LINEAR SYZYGY GRAPH AND LINEAR RESOLUTION

ERFAN MANOUCHEHRI AND ALI SOLEYMAN JAHAN

ABSTRACT. For each squarefree monomial ideal $I \subset S = k[x_1, \ldots, x_n]$, we associate a simple graph G_I by using the first linear syzygies of I. In cases, where G_I is a cycle or a tree, we show the following are equivalent:

 (a) I has a linear resolution;

 (b) *I* has linear quotients;

 (c) I is variable-decomposable.

In addition, with the same assumption on G_I , we characterize all monomial ideals with a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension 2 monomial ideals with a linear resolution. As an other application of our results, we also characterize all Cohen-Macaulay simplicail complexes in cases that $G_{\Delta} \cong G_{I_{\Delta} \vee}$ is a cycle or a tree.

INTRODUCTION

Let $S = k[x_1, \ldots, x_n]$ be the polynomial ring in n variables over a field k and I be a monomial ideal in S . We say that I has a d -linear resolution if the graded minimal free resolution of I is of the form:

$$
0 \longrightarrow S(-d-p)^{\beta_p} \cdots \longrightarrow S(-d-1)^{\beta_1} \longrightarrow S(-d)^{\beta_0} \longrightarrow I \longrightarrow 0.
$$

In general it is not easy to find ideals with linear resolution. Note that the free resolution of a monomial ideal and, hence, its linearity depends in general on the characteristic of the base field.

Let $I \subseteq S$ be a monomial ideal. We denote by $G(I)$ the unique minimal monomial set of generators of I. We say that I has linear quotients if there exists an order $\sigma = u_1, \ldots, u_m$ of $G(I)$ such that the colon ideal $\langle u_1, \ldots, u_{i-1} \rangle : u_i$ is generated by a subset of the variables, for $i = 2, \ldots, m$. Any order of the generators for which, I has linear quotients, will be called an admissible order. Ideals with linear quotients were introduced by Herzog and Takayama [\[16\]](#page-15-0). Note that linear quotients is purely combinatorial property of an ideal I and, hence, does not depend on the characteristic of the base field. Suppose that I is a graded ideal generated in degree d. It is known that if I has linear quotients, then I has a d-linear resolution [\[13,](#page-14-0) Proposition 8.2.1].

The concept of variable-decomposable monomial ideal was first introduced by Rahmati and Yassemi [\[19\]](#page-15-1) as a dual concept of vertex-decomposable simplicial complexes. In case that $I = I_{\Delta}$ ∨, they proved that I is variable-decomposable if and only if Δ is vertexdecomposable. Also they proved if a monomial ideal I is variable-decomposable, then it has linear quotients. Hence for monomial ideal generated in one degree, we have the following implications:

I is variable-decomposable $\implies I$ has linear quotients $\implies I$ has a linear resolution.

However, there are ideals with linear resolution but without linear quotients, see [\[5\]](#page-14-1), and ideals with linear quotients which are not variable-decomposable, see [\[19,](#page-15-1) Example 2.24].

The problem of existing 2-linear resolution is completely solved by Fröberg [\[12\]](#page-14-2) (See also [\[18\]](#page-15-2)). Any ideal of S which is generated by squarefree monomials of degree 2 can be assumed as edge ideal of a simple graph. Fröberg proved that the edge ideal of a finite simple graph G has a linear resolution if and only if the complementary graph G of G is chordal. Trying to generalize the result of Fröberg for monomial ideals generated in degree d, $d \geq 3$, is an interesting problem on which several mathematicians including E. Emtander [\[7\]](#page-14-3) and R.Woodroofe [\[23\]](#page-15-3) have worked.

It is known that monomial ideals with 2-linear resolution have linear quotients [\[14\]](#page-14-4). Let $I = I_{\Delta}$ be a squarefree monomial ideal generated in degree d which has a linear resolution. By a result of Eagon-Reiner [\[6\]](#page-14-5), we know Δ is a Cohen-Macaulay of dimension $n - d$. In [\[1\]](#page-14-6) Soleyman Jahan and Ajdani proved if ∆ is a Cohen-Macaulay simplicial complex of codimension 2, then Δ is vertex-decomposable. Hence, by [\[19,](#page-15-1) Theorem 2.10], I_{Δ} is a variable-decomposable monomial ideal generated in degree 2. Therefore if $I = I(G)$ is the edge ideal of a simple graph G , then the following are equivalent:

- (a) I has a linear resolution;
- (b) I has linear quotients;
- (c) I is variable-decomposable ideal.

So it is natural to look for some other classes of monomial ideals with the same property. The paper proceeds as follows. In Section [1,](#page-2-0) we associated a simple graph G_I to a squarefree monomial ideal I generated in degree $d \geq 2$. In Theorem [1.17,](#page-6-0) we show that if $G_I \cong C_m$, $m \geq 4$, then I has a linear resolution if and only if it has linear quotients and it is equivalent to I is a variable-decomposable. With the same assumption on G_I , we characterize all monomial ideals with a linear resolution.

In Section [2,](#page-7-0) we consider monomial ideal I where G_I is a tree. We prove that if I has linear relations, then G_I is a tree if and only if $proj \dim(I) = 1$ (see Theorem [2.2\)](#page-7-1). In Theorem [2.6](#page-9-0) we show that if G_I is a tree, then the following are equivalent:

- (a) I has a linear resolution;
- (b) I has linear relations;
- (c) $G_I^{(u,v)}$ $\prod_{I}^{(u,v)}$ is a connected graph for all u, and v in $G(I)$;
- (d) If $u = u_1, u_2, \ldots, u_s = v$ is the unique path between u and v in G_I , then $F(u_i) \subset$ $F(u_i) \cup F(u_k)$ for all $1 \leq i \leq j \leq k \leq s$;
- (e) L has a linear resolution for all $L \subseteq I$, where $G(L) \subset G(I)$ and G_L is a line

In addition, it is shown that I has a linear resolution if and only if it has linear quotients and if and only if it is variable-decomposable, provided that G_I is a tree (see Theorem [2.7\)](#page-9-1).

Let Δ_I be the Scarf complex of I. In Theorem [2.15](#page-11-0) we prove that in the case that G_I is a tree, I has a linear resolution if and only if $G_I \cong \Delta_I$.

In Section [3,](#page-11-1) as applications of our results in Corollary [3.1,](#page-11-2) we characterize all Cohen-Macaulay monomial ideals of codimension 2 with a linear resolution. Let $t \geq 2$ and $I_t(C_n)$ $(I_t(L_n))$ be the path ideal of length t for n-cycle C_n (n-line L_n). We show that $I_t(C_n)$ $(I_t(L_n))$ has a linear resolution if and only if $t = n - 2$ or $t = n - 1$ $(t \ge n/2)$, see Corollary [3.4](#page-12-0) and Corollary [3.5.](#page-12-1)

Finally, we consider simplicial complex $\Delta = \langle F_1, \ldots, F_m \rangle$. It is shown that Δ is connected in codimension one if and only if $G_{I_{\wedge}\vee}$ is a connected graph, see Lemma [4.1.](#page-13-0) In Corollary [4.2,](#page-13-1) we show that I_{Δ} has linear relations if and only if $\Delta^{(F,G)}$ is connected in codimension one for all facets F and G of Δ . Also, we introduce a simple graph G_{Δ} on vertex set $\{F_1, \ldots, F_m\}$ which is isomorphic to $G_{I_{\wedge} \vee}$. As Corollaries of our results, we show that if G_{Δ} is a cycle or a tree, then the following are equivalent:

- (a) Δ is Cohen-Macaulay;
- (b) Δ is pure shellable;
- (c) Δ is pure vertex-decomposable.

In addition, with the same assumption on G_{Δ} all Cohen-Macaulay simplicial complexes are characterized.

Note that for monomial ideal $I = \langle u_1, \ldots, u_m \rangle$ and monomial u in S, I has a linear resolution (has linear quotients, is variable-decomposable) if and only if uI has a linear resolution (has linear quotients, is variable-decomposable). Hence, without the loss of generality, we assume that $gcd(u_i: u_i \in G(I)) = 1$. Also, one can see that a monomial ideal I has a linear resolution (has linear quotients, is variable-decomposable) if and only if its polarization has a linear resolution (has linear quotients, is variable-decomposable). Therefore in this paper we only consider squarefree monomial ideals.

1. MONOMIAL IDEALS WHOSE G_I is a cycle

Let I be a monomial ideal which is generated in one degree. First, we recalling some definitions and known facts which will be useful later.

Proposition 1.1. [\[13,](#page-14-0) Proposition 8.2.1] Suppose $I \subseteq S$ is a monomial ideal generated in degree d. If I has linear quotients, then I has a d-linear resolution.

Let $u = x_1^{a_1} \dots x_n^{a_n}$ be a monomial in S. Set $F(u) := \{i : a_i > 0\} = \{i : x_i \mid u\}.$ For another monomial v, we set $[u, v] = 1$ if $x_i^{a_i} \nmid v$ for all $i \in F(u)$. Otherwise, we set $[u, v] \neq 1$. For a a monomial ideal $I \subseteq S$, set $I_u = \langle u_i \in G(I) : [u, u_i] = 1 \rangle$ and $I^u = \langle u_j \in G(I) : [u, u_j] \neq 1 \rangle.$

Definition 1.2. Let I be a monomial ideal with $G(I) = \{u_1, \ldots, u_m\}$. A monomial $u = x_1^{a_1} \dots x_n^{a_n}$ is called shedding if $I_u \neq 0$ and for each $u_i \in G(I_u)$ and $l \in F(u)$, there exists $u_j \in G(I^u)$ such that $u_j : u_i = x_l$. Monomial ideal I is r-decomposable if $m = 1$ or else has a shedding monomial u with $|F(u)| \leq r+1$ such that the ideals I_u and I^u are r-decomposable.

