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Field Generated by Division Points of Certain

Formal Group Laws

Soumyadip Sahu

Abstract

In this article we study the Galois group of field generated by division

points of special class of formal group laws and prove an equivalent con-

dition for the group to be abelian. Further, we explore relations between

the endomorphism ring of a formal group and the Galois group of field

generated by division points. These results extend the results in [SS1],

[SS2].

1 Introduction

Let p be an odd prime and let K be a finite extension of Qp. Put OK to be the

ring of integers of K, let pK denote the unique maximal ideal of OK and vpK
(·)

be the valuation associated to it. Fix an algebraic closure Qp and |.|p be an

fixed extension of the absolute value. Let O be the ring of integers of Qp and p

be the unique maximal ideal of O. Clearly p ∩K = pK .

Let A be an integrally closed, complete subring of OK . Assume that pA is the

maximal ideal, K(A) is the field of fractions and k(A) is the field of residues.

Put [k(A) : Fp] = fA. Let F be a (one dimensional, commutative) formal group-

law defined over OK admitting an A module structure. π be a generator of pA

and say

[π](X) = πX + a2X
2 + a3X

3 + · · · ∈ OK [[X ]] (1.1)

with at least one ai ∈ OK − pK . Then min {i | |ai|p = 1} = ph for some positive

integer h (see [Haz], 18.3.2). Now if π1 is another generator of pA and

[π1](X) = π1X + b2X
2 + · · · ∈ OK [[X ]]
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then bph ∈ OK − pK and min {i | |bi|p = 1} = ph. This integer h is called the

height of F as formal A module. If ai ∈ pK for all i ≥ 2 then we say, height of

F is infinity. We shall only consider formal A modules of finite height.

Let A be as above and F be a formal A module over OK . It defines a A module

structure on pK which naturally extends to a A-structure on p. We shall denote

the corresponding addition by ⊕F to distinguish it from usual addition.

Let π be a generator of pA. For each n ≥ 1, use F[πn] to denote the πn-torsion

submodule of p. For any sub-field L of Qp, let L(πn) be the subfield of Qp

generated by F[πn] over L and put L(π∞) =
⋃

i≥1 L(π
i) We shall adopt the

convention F[π0] = {0}.

Fix a generator π of pK and put Kπ = Qp(π). Use Aπ to denote the ring of

integers of Kπ. For simplicity we shall write pAπ
as pπ and fAπ

as fπ. Note that

π is a generator of pπ. Let F be a formal Aπ module of height h defined over OK .

The next remark summarizes main results proved in appendix-A of [SS1]:

Remark 1.1 : A) i) With notation as above fπ |h.

Let n ≥ 1. Put q = ph and hr,π = h
fπ
. Then the following statements are true :

ii) F[πn] ∼= (Aπ/π
nAπ)

hr,π as Aπ modules.

iii) If z ∈ F[πn]−F[πn−1], then K(z)/K is a totally ramified extension of degree

qn−1(q − 1).

B) Results comparable to (A.i) and (A.ii) already seem to exist in literature (for

example, see [Lub2]). Their complete proof is included in section-2 of appendix-

A ([SS1]).

C) In appendix-A of [SS1] we made an assumption :

∀n ≥ 1, K(z) = K(πn+1) for any z ∈ F[πn+1]− F[πn].

We shall discuss more on this assumption in present article. Modulo this as-

sumption the following theorem was proved :

Let n, q, hr,π be as before. In the following statements hr,π will be abbreviated

as hr.

Let f be the degree of the extension of residue fields associated to the extension

K/Qp. We shall assume that h | f .

Put Khr
π to be the unique unramified extension of degree hr of Kπ in Qp. Use

Ahr
π to denote the ring of integers and Ui,Khr

π
(i ≥ 0) to denote the i-th unit
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group of this field. Then :

i) K(z) = K(πn) for any z ∈ F[πn]− F[πn−1].

ii) K(πn)/K is a Galois extension with

Gal (K(πn)|K) ∼= U0,Khr
π
/Un,Khr

π
.

iii) Let k and i be integers such that 1 ≤ k ≤ n and qk−1 ≤ i ≤ qk − 1. Then

Gi(K(πn)|K) = Gal(K(πn)|K(πk)).

D) The results of appendix-A of [SS1] go through for p = 2 also.

