrt{-1}f)|_{B(p,\varepsilon/2)}$) is the flat Dirac monopole of weight -1 (resp. 1) with respect to \hat{g} . Set a one-form $\xi := \omega/\pi^* f$ and a metric $g_P := \pi^* \hat{g} + \xi^2$ on P. We choose the global 4-form $-\xi \wedge \pi^* \operatorname{vol}_{(X,\hat{g})}$ as the orientation of P.

Proposition 3.5. The following claims are satisfied.

- The 4-fold P has the spin structure induced by the one of X.
- Let v be a vector field on X. By the isomorphism $TP = \mathbb{R}\partial_{\theta} \oplus \pi^*TX$ induced by ω , we regard π^*v as a vector field on P. Then for $F \in C^{\infty}(X)$ we have $\pi^*(v \cdot F) = \pi^*v \cdot \pi^*F$.

- For the spinor bundles S^{\pm} , we have the unitary isomorphism $S_P^{\pm} \simeq \pi^*(S_X)$.
- Under the above isomorphisms, the Clifford product on P can be represented as follows:

$$\operatorname{clif}_{P}(\xi) = \begin{pmatrix} 0 & \operatorname{Id} \\ -\operatorname{Id} & 0 \end{pmatrix}$$
$$\operatorname{clif}_{P}(\pi^{*}\alpha) = \begin{pmatrix} 0 & \operatorname{clif}_{X}(\alpha) \\ \operatorname{clif}_{X}(\alpha) & 0 \end{pmatrix} \quad (\alpha \in \Gamma(X, \Omega^{1}(X))).$$

Proof. Let $i: SO(3) \to SO(4)$ be the injection induced by $\mathbb{R}^3 \ni x \to (0, x) \in \mathbb{R}^4$, and take the homomorphism $\rho: Spin(3) \to Spin(4)$ to be the lift of i. Set $\mathscr{S}_P := \pi^* \mathscr{S} \times_{\rho} Spin(4)$. Then we have $\mathscr{S}_P \times_{Spin(4)} (\mathbb{R}^4, g_{4, \text{Euc}}) \simeq (P \times (\mathbb{R}, g_{1, \text{Euc}})) \oplus (\pi^* TX, \pi^* g) \simeq TP$. Hence \mathscr{S}_P is a spin structure on P. The second claim is trivial from some direct calculations.

We have the isomorphisms $Spin(3) \simeq SU(2)$ and $Spin(4) \simeq SU(2)_+ \times SU(2)_-$. Under this isomorphism, we have $\rho(g) = (g, g)$. Hence we obtain the unitary isomorphism $S_P^{\pm} \simeq \pi^*(S_X)$. The last claim easily follows from the third one.

We take another metric $\tilde{g}_P := \pi^* f \cdot g_P$. For $p \in Z$, the restriction $\pi : \pi^*(B(p, \varepsilon/2) \setminus \{p\}) \to B(p, \varepsilon/2) \setminus \{p\}$ can be identified with the Hopf fibration $(\mathbb{R}^4 \setminus \{0\}) \to (\mathbb{R}^3 \setminus \{0\})$. For $p' \in Z'$, we can also identify $\pi : \pi^*(B(p', \varepsilon/2) \setminus \{p'\}) \to B(p', \varepsilon/2) \setminus \{p'\}$ with the inverse-oriented Hopf fibration $(-\mathbb{R}^4 \setminus \{0\}) \to (\mathbb{R}^3 \setminus \{0\})$, where $-\mathbb{R}^4$ is the differentiable manifold \mathbb{R}^4 with the inverse orientation of the standard one of \mathbb{R}^4 . Hence by taking the one-point compactification on the closure of each $\pi^*(B(p, \varepsilon/2) \setminus \{p\})$, we obtain a closed 4-fold \tilde{P} equipped with an S^1 -action. Then \tilde{g}_P can be prolonged to a metric on \tilde{P} as in Lemma 2.5. We extend the projection $\pi : P \to X \setminus \tilde{Z}$ to the smooth map $\tilde{P} \to X$, and we denote this map by the same letter π by abuse of notation. Set $Z_4 := \pi^{-1}(Z), Z'_4 := \pi^{-1}(Z')$ and $\tilde{Z}_4 := \pi^{-1}(\tilde{Z})$. Then $\pi|_{\tilde{Z}_4} : \tilde{Z}_4 \to Z_4$ is a bijection. We have $\tilde{P} = P \sqcup \tilde{Z}_4$ and $\operatorname{codim}(\tilde{P}, \tilde{Z}) = 4$. Hence we obtain isomorphisms $\pi_1(P) \simeq \pi_1(\tilde{P})$ and $H^2(P, \mathbb{Z}/2\mathbb{Z}) \simeq H^2(\tilde{P}, \mathbb{Z}/2\mathbb{Z})$. Therefore the orientation and the spin structure of P induce the unique ones of \tilde{P} . Hence we obtain the following lemma.

Lemma 3.6. We have the unitary isomorphisms $S_{\tilde{P}}^{\pm}|_{P} \simeq (\pi^* S_X)|_{P}$. Under these isomorphisms, we have $\operatorname{clif}_{\tilde{P}}(v)|_{P} = \pi^* f^{-1/2} \cdot \operatorname{clif}_{P}(v)$ for $v \in \Omega^1(\tilde{P})$.