A monomial ideal is decomposable if it is r-decomposable for some $r \geq 0$. A 0decomposable ideal is called variable-decomposable. In [\[19\]](#page-15-1) the authors proved the following result:

Theorem 1.3. Let I be a monomial ideal with $G(I) = \{u_1, \ldots, u_m\}$. Then I is decomposable if and only if it has linear quotients.

Let I be a squarefree monomial ideal and

$$
F: 0 \longrightarrow F_p \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow I \longrightarrow 0
$$

be the minimal graded free S-resolution of I, where $F_i = \bigoplus_j S(-j)^{\beta_{ij}}$ for all i. Set $\varphi: F_0 \longrightarrow I$ and $\psi: F_1 \longrightarrow F_0$, where φ maps a basis element e_i of F_0 to $u_i \in G(I)$ and ψ maps a basis element g_i of F_1 to an element of a minimal generating set of ker(φ). Monomial ideal I has *linear relations* if $\text{ker}(\varphi)$ is generated minimally by a set of linear forms.

We associate to I a simple graph G_I whose vertices are labeled by the elements of $G(I)$. Two vertices u_i and u_j are adjacent if there exist variables x, y such that $xu_i = yu_j$. This graph was first introduced by Bigdeli, Herzog and Zaare-Nahandi [\[3\]](#page-14-7).

Remark 1.4. If I is a squarefree monomial ideal, then two type of 3-cycle $u_{i_1}, u_{i_2}, u_{i_3}$ may appear in G_I .

(i): If $F(u_{i_1}) = A \cup \{j,k\}, F(u_{i_2}) = A \cup \{i,k\}$ and $F(u_{i_3}) = A \cup \{i,j\}.$ Then $x_i e_{i_1}$ $x_k e_{i_3} = (x_i e_{i_1} - x_j e_{i_2}) + (x_j e_{i_2} - x_k e_{i_3}).$ In this case one of the linear forms can be written as a linear combination of two other linear forms.

(*ii*): If $F(u_{i_1}) = A \cup \{i\}$, $F(u_{i_2}) = A \cup \{j\}$ and $F(u_{i_3}) = A \cup \{k\}$. In this case the three linear forms are independent.

The number of the minimal generating set of ker(φ) in degree $d+1$ is $\beta_{1(d+1)}$ and $\beta_{1(d+1)} \leq |E(G_I)|$. It is clear that equality holds if G_I has no C_3 of type (i). If G_I has a C_3 of type (i), then we remove one edge of this cycle. In this way, we obtain a graph G_I with no C_3 of type (i) and called it the first syzygies graph of I .

Our aim is to study minimal free resolution of I via some combinatorial properties of G_I . Set $x_F := \prod_{i \in F} x_i$ for each $F \subset [n] = \{1, \ldots, n\}.$

Remark 1.5. Let I be a squarefree monomial ideal. If $u_i = x_{F_i}$ and $u_j = x_{F_j}$ are two elements in $G(I)$ such that $w_iu_i = w_iu_j$, then there exists a monomial $w \in S$ such that $w_i = wx_{F_j \backslash F_i}$ and $w_j = wx_{F_i \backslash F_j}$.

Lemma 1.6. Let I be squarefree monomial ideal. If there is a path of length t between u and v in G_I , then one can obtain monomials w_i and w_j from the given path such that $w_i u = w_j v$ and deg $w_i = \deg w_j \leq t$.

Proof. We proceed by induction on t. The case $t = 1$ is obvious. Let $t = 2$ and u, w, v be a path of length 2 in G_I . Since u and w and w and v are adjacent, we have $x_{i_1}u = x_{i_2}w$ and $x_{i3}w = x_{i4}v$. Hence $x_{i1}x_{i3}u = x_{i2}x_{i4}v$.

Now assume that $t > 2$ and $u = u_{i_0}, u_{i_1}, \ldots, u_{i_{t-1}}, u_{i_t} = v$ is a path of length t. Hence $u = u_{i_0}, u_{i_1}, \ldots, u_{i_{t-1}}$ is a path of length $t-1$. Using induction hypothesis, we conclude that there are monomials w'_{i} $i \text{ and } w_j'$ y'_{j} such that $w'_{i}u = w'_{j}u_{i_{t-1}}$, where $\deg w'_{i} = \deg w'_{j} \leq t-1$. Since v and $u_{i_{t-1}}$ are adjacent, there exist variable x, y such that $xu_{i_{t-1}} = yv$. Therefore $xw_i'u = yw_j'$ $j'v$ and deg $xw'_i = \deg yw'_j \leq t$.

The following example shows that the inequality deg $w_i = \deg w_j \leq k$ can be pretty strict.

Example 1.7. Consider monomial ideal $I = \langle u, v, w, z \rangle \subset k[x_1, \ldots, x_5]$, where $u =$ $x_1x_2x_3$, $w = x_1x_2x_4$, $z = x_1x_4x_5$ and $v = x_3x_4x_5$. We have a path of length 3 between u and v, but $x_4x_5u = x_1x_2v$.

$$
u \stackrel{w}{\bullet} \stackrel{z}{\bullet} \stackrel{w}{\bullet}
$$

Lemma 1.8. Let I be squarefree monomial ideal which has linear relations. Then G_I is a connected graph.

Proof. For any $u_i, u_j \in G(I)$, there exist monomials w_i and w_j such that $w_i u_i = w_j u_j$ and, hence, $w_i e_i - w_j e_j \in \ker(\varphi)$. Since $\ker(\varphi)$ is generated by linear forms one has :

 $w_i e_i - w_j e_j = f_{i_1}(x_{k_1} e_i - x_{k_2}^{\prime} e_{i_2}) + f_{i_2}(x_{k_2} e_{i_2} - x_{k_3}^{\prime} e_{i_3}) + \ldots + f_{i_t}(x_{k_t} e_{i_t} - x_{k_{t+1}}^{\prime} e_j),$ where $f_{ij} \in S$ for $j = 0, \ldots, t$. Therefore $u_i, u_{i_2}, \ldots, u_{i_t}, u_j$ is a path in G_I .

The following example shows that the converse of Lemma [1.8](#page-3-0) is not true in general.

Example 1.9. Consider monomial ideal $I = \langle u, v, w, z, q \rangle \subset k[x_1, \ldots, x_5]$, where $u =$ $x_1x_2x_3$, $v = x_1x_2x_4$, $w = x_1x_4x_5$, $z = x_4x_5x_6$ and $q = x_3x_5x_6$. It is easy to see that G_I is the following connected graph.

$$
u \overset{v}{\bullet} \overset{w}{\bullet} \overset{z}{\bullet} \overset{z}{\bullet} q
$$

However I has not linear relations. It's minimal free S-resolutions is:

$$
0 \longrightarrow S(-6) \longrightarrow S(-4)^{4} + S(-5) \longrightarrow S(-3)^{5} \longrightarrow I \longrightarrow 0.
$$

Remark 1.10. Let I be a squarefree monomial ideal and $u = u_{i_1}, u_{i_2}, \ldots, u_{i_{t-1}}, u_{i_t} = v$ be a path in G_I . If $r \in F(v)$ and $r \notin F(u)$, then x_r is the coefficient of some e_{i_j} in the linear relations which comes from the given path.

Remark 1.11. Let $u = u_{i_1}, u_{i_2}, \ldots, u_{i_{t-1}}, u_{i_t} = v$ be a path in G_I . We know there exist minimal(with respect to divisibility) monomials w and w' such that $we_{i_1} - w'e_{i_t} \in \text{ker}(\varphi)$ and, hence,

 $we_{i_1} - w'e_{i_t} = f_{i_1}(x_{k_1}e_{i_1} - x_{k_2}'e_{i_2}) + f_{i_2}(x_{k_2}e_{i_2} - x_{k_3}'e_{i_3}) + \ldots +$ $f_{i_{t-1}}(x_{k_{t-1}}e_{i_{t-1}}-x_{k_t}e_{i_t}).$

If for each $j, 1 \leq j \leq t$, $F(u_{i,j}) \subseteq F(u) \cup F(v)$ and $x_l \mid w$, then $x_l \nmid w'$. By Remark [1.10](#page-4-0) x_l is the coefficient of some e_{i_r} which appear in the above equation. Hence, there exist u_{i_j} such that $l \in F(u_{i_j})$. Since $F(u_{i_j}) \subseteq F(u) \cup F(v)$ and $l \notin F(u)$, one has $l \in F(v)$. So $x_l \nmid w'$. Similarly for arbitrary x_r where $x_r \mid w'$, one has $x_r \nmid w$. Hence we conclude that $w = x_{F(v)\backslash F(u)}$ and $w' = x_{F(u)\backslash F(v)}$.