Remark 1.2 : i) If K/Qp is an unramified extension then one can take π = p.

In this case Aπ = Zp and any formal group law over OK is Aπ module.

ii) Note that these results are similar to the results proved in classical Lubin-

Tate theory (see [Neu], chapter 3, section 6, 7 and 8). Though the hypothesis

looks general it will turn out the assumption is quite strong and we shall explore

equivalent versions of it in section-2 of this article.

iii) Consider the π-adic Tate module Tπ(F) = lim
←−

F[πn]. A priori it has Aπ mod-

ule structure and the absolute Galois group GK = Gal(Qp|K) acts on Tπ(F) by

Aπ module morphism. From remark-1.1(A) it is easy to see that Tπ(F) is a free

Aπ module of rank hr,π. But as a consequence of remark-1.1(C) (modulo the

assumption) we can put a A
hr,π
π module structure on Tπ(F) consistent with Aπ

module structure. In this situation one can also see that GK acts on Tπ(F) via

A
hr,π
π module morphisms (Lemma- 3.18, lemma-3.19, appendix-A, [SS1]).

iv) In appendix-A of [SS1] results in section-2 and lemma 3.1-3.8 are indepen-

dent of the assumption.

v) Let A be a complete, integrally closed subring of OK containing Aπ . If F is

a formal A module of height h defined over OK then we can prove analogues of

results in remark-1.1 (A) and (C) with hr,π replaced by h
fA

.

vi) In this article we shall frequently refer to appendix-A and appendix-B with-

out explicitly mentioning [SS1].

vii) The author feels that the results from appendix-A and appendix-B needs

to studied more and currently the findings are being written up in parts ([SS1],

[SS2]). Once he finds the picture in satisfactory shape, he intends to rewrite

them together in more comprehensive form.

Notations and conventions :
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We often use notations introduced in this section without explicitly defining

them again.

Let π be a generator of pK and let F be a formal Aπ module over OK . Such a

formal module will be called a π-unramified group law over OK .

We shall use notations

qh = ph,

hr,π =
h

fπ
.

If h, π are clear from context then we shall use the abbreviations q, hr.

A p-adic field is a finite extension of Qp.

For n ≥ 1, µn be the group of n-th roots of unity in Qp.

If L is a p-adic field then OL is the ring of integers and pL is the unique maximal

ideal of OL. Say residue degree of L is f . Then µpf−1 ⊂ OL and µpf−1 ∪ {0}

forms a cannonical set of representatives for the residue field. We shall always

work with this set of representatives.

Acknowledgement : I am thankful to Prof. S. David for pointing out an

useful reference. I am thankful to Prof. C. Kaiser (Max Planck Institute for

Mathematics , Bonn) for pointing out a mistake in an earlier version.

2 An equivalence

In this section we study more about the assumption mentioned in introduction.

For this we need to introduce the language of p-divisible groups. We follow the

treatment in [Tate]. Note that our set-up will be bit more general and we shall

consider π-torsion points rather than p-torsion subgroups (ifK/Qp is unramified

then one can choose π = p ). The hypothesis and notation for present section

is as in theorem-1.1 of introduction.

Put R = OK [[X ]]. Define a OK algebra homomorphism φ : R → R by defining

φ(X) = [π](X). Note that φ makes R into a R module. Now we have the

following lemma :

Lemma 2.1 : The module structure defined above makes R into a free R

module of finite rank.
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Proof : We shall show that {1, · · · , Xq−1} is a base .

First we shall show that the set is linearly independent.

Let f0(X), · · · , fq−1(X) ∈ R be such that

q−1∑

i=0

φ(fi(X))X i = 0. (2.1)

We would like to show fi(X) = 0 for each 0 ≤ i ≤ q − 1.

Assume that

fi(X) =
∑

j≥0

aijX
j

for each 0 ≤ i ≤ q − 1.

Put mi = min{vpK
(aij) | j ≥ 1}. for each 0 ≤ i ≤ q − 1 and M = min {mi | 0 ≤

i ≤ q − 1}. If M = ∞ there is nothing to prove. Say, M < ∞. Define,

gi(X) = π−Mfi(X) ∈ R and bij = π−Maij for 0 ≤ i ≤ q − 1 and j ≥ 0. From

(2.1) it follows that :
q−1∑

i=0

φ(gi(X))X i = 0.