For the Dirac-type singular monopole (V, h, A, Φ) on (X, Z), we take a connection \hat{A} and a skew-Hermitian endomorphism $\hat{\Phi}$ that satisfy the following conditions.

- For any $p \in Z$, $(V, h, \hat{A}, \hat{\Phi})|_{B(p,\varepsilon/2)\setminus\{p\}}$ is a direct sum of the flat Dirac monopoles with respect to the metric \hat{g} .
- For any $p' \in Z'$, $(V, h, \hat{A})|_{B(p', \varepsilon/2)}$ is a flat unitary bundle and $\hat{\Phi}|_{B(p', \varepsilon/2)} = 0$.
- The differences $|A \hat{A}|$, $|\Phi \hat{\Phi}|$ are bounded on $X \setminus \tilde{Z}$.

We denote by $\hat{\vartheta}^{\pm}_{(\hat{A},\hat{\Phi})}$ the Dirac operators of $(V, h, \hat{A}, \hat{\Phi})$ with respect to the metric \hat{g} . By the same argument as Proposition 3.3 and Theorem 3.4, $\hat{\vartheta}^{\pm}_{(\hat{A},\hat{\Phi})}$ are Fredholm and adjoint to each other, and the indices of $\hat{\vartheta}^{\pm}_{(\hat{A},\hat{\Phi})}$ are the same as the ones of $\vartheta^{\pm}_{(A,\Phi)}$.

We set $(V_4, h_4, A_4) := (\pi^* V, \pi^* h, \pi^* \hat{A} - \xi \otimes \pi^* \hat{\Phi})$ on $P \sqcup Z'_4$. By Proposition 2.6, (V_4, h_4, A_4) can be prolonged over \tilde{P} , and we denote it by the same symbols. Let $\vartheta^{\pm}_{A_4} : \Gamma(\tilde{P}, S^{\pm}_{\tilde{P}} \otimes V_4) \to$ $\Gamma(\tilde{P}, S_{\tilde{P}}^{\mp} \otimes V_4)$ be the Dirac operators of (V_4, h_4, A_4) . For a section $s \in \Gamma(X \setminus Z, V \otimes S_X)$, we have $||\pi^*s||_{L^2(\tilde{P}, \tilde{g}_P)}^2 = 2\pi ||\sqrt{f}s||_{L^2(X, \hat{g})}^2$. Hence the operator $\pi^{\dagger}(s) := \pi^*(\sqrt{2\pi f^{-1}} s)$ preserves the L^2 -norms. Since P is a principal S^1 -bundle on X, π^{\dagger} is an isometric isomorphism from $L^2(X \setminus \tilde{Z}, V \otimes S_X)$ to $L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\pm})^{S^1}$, where $L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}})^{S^1}$ is the closed subspace of $L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}})$ consisting of S^1 -invariant sections. For i = 1, 2, take smooth functions $\lambda_i^{\pm} : X \setminus \tilde{Z} \to \mathbb{R}_+$ satisfying the following conditions.

- The equality $\lambda_1^{\pm}\lambda_2^{\pm} = f^{-1/2}$ holds.
- The equality $\lambda_1^{\pm} = \lambda_2^{\mp}$ holds.
- For any $p \in \mathbb{Z}$, $\lambda_1^+|_{B(p,\varepsilon) \setminus \{p\}} = 1$.
- For any $p' \in Z'$, $\lambda_2^+|_{B(p',\varepsilon) \setminus \{p'\}} = 1$.

By Lemma 3.6 and Proposition 2.18, there exist compact-supported smooth endomorphisms $\epsilon^{\pm} \in \Gamma(X \setminus \tilde{Z}, \operatorname{End}(S_X \otimes V))$ such that we have $\pi^{\dagger}(\epsilon^{\pm})(s) = \partial_{A_4}^{\pm} \circ \pi^{\dagger}(s) - \pi^{\dagger} \circ (\lambda_1^{\pm} \partial_{(\hat{A},\hat{\Phi})}^{\pm} \lambda_2^{\pm})(s)$ for any $s \in \Gamma(X \setminus Z, S_X \otimes V)$. Let D^{\pm} be the differential operator $\lambda_1^{\pm} \partial_{(\hat{A},\hat{\Phi})}^{\pm} \lambda_2^{\pm} + \epsilon^{\pm}$ on $X \setminus \tilde{Z}$. We denote by $\operatorname{Ind}(\partial_{A_4}^{\pm})^{S^1}$ the S^1 -equivariant index of the closed operator $\partial_{A_4}^{\pm} : L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\pm})^{S^1} \to L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\pm})^{S^1}$.

Proposition 3.7. Under the isometric isomorphism π^{\dagger} , the operators D^{\pm} and $\partial_{A_4}^{\pm}$ determine the same closed operators respectively. In particular, the operators D^{\pm} are closed Fredholm operator adjoint to each other, and satisfy $\operatorname{Ind}(D^{\pm}) = \operatorname{Ind}(\partial_{A_4}^{\pm})^{S^1}$.

