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SOME INEQUALITIES FOR INTERPOLATIONAL OPERATOR MEANS

HAMID REZA MORADI, SHIGERU FURUICHI AND MOHAMMAD SABABHEH

Abstract. Using the properties of geometric mean, we shall show for any 0 ≤ α, β ≤ 1,

f (A∇αB) ≤ f ((A∇αB)∇βA) ♯αf ((A∇αB)∇βB) ≤ f (A) ♯αf (B)

whenever f is a non-negative operator log-convex function, A,B ∈ B (H) are positive operators,

and 0 ≤ α, β ≤ 1. As an application of this operator mean inequality, we present several

refinements of the Aujla subadditive inequality for operator monotone decreasing functions.

Also, in a similar way, we consider some inequalities of Ando’s type. Among other things,

it is shown that if Φ is a positive linear map, then

Φ (A♯αB) ≤ Φ ((A♯αB) ♯βA) ♯αΦ ((A♯αB) ♯βB) ≤ Φ (A) ♯αΦ (B) .

1. Introduction and Preliminaries

We denote the set of all bounded linear operators on a Hilbert spaceH by B (H). An operator

A ∈ B (H) is said to be positive (denoted by A ≥ 0) if 〈Ax, x〉 ≥ 0 for all x ∈ H. If a positive

operator is invertible, it is said to be strictly positive and we write A > 0.

The axiomatic theory for connections and means for pairs of positive matrices have been

studied by Kubo and Ando [10]. A binary operation σ defined on the cone of strictly positive

operators is called an operator mean if for A,B > 0,

(i) IσI = I, where I is the identity operator;

(ii) C∗ (AσB)C ≤ (C∗AC)σ (C∗BC), ∀C ∈ B(H);

(iii) An ↓ A and Bn ↓ B imply AnσBn ↓ AσB, where An ↓ A means that A1 ≥ A2 . . . and

An → A as n → ∞ in the strong operator topology;

(iv)

(1.1) A ≤ B & C ≤ D ⇒ AσC ≤ BσD, ∀C,D > 0.

For a symmetric operator mean σ (in the sense that AσB = BσA), a parametrized operator

mean σα (α ∈ [0, 1]) is called an interpolational path for σ (or Uhlmann’s interpolation for σ)

if it satisfies
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2 Some inequalities for interpolational operator means

(c1) Aσ0B = A (here we recall the convention T 0 = I for any positive operator T ), Aσ1B =

B, and Aσ 1

2

B = AσB;

(c2) (AσαB)σ (AσβB) = Aσα+β

2

B for all α, β ∈ [0, 1];

(c3) the map α ∈ [0, 1] 7→ AσαB is norm continuous for each A and B.

It is straightforward to see that the set of all γ ∈ [0, 1] satisfying

(1.2) (AσαB) σγ (AσβB) = Aσ(1−γ)α+γβB

for all α, β is a convex subset of [0, 1] including 0 and 1. Therefore (1.2) is valid for all

α, β, γ ∈ [0, 1] (see [7, Lemma 1]).

Typical interpolational means are so-called power means

AmυB = A
1

2

(

1

2

(

I +
(

A−
1

2BA−
1

2

)υ)
) 1

υ

A
1

2 , − 1 ≤ υ ≤ 1

and their interpolational paths are [8, Theorem 5.24],

Amυ,αB = A
1

2

(

(1− α) I + α
(

A−
1

2BA−
1

2

)υ) 1

υ

A
1

2 , 0 ≤ α ≤ 1.

In particular, we have

Am1,αB = A∇αB = (1− α)A + αB,

Am0,αB = A♯αB = A
1

2

(

A−
1

2BA−
1

2

)α

A
1

2 ,

Am−1,αB = A!αB =
(

A−1∇αB
)

−1
.

They are called the weighted arithmetic, weighted geometric, and weighted harmonic interpo-

lations respectively. It is well-known that

(1.3) A!αB ≤ A♯αB ≤ A∇αB, 0 ≤ α ≤ 1

In [5], Aujla et al. introduced the notion of operator log-convex functions in the following

way: A continuous real function f : (0,∞) → (0,∞) is called operator log-convex if

(1.4) f (A∇αB) ≤ f (A) ♯αf (B) , 0 ≤ α ≤ 1

for all positive operators A and B. After that, Ando and Hiai [2] gave the following characteri-

zation of operator monotone decreasing functions: Let f be a continuous non-negative function

on (0,∞). Then the following conditions are equivalent:

(a) f is operator monotone decreasing;

(b) f is operator log-convex;

(c) f (A∇B) ≤ f (A) σf (B) for all positive operators A, B and for all symmetric operator

means σ.
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In Theorem 2.1 below, we provide a more precise estimate than (1.4) for operator log-convex

functions. As a by-product, we improve both inequalities in (1.3). Additionally, we give

refinement and two reverse inequalities for the triangle inequality.