Remark 1.12. Let w_{i_1} and w_{i_t} be two minimal monomials (with respect to divisibility) in S such that $w_{i_1}e_{i_1} - w_{i_t}e_{i_t} \in \text{ker}(\varphi)$. Assume that

 $w_{i_1}e_{i_1} - w_{i_t}e_{i_t} = f_{i_1}(x_{k_1}e_{i_1} - x_{k_2}'e_{i_2}) + f_{i_2}(x_{k_2}e_{i_2} - x_{k_3}'e_{i_3}) + \ldots + f_{i_{t-1}}(x_{k_{t-1}}e_{i_{t-1}} - x_{k_t}'e_{i_t}).$ If $x_i \nmid u_{i_1}$ and there exist u_{i_r} , $2 \leq r \leq t$, such that $x_i \mid u_{i_r}$, then $x_i \mid w_{i_1}$. We may assume that r is the smallest number with the property that $x_i | u_{i_r}$. We know that $f_{i_{r-2}}(x_{k_{r-2}}e_{i_{r-2}}-x_{k_{r-1}}'e_{i_{r-1}})+f_{i_{r-1}}(x_ie_{i_{r-1}}-x_{k_r}e_{i_r})$ is a part of above equation. Since in the above equation $e_{i_{r-1}}$ must be eliminated, we have $f_{i_{r-1}}x_i = f_{i_{r-2}}x_{k_{r-1}}'$. Hence, $x_i \mid f_{i_{r-2}}$. Also, $e_{i_{r-2}}$ must be eliminated and, hence, one has $f_{i_{r-2}}x_{k_{r-2}} = f_{i_{r-3}}x_{k_{r-2}}'$. Therefore $x_i | f_{i_{r-3}}$. Continuing these procedures yields $x_i | f_{i_1}$, i.e $x_i | w_{i_1}$.

Similarly if $x_i \nmid u_{i_t}$ and there exist u_{i_r} , $1 \le r \le t-1$, such that $x_i \mid u_{i_r}$, then $x_i \mid w_{i_t}$.

For all $u, v \in G(I)$, let $G_I^{(u,v)}$ $I_I^{(u,v)}$ be the induced subgraph of G_I on vertex set

$$
V(G_I^{(u,v)}) = \{ w \in G(I) : F(w) \subseteq F(u) \cup F(v) \}.
$$

The following fact was proved by Bigdeli, Herzog and Zaare-Nahandi [\[3\]](#page-14-7). Here we present a different proof of it.

Proposition 1.13. Let I be a squarefree monomial ideal which is generated in degree d . Then I has linear relations if and only if $G_I^{(u,v)}$ $\iota_I^{(u,v)}$ is connected for all $u, v \in G(I)$.

Proof. Assume that I has linear relations and $u, v \in G(I)$. We know that $x_{F(v)\backslash F(u)}e_u$ $x_{F(u)\setminus F(v)}e_v \in \ker(\varphi)$. Since $\ker(\varphi)$ is generated by linear forms

$$
x_{F(v)\backslash F(u)}e_u - x_{F(u)\backslash F(v)}e_v =
$$

$$
f_{i_1}(x_{k_1}e_{i_1} - x_{k_2}'e_{i_2}) + f_{i_2}(x_{k_2}e_{i_2} - x_{k_3}'e_{i_3}) + \ldots + f_{i_{t-1}}(x_{k_{t-1}}e_{i_{t-1}} - x_{k_t}'e_t).
$$

Hence $u = u_{i_1}, u_{i_2}, \ldots, u_{i_{t-1}}, u_{i_t} = v$ is a path in G_I . Now it is enough to show that $F(u_{i_j}) \subseteq F(u_{i_1}) \bigcup F(u_{i_t})$ for all i_j , $1 < j < t$. Assume to the contrary that there exist k, $1 < k < t$, such that $F(u_{i_k}) \nsubseteq F(u_{i_1}) \cup F(u_{i_t})$. Let $l \in F(u_{i_k})$ and $l \notin F(u_{i_1}) \cup F(u_{i_t})$. By Remark 1.[12](#page-4-1) $x_l | x_{F(v) \setminus F(u)}$ and $x_l | x_{F(u) \setminus F(v)}$. This is a contradiction.

For converse, we know that $\ker(\varphi)$ is generated by $x_{F_v\backslash F_u}e_u - x_{F_u\backslash F_v}e_v$, where $u, v \in$ $G(I)$. By our assumption, $G_I^{(u,v)}$ $I_I^{(u,v)}$ is a connected graph for all $u, v \in G(I)$. Therefore there exist a path $u = u_{i_1}, u_{i_2}, \ldots, u_{i_{t-1}}, u_{i_t} = v$ between u and v in $G^{(u,v)}$. By Remark [1.11,](#page-4-2) one has

$$
x_{F(v)\backslash F(u)}e_{i_1} - x_{F(u)\backslash F(v)}e_{i_t} = f_{i_1}(x_{k_1}e_{i_1} - x_{k_2}'e_{i_2}) + \ldots + f_{i_{t-1}}(x_{k_{t-1}}e_{i_{t-1}} - x_{k_t}'e_t).
$$

Hence, $x_{F(v)\backslash F(u)}e_{i_1} - x_{F(v)\backslash F(u)}e_{i_t}$ is a linear combination of linear forms.

Lemma 1.14. Let I be a squarefree monomial ideal. Then one can assign to each cycle of G_I an element in ker(ψ).

Proof. Let $u_{i_1}, u_{i_2}, \ldots, u_{i_{t-1}}, u_{i_t}, u_{i_1}$ be a cycle in G_I . Then we have two paths u_{i_1}, u_{i_2} and $u_{i_2}, \ldots, u_{i_t}, u_{i_1}$. Since $\{u_{i_1}, u_{i_2}\} \in E(G_I)$, there exist variables x and y such that $xe_{i_1} - ye_{i_2} \in \text{ker}(\varphi) = \text{Im}(\psi)$. This is an element in the minimal set of generators of ker(φ). Hence, there exist a basis element g of F_1 such that $\psi(g) = xe_{i_1} - ye_{i_2}$.

By Lemma [1.6,](#page-3-1) there exist monomials w_1 and w_2 in S such that $w_1e_{i_1} - w_2e_{i_2} =$ $f_{i_2}(x_{k_2}e_{i_2}-x_{k_3}e_{i_3})+\ldots+f_{i_t}(x_{k_t}e_{i_t}-x_{k_{t+1}}e_{i_1})=\psi(\sum_{j=2}^t f_{i_j}g_{i_j})$. Remark [1.5](#page-3-2) implies that $w_1 = hx_{F(u_{i_2}) \setminus F(u_{i_1})} = hx$ and $w_2 = hx_{F(u_{i_1}) \setminus F(u_{i_2})} = hy$. Therefore, we have

$$
h(xe_{i_1} - ye_{i_2}) = w_1e_{i_1} - w_2e_{i_2}.
$$

This implies that $h\psi(g) = \psi(\sum_{j=2}^t f_{i_j}g_{i_j})$ and, hence, $(hg - \sum_{j=2}^t f_{i_j}g_{i_j}) \in \text{ker }\psi$. Since $g \neq g_{i_j}$ for all $1 \leq j \leq r$ one has $(hg - \sum_{j=2}^t f_{i_j} g_{i_j}) \neq 0$

 $\sum h_i g_i$, where g_i is a basis element of F_1 and $0 \neq h_i \in S$, then h_i is a monomial. Without **Remark 1.15.** Let w be an element of a minimal set of generators of ker(ψ). If w = loss of generality, we may assume that $\psi(g_1) = t_1 e_1 - t_2 e_2$. Let $u \in \text{supp}(h_1)$ be a monomial. Since ut_2e_2 must be eliminated, there exist a basis element g_j of F_1 such that $\psi(g_j) = (t_2' e_2 - t_3 e_l)$. Without loss of generality, we may assume $j = 2$ and $l = 3$. Hence, $t_2\frac{u}{t_2}$ $\frac{u}{t_2'} = u' \in \text{supp}(h_2)$. Again since $u't_3e_3$ must be eliminated, without loss of generality, we may assume there exist a basis element g_3 of F_1 such that $\psi(g_3) = (t_3' e_3 - t_4 e_4)$. Therefore $t_3\frac{u'}{t_2}$ $\frac{u'}{t_3'} = u'' \in \text{supp}(h_3)$. Continuing these procedures yields $\psi(g_l) = (t_l' e_l - t_1 e_1)$ and $t_l \frac{u^{l-2}}{t_l}$ $t_l^{l-2} = u^{l-1} \in \text{supp}(h_l)$. Hence we obtain a cycle in G_I in this way. Now if there exist another monomial $v \in \text{supp}(h_1)$ with $u \neq v$, then by the similar argument one can find a new cycle in G_I . Hence, Lemma [1.14](#page-5-0) implies that w is a combination of some other elements of $\ker(\psi)$, a contradiction. So h_i is a monomial.

Lemma 1.16. Let I, φ and ψ be as mention in above. If ker φ is generated by linear forms, then corresponding to every element in a minimal set of generators of ker(ψ) there is a cycle in G_I .

Proof. Let $\sum_{i=1}^{n} h_i g_i$ an element of a minimal generating set of ker(ψ). Then $\psi(\sum_{i=1}^{n} h_i g_i)$ $=\sum_{i=1}^n h_i \psi(g_i) = 0$, where g_i is a basis element of F_1 and h_i is monomial for $i = 1, \ldots n$.

Then $-h_1\psi(g_1) = \sum_{i=2}^n h_i\psi(g_i)$. Assume that $\psi(g_1) = x_{i_1}e_{i_1} - x_{i_2}e_{i_2}$. So u_{i_1}, u_{i_2} is a path in G_I .