Proof. We take an arbitrary $a \in \text{Dom}(\vartheta_{A_4}^{\pm})^{S^1}$, and set $b := \vartheta_{A_4}^{\pm}(a)$. We will show $(\pi^{\dagger})^{-1}(a) \in \text{Dom}(D^{\pm})$ and $D^{\pm}((\pi^{\dagger})^{-1}(a)) = (\pi^{\dagger})^{-1}(b)$. Let φ be a compact-supported smooth section of $V \otimes S_X$ on $X \setminus \tilde{Z}$. Then $\pi^{\dagger}(\varphi)$ also has a compact support. Hence we have $1 < a, (\vartheta_{A_4}^{\pm})^{\star}(\pi^{\dagger}(\varphi)) >_{L^2} = 1 < b, \pi^{\dagger}(\varphi) >_{L^2}$. Since $(\pi^{\dagger})^{-1}$ is isometric, we obtain $1 < (\pi^{\dagger})^{-1}(a), (D^{\pm})^{\star}(\varphi) > = 1 < (\pi^{\dagger})^{-1}(b), \varphi >$. Therefore we have $(\pi^{\dagger})^{-1}(a) \in \text{Dom}(D^{\pm})$ and $D^{\pm}((\pi^{\dagger})^{-1}(a)) = (\pi^{\dagger})^{-1}(b)$. We prove the converse. We take an arbitrary $c \in \text{Dom}(D^{\pm})$, and set $d := D^{\pm}(c)$. Let χ be a compact-supported smooth section of $V_4 \otimes S_{\tilde{P}}$ on $\tilde{P} \setminus \tilde{Z}_4$. We take the orthogonal decomposition $\chi = \chi^{S^1} + \chi^{\perp} \in L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\pm})^{S^1} \oplus (L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\pm})^{S^1})^{\perp}$. Then χ^{S^1} and χ^{\perp} are also compact-supported smooth sections on $\tilde{P} \setminus \tilde{Z}_4$, and we have $(\vartheta_{A_4}^{\pm})^{\star}(\chi^{S^1}) \in L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\pm})^{S^1}$ and $(\vartheta_{A_4}^{\pm})^{\star}(\chi^{\perp}) \in (L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\pm})^{S^1})^{\perp}$. Hence we obtain $1 < \pi^{\dagger}(c), (\vartheta_{A_4}^{\pm})^{\star}(\chi) >_{L^2} = 1 < c, (\pi^{\dagger})^{-1}((\vartheta_{A_4}^{\pm})^{\star}(\chi^{S^1})) >_{L^2} = 1 < c, (D^{\pm})^{\star}((\pi^{\dagger})^{-1}(\chi^{S^1})) >_{L^2} = 1 < d, (\pi^{\dagger})^{-1}(\chi^{S^1}) >_{L^2} = 1 < \pi^{\dagger}(d), \chi^{S^1} >_{L^2} = 1 < \pi^{\dagger}(d), \chi^{S^1} >_{L^2} = 1 < \pi^{\dagger}(d)$ holds on $P = \tilde{P} \setminus \tilde{Z}_4$. Here we prepare the following lemma.

Lemma 3.8. Take arbitrary $u \in L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\pm})$ and $v \in L^2(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\pm})$. If u and v satisfy $\partial_{A_4}^{\pm}(u) = v$ on P, then we have $\partial_{A_4}^{\pm}(u) = v$ on whole \tilde{P} .

If we admit this lemma, then we obtain $\partial_{A_4}^{\pm}(\pi^{\dagger}(c)) = \pi^{\dagger}(d)$ on \tilde{P} . Hence the proof is complete.

proof of Lemma 3.8. Take $\varphi \in \Gamma(\tilde{P}, V_4 \otimes S_{\tilde{P}}^{\mp})$. Let $\kappa : \mathbb{R} \to [0, 1]$ be a smooth function that satisfies $\kappa((-\infty, -1)) = \{0\}$ and $\kappa((-1/2, \infty)) = \{1\}$. Set $\psi_n : \tilde{P} \to [0, 1]$ to be $\psi_n(x) := \kappa(n \log(d_{\tilde{g}_P}(x, \tilde{Z}_4)))$ for $n \in \mathbb{N}$. Then $\psi_n \cdot \varphi$ has a compact support on $\tilde{P} \setminus \tilde{Z}_4$. Hence

we obtain $1 < u, (\partial_{A_4}^{\pm})^{\bigstar}(\psi_n \cdot \varphi) >_{L^2} = 1 < u, \psi_n \cdot (\partial_{A_4}^{\pm})^{\bigstar}(\varphi) >_{L^2} + 1 < u, \operatorname{clif}_{\tilde{P}}(d\psi_n)\varphi >_{L^2} = 1 < v, \psi_n \cdot \varphi >_{L^2}$. Since we have an estimate $|\kappa'(nx)| \leq (x|\log(x)|)^{-1}||\kappa'||_{L^{\infty}}$ for 0 < x < 1, $|d\psi_n|$ is dominated by an L^2 -function that is independent of n. Therefore we obtain $1 < u, (\partial_{A_4}^{\pm})^{\bigstar}(\varphi) >_{L^2} = 1 < v, \varphi >$ by the dominated convergence theorem.

