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SOME INEQUALITIES FOR INTERPOLATIONAL OPERATOR MEANS

HAMID REZA MORADI, SHIGERU FURUICHI AND MOHAMMAD SABABHEH

ABSTRACT. Using the properties of geometric mean, we shall show for any 0 < o, 5 < 1,
f(AVaB) < f((AVaB) VgA) taf (AVaB) VpB) < f(A) faf (B)

whenever f is a non-negative operator log-convex function, A, B € B (H) are positive operators,

and 0 < a,8 < 1. As an application of this operator mean inequality, we present several

refinements of the Aujla subadditive inequality for operator monotone decreasing functions.
Also, in a similar way, we consider some inequalities of Ando’s type. Among other things,

it is shown that if ® is a positive linear map, then

o (AﬁaB) <o ((AﬂaB) ﬁ,@A) fa® ((AﬂaB) ﬁ,@B) <o (A) fa® (B) :

1. INTRODUCTION AND PRELIMINARIES

We denote the set of all bounded linear operators on a Hilbert space H by B (). An operator
A € B(H) is said to be positive (denoted by A > 0) if (Ax,z) > 0 for all z € H. If a positive
operator is invertible, it is said to be strictly positive and we write A > 0.

The axiomatic theory for connections and means for pairs of positive matrices have been
studied by Kubo and Ando [10]. A binary operation o defined on the cone of strictly positive

operators is called an operator mean if for A, B > 0,

(i) Iol = I, where I is the identity operator;
(ii) C* (AoB)C < (C*AC) o (C*BC), VC € B(H);
(iii) A, | A and B, | B imply A, 0B, | AocB, where A, | A means that A; > Ay... and
A, — A as n — oo in the strong operator topology;

(iv)
(1.1) A<B & C<D = AoC < BoDNC,D>0.

For a symmetric operator mean o (in the sense that AcB = Bo A), a parametrized operator
mean o, (« € [0,1]) is called an interpolational path for o (or Uhlmann’s interpolation for o)
if it satisfies
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2 Some inequalities for interpolational operator means

(c1) AoyB = A (here we recall the convention T° = I for any positive operator T'), Ao B =
B, and AU%B = Ao B;

(c2) (Ao,B)o (AosB) = AUQTWB for all o, 5 € [0, 1];

(¢3) the map a € [0, 1] = Ao, B is norm continuous for each A and B.

It is straightforward to see that the set of all v € [0, 1] satisfying
(1.2) (AooB) oy (AogB) = Ao(1—y)a4y3B

for all o, is a convex subset of [0, 1] including 0 and 1. Therefore (1.2) is valid for all
a, B,y € 1[0,1] (see [7, Lemma 1]).

Typical interpolational means are so-called power means
1
11 1\ Y v
Am,B = A} <§ (1+(a#Ba™) )) A, —1<v<1

and their interpolational paths are [8, Theorem 5.24],

1
v

Amy o B = At ((1 —a)l+ a(A—%BA—%)”) Ar, 0<a<l.

In particular, we have
Amy B =AV,B = (1—a)A+ aB,
AmooB = At B = A3 (A‘%BA‘%>QA%,
Am_1 B = Al,B = (A"'V,B)"".

They are called the weighted arithmetic, weighted geometric, and weighted harmonic interpo-

lations respectively. It is well-known that
(1.3) AlB < Ai,B<AV,B, 0<a<l

In [5], Aujla et al. introduced the notion of operator log-convex functions in the following

way: A continuous real function f : (0,00) — (0, 00) is called operator log-convex if
(1.4) fAVeB) < f(A)taf(B), 0<ac<l

for all positive operators A and B. After that, Ando and Hiai [2] gave the following characteri-
zation of operator monotone decreasing functions: Let f be a continuous non-negative function
on (0,00). Then the following conditions are equivalent:

(a) f

(b) f is operator log-convex;
(¢) f(AVB) < f(A)of (B) for all positive operators A, B and for all symmetric operator

means o.

is operator monotone decreasing;
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In Theorem 2.1 below, we provide a more precise estimate than (1.4) for operator log-convex
functions. As a by-product, we improve both inequalities in (1.3). Additionally, we give
refinement and two reverse inequalities for the triangle inequality.