The left-hand side of above equation is of the form $w_{i_1}e_{i_1} - w_{i_2}e_{i_2}$. By proof of Lemma [1.8,](#page-3-0) the right-hand side of the above equation is of the form

$$
f_{i_2}(x_{k_2}e_{i_2}-x_{k_3}e_{i_3})+f_{i_3}(x_{k_3}e_{i_3}-x_{k_4}e_{i_4})+\ldots+f_{i_t}(x_{k_t}e_{i_t}-x_{k_{t+1}}e_{i_1}),
$$

where $e_{i_t} \neq e_{i_2}$. If $e_{i_t} = e_{i_2}$, then $x_{k_{t+1}}' = x_{i_1}$ and $x_{k_t} = x_{i_2}$. Hence, g_1 appears in the right-hand side of equation, a contradiction. Thus $u_{i_2}, u_{i_3}, \ldots, u_{i_t}, u_{i_1}$ is a path which is different from path u_{i_1}, u_{i_2} .

Theorem 1.17. Let $I \subset S$ be a squarefree monomial ideal such that $G_I \cong C_m$, $m \geq 4$. Then the following conditions are equivalent:

- (a) I has a linear resolution;
- (b) $m = n$ and with a suitable relabeling of variables for all j one has $x_i | u_j$ for all i, $i+1 \neq j$ and $i \neq j$, where $n+1 = 1$;
- (c) I is variable-decomposable ideal;
- (d) I has linear quotients.

Proof. (a) \Rightarrow (b) : Assume that I has a linear resolution. Since G_I is a cycle, by Lemma [1.14](#page-5-0) and Lemma [1.16,](#page-5-1) $\ker(\psi) = \langle w \rangle$. Let $w = \sum_{i=1}^{m} h_i g_i$ where g_i is a basis element of F_1 and h_i is a monomial in S for $i = 1, ..., m$. Without loss of generality, we may assume that $G_I = u_1, u_2, \ldots, u_m, u_1$. Then

$$
\psi(w) = \sum_{i=1}^{m} h_i \psi(g_i) = h_1(x_{t_1}e_1 - x_{t_2}e_2) + h_2(x_{t_2}e_2 - x_{t_3}e_3) + \ldots + h_m(x_{t_m}e_m - x_{t_1}e_1) = 0.
$$

Therefore, $h_1x_{t_1}e_1 = h_mx_{t_1}e_1$. Since, I has d-linear resolution and $deg(e_i) = d$, we conclude that $\deg(h_i) = 1$ for all i. Consequently, $h_1 = x_{t_1}$ and $h_m = x_{t_1}$. By similar argument $h_j = x_{t_j}$ and $h_j = x_{t_{j+1}}$. Hence, $x_{t_{j+1}} = x_{t_j}$ for all $1 \le j \le m-1$. So ker (φ) is minimally generated by the following linear forms.

 $(x_{t_m}e_1-x_{t_2}e_2),(x_{t_1}e_2-x_{t_3}e_3),(x_{t_2}e_3-x_{t_4}e_4),\ldots,$ $(x_{t_{m-2}}e_{m-1}-x_{t_m}e_m), (x_{t_{m-1}}e_m-x_{t_1}e_1).$

For an arbitrary variable x_i in S there exits u_i and u_j in $G(I)$ such that $x_i | u_i$ and $x_i \nmid u_j$. Hence, by Remark [1.10](#page-4-0) $x_i \in \{x_{t_1}, x_{t_2}, \ldots, x_{t_m}\}$. It is clear that the variables $x_{t_1}, x_{t_2}, \ldots, x_{t_m}$ are distinct and, hence, $n = m$.

Set $x_{t-1} = x_{t_{m-1}}, x_{t_{m+1}} = x_{t_1}, e_0 = e_m$ and $e_{m+1} = e_1$. For $1 \le i \le m-1$, we have $\varphi(x_{t_{i-2}}e_{i-1}-x_{t_i}e_i)=0$ and, hence, $x_{t_i} \mid u_{i-1}$ and $x_{t_i} \nmid u_i$. Also, from $\varphi(x_{t_i}e_{i+1}-x_{t_i}e_i)=0$ $x_{t_{i+2}}e_{i+2} = 0$, we have $x_{t_i} \nmid u_{i+1}$ and $x_{t_i} \mid u_{i+2}$. By Remark [1.10](#page-4-0) $x_{t_i} \mid u_j$ for $j \neq i, i+1$.

 $(b) \Rightarrow (c)$: It is easy to see that $I_{x_1} = \langle u_1, u_2 \rangle$ is variable-decomposable, $I^{x_1} = \langle u_1, u_2 \rangle$ $u_3, \ldots, u_n >$ and $u = x_1$ is a shedding variable. Also, it is clear that x_2 is a shedding variable for I^{x_1} and $(I^{x_1})^{x_2} = \langle u_4, \ldots, u_n \rangle, (I^{x_1})_{x_2} = \langle u_3 \rangle$. Continuing these procedures yields that I^{x_1} is variable-decomposable. Hence, I is variable-decomposable ideal.

- $(c) \Rightarrow (d)$ follows by Theorem [1.3.](#page-2-1)
- $(d) \Rightarrow (a)$ follows by Proposition [1.1.](#page-2-2)

Corollary 1.18. Let $I \subset S$ be a squarefree monomial ideal generated in degree 2 and assume that $G_I \cong C_m$, $m \geq 4$. Then I has a linear resolution if and only if $m = 4$.

Remark 1.19. Let *I* be a squarefree monomial ideal. If $G_I \cong C_3$, then *I* has linear quotients. Hence I has a linear resolution.

Let I be a squarefree monomial ideal generated in degree 2. We may assume that $I = I(G)$ is the edge ideal of a graph G. Hence, by Fröberg's result, $I(G)$ has a linear resolution if and only if \overline{G} is a chordal graph. If $G \cong C_m$, then \overline{G} is chordal if and only if $m = 3$ or $m = 4$. In this situation $G \cong C_m$ if and only if $G_I \cong C_m$. Hence, in this case our result is coincide to Fröberg's result.

Corollary 1.20. Let I be a squarefree monomial ideal generated in degree d where $G_I \cong$ C_m . If $d + 2 < n$ or $m \neq n$, then I can not has a d-linear resolution.

Example 1.21. Consider monomial ideal $I = \langle xy, zy, zq, qx \rangle \subset k[x, y, z, q]$. The graph G_I is 4-cycle. Since $d = 2$, $n = 4$ and $d + 2 = n$, I has a 2-linear resolution.

$$
0 \longrightarrow S(-4) \longrightarrow S(-3)^4 \longrightarrow S(-2)^4 \longrightarrow I \longrightarrow 0.
$$

Example 1.22. For monomial ideal $I = \langle xyz, yzq, zqw, qwe, wex, xye \rangle \subset k[x, y, z, q, e, w],$ we have $G_I \cong C_6$. Therefore I has not a 3-linear resolution, since $d = 3$, $n = 6$ and $d+2 < n$. The resolution of I is:

$$
0 \longrightarrow S(-6) \longrightarrow S(-4)^6 \longrightarrow S(-3)^6 \longrightarrow I \longrightarrow 0.
$$

2. LINEAR RESOLUTION OF MONOMIAL IDEALS WHOSE G_I is a tree

Let I be a squarefree monomial ideal such that G_I is a tree. In this section we study linear resolution of such monomial ideals. We know that each line is a tree, therefore first we consider the following:

Proposition 2.1. Let $I = \langle u_1, \ldots, u_m \rangle$ be a squarefree monomial ideal generated in degree d. If $G_I = u_1, u_2, \dots, u_m$ is a line, then the following conditions are equivalent:

- (a) I has a linear resolution;
- (b) For any $1 \leq j \leq k \leq i \leq m$

$$
F(u_k) \subseteq F(u_i) \cup F(u_j);
$$

- (c) I is variable-decomposable ideal;
- (d) I has linear quotients.

Proof. (a) \Rightarrow (b) : Suppose, on the contrary, there exist $1 \leq j \leq k \leq i \leq m$ and $l \in F(u_k)$ such that $l \notin F(u_i) \cup F(u_j)$. Since I has a linear resolution, we have $x_{F(u_i)\setminus F(u_j)}e_j$ – $x_{F(u_j)\setminus F(u_i)}e_i = f_i(x_{k_1}e_i-x_{k_2}^{''}e_{i+1})+f_{i+1}(x_{k_2}e_{i+1}-x_{k_3}^{''}e_{i+2})+\ldots+f_{j-1}(x_{k_{j-1}}e_{j-1}-x_{k_t}^{''}e_j).$ By Remark [1.12,](#page-4-1) $x_l | x_{F(u_j) \setminus F(u_i)}$ and $x_l | x_{F(u_i) \setminus F(u_j)}$ which is a contradiction.

 $(b) \Rightarrow (c)$: Let $F(u_2) \setminus F(u_1) = \{l\}$. From the facts that $F(u_2) \subseteq F(u_1) \cup F(u_i)$, $l \in F(u_2)$ and $u_2: u_1 = x_l$, we conclude that $l \in F(u_i)$ for all $2 \le i \le m$, $I_{x_l} = u_1 >$ and x_1 is a shedding. By induction on m, I^{x_l} is variable-decomposable, since I^{x_l} in a line of length $m-1$.