We will associate the S^1 -invariant indices of $\partial_{A_4}^{\pm}$ and the indices of $\hat{\partial}_{(\hat{A},\hat{\Phi})}^{\pm}$.

Proposition 3.9. We have $\operatorname{Ind}(\hat{\partial}_{A_4}^{\pm})^{S^1} = \operatorname{Ind}(\hat{\hat{\partial}}_{(\hat{A},\hat{\Phi})}^{\pm}).$

Proof. If we prove $\operatorname{Ind}(\partial_{A_4}^+)^{S^1} = \operatorname{Ind}(\partial_{(\hat{A},\hat{\Phi})}^+)$, then we obtain $\operatorname{Ind}(\partial_{A_4}^-)^{S^1} = -\operatorname{Ind}(\partial_{A_4}^+)^{S^1} = -\operatorname{Ind}(\partial_{A_4}^+)^{S^1} = -\operatorname{Ind}(\partial_{(\hat{A},\hat{\Phi})}^+) = \operatorname{Ind}(\partial_{(\hat{A},\hat{\Phi})}^+)$ because $\partial_{(\hat{A},\hat{\Phi})}^+$ are adjoint to each other. Hence we only need to prove $\operatorname{Ind}(\partial_{A_4}^+)^{S^1} = \operatorname{Ind}(\partial_{(\hat{A},\hat{\Phi})}^+)$. By Proposition 3.7, it suffices to show $\operatorname{Ind}(\partial_{(\hat{A},\hat{\Phi})}^+) = \operatorname{Ind}(D^+)$. Since the support of ϵ^+ is compact in $X \setminus Z$, $\lambda_1^+ \partial_{(\hat{A},\hat{\Phi})}^+ \lambda_2^+$ is a closed Fredholm operator and it has the same index as D^+ . By the same asymptotic analysis in Proposition 2.12, for any solutions $s \in \Gamma(X \setminus \tilde{Z}, S_X \otimes V)$ of the equation $\partial_{(\hat{A},\hat{\Phi})}^+(s) = 0$, we have $s \in L^2$ if and only if $(\lambda_2^+)^{-1}s \in L^2$. Hence we have the natural equality $\operatorname{Ker}(\lambda_1^+ \partial_{(\hat{A},\hat{\Phi})}^+ \lambda_2^+) \cap L^2 = (\lambda_2^+)^{-1} \cdot (\operatorname{Ker}(\partial_{(\hat{A},\hat{\Phi})}^+) \cap L^2)$, where $(\lambda_2^+)^{-1} \cdot (\operatorname{Ker}(\partial_{(\hat{A},\hat{\Phi})}^+) \cap L^2)$ means the set $\{(\lambda_2^+)^{-1} \cdot s \mid s \in \operatorname{Ker}(\partial_{(\hat{A},\hat{\Phi})}^+ \lambda_2^+) \cap L^2 = \operatorname{Ker}(\lambda_1^- \partial_{(\hat{A},\hat{\Phi})}^- \lambda_2^-) \cap L^2 = (\lambda_2^-)^{-1} \cdot (\operatorname{Ker}(\partial_{(\hat{A},\hat{\Phi})}^+) \cap L^2)$. Therefore we obtain $\operatorname{Ind}(\partial_{(\hat{A},\hat{\Phi})}^+) = \operatorname{Ind}(\lambda_1^+ \partial_{(\hat{A},\hat{\Phi})}^+ \lambda_2^+) = \operatorname{Ind}(D^+)$, which completes the proof. □

By following [2], we calculate the S¹-equivariant index $\operatorname{Ind}(\partial_{A_d}^{\pm})^{S^1}$.

Lemma 3.10. For $p \in Z_4$ (resp. Z'), the weights of the fiber $S^+_{\tilde{P}}|_p$ and $S^-_{\tilde{P}}|_p$ are (0,0) and (-1,1) (resp. (-1,1) and (0,0)) respectively.

Proof. For $p \in Z_4$, the projection $\pi|_{B(p,\varepsilon)} : B(p,\varepsilon) \to \pi(B(p,\varepsilon))$ can be identified with the Hopf fibration $\mathbb{R}^4 = \mathbb{C}^2 \to \mathbb{R}^3$ in Section 1. By the natural isomorphisms $S^+_{\mathbb{C}^2} \simeq \Omega^{0,0}_{\mathbb{C}^2} \oplus \Omega^{0,2}_{\mathbb{C}^2}$ and $S^-_{\mathbb{C}^2} \simeq \Omega^{0,1}_{\mathbb{C}^2}$, the weights of $S^+_{\tilde{P}}|_p$ and $S^-_{\tilde{P}}|_p$ are (0,0) and (-1,1) respectively. As a similar way, for $p' \in Z'_4$, the projection $\pi|_{B(p',\varepsilon)} : B(p',\varepsilon) \to \pi(B(p',\varepsilon))$ can be identified with the inverse-oriented Hopf fibration $-\mathbb{R}^4 \to \mathbb{R}^3$. Therefore the weights of $S^+_{\tilde{P}}|_{p'}$ and $S^-_{\tilde{P}}|_{p'}$ are (-1,1) and (0,0) respectively.