Put Mi = min{j | |aij |p = 1} and m = min{Mi | 0 ≤ i ≤ q−1}. Clearly m <∞.

Now modulo pK

q−1∑

i=0

φ(gi(X))X i = u(b0m+b1mX+ · · ·+b(q−1)mXq−1)Xmq+higher order terms

where u is an unit and b0m, · · · , b(q−1)m ∈ OK .

By choice of m at least one of bim is non-zero modulo pK . Thus the sum must

be non-zero modulo pK contrary to our assumption. Hence M = ∞ and each

of fi(X) must be 0 as desired.

Now let f(X) ∈ R. We want to show that there are elements a0(X), · · · , aq−1(X) ∈

R such that

f(X) =

q−1∑

i=0

φ(ai(X))X i.

First we prove a claim :

Claim 2.2 : There are elements a0, · · · aq−1 ∈ OK and g(X) ∈ R such that

f(X) = a0 + · · ·+ aq−1X
q−1 + [π](X)f1(X).

Proof : First notice that there are elements a0(1), · · · , aq−1(1) ∈ OK and
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g(1)(X), f(1)(X) ∈ R such that

f(X) = a0(1) + · · ·+ aq−1(1)X
q−1 + [π](X)g(1)(X) + π(f(1)(X))

since modulo pK , [π](X) is Xqu0(X) where u0(X) ∈ R is an unit. Now

we can repeat the argument for f(1)(X) and inductively construct elements

a0, · · · aq−1 ∈ OK , f1(X) ∈ R as desired. �

We can repeat the argument for f1(X) and inductively construct elements

a0(X), · · · , aq−1(X) satisfying

f(X) = φ(a0(X)) + · · ·+ φ(aq−1(X))Xq−1.

This completes the proof of lemma. �

Let S = Spf (OK [[X ]]). φ induces a OK-map S → S. Denote this map by

[π]. Note that F gives structure of a group-scheme on S and [π] : S → S is a ho-

momorhism with respect to this group structure. For ν ≥ 0 put Gν = Ker([πν ]).

Note that Gν = Spec(Aν) where Aν
∼= R/[πν ](X)R. So each Gν is a connected

finite group scheme over OK of order pνh. We have an exact sequence:

0 −→ Gν
iν−→ Gν+1

[πν ]
−−→ Gν+1

for each ν ≥ 0 where iν is the inclusion. Following Tate ([Tate, section-2.2]) we

can construct a p-divisible group Fπ = lim
−→

Gi.

Let HomOK
(F,F) be the set of all group homomorphisms of F defined over

OK and let HomAπ

OK
(F,F) denote the set of all Aπ module morphisms of F de-

fined over OK . By a result of Hazewinkel any group endomorphism of F is

automatically an Aπ module morphism (see [Haz, 21.1.4]). So these two sets

are same and we shall use the notation HomOK
(F,F).

Following the argument in [Tate, section-2.2] we obtain a bijection HomOK
(F,F)→

HomOK
(Fπ,Fπ) induced by natural map. Tπ(F) be the Tate module associated

to Fπ ([Tate, section-2.4]). Main result of the theory implies the canonical map

HomOK
(Fπ,Fπ) → HomGK

(Tπ(F), Tπ(F)) is bijective where GK = Gal(Qp/K)

and we are considering Tπ(F) as GK module. This proves that the natural map

HomOK
(F,F)→ HomGK

(Tπ(F), Tπ(F)) (2.2)
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is bijective.

With this set-up we have :

Theorem 2.3 : Assume h | f as in hypothesis of theorem-1.2. Ahr
π be as in

remark-1.3(iii). The following are equivalent :

i) Gal(K(π∞)|K) is abelian.

ii) Assumption (from remark-1.1(C)) holds for each n ≥ 1.

iii) F has a formal Ahr
π module structure over OK which extends Aπ module

structure.

Proof : We shall show (i) ⇐⇒ (ii) and (ii) ⇐⇒ (iii).

(i) =⇒ (ii) We know that K(πn+1)|K is Galois and given z1, z2 ∈ F[πn+1] −

F[πn] there is a τ ∈ GK such that τ(z1) = z2 (see lemma-3.1 and lemma-3.8

in appendix-A). It follows that if z ∈ F[πn+1] − F[πn] then K(πn+1) is Galois

closure of K(z) over K. Each sub-extension of an abelian extension is Galois.