- $(c) \Rightarrow (d)$ follows by Theorem [1.3.](#page-2-1)
- $(d) \Rightarrow (a)$ follows by Proposition [1.1.](#page-2-2)

Theorem 2.2. If I is a squarefree monomial ideal which has linear relations, then G_I is a tree if and only if $proj \dim(I) = 1$.

Proof. If G_I is a tree, then G_I has no cycle. Therefore by Lemma [1.16,](#page-5-1) ker(ψ) = 0. Hence the linear resolution of I is of the form

$$
0 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow I \longrightarrow 0
$$

and proj dim(I) = 1.

Conversely, assume that $proj \dim(I) = 1$. Then $\ker(\psi) = 0$ and by Lemma [1.14](#page-5-0) G_I has no cycle. Since I has linear relations, by Lemma [1.8,](#page-3-0) G_I is a connected graph. Therefore G_I is a tree.

Proposition 2.3. Let I be a squarefree monomial ideal with proj $\dim(I) = 1$. Then I has a linear resolution if and only if G_I is a connected graph.

Proof. Assume that G_I is a connected graph. Since proj dim(I) = 1, Lemma [1.14](#page-5-0) implies that G_I has no cycle and, hence, it is a tree. So it is enough to show I has linear relations. For $u_i, u_j \in G(I)$ there exist a unique path between u_i and u_j in $G(I)$. Assume that

$$
we_i - w'e_j = f_{i_1}(x_{k_1}e_{i_1} - x_{k_2}'e_{i_2}) + f_{i_2}(x_{k_2}e_{i_2} - x_{k_3}'e_{i_3}) + \ldots + f_{i_{t-1}}(x_{k_{t-1}}e_{i_{t-1}} - x_{k_t}'e_{i_t})
$$

be an element of ker(φ) which is obtained from this path. If $we_i - w'e_j = x_{F(u_j)\backslash F(u_i)}e_i$ $x_{F(u_i)\backslash F(u_i)}e_i$, we are done. So assume that the equality does not holds. Then $x_{F(u_i)\backslash F(u_i)}e_i$ $x_{F(u_i)\backslash F(u_j)}e_j$ is a minimal element in ker(φ). Hence, there exists $g \in F_1$ such that $\psi(g) = x_{F(u_j)\setminus F(u_i)}e_i - x_{F(u_i)\setminus F(u_j)}e_j$. Remark [1.5](#page-3-2) implies that there exists a monomial $h \in S$ such that $h\psi(g) = we_i - w'e_j = f_{i_1}\psi(g_{i_2}) + \ldots + f_{i_{t-1}}\psi(g_{i_{t-1}})$. Therefore $\psi(hg - f_{i_1}g_{i_2} - \cdots - f_{i_{t-1}}g_{i_{t-1}}) = 0$ and $hg - f_{i_1}g_{i_2} - \cdots - f_{i_{t-1}}g_{i_{t-1}} \neq 0$, a contradiction. The converse follows from Lemma [1.8.](#page-3-0)

Proposition 2.4. Let $I = \langle u_1, \ldots, u_m \rangle$ be a squarefree monomial ideal generated in degree d which has linear quotients. Assume that G_I is a tree and v is a monomial in degree d which is a leaf in $G_{\leq I,\nu>}$. Then the following conditions are equivalent:

- (a) $\langle I, v \rangle$ has a linear resolution;
- (b) Let u_i be the branch of v and $F(u_i) \setminus F(v) = \{l\}$, then $l \in \bigcap_{t=1}^m F(u_t)$;
- (c) < I, v > has linear quotients.

Proof. (a) \Rightarrow (b) : Suppose, on the contrary, that there exist a $1 \leq j \leq m$ such that $l \notin F(u_j)$. Let $v, u_i = u_{i_1}, u_{i_2}, \ldots, u_{i_{t-1}}, u_{i_t} = u_j$ be the unique path between v and u_j . Without loss of generality, we may assume that $l \in F(u_{i_r})$ for all $r, 1 \le r \le t-1$. Since $\langle I, v \rangle$ has a linear resolution, we have $x_{F(u_j)\setminus F(v)}e_v - x_{F(v)\setminus F(u_j)}e_j = f_0(x_{i_0}e_v - x_{i_0})e_v$ $x_{i_1'}e_{i_1} + f_1(x_{i_1}e_{i_1} - x_{i_2'}e_{i_2}) + \ldots + f_{t-1}(x_{i_{t-1}}e_{i_{t-1}} - x_{i_t'}e_t)$. By Remark [1.12,](#page-4-1) we know that $x_l | x_{F(u_j) \setminus F(v)}$ and $x_l | x_{F(v) \setminus F(u_j)}$, this is a contradiction.

 $(b) \Rightarrow (c)$: We now that there is an admissible order v_1, v_2, \ldots, v_m of $G(I)$. Since by our assumption $\{l\} = F(u_i) \setminus F(v)$ and $l \in F(u_j)$ for any $1 \leq j \leq m$, we conclude that the order v_1, v_2, \ldots, v_m, v is an admissible order for $\langle I, v \rangle$.

 $(c) \Rightarrow (a)$ follows from Proposition [1.1.](#page-2-2)

Proposition 2.5. Let $I = \langle u_1, \ldots, u_m \rangle$ be a squarefree monomial ideal generated in degree d. If G_I is a tree, then I has a linear resolution if and only if L has a linear resolution for all $L \subseteq I$, where $G(L) \subset G(I)$ and G_L is a line.

Proof. Assume that I has a linear resolution. Since G_I is a tree, we have proj $\dim(I)$ 1. So if $L \subset I$ with $G(L) \subset G(I)$ and G_L is a line, then L has linear relations and proj $\dim(L) = 1$. Therefore L has a linear resolution.

For the converse, by our assumption there exists a monomial ideal $J_0 \subset I$ such that $G(J_0) = \{u_{i_1}, \ldots, u_{i_t}\} \subset G(I), G_{J_0}$ is a line and has linear resolution. Therefore J_0 has linear quotients. Take $v \in V(G_I) \setminus V(G_{J_0})$ such that v and u_{i_j} are adjacent in G_I for some $1 \leq j \leq t$. Set $F(u_{i_j}) \setminus F(v) = \{l\}$. Since J_0 has linear quotients there exist a path

between u_{i_r} and u_{i_j} for all $1 \leq r \leq t$. Therefore we have line $u_{i_r}, \ldots, u_{i_j}, v$ in G_I . By our hypothesis $L = \langle u_{i_r}, \ldots, u_{i_j}, v \rangle$ has a linear resolution and Proposition [2.1](#page-7-2) implies that $F(u_{i_j}) \subseteq F(v) \cup F(u_{i_r})$. Therefor $\{l\} \in F(u_{i_r})$ and Proposition [2.4](#page-8-0) implies that $J_1 = \langle J_0, v \rangle$ has linear quotients. Now replace J_0 by J_1 and do the same procedure until we obtain I .

Theorem 2.6. Let I be a squarefree monomial ideal which is generated in one degree. If G_I is a tree, then the following conditions are equivalent:

- (a) I has a linear resolution;
- (b) I has linear relations;
- (c) $G_I^{(u,v)}$ $\prod_{I}^{(u,v)}$ is a connected graph for all u, and v in $G(I)$;
- (d) If $u = u_1, u_2, \ldots, u_s = v$ is the unique path between u and v in G_I , then $F(u_j) \subset$ $F(u_i) \cup F(u_k)$ for all $1 \leq i \leq j \leq k \leq s$;
- (e) L has a linear resolution for all $L \subseteq I$, where $G(L) \subset G(I)$ and G_L is a line

Proof. (a) \Rightarrow (b) is trivial. (b) \Rightarrow (c) follows from Proposition [1.13.](#page-4-3) (c) \Rightarrow (d) : for all $1 \leq i \leq j \leq k \leq s$, $G_I^{(u_i, u_k)}$ $\prod_{I}^{(u_i, u_k)}$ is connected and u_j is a vertex of this graph. Therefore $F(u_j) \subset F(u_i) \cup F(u_k)$. $(d) \Rightarrow (e)$ follows from Proposition [2.1.](#page-7-2) $(e) \Rightarrow (a)$ follows from Proposition [2.5.](#page-8-1)

Theorem 2.7. Let I be a squarefree monomial ideal generated in degree d. If G_I is a tree, then the following are equivalent:

- (a) I has a linear resolution;
- (b) I is variable-decomposable ideal;
- (c) I has linear quotients.