Proposition 3.11. The S¹-invariant index $\operatorname{Ind}(\partial_{A_4}^{\pm})^{S^1}$ is given as

$$\operatorname{Ind}(\partial_{A_4}^{\pm})^{S^1} = \mp \sum_{p \in \mathbb{Z}} \sum_{k_{p,i} > 0} k_{p,i},$$

where $\vec{k}_p = (k_{p,i}) \in \mathbb{Z}^r$ is the weight of the monopole (V, h, A, Φ) at $p \in Z$. *Proof.* According to [2], The S¹-invariant index $\operatorname{Ind}(\partial_{A_4}^{\pm})^{S^1}$ is given as

$$\operatorname{Ind}(\partial_{A_4}^{\pm})^{S^1} = (2\pi)^{-1} \int_{S^1} \sum_{p \in \tilde{Z}_4} \frac{\operatorname{tr}_{\theta}((S_{\tilde{P}}^{\pm} \otimes V_4)|_p) - \operatorname{tr}_{\theta}((S_{\tilde{P}}^{\pm} \otimes V_4)|_p)}{\operatorname{tr}_{\theta}(\bigwedge^{-1} T_p \tilde{P})} d\theta,$$

where $\operatorname{tr}_{\theta}$ is trace of the action of $\theta \in S^1$ and $\bigwedge^{-1} T_p \tilde{P}$ means the virtual vector space $\bigoplus_{i=0}^{\infty} (-1)^i \bigwedge^i T_p \tilde{P}$. Then by Lemma 3.10 we have

$$\begin{aligned} \operatorname{tr}_{\theta}((S_{\tilde{P}}^{\pm} \otimes V_{4})|_{p}) &- \operatorname{tr}_{\theta}((S_{\tilde{P}}^{\mp} \otimes V_{4})|_{p}) = \pm 2(1 + \cos\theta) \sum_{i} \exp(2\pi\sqrt{-1}k_{p,i}\theta) \quad (p \in Z) \\ \operatorname{tr}_{\theta}((S_{\tilde{P}}^{\pm} \otimes V_{4})|_{p'}) &- \operatorname{tr}_{\theta}((S_{\tilde{P}}^{\mp} \otimes V_{4})|_{p'}) = \mp 2r(1 - \cos\theta) \quad (p' \in Z') \\ \operatorname{tr}_{\theta}(\bigwedge^{-1} T_{\tilde{p}}\tilde{P}) &= 4(1 - \cos\theta)^{2} \quad (\tilde{p} \in \tilde{Z}). \end{aligned}$$

Hence by straightforward computation we obtain the conclusion.

Hence we obtain the following corollary.

Corollary 3.12. The indices of the Dirac operators $\partial_{(A,\Phi)}^{\pm}$ are given as follows:

$$\operatorname{Ind}(\mathscr{J}_{(A,\Phi)}^{\pm}) = \mp \sum_{p \in \mathbb{Z}} \sum_{k_{p,i} > 0} k_{p,i} = \pm \sum_{p \in \mathbb{Z}} \sum_{k_{p,i} < 0} k_{p,i},$$

where $\vec{k}_p = (k_{p,i}) \in \mathbb{Z}^r$ is the weight of the monopole (V, h, A, Φ) at $p \in Z$.

4 An index formula of Dirac operators on complete 3-folds

Let (X, g) be a complete oriented Riemannian 3-fold such that the scalar curvature Sc(g) is bounded. We fix a spin structure on X. Let $i: Y \hookrightarrow X$ be a relative compact region with a smooth boundary ∂Y . We take the orientation of ∂Y to satisfy that $\nu \wedge \operatorname{vol}_{\partial Y}$ is positive for the inward normal unit 1-form $\nu \in i^* \Omega^1(X)$.

4.1 The non-singular case

Following [10], we recall the non-singular case. Let (V, h, A) be a Hermitian bundle with a connection on X and Φ be a skew-Hermitian endomorphism on V. We assume the following conditions.

- Both Φ and F(A) are bounded.
- We have $\nabla_A(\Phi)|_x = o(1)$ as $x \to \infty$.
- The inequality $\inf_{x \in X \setminus Y} \{ |\lambda| \mid \lambda \text{ is an eigenvalue of } \Phi(x) \} > 0 \text{ is satisfied.}$

We call this conditions the Råde condition. In [10], Råde proved the following theorem.

Theorem 4.1. The differential operators $\mathscr{D}_{(A,\Phi)}^{\pm} = \mathscr{D}_A \pm \Phi : L^2(X, V \otimes S_X) \to L^2(X, V \otimes S_X)$ are closed Fredholm, and their indices are given as follows:

$$\operatorname{Ind}(\partial_{(A,\Phi)}^{\pm}) = \mp \int_{\partial Y} \operatorname{ch}(V^{+}) = \pm \int_{\partial Y} \operatorname{ch}(V^{-}),$$

where V^{\pm} is a subbundle of $V|_{\partial Y}$ spanned by the eigenvectors of $\pm \sqrt{-1}\Phi$ with positive eigenvalues.