Hence the implication.

(ii) =⇒ (i) Remark-1.1(C) (in particular lemma-3.18, lemma-3.19 from appendix-

A) implies

Gal(K(π∞)|K) ∼= U0,Khr
π
.

So Gal(K(π∞)|K) is abelian. Hence the implication.

(ii) =⇒ (iii) Consider τ∞ ∈ HomGK
(Tπ(F), Tπ(F)) (see remark-3.14 of

appendix-A). Let τ∞(X) ∈ OK [[X ]] be the corresponding element in HomOK
(F,F).

Since τq−1
∞ = Id, τq−1

∞ (X) = X where τq−1 denotes (q − 1)-fold composition.

From construction of the element τ∞ (see lemma-3.13 in appendix-A) and the

‘analytic interpretation lemma’ (lemma-3.5 in appendix-A) we conclude that

there is a primitive (q − 1)-th root of unity ζ such that

τ∞(X) = ζX + higher degree terms. (2.3)

Note that Ahr
π = Aπ[ζ] = Aπ ⊕Aπζ ⊕ · · · ⊕Aπζ

hr−1 as Aπ module.

Thus one can define a ring homomorphism

[·] : Ahr
π → HomOK

(F,F)
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by ζ → τ∞(X) and extending Aπ linearly. This is well defined due to the direct

sum decomposition mentioned above. It is easy to check that for each α ∈ Ahr
π

[α](X) = αX + higher degree terms.

So we have the desired Ahr
π module structure.

(iii) =⇒ (ii) First observe that [k(Ahr
π ) : Fp] = h. From remark-1.3(v) F[πn+1]

is a free Ahr
π /πn+1Ahr

π module of rank 1 for all n ≥ 1. Let z ∈ F[πn+1]− F[πn].

Then z generates F[πn+1] as Ahr
π module. So F[πn+1] ⊆ K(z). Hence assump-

tion is verified.

This completes the proof. �

Remark 2.4 : A) (iii) =⇒ (i) is a well-known result in literature ([Ser]).

B) Let L be an unramified extension of K (possibly infinite). Use L̂ denote

completion of L, OL̂ for the ring of integers of L̂ and pL̂ be the maximal ideal

of OL̂. If π is a generator of pK , then π also generates pL̂. Let F be a Aπ

module of height h defined over OL̂. Then one can prove analogues of results in

appendix-A (see remark-1.1) for F (note that in this case we shall replace the

fields K(πn) by L̂(πn) and K by L̂.) Proof is similar to proof in appendix-A.

One can also prove an analogue of theorem-2.3.

3 Further results

Theorem-2.3 establishes an equivalence between properties of two different ob-

jects namely Gal(K(π∞)|K) and HomOK
(F,F). In this section we study them

separately.

For convenience we shall denote HomOK
(F,F) by EndOK

(F). This object has

been extensively studied by Lubin (see [Lub1], [Lub2]). In first part of this sec-

tion we recall some results from these two articles and rephrase some of them

in context of Aπ modules. Remember that any group endomorphism of F is an

Aπ module morphism.

3.1 The endomorphism ring

Let F be a Aπ module of finite height defined over OK for some generator π of

pK .
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Consider the map

c : EndOK
(F)→ OK

defined by c(f(X)) = a1 where f(X) =
∑

i≥1 aiX
i ∈ OK [[X ]].

By lemma-2.1.1 in [Lub1] c is an isomorphism onto a closed subring of OK . From

the hypothesis of Aπ module structure on F, it follows that Aπ ⊆ c(EndOK
(F)).

Note that EndOK
(F) is noethrian, local ring. It contains a subring isomorphic

to Aπ which by abuse of notation will be identified with Aπ.

Let Tπ(F) be the π-adic Tate module. It is a free Aπ module of rank hr. Put,

Vπ(F) = Tπ(F)⊗Aπ
Kπ

Λπ(F) =
⋃

i≥1

F[πi].

We have an isomorphism of Aπ modules

λ : Vπ(F)/Tπ(F)→ Λπ(F).