Proof. (a) \Rightarrow (b) : We know that proj dim(I) = 1, since G_I is a tree and I has a linear resolution. With out loss of generality we may assume that u_1 is a vertex of degree one in G_I and u_2 be the unique neighborhood of u_1 in G_I . Set $F(u_2) \setminus F(u_1) = \{l\}$. Proposition [1.13](#page-4-3) implies that $G_I^{(u_1, u_i)}$ $\prod_{i=1}^{(u_1, u_i)}$ is a connected graph for all u_i . If $l \notin F(u_i)$ for some $i > 2$, then $F(u_2) \nsubseteq F(u_1) \cup F(u_i)$ and $u_2 \notin V(G_I^{(u_1, u_i)})$ $I_I^{(u_1,u_i)}$). Therefore $G_I^{(u_1,u_i)}$ $I^{(u_1, u_i)}$ is not connected, a contradictions. Hence $I_{x_l} = \{u_1\}$ and $G(I^{x_l}) = G(I) \setminus \{u_1\}$. It is easy to see that x_l is a shedding variable. Since $G_{I^{x_l}}$ is a tree and has linear relations, by induction on $|G(I)|$, we conclude that I^{x_l} is variable-decomposable. Therefore I is variable-decomposable ideal. $(b) \Rightarrow (c)$ follows by Theorem [1.3.](#page-2-1) $(c) \Rightarrow (a)$ follows by Proposition [1.1.](#page-2-2)

Remark 2.8. In Theorem [2.7,](#page-9-1) we show that if G_I is a tree and I has a linear resolution, then I has linear quotients. In the following we present an admissible order for I in this case. we choose order u_{r_1}, \ldots, u_{r_m} for the elements of $G(I)$ such that the subgraph on vertices $\{u_{r_1}, \ldots, u_{r_t}\}\$ is a connected graph for $1 \leq t \leq m$. We show tat this order is an admissible order. If this order is not an admissible order, then there exists a $j < i$ such that for all $k < i$ with $F(u_{r_k}) \setminus F(u_{r_i}) = \{l\}$, we have $l \notin F(u_{r_j})$. Since there is a path $u_{r_j}, \ldots, u_{r_k}, u_{r_i}$ Remark [1.12](#page-4-1) implies that $x_l | x_{F(u_{r_i}) \setminus F(u_{r_j})}$ and $x_l | x_{F(u_{r_j}) \setminus F(u_{r_i})}$, a contradiction.

A simplicial complex Δ over a set of vertices $[n] = \{1, \ldots, n\}$ is a collection of subsets of [n] with the property that $\{i\} \in \Delta$ for all i and if $F \in \Delta$, then all subsets of F are also in Δ . An element of Δ is called a face and the dimension of a face F is defined as $|F| - 1$, where $|F|$ is the number of vertices of F. The maximal faces of Δ under inclusion are called facets and the set of all facets denoted by $\mathcal{F}(\Delta)$. The dimension of the simplicial complex Δ is

the maximal dimension of its facets. A subcollection of Δ is a simplicial complex whose facets are also facets of Δ . In other words a simplicial complex generated by a subset of the set of facets of Δ . Let Δ be a simplicial complex on [n] of dimension $d-1$. For each $0 \leq i \leq d-1$ the *i*th skeleton of Δ is the simplicial complex $\Delta^{(i)}$ on [n] whose faces are those faces F of Δ with $|F| \leq i + 1$. We say that a simplicial complex Δ is connected if for facets F and G of Δ there exists a sequence of facets $F = F_0, F_1, \ldots, F_{q-1}, F_q = G$ such that $F_i \cap F_{i+1} \neq \emptyset$ for $i = 0, \ldots, q-1$. Observe that Δ is connected if and only if $\Delta^{(1)}$ is connected.

Let Δ be a simplicial complex on [n]. The Stanley-Reisner ideal of Δ is a squarefree monomial ideal $I_{\Delta} = \langle x_{i_1} \dots x_{i_p} | \{x_{i_1}, \dots, x_{i_p}\} \notin \Delta \rangle$. Conversely, let $I \subseteq k[x_1, \dots, x_n]$ be a squarefree monomial ideal. The Stanley-Reisner complex of I is the simplicial complex Δ on [n] such that $I_{\Delta} = I$. The Alexander dual of Δ is the simplicial complex $\Delta^{\vee} = \langle$ $\{x_1, \ldots, x_n\} \setminus F | F \notin \Delta >.$

Definition 2.9. [\[9\]](#page-14-8) Let Δ be a simplicial complex. A facet $F \in \mathcal{F}(\Delta)$ is said to be a leaf of Δ if either F is the only facet of Δ or there exists a facet $G \in \mathcal{F}(\Delta)$ with $G \neq F$, called a branch F, such that $H \cap F \subseteq G \cap F$ for all $H \in \mathcal{F}(\Delta)$ with $H \neq F$. A connected simplicial complex Δ is a tree if every nonempty subcollection of Δ has a leaf. If Δ is not necessarily connected, but every subcollection has a leaf, then Δ is called a forest.

If Δ is a simplicial tree, then we can always order the facets F_1, \ldots, F_q of Δ such that F_i is a leaf of the induced subcomplex $\langle F_1, \ldots, F_{i-1} \rangle$. Such an ordering on the facets of Δ is called a leaf order. A simplicial complex Δ is a quasi-forest if Δ has a leaf order. A connected quasi-forest is called a quasi-tree.

Consider an arbitrary monomial ideal $I = \langle u_1, \ldots, u_m \rangle$. For any subset σ of $\{1, \ldots, m\}$, we write u_{σ} for the least common multiple of $\{u_i \mid i \in \sigma\}$ and set $a_{\sigma} = \deg u_{\sigma}$. Let $G(I) =$ $\{u_1, \ldots, u_m\}$. The Scarf complex Δ_I is the collection of all subsets of $\sigma \subset \{1, \ldots, m\}$ such that u_{σ} is unique. As first noted by Diane Taylor [\[21\]](#page-15-4), given a monomial ideal I in a polynomial ring S minimally generated by monomials u_1, \ldots, u_m , a free resolution of I can be given by the simplicial chain complex of a simplex with m vertices. Most often Taylors resolution is not minimal. The Taylor complex F_{Δ_I} supported on the Scarf complex Δ_I is called the algebraic Scarf complex of the monomial ideal I. For more information about Taylor complex we refer to [\[17\]](#page-15-5).

The following results will be used later.

Lemma 2.10. [\[17\]](#page-15-5) If I is a monomial ideal in S, then every free resolution of S/I contains the algebraic Scarf complex F_{Δ_I} as a subcomplex.

Proposition 2.11. [\[10,](#page-14-9) Corollary 4.7] Every simplicial tree is the Scarf complex of a monomial ideal I and supports a minimal resolution of I.

In [\[11\]](#page-14-10) Faridi and Hersey studied minimal free resolution of squarefree monomial ideals with projective dimension 1. They prove the following.

Theorem 2.12. Let I be a squarefree monomial ideal in a polynomial ring S and Δ be a simplicial complex such that $I = I_{\Delta}$. Then the following statements are equivalent:

- (a) proj dim $I \leq 1$;
- (b) Δ^{\vee} is a quasi-forest;
- (c) S/I has a minimal free resolution supported on a graph-tree.

If Δ is a simplicial complex and dim $\Delta = 1$, then the geometric realization of Δ is a graph. In this situation we say Δ is a graph.

Lemma 2.13. Let I be a monomial ideal. Set $G = \Delta_I^{(1)}$. If G_I is a c_3 -free graph, then G_I is a subgraph of G .

Proof. One has $V(G) = V(G_I) = G(I)$. Let $\{u_i, u_j\} \in E(G_I)$. Assume that $\{u_i, u_j\}$ is not an edge in G. Then there exits $\sigma \subset \{1, \ldots, m\}$ such that $\{i, j\} \neq \sigma$ and $u_{\{i, j\}} = u_{\sigma}$. Let $r \in \sigma \setminus \{i, j\}$, then $F(u_r) \subseteq F(u_i) \cup F(u_j)$. We may assume that $F(u_i) = A \cup \{i\}$ and $F(u_j) = A \cup \{j\}$. Hence $F(u_r) \subseteq A \cup \{i, j\}$. Therefore $\{u_i, u_r\}$ and $\{u_j, u_r\}$ are in $E(G_I)$, which is a contradiction.

Remark 2.14. Let I be a monomial ideal which has a linear resolution and $u_i, u_j \in G(I)$. Assume that $u_i = u_{i_1},...,u_{i_{t-1}}, u_{i_t} = u_j$ is a path between u_i and u_j . Then $x_{F(u_j)\setminus F(u_i)}e_i$ $x_{F(u_i)\setminus F(u_j)}e_j \in \text{ker}(\varphi)$ and is a linear combination of linear forms which comes from the given path. By Remark [1.10](#page-4-0) and Remark [1.12,](#page-4-1) $F(u_{i_r}) \subseteq F(u_i) \bigcup F(u_j)$, for all $i \leq r \leq j$.

Theorem 2.15. Assume that I is a squarefree monomial ideal generated in degree d . If G_I is a tree, then I has a linear resolution if and only if $G_I \cong \Delta_I$.

Proof. Assume that I has a linear resolution. By Theorem [2.2](#page-7-1) proj dim $I \leq 1$ and by Lemma [2.10](#page-10-0) dim $\Delta_I = 1$. By Lemma [2.13](#page-11-3) G_I is a subgraph of Δ_I . Now let $\{u_r, u_t\} \in \Delta_I$. Suppose that $\{u_r, u_t\} \notin E(G_I)$. Since $x_{F(u_t) \setminus F(u_r)}e_r - x_{F(u_r) \setminus F(u_t)}e_t \in \text{ker}(\varphi)$ and I ha a linear resolution, we have

$$
x_{F(u_t)\backslash F(u_r)}e_r - x_{F(u_r)\backslash F(u_t)}e_t = f_r(x_{k_r}e_r - x_{k_{r+1}}'e_{i_{r+1}}) + \ldots + f_j(x_{k_j}e_{i_j} - x_{k_i'}e_t).
$$

Set $\sigma = \{r, i_{r+1}, \ldots, i_j, t\}$. By Remark [2.14](#page-11-4) $m_{\sigma} = m_{\{r,t\}}$, which is a contradiction.