Our main application of Theorem 2.1 is a subadditive behavior of operator monotone decreas-
ing functions. Recall that a concave function (not necessarily operator concave) f : (0,00) —

[0,00) enjoys the subadditive inequality
(1.5) fla+0b) < f(a)+ f(b),a,b>0.

Operator concave functions (equivalently, operator monotone) do not enjoy the same subad-
ditive behavior. However, in [3] it was shown that an operator concave function f : (0,00) —

(0, 00) satisfies the norm version of (1.5) as follows

(1.6) A+ BT < [[1£(A) + F(BIII,

for positive definite matrices A, B and any unitraily invariant norm ||| |||. Later, the authors
in [6] showed that (1.6) is still valid for concave functions f : (0,00) — (0, 00) (not necessarily
operator concave).

We emphasize that (1.6) does not hold without the norm. In [4], it is shown that an operator

monotone decreasing function f : (0,00) — (0, 00) satisfies the subadditive inequality
(1.7) f(A+B) < f(AV(B),

for the positive matrices A, B.
In Corollary 2.1, we present multiple refinements of (1.7).
The celebrated Ando’s inequality asserts that if ® is a positive linear map and A, B € B (H)

are positive operators, then
(1.8) P (Af.B) < B (A) 8.8 (B), 0<ac<l.

Recall that, a linear map @ is positive if ® (A) is positive whenever A is positive. We improve
and extend this result to Uhlmann’s interpolation o,5 (0 < o, < 1). Precisely speaking, we
prove that

¢ (Ao,pB) < @ ((AcyB) o (AogB)) 0, ((Ao,B) o (Ao B))

< (A)a5P (B).

This result is included in Section 3.

2. ON THE OPERATOR LOG-CONVEXITY

Our first main result in this paper reads as follows.
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Theorem 2.1. Let A, B € B(H) be positive operators and 0 < o < 1. If f is a non-negative

operator monotone decreasing function, then

(2.1) f(AVaB) < f((AVaB) VAt f (AVaB) VgB) < [ (A)faf (B)
forany 0 < g < 1.

Proof. Assume f is operator monotone decreasing. We start with the useful identity
(2.2) AV.B = ((AV,B)VzA)V, ((AV,B)VsB),

which follows from (1.2) with A = AV,B and B = AV, B. Then we have

(1.
f(AVaB) = f
f

(((AVaB) VA) Vo ((AV,B) Vs B))
(2.3) < f((AVaB) VgA) 4o f ((AVaB) VsB)
(2.4) < (f(AVaB) s f(A)) fa (f (AVaB) £5f(B))
(2.5) < ((f (A)8af (B)) 85/ (A)) fa ((f (A) o f (B)) 85 (B))
(2.6) = ((f (A taf (B)) 5 (f (Ao f(B))) o ((f (A) daf (B)) s (f(A)h f(B)))
(2.7) = f(A)fa-pa+paf (B)

A
f(A)taf (B)

where the inequalities (2.3), (2.4) and (2.5) follow directly from the log-convexity assumption
on f together with (1.1), the equalities (2.6) and (2.7) are obtained from the property (c1) and
(1.2), respectively. This completes the proof.

U

As promised in the introduction, we present the following refinement of Aujla inequality

(1.7), as a main application of Theorem 2.1.