Let L be a free Aπ module of rank hr contained in Vπ(F) (will be called a ‘full

lattice’) which is stable under the action of absolute Galois group GK . Following

the argument in [Lub2], with L one can associate an Aπ module G defined over

OK which is isogenus to F and this association has certain functorial properties

(see theorem-2.2, [Lub2]). Further if L = Tπ(F), then one can take G = F and

and the isogeny to be identity.

The following lemma is a modified version of theorem-3.1 from [Lub2] :

Lemma 3.1.1 : Let F be a Aπ module of finite height over OK and assume

that L is GK stable full lattice in Vπ(F) giving rise to a Aπ module G over

OK as described above. Note that since F, G are isogenous, c(EndOK
(F)) and

c(EndOK
(G)) have same fraction field in K (to be denoted F ). Let ζ ∈ F . Now

ζ ∈ EndOK
(G) if only if ζL ⊆ L.

Proof : Proof is similar to proof of theorem-3.1 from [Lub2]. �

We shall use lemma-3.1.1 to prove the following result which is a generalised

version of theorem-3.3 from [Lub2] and important for later development :

Theorem 3.1.2 : Let F be an Aπ module of finite height over OK for some

9



generator π of pK . Then EndOK
(F) is integrally closed in its fraction field.

Proof : From lemma-3.8 in appendix-A we know that the absolute Galois

group GK acts transitively on F[π]−{0}. Hence only proper GK submodule of

F[π] is {0}. We have an exact sequence of GK modules :

0→ [π]Tπ(F)→ Tπ(F)→ F[π]→ 0.

From the observation above it follows that if L is a GK stable full lattice con-

taining [π]Tπ(F) and contained in Tπ(F) then either L = [π]Tπ(F) or L = Tπ(F).

Let m be the maximal ideal of EndOK
(F). Clearly [π] ∈ m. Put L = mTπ(F).

Clearly L is a GK stable Aπ submodule of Tπ(F) containing [π]Tπ(F). From

structure theorem of finitely generated modules over PID it follows that L is

free over Aπ of rank hr. By the observation above L = [π]Tπ(F) or L = Tπ(F).

Since EndOK
(F) is noetherian and Tπ(F) is a finitely generated non-zero module

it is clear that L 6= Tπ(F). So L = [π]Tπ(F).

Let φ ∈ m. We shall show that there is a φ1 ∈ EndOK
(F) such that φ = [π]φ1.

Consider the element ζ = c(φ)π−1 in fraction field of c(EndOK
(F)). From

the equality above it follows that ζTπ(F) ⊆ Tπ(F). By lemma-3.1.1 there is a

φ1 ∈ EndOK
(F) such that c(φ1) = ζ. This φ1 satisfies φ = πφ1.

The argument above proves that m is a principal ideal generated by π. Since

EndOK
(F) is a local, noetherian domain we conclude that it is a DVR and hence

the theorem. �

Remark 3.1.3 : EndOK
(F) is isomorphic to a closed subring of OK contain-

ing Aπ. Let F be the fraction field of c(EndOK
(F)). Then we have a tower

of fields Kπ ⊆ F ⊆ K. Since K/Kπ is unramified, F/Kπ is also unramified.

The theorem above shows that c(EndOK
(F)) = OF , the ring of integers of F .

Thus F has a OF module structure over OK extending Aπ module structure.

Let fOF
be the degree of residue extension of OF . Since F/Kπ is unramified

[F : Kπ] =
fOF

fπ
and F has same height h with respect to OF . From theorem-1.1

we have fOF
|h. Hence F ⊆ Khr

π . Thus Kπ ⊆ F ⊆ Khr
π . If F = Khr

π , we say

the endomorphism ring of F has full height.

3.2 The Galois Group

Let F be a π-unramified group law of height h defined over OK . In this sub-

section we study the group Gal(K(π∞)|K). For simplicity we shall use the
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notation G∞
K .

Note that GK acts Tπ(F) by Aπ linear maps. Tπ(F) is a free module Aπ of

rank hr. Let {z1, · · · , zhr
} be a fixed Aπ base for Tπ(F). This choice identi-

fies EndAπ
(Tπ(F) with Mhr

(Aπ) and invertible endomorphisms with Glhr
(Aπ).

Thus we have a group homomorphism

ρ(F) : GK → Glhr
(Aπ).

Put H = ρ(F)(GK).

Note that kernel of ρ(F) is Gal(Qp|K(π∞)) and H ∼= G∞
K as an abstract group.