Conversely assume that $G_I \cong \Delta_I$. Therefore Δ_I ia a tree. By Proposition [2.11](#page-10-1) Δ_I supports a minimal free resolution of *I*. Therefore by Theorem [2.12](#page-10-2) proj dim $I \leq 1$. If proj dim $I = 0$, then I is principal monomial ideal and, hence, I has a linear resolution.

Let proj dim I = 1. If I has not a linear resolution, then there exists $x_{F(u_i)\setminus F(u_i)}e_i$ – $x_{F(u_i)\backslash F(u_i)}e_j \in \text{ker}(\varphi)$ such that this element belong to a minimal set of generators of $\ker(\varphi)$ and $\deg(x_{F(u_i)\setminus F(u_j)}) \geq 2$. There exists a unique path $u_i = u_{i_1}, u_{i_2}, \ldots, u_{i_{t-1}}, u_{i_t} =$ u_j between u_i and u_j in G_I . By Lemma [1.6](#page-3-1) and Remark [1.5](#page-3-2) there exists a monomial w such that ′ ′

$$
w(x_{F(u_j))\backslash F(u_i)}e_i - x_{F(u_i)\backslash F(u_j)}e_j) = f_{i_1}(x_{k_1}e_{i_1} - x_{k_2}e_{i_2}) + f_{i_2}(x_{k_2}e_{i_2} - x_{k_3}e_{i_3}) + \ldots +
$$

\n
$$
f_{i_{t-1}}(x_{k_{t-1}}e_{i_{t-1}} - x_{k_t}e_{i_t}).
$$

\nSet $\psi(g) = x_{F(u_j)\backslash F(u_i)}e_i - x_{F(u_i)\backslash F(u_j)}e_j, \ \psi(g_1) = x_{k_1}e_{i_1} - x_{k_2}'e_{i_2}, \ldots, \ \psi(g_{t-1})$
\n
$$
= x_{k_{t-1}}e_{i_{t-1}} - x_{k_t}'e_{i_t}.
$$
 Then $\psi(\Sigma_{r=1}^{t-1}f_{i_r}g_r - wg) = 0.$ Since $\Sigma_{r=1}^{t-1}f_{i_r}g_r - wg \neq 0$, one has
\nker $(\psi) \neq 0$, which is a contradiction.

3. linear resolution of some classes of monomial ideals

In this section as applications of our results, we determine linearity of resolution for some classes of monomial ideals.

Let I be a squarefree Cohen-Macaulay monomial ideal of codimension 2 and Δ be a simplicial complex such that $I = I_{\Delta}$. In [\[15\]](#page-15-6) the authors showed that Δ is shellable. Moreover one can see that Δ is vertex decomposable, see [\[1\]](#page-14-6). Now assume that I is generated in one degree. Since $proj \dim(I) = 1$, as a corollary of Proposition [2.3](#page-8-2) and Theorem [2.7,](#page-9-1) we have:

Corollary 3.1. Let I be a squarefree Cohen-Macaulay monomial ideal of codimension 2. Then I has a linear resolution if and only if G_I is a connected graph. Indeed in this case G_I is a tree and the following conditions are equivalent:

- (i) I has a linear resolutions;
- (ii) I has linear quotients;
- (iii) I is variable decomposable.

The following example shows that there are Cohen-Macaulay monomial ideal of codimenstion 2 with and without a linear resolution.

Example 3.2. (i)- let $I = (xy, yz, zt) \subset K[x, y, z, t]$. Then I is Cohen-Macaulay monomial ideal of codimenstion 2 with a linear resolutions

(ii)- let $I = \langle xy, zt \rangle \subset K[x, y, z, t]$. It is easy to see that I is a Cohen-Macaulay monomial ideal of codimension 2 which has not a linear resolution.

Remark 3.3. Let I be a squarefree monomial ideal. If G_I is a complete graph, then the following statements hold.

- (a) I has a linear resolution;
- (b) I is variable-decomposable ideal;
- (c) I has linear quotients.

In [\[4\]](#page-14-11) Conca and De Negri introduced path ideal of a graph. Let G be a directed graph on vertex set $\{1, \ldots, n\}$. For integer $2 \le t \le n$, a sequence i_1, \ldots, i_t of distinct vertices of G is called a path of length t, if there are $t-1$ distinct directed edges e_1, \ldots, e_{t-1} , where e_j is an edge from i_j to i_{j+1} . The path ideal of G of length t is the monomial ideal $I_t(G) = \langle \prod_{j=1}^t x_{i_j} \rangle$, where i_1, \ldots, i_t is a path of length t in G. Let C_n denote the n-cycle on vertex set $V = \{1, \ldots, n\}$. In [\[8,](#page-14-12) proposition 4.1] it is shown that $S/I_2(C_n)$ is vertex decomposable/ shellable/ Cohen-Macaulay if and only if $n = 3$ or 5. Saeedi, Kiani and Terai in [\[20\]](#page-15-7) showed that if $2 < t \leq n$, then $S/I_t(C_n)$ is sequentially Cohen-Macaulay if and only if $t = n$, $t = n-1$ or $t = (n-1)/2$. In [\[1\]](#page-14-6) it is shown that $S/I_t(C_n)$ is Cohen-Macaulay if and only if it is shellable and if and only if $I_t(C_n)$ is vertex decomposable.

It is easy to see that if $t < n-1$, then $G_{I_t(C_n)} \cong C_n$. Hence, by Theorem [1.17](#page-6-0) $I_t(C_n)$ has a linear resolution if and only if $t = n - 2$. For $t = n - 1$, since $G_{I_t(G)}$ is a complete graph, $I_t(G)$ has a linear resolution. Also, in these cases having a linear resolution is equivalent to have linear quotients and it is equivalent to variable decomposability of $I_t(C_n)$.

Corollary 3.4. $I_t(C_n)$ has a linear resolution if and only if $t = n - 2$ or $t = n - 1$. Moreover the following conditions are equivalent:

- (a) $I_t(G)$ has a linear resolution;
- (b) $I_t(G)$ is variable-decomposable ideal;
- (c) $I_t(G)$ has linear quotients.

Corollary 3.5. Let L_n be a line on vertex set $\{1,\ldots,n\}$ and $I_t(L_n)$ be the path ideal of L_n . Then $I_t(L_n)$ has a linear resolution if and only if $t \geq \frac{n}{2}$ $\frac{n}{2}$.

Proof. Let $L_n = 1, \ldots, n$ be a line. It is easy to see that $G_{I_t(L_n)} \cong L_{n-t+1}$ and $I_t(L_n) = \langle L_n, L_n \rangle$ $\prod_{i=1}^t x_i, \ldots, \prod_{i=t+1}^{2t} x_i, \ldots, \prod_{i=n-t+1}^{n} x_i >$. If $n-t+1 > t+1$, then $F(u_2) \nsubseteq F(u_1) \cup F(u_n)$. Hence Theorem ?? implies that $I_t(G)$ has not a linear resolution. If $n - t + 1 \le t + 1$, i.e. $t \geq \frac{n}{2}$ $\frac{n}{2}$, then it is clear that for any $1 \leq j \leq k \leq i \leq m$ one has:

$$
F(u_k) \subseteq F(u_i) \bigcup F(u_j).
$$

Therefore, by Proposition [2.1,](#page-7-2) $I_t(G)$ has a linear resolution and the equivalent conditions h old. \Box

4. Cohen-Macaulay simplicial complex

Let $\Delta = \langle F_1, \ldots, F_m \rangle$ be a simplicial complex on vertex set [n] and $I_{\Delta} \subset k[x_1, \ldots, x_n]$ be its Stanley-Reisner ideal. For each $F \subset [n]$, we set $\overline{F}_i = [n] \setminus \overline{F}_i$ and $P_F = (x_j : j \in F)$. It is well known that $I_{\Delta} = \bigcap_{i=1}^{m} P_{\bar{F}_i}$ and $I_{\Delta^{\vee}} = (x_{\bar{F}_i} : i = 1, \ldots, m)$, see [\[13\]](#page-14-0). The simplicial complex Δ is called pure if all facets of it have the same dimension. It is easy to see that Δ is pure if and only if I_{Δ} ∨ is generated in one degree. The k-algebra $k[\Delta] = S/I_{\Delta}$ is called the Stanley-Reisner ring of Δ . We say that Δ is Cohen-Macaulay over k if k[Δ] is Cohen-Macaulay. It is known Δ is a Cohen-Macaulay over k if and only if I_{Δ} has a linear resolution, see [\[6\]](#page-14-5). Since every Cohen-Macaulay simplicial complex is pure, in this section, we consider only pure simplicial complexes.

The simplicial complex Δ is called shellable if its facets can be ordered F_1, F_2, \ldots, F_m such that, for all $2 \leq i \leq m$, the subcomplex $\langle F_1, \ldots, F_{i-1} \rangle \cap \langle F_i \rangle$ is pure of dimension $\dim(F_i) - 1.$

For the simplicial complexes Δ_1 and Δ_2 defined on disjoint vertex sets, the join of Δ_1 and Δ_2 is $\Delta_1 * \Delta_2 = \{F \cup G : F \in \Delta_1, G \in \Delta_2\}$. For a face F in Δ , the link, deletion and star of F in Δ are respectively, denoted by link_{Δ} F, $\Delta \backslash$ F and star Δ F and are defined by $\text{link}_{\Delta} F = \{G \in \Delta : F \cap G = \emptyset, F \cup G \in \Delta\}, \Delta \setminus F = \{G \in \Delta : F \nsubseteq G\}$ and star $\Delta F = \langle F \rangle * \text{link}_{\Delta} F$.