Corollary 2.1. Let A, B € B(H) be positive operators. If f is a non-negative operator mono-

tone decreasing function, then

f(A+ B) < f(3AVB)tf(AV3B)
(2A)8f(2B)
(2A)Vf(2B)
< f(AVF(B).
Proof. In Theorem 2.1, let & = 8 = % and replace (A, B) by (24,2B). This implies the first

and second inequalities immediately. The third inequality follows from the second inequality

IN
= =

IN

n (1.3), while the last inequality follows properties of operator means and the fact that f is

operator monotone decreasing. 0



H.R. Moradi, S. Furuichi & M. Sababheh 5

Remark 2.1. Let A, B € B(H) be positive operators and 0 < o < 1. If f is a function
satisfying

(2.8) f(AVaB) < f((AVaB) Vs A) taf (AVaB) Vs B),

for 0 < B <1, then f is operator monotone decreasing. This follows by taking 5 = 1 in (2.8)

and equivalence between (a) and (b) above.

Corollary 2.2. Let A, B € B(H) be positive operators. If g is a non-negative operator mono-

tone increasing, then
9(AVaB) > g((AVaB) V3A) tag ((AVaB) VsB) > g (A) tag (B)
for any 0 < a, 5 < 1.

Proof. 1t was shown in [2] that operator monotonicity of g is equivalent to operator log-concavity
(g(AV,.B) > g(A)tag (B)). The proof goes in a similar way to the proof of Theorem 2.1. [

Remark 2.2. In [2, Remark 2.6], we have for non-negative operator monotone decreasing

function f, any operator mean o and A, B > 0,

(2.9) f(AVoB) < f(A)laf(B) < f(A)of(B), 0 <a <1
Better estimates than (2.9) may be obtained as follows, where 0 < o, B < 1,

f(AVoB) = f ((AVoB) V3A) V4 ((AVaB) Vs B))
((AV,B)V3A).f (AV,B)V3B)
(AVoB) s f(A)) o (f (AVeB) s f(B))

A)laf (B) s f(A) o ((f (A) L f (B)) s/ (B))
A)laf (B) !5 (f(A)lof(B)) la ((f (A) laf (B) 15 (f(A)Lf(B)))
F(A)a-parpaf (B)
f(A)af (B)
f(A)af(B)

IA TN

IN

f
f
(f

((
((

AA

f
f

IN

In the following we improve the well-known weighted operator arithmetic-geometric-harmonic

mean inequalities (1.3).
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Theorem 2.2. Let A, B € B(H) be positive operators. Then
AlB < ((AfaB) $54) la (AfaB) t5B)
< Af.B
< ((AfaB) £34) Va ((AfaB) §5B)
< AV.B
for0<a,p < 1.

Proof. 1t follows from the proof of Theorem 2.1 that
(2.10) Ao B = ((AfaB) 134) fa (A B) #sB), 0<a, <1
Thus, we have

AtaB = ((ALaB) 5 4) fa (AL B) 85 B)
((AfaB) 254) Vo ((AtaB) £ B)
((AV.B) VsA) V, ((AV,B) V;sB)
= ((AV,B) V3 (AV,B)) V, ((AV,B) V; (AV,B))
(2.13) = AV,B

~~
oo
— —
\) —
~—r S~—
ININA

where in the inequalities (2.11) and (2.12) we used the weighted operator arithmetic-geometric
mean inequality and the equality (2.13) follows from (1.2). This proves the third and fourth
inequalities.

As for the first and second inequalities, replace A and B by A~! and B~!, respectively, in
the third and fourth inequalities

AfoaB < ((A%aB) tA) Va ((AfeB) 1sB) < AV.B
which we have just shown. Then take the inverse to obtain the required results (thanks to the

identity A='4,B~! = (A4,B)~'). This completes the proof. O

Remark 2.3. We notice that similar inequalities maybe obtained for any symmetric mean o,
as follows. First, observe that if o, 7 are two symmetric means such that o < 7, then the set
T=A{t:0<t<1ando, <7} is convexr. Indeed, assume ti,ty € T. Then for the positive
operators A, B, we have
Aow+ty B = (Aoy, B)o(Aoy, B)
2
< (A, B)T(AT,B)
= A'Ttl +to B,
2
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where we have used the assumptions o < 7 and ty,ty € T. This proves that T is convex, and
hence T = [0,1] since 0,1 € T, trivially. Thus, we have shown that if o < T then o, < T, for
all 0 < a < 1. Now noting that