Further it is easy to see that ρ(F) is continuous with respect to usual profinite

topology. Since GK is compact with respect to pro-finite topology, H is closed

subgroup of Glhr
(Aπ) and the isomorphism of abstract groups mentioned above

is actually an isomorphism of topological groups.

Let R be the Aπ submodule of Mhr
(Aπ) generated by H . Note that, we have a

canonical surjective ring homomorphism

ρ(F) : Aπ[GK ]→ R

induced by ρ(F) satisfying a.z = ρ(F)(a).z for all a ∈ Aπ[GK ] and z ∈ Tπ(F).

Let

φ : EndOK
(Aπ)→Mhr

(Aπ)

be the canonical ring homomorphism. Put Im(φ) = E.

Let R′ denote the commutant (ie. centralizer) of R in Mhr
(Aπ). ClearlyE ⊆ R′.

The bijection in (2.2) proves that φ is injective and E = R′.

F be the fraction field of c(EndOK
(Aπ)). Note that we have a tower of fields

Kπ ⊆ F ⊆ Khr
π and [F : Khr

π ] = fF
fπ

where we are using the abbreviation fF for

fOF
. So, OF = Aπ [ζ] where ζ is a primitive (pfF − 1)-th root of unity and

OF = Aπ ⊕ · · · ⊕Aπζ
fF
fπ

−1

as Aπ modules.

Note that Tπ(Aπ) is a free OF module of rank h/fF . Let {z1, · · · , zh/fF } be

a OF base. Then {[ζ]izj | 0 ≤ i ≤ fF /fπ − 1, 1 ≤ j ≤ h/fF } is a Aπ base for

Tπ(F). We shall use such base now on, order it using reverse dictionary order

(ie (i, j) ≤ (i1, j1) iff (j, i) ≤ (j1, i1) in dictionary order) and assume that ρ(F)

11



and φ are defined with respect to this ordered base.

In the following calculation we shall partition a hr×hr matrix into square blocks

of fF/fπ matrices. For convenience put m = fF /fπ and n = h/fF .

Now φ([ζ]) = (Aij)n×n where Aij = 0m×m whenever i 6= j and Aii = A for all

1 ≤ i ≤ n where

A =




0 0 . 0 1

1 0 . 0 0

0 1 . 0 0

. . . . .

0 0 . 1 0



m×m

Let Y = (yij)m×m be a matrix whose entries are indeterminates. Note that the

relation AY = Y A holds if and only if relations {R(i) | 0 ≤ i ≤ m − 1} hold,

where R(i) is defined as

R(i) : y1,1+i = y2,2+i = · · · = ym,m+i

with the convention that if some index exceeds m we shall read it modulo m.

Now X = (Xij)n×n be a matrix in h2
r indeterminates where Xij is a m × m

matrix with Xij = (xpq,ij)m×m. Note that Xφ([ζ]) = φ([ζ])X if and only if

AXij = XijA for all 1 ≤ i, j ≤ n.

Let V be the sub-variety of Mhr
(Aπ) defined by

V = {X ∈Mhr
(Aπ) |Xφ([ζ]) = φ([ζ])X}.

Clearly H ⊆ R ⊆ V .

From the relations above it is easy to see V ⊗Aπ
Kπ has dimension ≤ n2m = hrh

fF
.

Hence H (thought as a subset of Mhr
(Kπ)) is contained in a variety of dimen-

sion ≤ hrh
fF

.

Remark 3.2.1 : i) Consider the case fF = h. From theorem-2.3 and remark-

1.1(C) it follows that R ∼= Ahr
π and H ∼= U0,Khr

π
the unit group of this ring.

Since R = Aπ [ζ], it is a free Aπ module of rank hr. It follows that H is an

algebraic subgroup of Glhr
(Aπ) and H ⊗Aπ

Kπ has dimension exactly hr. This

leads to the following questions about general situation :

a) Is H is always an algebraic subgroup ?

b) Can H (thought as subset of Ghr
(Kπ)) can be put inside a sub-variety of

Glhr
(Kπ) of dimension < hrh

fF
?