A face F in Δ is called a shedding face if every face G of star ΔF satisfies the following exchange property: for every $i \in F$ there is a $j \in [n] \setminus G$ such that $(G \cup \{j\}) \setminus \{i\}$ is a face of Δ . A simplicial complex Δ is recursively defined to be k-decomposable if either Δ is a simplex or else has a shedding face F with $\dim(F) \leq k$ such that both $\Delta \setminus F$ and $\lim_{\Delta} F$ are k-decomposable. 0-decomposable simplicial complexes are called vertex decomposable.

It is clear that $x_{\bar{F}_i}$ and $x_{\bar{F}_j}$ are adjacent in $G_{I_{\Delta} \vee}$ if and only if F_i and F_j are connected in codimension one, i.e, $|F_i \cap F_j| = |F_i| - 1$. A simplicial complex Δ is called connected in codimension one or strongly connected if for any two facets F and G of Δ there exists a sequence of facets $F = F_0, F_1, \ldots, F_{q-1}, F_q = G$ such that F_i and F_{i+1} is connected in codimension one for each $i = 1, \ldots, q - 1$. Hence we have the following:

Lemma 4.1. A simplicial complex Δ is connected in codimension one if and only if $G_{I_{\Delta} \vee I_{\Delta}}$ is a connected graph.

For facets F and G of Δ , we introduced a subcomplex $\Delta^{(F,G)} = \langle L \in \mathcal{F}(\Delta) : F \cap G \subset L \rangle$. It is easy to see that $\Delta^{(F,G)}$ is connected in codimension one if and only if $G_{I,\vee}^{(x_{\bar{F}},x_{\bar{G}})}$ $\frac{1}{I_{\Delta} \vee}$ is a connected graph. Hence by Proposition [1.13](#page-4-3) we have:

Corollary 4.2. Let Δ be a simplicial complex on vertex set [n]. Then I_{Δ} has linear relations if and only if $\Delta^{(F,G)}$ is connected in codimension one for all facets F and G of ∆.

Suppose that Δ is a simplicial complex of dimension d, i.e, $|F_i| = d + 1$ for all i. We associate to Δ a simple graph G_{Δ} whose vertices are labeled by the facets of Δ . Two vertices F_i and F_j are adjacent if F_i and F_j are connected in codimension one. If F_i and F_j are adjacent in G_{Δ} , then $|F_i \cap F_{i+1}| = d$. It is easy to see that $|F_i \cap F_j| = n - d - 2$. Therefor $x_{\bar{F}_i}$ and $x_{\bar{F}_j}$ is adjacent in $G_{I_{\Delta} \vee}$ and, hence, $G_{\Delta} \cong G_{I_{\Delta} \vee}$.

Now assume that $G_{\Delta} \cong G_{I_{\Delta} \vee}$ is a line. Proposition [2.1,](#page-7-2) implies that $I_{\Delta} \vee$ has a linear resolution if and only if for any $1 \leq j \leq k \leq i \leq m$, $\bar{F}_k \subseteq \bar{F}_i \cup \bar{F}_j$. By Eagon-Reiner [\[6\]](#page-14-5), we have the following:

Corollary 4.3. Let $\Delta = \langle F_1, \ldots, F_m \rangle$ be a pure simplicial complex. If $G_{\Delta} = F_1, F_2, \ldots, F_m$ is a line, then Δ is a Cohen-Macaulay if and only if $F_i \cap F_j \subseteq F_k$ for any $1 \leq j \leq k \leq i \leq m$. Moreover in this case the following conditions are equivalent:

- (a) $\Delta^{(F,G)}$ is connected in codimension one for all facets F and G in Δ .
- (b) Δ is Cohen-Macaulay.
- (c) ∆ is shellabe
- (d) Δ is vertex decomposable simplicial complex.

Also a consequence of Theorem [1.17,](#page-6-0) we have:

Corollary 4.4. Let $\Delta = \langle F_1, \ldots, F_m \rangle$ be a pure simplicial complex. If $G_{\Delta} \cong C_m$, then Δ is a Cohen-Macaulay if and only if $m = n$ and with a suitable relabeling of facets F_i , we have $i \in F_i \cap F_{i+1}$ and $i \notin F_j$ for all $j \neq i, i+1$ ($F_{m+1} = F_1$). Moreover in this case Δ is shellabe and vertex decomposable simplicial complex.

Again a corollary of Theorem [2.7,](#page-9-1) Theorem [2.15](#page-11-0) and Theorem [2.6](#page-9-0) we have:

Corollary 4.5. Let $\Delta = \langle F_1, \ldots, F_m \rangle$ be a pure simplicial complex. If G_{Δ} is a tree, then the following conditions are equivalent:

- (a) $\Delta^{(F,G)}$ is connected in codimension one for all facets F and G in Δ .
- (b) if $F = F_1, F_2, \ldots, F_s = G$ is a unique path in G_{Δ} , then $F_i \cap F_k \subset F_j$ for all $1 \leq i \leq j \leq k \leq s.$
- (c) Δ is Cohen-Macaulay.
- (d) Δ is shellabe
- (e) Δ is vertex decomposable.
- (f) $G_{\Delta} \cong \Delta_{I_{\Delta} \vee}$.

REFERENCES

- [1] S.M Ajdani, A. Soleyman Jahan, Vertex Decomposability of 2-CM and Gorenstein Simplicial Complexes of Codimension 3, Bull. Malays. Math. Sci. Soc. 39, 609-617, (2016).
- [2] W. Bruns, J. Herzog, on multigraded resolutions, Math. Proc. Cambridge Phil.Soc. 118, 245-257, (1995).
- [3] M. Bigdeli, J. Herzog and R. Zaare-Nahandi, On the index of powers of edge ideals, J. Commut. Algebra, 1-16, (2017).
- [4] A Conca, E. De Negri, M-sequences, graph ideals and ladder ideals of linear type. J. Algebra, 211, 599-624, (1999).
- [5] A. Conca and J. Herzog, Castelnuovo-Mumford regularity of product of ideals, Collect. Math. 54, 137-152, (2003).
- [6] J.A. Eagon and V. Reiner, Resolutions of Stanley-Reisner rings and Alexan- der duality, J. of Pure and Appl. Algebra, 130, 265-275, (1998).
- [7] E. Emtander, A class of hypergraphs that generalizes chordal graphs, Math. Scand. 106.1, 50-66, (2010).
- [8] C. A. Francisco. A. Van Tuyl, Sequentially Cohen-Macaulay edge ideals. Proc. Amer. Math. Soc.135, 2327-2337, (2007).
- [9] S. Faridi, The facet ideal of a simplicial complex, Manuscripta Mathematica 109, 159-174, (2002).
- [10] S. Faridi, Monomial resolutions supported by simplicial trees, J. Commut. Algebra, 6, 347-361, (2014).
- [11] S. Faridi and B. Hersey, Resolutions of Monomial Ideals of Projective Dimension 1, J. Commut. Algebra, 45, 5453-5464, (2017).
- [12] R. Fröberg, On Stanley-Reisner rings, Topics in algebra, Banach Center Publications, 26, 57-70, (1990).
- [13] J. Herzog and T. Hibi, Monomial ideals, Graduate Texts in Mathematics, 260, Springer-Verlag, London, (2011).
- [14] J. Herzog, T. Hibi, X. Zheng, Monomial ideals whose powers have a linear resolution, Math. Scand. 95, 23-32, (2004).
- [15] J. Herzog, A. Soleyman Jahan and S. Yassemi, Stanley decompositions and partitionable simplicial complexes, J. Algebr. Comb. 27, 113125, (2008).
- [16] J. Herzog and Y. Takayama, Resolutions by mapping cones, The Roos Festschrift, vol. 2, Homology, Homotopy Appl. 4, 277-294, (2002).
- [17] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, 420, Springer-Verlag, New York, (2005).
- [18] M. Morales, Simplicial ideals, 2-linear ideals and arithmatical rank, J. Algebra, 324, 3431-3456, (2010).
- [19] A. Rahim Rahmati and S. Yassemi, k-decomposable monomial ideals, algebra colloquium, 22 , 745-756, (2015).
- [20] S. Saeedi, D. Kiani, N. Terai, Sequentially Cohen-Macaulay path ideals of cycles. Bull. Math. Soc. Sci. Math. Roumanie Tome 54 102, 353-363, (2011).
- [21] D. Taylor, Ideals generated by monomials in an R-sequence, Thesis, University of Chicago (1966).
- [22] Van Tuy and A. Villarreal , Shellable graphs and sequentially Cohen Macaulay bipartite graphs, J. Combin. Theory Ser. A., 115, 799-814, (2008).
- [23] R. Woodroofe, Chordal and sequentially Cohen-Macaulay clutters, Electron. J. Combin. 18, P208, (2011).

Erfan manouchehri, Department of Mathematics, University of Kurdistan, P.O.Box:66177- 15175, Sanadaj, Iran

E-mail address: erfanm6790@yahoo.com

Ali Soleyman Jahan, Ali Soleyman Jahan, Department of Mathematics, University of Kurdistan, P.O.Box:66177-15175, Sanadaj, Iran

 $\it E\mbox{-}mail\,\,address:$ A.solaimanjahan@uok.ac.ir