Ac,B = ((Ao,B)ogA) o, ((Ao,B)osB) ,

and proceeding as in Theorem 2.1, we obtain

(2.14) f(AVaB) < f ((AVaB) VgA) ouf ((AVaB) VsB) < [ (A) ouf (B)

for any 0 < 8 <1 and the operator log-convex function f. This provides a more precise estimate
than (c) above.

On the other hand, proceeding as in Theorem 2.2, we obtain
(2.15) Aoy B < ((Ao,B)osA)V, ((Ao,B)osB) < AV, B,
observing that o, < V. This provides a refinement of the latter basic inequality.
Taking into account (2.2), it follows that
A+B=aA+(1—a)(AVB)+aB+ (1 —a)(AVB).

As a consequence of this inequality, we have the following refinement of the well-known triangle

inequality

1A+ Bl < [[All + B[
Corollary 2.3. Let A, B € B(H). Then, for a € R,
A+ Bl < [lad+ (1 —a) (AVB)[| + laB + (1 — o) (AVB)|| < [[A] + | B]|.
Remark 2.4. Using Corollary 2.3, we obtain the reverse triangle inequalities
[A[ =B < %(IIAV—a@B)II +AVL(2B)| - 2[IB) < [|A - B

and
1
IBI = llAll < 5 (1BV-a(24)[| + |BVa(24)|| = 2[|A])) < |4 = B]|,

where a € R.



8 Some inequalities for interpolational operator means
3. A GLIMPSE AT THE ANDO’S INEQUALITY

In this section, we present some versions and improvements of Ando’s inequality (1.8).

Theorem 3.1. Let A, B € B(H) be positive operators and ® be a positive linear map. Then
Jorany 0 < a,8 <1,

(3'1) o (AjjaB) <o ((AﬂaB) JjBA) 1o ® ((AjjaB) JjBB) <o (A) fa® (B) :
In particular,
ZAjljaBj < (Z (Ajlja IjﬁA ) (Z A Ija )

(3.2)

(50 (52)

Proof. We omit the proof of (3.1) because it is proved in a way similar to that of (2.1) in
Theorem 2.1. Now, if in (3.1) we take ® : M, (C) — M, (C) defined by

X1
d :X1,1—|—...—|—Xn,n
Xn,n
and apply ® to A = diag(A,...,A,) and B = diag(By, ..., B,), we get (3.2). O
In the following, we present a more general form of (3.1) will be shown.

Theorem 3.2. Let A, B € B(H) be positive operators and ® be any positive linear map. Then

we have the following inequalities for Uhlmann’s interpolation o,5 and 0 < a, B <1,
O (AousB) < @ ((AcyB) o (AogB)) 0, ((Ao,B) o (Ao, B))
<D (A)osP(B).
Proof. Thanks to (1.2), we obviously have
(A0uB) 0 (A0oB)) oo ((A0uB) 0 (Ao B))
= (A0a-p)B) 0a (A0a-p)+6B)
= Ao.pDB.

Now, the desired result follows directly from the above identities. O

Remark 3.1. From simple calculations, we have the following inequalities for positive operators
A, B € B(H), any positive linear map ® and 0 < «, 5,7, < 1,
P (A0 (1-p)+8((1-a)y+as)B) < @ ((AooB) o5 ((A0,B))) 0,® (Ao, B) o5 ((AcsB)))

(3.3)
< @ (A) 0a(1-5)+8((1-a)y+at) P (B) -
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Apparently, (3.3) reduces to (3.2) when vy =0 and § = 1.
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