4.2 The indices of twisted flat Dirac monopoles

Let (L_k, h_k, A_k, Φ_k) be the flat Dirac monopole of weight $k \in \mathbb{Z}$. For $a \in \mathbb{R} \setminus \{0\}$, we set $\Phi_{a,k} := \sqrt{-1} (a + (k/2r_3))$. Then $(L_k, h_k, A_k, \Phi_{a,k})$ is also a Dirac-type monopole on $(\mathbb{R}^3, \{0\})$.

Proposition 4.2. The operators $\mathscr{Y}^{\pm}_{(A_k, \Phi_{a,k})}$ are Fredholm. Moreover, we have $\operatorname{Ind}(\mathscr{Y}^{\pm}_{(A_k, \Phi_{a,k})}) = 0$ if ak > 0.

Proof. The Fredholmness of $\mathscr{J}_{(A_k,\Phi_{a,k})}^{\pm}$ follows from Corollary 2.16 and some standard arguments. The proof for the case a > 0 and k > 0 works for the case a < 0 and k < 0 mutatismutandis. Hence we may assume a > 0 and k > 0. We take $f_{\nu}^{\pm} \in L^2(S^2, S_{S^2}^{\pm} \otimes \mathcal{O}(k))$ ($\nu \in \mathbb{N}$) and $n_{\nu} > 0$ as in subsection 2.2. We set vector subspaces $W_0 := H^0(\mathbb{P}^1, \mathcal{O}(k-1)) \times \{0\}$ and $W_{\nu} := (f_{\nu}^+, 0)\mathbb{C} \oplus (0, f_{\nu}^-)\mathbb{C}$ of $L^2(S^2, \mathcal{O}(k) \otimes S_{S^2}) = L^2(S^2, \mathcal{O}(k) \otimes S_{S^2}) \times L^2(S^2, \mathcal{O}(k) \otimes S_{S^2})$. Then we have a decomposition $L^2(S^2, \mathcal{O}(k) \otimes S_{S^2}) = \bigoplus_{\nu \ge 0} W_{\nu}$, where \bigoplus means L^2 -completion of the direct sum. Hence we obtain the decomposition $L^2(\mathbb{R}^3 \setminus \{0\}, L_k \otimes S_{\mathbb{R}^3}) = \bigoplus_{\nu \ge 0} W_{\nu} \otimes L^2(\mathbb{R}_{>0}, r^2 dr)$, where $L^2(\mathbb{R}_{>0}, r^2 dr)$ is the weighted L^2 -space on $\mathbb{R}_{>0}$ with the norm $||f||^2 = \int_{\mathbb{R}_{>0}} r^2 |f(r)|^2 dr$. We denote by E_{ν} the space $W_{\nu} \otimes L^2(\mathbb{R}_{>0}, r^2 dr)$. The Dirac operators $\mathscr{J}_{(A_k,\Phi_{a,k})}^{\pm}$ preserves this decomposition, and hence we obtain $\mathrm{Ind}(\mathscr{J}_{(A_k,\Phi_{a,k})}^{\pm}) = \sum_{\nu} \mathrm{Ind}\left(\mathscr{J}_{(A_k,\Phi_{a,k})}^{\pm}|_{E_{\nu}}: E_{\nu} \to E_{\nu}\right)$. Here we prepare the following lemma.

Lemma 4.3. We take Hermitian matrices

$$A_{\nu} = \begin{pmatrix} -(2+k)/2 & \sqrt{-1}n_{\nu} \\ -\sqrt{-1}n_{\nu} & -(2-k)/2 \end{pmatrix}, \quad B = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}.$$

We set the closed operator $P_{\nu} : \mathbb{C}^2 \otimes L^2(\mathbb{R}_{>0}, r^2 dr) \to \mathbb{C}^2 \otimes L^2(\mathbb{R}_{>0}, r^2 dr)$ to be $P_{\nu}(v) := \partial_r v - (A_{\nu}v/r + Bv)$. Then P_{ν} is closed Fredholm and $\operatorname{Ind}(P_{\nu}) = 0$.

By this lemma we have $\operatorname{Ind}\left(\partial_{(A_k,\Phi_{a,k})}^{\pm}|_{E_{\nu}}\right) = 0$ unless i = 0. Hence $\operatorname{Ind}\left(\partial_{(A_k,\Phi_{a,k})}^{\pm}\right) = \operatorname{Ind}\left(\partial_{(A_k,\Phi_{a,k})}^{\pm}|_{E_0}\right)$. Moreover, we obtain $\operatorname{Ind}\left(\partial_{(A_k,\Phi_{a,k})}^{\pm}|_{E_0}\right) = 0$ by a straight calculation. \Box