Our main application of Theorem 2.1 is a subadditive behavior of operator monotone decreas-

ing functions. Recall that a concave function (not necessarily operator concave) f : (0,∞) →

[0,∞) enjoys the subadditive inequality

(1.5) f(a+ b) ≤ f(a) + f(b), a, b > 0.

Operator concave functions (equivalently, operator monotone) do not enjoy the same subad-

ditive behavior. However, in [3] it was shown that an operator concave function f : (0,∞) →

(0,∞) satisfies the norm version of (1.5) as follows

(1.6) |||f(A+B)||| ≤ |||f(A) + f(B)|||,

for positive definite matrices A,B and any unitraily invariant norm ||| |||. Later, the authors

in [6] showed that (1.6) is still valid for concave functions f : (0,∞) → (0,∞) (not necessarily

operator concave).

We emphasize that (1.6) does not hold without the norm. In [4], it is shown that an operator

monotone decreasing function f : (0,∞) → (0,∞) satisfies the subadditive inequality

(1.7) f(A+B) ≤ f(A)∇f(B),

for the positive matrices A,B.

In Corollary 2.1, we present multiple refinements of (1.7).

The celebrated Ando’s inequality asserts that if Φ is a positive linear map and A,B ∈ B (H)

are positive operators, then

(1.8) Φ (A♯αB) ≤ Φ (A) ♯αΦ (B) , 0 ≤ α ≤ 1.

Recall that, a linear map Φ is positive if Φ (A) is positive whenever A is positive. We improve

and extend this result to Uhlmann’s interpolation σαβ (0 ≤ α, β ≤ 1). Precisely speaking, we

prove that

Φ (AσαβB) ≤ Φ ((AσαB)σβ (Aσ0B))σαΦ ((AσαB) σβ (Aσ1B))

≤ Φ (A)σαβΦ (B) .

This result is included in Section 3.

2. On the operator log-convexity

Our first main result in this paper reads as follows.
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Theorem 2.1. Let A,B ∈ B (H) be positive operators and 0 ≤ α ≤ 1. If f is a non-negative

operator monotone decreasing function, then

(2.1) f (A∇αB) ≤ f ((A∇αB)∇βA) ♯αf ((A∇αB)∇βB) ≤ f (A) ♯αf (B)

for any 0 ≤ β ≤ 1.

Proof. Assume f is operator monotone decreasing. We start with the useful identity

(2.2) A∇αB = ((A∇αB)∇βA)∇α ((A∇αB)∇βB) ,

which follows from (1.2) with A = A∇0B and B = A∇1B. Then we have

f (A∇αB) = f (((A∇αB)∇βA)∇α ((A∇αB)∇βB))

≤ f ((A∇αB)∇βA) ♯αf ((A∇αB)∇βB)(2.3)

≤ (f (A∇αB) ♯βf(A)) ♯α (f (A∇αB) ♯βf(B))(2.4)

≤ ((f (A) ♯αf (B)) ♯βf(A)) ♯α ((f (A) ♯αf (B)) ♯βf(B))(2.5)

= ((f (A) ♯αf (B)) ♯β (f(A)♯0f(B))) ♯α ((f (A) ♯αf (B)) ♯β (f(A)♯1f(B)))(2.6)

= f (A) ♯(1−β)α+βαf (B)(2.7)

= f (A) ♯αf (B)

where the inequalities (2.3), (2.4) and (2.5) follow directly from the log-convexity assumption

on f together with (1.1), the equalities (2.6) and (2.7) are obtained from the property (c1) and

(1.2), respectively. This completes the proof.

�

As promised in the introduction, we present the following refinement of Aujla inequality

(1.7), as a main application of Theorem 2.1.

Corollary 2.1. Let A,B ∈ B (H) be positive operators. If f is a non-negative operator mono-

tone decreasing function, then

f(A+B) ≤ f(3A∇B)♯f(A∇3B)

≤ f(2A)♯f(2B)

≤ f(2A)∇f(2B)

≤ f(A)∇f(B).