12



Further if fF = fπ, is H an open subgroup of Ghr
(Aπ) (in usual profinite topol-

ogy) ?

ii) Consider the reduction modulo π map Glhr
(Aπ) → Glhr

(Fpfπ ) and assume

that H̃ is the image of H . The kernel of H → H̃ is Gal(K(π∞)|K(π)) and

hence H̃ ∼= Gal(K(π)|K) ∼= Z/(q − 1)Z.

iii) If G∞
K is abelian then H contains all the scalar matrices. Conversely, one

can ask what can be said about G∞
K or in particular about fF if H contains all

scalar matrices.

iv) Note that one can construct Aπ modules with distinct fF (subject to the

conditions fπ | fF |h). For example a Lubin-Tate module has fF = h. By

theorem-5.1.2 in [Lub1] one can construct for any such fF if K/Qp is unrami-

fied (with π = p).

4 Applications to theory of local fields

This is the concluding section and its goal is to apply the theory developed in

[SS1], [SS2] and in this article to construct extensions of local fields. This aspect

requires more careful study and the author hopes to do so in some future article.

We begin by some simple observations :

Remark 4.1 : i) Lubin-Tate theory is used to generate totally ramified abelian

extensions. If F is an unramified group law of height h over OK such that

the endomorphism ring has full height, then K(π∞)/K is also a totally rami-

fied abelian extension whose Galois group is isomorphic to the Galois group of

Lubin-Tate extension of height h (remark-1.1, theorem-2.3). Now let F1,F2 be

two unramified group laws (wrt π1 and π2 respectively) of height h over OK hav-

ing endomorphism rings of full height. ClearlyK(Λπ1
(F1),Λπ2

(F2)) is an abelian

extension of K. It is interesting to ask what is the Galois group of this exten-

sion. Put L = Kur. Let L̂ be the completion of L. Clearly Gal(L̂(Λπ1
(F1))|L̂) ∼=

Gal(K(Λπ1
(F1))|K). One can consider the extension L̂(Λπ1

(F1),Λπ2
(F2))/L̂

and ask for its Galois group. Note that if F1 and F2 are Lubin-Tate extensions

then L̂(Λπ1
(F1),Λπ2

(F2)) = L̂(Λπ1
(F1)). Further, for any two unramified group

laws of same height F1,F2 we have L̂(F1[π1],F2[π2]) = L̂(F1[π1]) (see [SS2],

theorem-1.1).

ii) Same question can be asked if we have two unramified group laws of distinct

13



height having endomorphism rings of full height.

iii) Now let F be an unramified group law of height h defined over OK such that

the endomorphism ring does not have full height. Then K(π∞)|K is a non-

abelian extension. This gives a method of constructing non-abelian extensions

explicitly. One can ask for a family of unramified formal group laws so that

any non-abelian extension of K is contained in one such of extension or inside

compositum of several ones of them.

We end the section with a result on roots of unity.

4.1 Roots of unity

Let F be a unramified group law defined over OK corresponding to a generator

π. It is natural to ask the question if ζpn ∈ K(πn) for some (all) n ≥ 1, where

ζpn is a primitive pn-th root of unity. We may relax the condition a bit and

ask an easier question if ζpn ∈ Kur(πn) where Kur is the maximal unramified

extension of K inside Qp.

This question is easier to answer for some special group laws. Let K be an

unramified extension of Qp. If F is the formal group law associated to a super-

singular elliptic curve E defined over K, then by Weil pairing ζpn ∈ K(pn) for

all n ≥ 1 (Note that in this case E[pn] = F[pn]). Further if F is the formal

group law associated to an elliptic curve with good, ordinary reduction then

E[pn] ⊆ Kur(pn) for all n ≥ 1 and by Weil pairing we have ζpn ∈ Kur(pn).

In this section we shall try to answer this question for an arbitrary formal group

for n = 1 ie we would like to know if ζp ∈ Kur(π).

First note that there is a formal group law Gm defined over OK given by

F (X,Y ) = X + Y +XY . This is a Zp module and as Zp module its height is

1. This implies Gm can not have structure of an unramified group law unless

K/Qp is unramified. It is easy to see, ζpn − 1 ∈ Gm[pn] for all n ≥ 1.

We have the following lemma :

Lemma 4.1.1 : Let K be an unramified extension of Qp. Let F be a for-

mal group law defined over OK . Then ζp ∈ Kur(F[p]).

Proof : The Zp modules Gm and F both define unramified group laws over

14



OK . So the result follows from corollary-2.1.2 in [SS2]. �
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