(proof of Lemma 4.3). The Fredholmness can be easily seen. We take a function C_{ν} : $\mathbb{R}_{>0} \to \operatorname{Mat}(2, \mathbb{C})$ as

$$C_{\nu}(r) := \begin{cases} A_{\nu}/r & (r \le 1) \\ B & (r > 1) \end{cases}$$

and set a differential operator \tilde{P}_{ν} to be $\tilde{P}(v) := \partial_r v - C_{\nu}(r)v$. Since a compact perturbation does not change the index, P_{ν} and \tilde{P}_{ν} have the same indices. We can write any elements of the kernels of \tilde{P}_{ν} and the adjoint operator $\tilde{P}_{\nu}^{\bigstar}$ explicitly, and there are no non-zero L^2 -solutions of $\tilde{P}_{\nu}(v) = 0$ and $\tilde{P}_{\nu}^{\bigstar}(v) = 0$. Hence we obtain $\operatorname{Ind}(P_{\nu}) = 0$, which is the desired equality. \Box

4.3 The general case

Let $Z \subset Y \setminus \partial Y$ be a finite subset. Let (V, h, A, Φ) be a Dirac-type singular monopole on (X, Z) of rank r which satisfies the Råde condition. We denote by $\vec{k}_p = (k_{p,i}) \in \mathbb{Z}^r$ the weight of (V, h, A, Φ) at $p \in Z$.

Theorem 4.4. The Dirac operators $\partial_{(A,\Phi)}^{\pm}$ are Fredholm and adjoint each other. The indices of $\partial_{(A,\Phi)}^{\pm}$ are given as follows:

$$\operatorname{Ind}(\partial_{(A,\Phi)}^{\pm}) = \mp \left\{ \sum_{p \in \mathbb{Z}} \sum_{k_{p,i} > 0} k_{p,i} + \int_{\partial Y} ch(V^{+}) \right\} = \pm \left\{ \sum_{p \in \mathbb{Z}} \sum_{k_{p,i} < 0} k_{p,i} + \int_{\partial Y} ch(V^{-}) \right\}.$$

Proof. We may assume that X is connected. The former claims are easy consequences of Corollary 2.16 and results in [10]. We calculate the indices of $\partial_{(A,\Phi)}^{\pm}$ by using the excision formula in [4, Appendix B]. We set $k := \sum_{p \in Z} \sum_i k_{p,i}$.

First we consider the case k = 0. Let (V_0, h_0, A_0) be a trivial Hermitian bundle of rank r with the trivial connection on S^3 and Φ_0 the zero endomorphism on V_0 . Let U_N be the northern closed hall ball of S^3 . We take a compact neighborhood U of Z that is diffeomorphic to a closed ball. We replace $(V, h, A, \Phi)|_U$ and $(V_0, h_0, A_0, \Phi_0)|_{U_N}$, and obtain $(\tilde{V}^0, \tilde{h}^0, \tilde{A}^0, \tilde{\Phi}^0)$ on X and $(\tilde{V}_0, \tilde{h}_0, \tilde{A}_0, \tilde{\Phi}_0)$ on S^3 . Then by the excision formula we have $\operatorname{ind}(\partial_{(A,\Phi)}^{\pm}) + \operatorname{ind}(\partial_{(A_0,\Phi_0)}^{\pm}) = \operatorname{ind}(\partial_{(\tilde{A}^0,\tilde{\Phi}^0)}^{\pm}) + \operatorname{ind}(\partial_{(\tilde{A}^0,\tilde{\Phi}_0)}^{\pm})$. Hence we obtain $\operatorname{ind}(\partial_{(A,\Phi)}^{\pm}) = \mp \left(\sum_{k_{p,i}>0} k_{p,i} + \int_{\partial Y} \operatorname{ch}(V^+)\right)$ by Corollary 3.12 and Theorem 4.1.