Proof. In Theorem 2.1, let α = β = 1
2
and replace (A,B) by (2A, 2B). This implies the first

and second inequalities immediately. The third inequality follows from the second inequality

in (1.3), while the last inequality follows properties of operator means and the fact that f is

operator monotone decreasing. �
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Remark 2.1. Let A,B ∈ B (H) be positive operators and 0 ≤ α ≤ 1. If f is a function

satisfying

(2.8) f (A∇αB) ≤ f ((A∇αB)∇βA) ♯αf ((A∇αB)∇βB) ,

for 0 ≤ β ≤ 1, then f is operator monotone decreasing. This follows by taking β = 1 in (2.8)

and equivalence between (a) and (b) above.

Corollary 2.2. Let A,B ∈ B (H) be positive operators. If g is a non-negative operator mono-

tone increasing, then

g (A∇αB) ≥ g ((A∇αB)∇βA) ♯αg ((A∇αB)∇βB) ≥ g (A) ♯αg (B)

for any 0 ≤ α, β ≤ 1.

Proof. It was shown in [2] that operator monotonicity of g is equivalent to operator log-concavity

( g (A∇αB) ≥ g (A) ♯αg (B)). The proof goes in a similar way to the proof of Theorem 2.1. �

Remark 2.2. In [2, Remark 2.6], we have for non-negative operator monotone decreasing

function f , any operator mean σ and A,B > 0,

(2.9) f(A∇αB) ≤ f(A)!αf(B) ≤ f(A)σf(B), 0 ≤ α ≤ 1.

Better estimates than (2.9) may be obtained as follows, where 0 ≤ α, β ≤ 1,

f (A∇αB) = f (((A∇αB)∇βA)∇α ((A∇αB)∇βB))

≤ f ((A∇αB)∇βA) !αf ((A∇αB)∇βB)

≤ (f (A∇αB) !βf(A)) !α (f (A∇αB) !βf(B))

≤ ((f (A) !αf (B)) !βf(A)) !α ((f (A) !αf (B)) !βf(B))

= ((f (A) !αf (B)) !β (f(A)!0f(B))) !α ((f (A) !αf (B)) !β (f(A)!1f(B)))

= f (A) !(1−β)α+βαf (B)

= f (A) !αf (B)

≤ f (A)σf (B)

In the following we improve the well-known weighted operator arithmetic-geometric-harmonic

mean inequalities (1.3).
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Theorem 2.2. Let A,B ∈ B (H) be positive operators. Then

A!αB ≤ ((A♯αB) ♯βA) !α ((A♯αB) ♯βB)

≤ A♯αB

≤ ((A♯αB) ♯βA)∇α ((A♯αB) ♯βB)

≤ A∇αB

for 0 ≤ α, β ≤ 1.

Proof. It follows from the proof of Theorem 2.1 that

(2.10) A♯αB = ((A♯αB) ♯βA) ♯α ((A♯αB) ♯βB) , 0 ≤ α, β ≤ 1.

Thus, we have

A♯αB = ((A♯αB) ♯βA) ♯α ((A♯αB) ♯βB)

≤ ((A♯αB) ♯βA)∇α ((A♯αB) ♯βB)(2.11)

≤ ((A∇αB)∇βA)∇α ((A∇αB)∇βB)(2.12)

= ((A∇αB)∇β (A∇0B))∇α ((A∇αB)∇β (A∇1B))

= A∇αB(2.13)

where in the inequalities (2.11) and (2.12) we used the weighted operator arithmetic-geometric

mean inequality and the equality (2.13) follows from (1.2). This proves the third and fourth

inequalities.

As for the first and second inequalities, replace A and B by A−1 and B−1, respectively, in

the third and fourth inequalities

A♯αB ≤ ((A♯αB) ♯βA)∇α ((A♯αB) ♯βB) ≤ A∇αB

which we have just shown. Then take the inverse to obtain the required results (thanks to the

identity A−1♯αB
−1 = (A♯αB)−1). This completes the proof. �

Remark 2.3. We notice that similar inequalities maybe obtained for any symmetric mean σ,

as follows. First, observe that if σ, τ are two symmetric means such that σ ≤ τ , then the set

T = {t : 0 ≤ t ≤ 1 and σt ≤ τt} is convex. Indeed, assume t1, t2 ∈ T . Then for the positive

operators A,B, we have

Aσ t1+t2
2

B = (Aσt1B)σ(Aσt2B)

≤ (Aτt1B)τ(Aτt2B)

= Aτ t1+t2
2

B,
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where we have used the assumptions σ ≤ τ and t1, t2 ∈ T. This proves that T is convex, and

hence T = [0, 1] since 0, 1 ∈ T , trivially. Thus, we have shown that if σ ≤ τ then σα ≤ τα, for

all 0 ≤ α ≤ 1. Now noting that

AσαB = ((AσαB)σβA) σα ((AσαB)σβB) ,

and proceeding as in Theorem 2.1, we obtain

(2.14) f (A∇αB) ≤ f ((A∇αB)∇βA) σαf ((A∇αB)∇βB) ≤ f (A)σαf (B)

for any 0 ≤ β ≤ 1 and the operator log-convex function f . This provides a more precise estimate

than (c) above.