Next we consider the case $k \neq 0$. The proof for the case k > 0 remain valid for k < 0mutatis mutandis. Hence we may assume k > 0. Let (V_1, h_1, A_1) be a Hermitian bundle of rank r with a connection on S^3 outside the north pole p_N and the south pole p_S , and Φ_1 be a skew-Hermitian endomorphism of V_1 . We assume that (V_1, h_1, A_1, Φ_1) is a Diractype singular monopole of weight $(k, 0, \ldots, 0)$ (resp. $(-k, 0, \ldots, 0)$) on a neighborhood of p_N (resp. p_S). We replace $(V, h, A, \Phi)|_U$ and $(V_1, h_1, A_1, \Phi_1)|_{U_N}$, and obtain $(\tilde{V}^1, \tilde{h}^1, \tilde{A}^1, \tilde{\Phi}^1)$ on X and $(\tilde{V}_1, \tilde{h}_1, \tilde{A}_1, \tilde{\Phi})$ on S^3 . Then the excision formula shows $\operatorname{ind}(\partial_{(A,\Phi)}^{\pm}) + \operatorname{ind}(\partial_{(A_1,\Phi_1)}^{\pm}) =$ $\operatorname{ind}(\vartheta_{(\tilde{A}^{1},\tilde{\Phi}^{1})}^{\pm}) + \operatorname{ind}(\vartheta_{(\tilde{A}_{1},\tilde{\Phi}_{1})}^{\pm}). \text{ Hence } \operatorname{ind}(\vartheta_{(A,\Phi)}^{\pm}) \mp k = \operatorname{ind}(\vartheta_{(\tilde{A}^{1},\tilde{\Phi}^{1})}^{\pm}) \mp \sum_{k_{p,i}>0} k_{p,i}. \text{ We set} (V_{2}, h_{2}, A_{2}, \Phi_{2}) := (L_{-k}, h_{-k}, A_{-k}, \Phi_{-k,-1}) \oplus (\underline{\mathbb{C}^{r-1}}, \underline{h}_{\underline{\mathbb{C}^{r-1}}}, \underline{d}, 0) \text{ on } \mathbb{R}^{3}, \text{ where } (\underline{\mathbb{C}^{r-1}}, \underline{h}_{\underline{\mathbb{C}^{r-1}}}, \underline{d})$ be a trivial Hermitian bundle with the trivial connection on \mathbb{R}^3 . We denote by $p \in X$ the singular point of $(\tilde{V}^1, \tilde{h}^1, \tilde{A}^1, \tilde{\Phi}^1)$. We glue $(\tilde{V}^1, \tilde{h}^1, \tilde{A}^1, \tilde{\Phi}^1)|_{X \setminus B(p,\varepsilon)}$ and $(V_2, h_2, A_2, \Phi_2)|_{\mathbb{R}^3 \setminus B(0,\varepsilon)}$, and obtain $(\tilde{V}^2, \tilde{h}^2, \tilde{A}^2, \tilde{\Phi}^2)$ on $\tilde{X} = ((X \setminus B(p, \varepsilon)) \sqcup \mathbb{R}^3 \setminus B(0, \varepsilon)) / \sim$, where \sim is an identification of their boundaries. We also glue $(\tilde{V}^1, \tilde{h}^1, \tilde{A}^1, \tilde{\Phi}^1)|_{\overline{B(p,\varepsilon)}}$ and $(V_2, h_2, A_2, \Phi_2)|_{\overline{B(0,\varepsilon)}}$ and obtain $(\tilde{V}_2, \tilde{h}_2, \tilde{A}_2, \tilde{\Phi}_2)$ on $S_{\varepsilon}^3 := (\overline{B(p,\varepsilon)} \sqcup \overline{B(0,\varepsilon)}) / \sim$, where over-line means the clo-sure. Then by the excision formula we have $\operatorname{ind}(\partial_{(\tilde{A}^1, \tilde{\Phi}^1)}^{\pm}) = \operatorname{ind}(\partial_{(\tilde{A}^1, \tilde{\Phi}^1)}^{\pm}) + \operatorname{ind}(\partial_{(A_2, \Phi_2)}^{\pm}) =$ $\operatorname{ind}(\partial_{(\tilde{A}^2,\tilde{\Phi}^2)}^{\pm}) + \operatorname{ind}(\partial_{(\tilde{A}_2,\tilde{\Phi}_2)}^{\pm}) = \operatorname{ind}(\partial_{(\tilde{A}^2,\tilde{\Phi}^2)}^{\pm}) \mp k.$ Since the tuple $(\tilde{V}^2,\tilde{h}^2,\tilde{A}^2,\tilde{\Phi}^2)$ satisfies the Råde condition, we obtain $\operatorname{ind}(\partial_{(\tilde{A}^2,\tilde{\Phi}^2)}^{\pm}) = \mp \int_{\partial Y} ch(V^+)$. As a consequence of the above arguments, we obtain $\operatorname{ind}(\mathscr{A}_{(A,\Phi)}^{\pm}) = \mp (\int_{\partial Y} ch(V^{+}) + \sum_{k_{p,i}>0} k_{p,i})$, which is the desired equation.

References

- Antonio López Almorox and Carlos Tejero Prieto, "Holomorphic spectrum of twisted Dirac operators on compact Riemann surfaces", Journal of Geometry and Physics (2006), Vol.56, 2069–2091.
- [2] Michael Francis Atiyah and Isadore Manuel Singer, "The Index of Elliptic operators (III)", Annals of Mathematics (1968), Vol.87, no.3, 546–604.

- [3] Constantine Callias, "Axial anomalies and index theorems on open spaces", Communications in Mathematical Physics (1978), vol. 62, 213–234.
- [4] Benoit Charbonneau, "Analytic aspects of Periodic Instantons", Ph.D Theis, Massachusetts Institute of Technology (2004)
- [5] Benoit Charbonneau and Jacques Hurtubise, "Singular Hermitian-Einstein Monopoles on the Product of a Circle and a Riemann Surface", International mathematics research notices (2011), no. 1, 175–216.
- [6] Peter Kronheimer, "Monopoles and Taub-NUT metrics", Master Thesis, University of Oxford (1985)
- [7] Takuro Mochizuki and Masaki Yoshino, "Some Characterizations of Dirac Type Singularity of Monopoles", Communications in mathematical physics (2017), vol. 356, 613–625.
- [8] Hiraku Nakajima, "Monopoles and Nahm's equations", Lecture Notes in Pure and Appl. Math, vol. 145, (1993)
- [9] Marc Pauly, "Monopole moduli spaces for compact 3-manifolds", Mathematische Annalen (1998), vol. 311, 125–146.
- [10] Johan Råde, "Callias' index theorem, elliptic boundary conditions, and cutting and gluing", Communications in mathematical physics (1994), vol. 161, 51–61.
- [11] Masaki Yoshino, "The Nahm transform of spatially periodic instantons", arXiv:1804.05565 (2018).