On the other hand, proceeding as in Theorem 2.2, we obtain

(2.15) AσαB ≤ ((AσαB)σβA)∇α ((AσαB)σβB) ≤ A∇αB,

observing that σα ≤ ∇α. This provides a refinement of the latter basic inequality.

Taking into account (2.2), it follows that

A +B = αA+ (1− α) (A∇B) + αB + (1− α) (A∇B) .

As a consequence of this inequality, we have the following refinement of the well-known triangle

inequality

‖A+B‖ ≤ ‖A‖+ ‖B‖ .

Corollary 2.3. Let A,B ∈ B (H). Then, for α ∈ R,

‖A+B‖ ≤ ‖αA+ (1− α) (A∇B)‖+ ‖αB + (1− α) (A∇B)‖ ≤ ‖A‖+ ‖B‖ .

Remark 2.4. Using Corollary 2.3, we obtain the reverse triangle inequalities

‖A‖ − ‖B‖ ≤
1

2
(‖A∇−α(2B)‖+ ‖A∇α(2B)‖ − 2 ‖B‖) ≤ ‖A−B‖

and

‖B‖ − ‖A‖ ≤
1

2
(‖B∇−α(2A)‖+ ‖B∇α(2A)‖ − 2 ‖A‖) ≤ ‖A− B‖ ,

where α ∈ R.
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3. A glimpse at the Ando’s inequality

In this section, we present some versions and improvements of Ando’s inequality (1.8).

Theorem 3.1. Let A,B ∈ B (H) be positive operators and Φ be a positive linear map. Then

for any 0 ≤ α, β ≤ 1,

(3.1) Φ (A♯αB) ≤ Φ ((A♯αB) ♯βA) ♯αΦ ((A♯αB) ♯βB) ≤ Φ (A) ♯αΦ (B) .

In particular,

(3.2)

m
∑

j=1

Aj♯αBj ≤

(

m
∑

j=1

(Aj♯αBj) ♯βAj

)

♯α

(

m
∑

j=1

(Aj♯αBj) ♯βBj

)

≤

(

m
∑

j=1

Aj

)

♯α

(

m
∑

j=1

Bj

)

.

Proof. We omit the proof of (3.1) because it is proved in a way similar to that of (2.1) in

Theorem 2.1. Now, if in (3.1) we take Φ : Mnk (C) → Mk (C) defined by

Φ

















X1,1

. . .

Xn,n

















= X1,1 + . . .+Xn,n

and apply Φ to A = diag (A1, . . . , An) and B = diag (B1, . . . , Bn), we get (3.2). �

In the following, we present a more general form of (3.1) will be shown.

Theorem 3.2. Let A,B ∈ B (H) be positive operators and Φ be any positive linear map. Then

we have the following inequalities for Uhlmann’s interpolation σαβ and 0 ≤ α, β ≤ 1,

Φ (AσαβB) ≤ Φ ((AσαB)σβ (Aσ0B))σαΦ ((AσαB) σβ (Aσ1B))

≤ Φ (A)σαβΦ (B) .

Proof. Thanks to (1.2), we obviously have

((AσαB)σβ (Aσ0B))σα ((AσαB)σβ (Aσ1B))

=
(

Aσα(1−β)B
)

σα

(

Aσα(1−β)+βB
)

= AσαβB.

Now, the desired result follows directly from the above identities. �

Remark 3.1. From simple calculations, we have the following inequalities for positive operators

A,B ∈ B (H), any positive linear map Φ and 0 ≤ α, β, γ, δ ≤ 1,

(3.3)
Φ
(

Aσα(1−β)+β((1−α)γ+αδ)B
)

≤ Φ ((AσαB) σβ ((AσγB))) σαΦ ((AσαB)σβ ((AσδB)))

≤ Φ (A) σα(1−β)+β((1−α)γ+αδ)Φ (B) .
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Apparently, (3.3) reduces to (3.2) when γ = 0 and δ = 1.
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