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LINEAR SYZYGY GRAPH AND LINEAR RESOLUTION
ERFAN MANOUCHEHRI AND ALI SOLEYMAN JAHAN

ABSTRACT. For each squarefree monomial ideal I C S = k[z1,...,x,], we associate a
simple graph G; by using the first linear syzygies of I. In cases, where Gy is a cycle or
a tree, we show the following are equivalent:

(a) I has a linear resolution;

(b) I has linear quotients;

(¢) I is variable-decomposable.

In addition, with the same assumption on GG, we characterize all monomial ideals with
a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension
2 monomial ideals with a linear resolution. As an other application of our results, we
also characterize all Cohen-Macaulay simplicail complexes in cases that Ga = G, is
a cycle or a tree.

INTRODUCTION

Let S = k[x1,...,z,] be the polynomial ring in n variables over a field k£ and I be a
monomial ideal in S. We say that I has a d-linear resolution if the graded minimal free
resolution of [ is of the form:

0— S(—d—p). .. — S(—=d— 1) — S(—d)* — T —0.

In general it is not easy to find ideals with linear resolution. Note that the free resolution
of a monomial ideal and, hence, its linearity depends in general on the characteristic of
the base field.

Let I C S be a monomial ideal. We denote by G(I) the unique minimal monomial set of
generators of 1. We say that I has linear quotients if there exists an order o = uq, ..., Um
of G(I) such that the colon ideal < wi,...,u;—1 >: u; is generated by a subset of the
variables, for i = 2,...,m. Any order of the generators for which, I has linear quotients,
will be called an admissible order. Ideals with linear quotients were introduced by Herzog
and Takayama [16]. Note that linear quotients is purely combinatorial property of an ideal
I and, hence, does not depend on the characteristic of the base field. Suppose that [ is a
graded ideal generated in degree d. It is known that if I has linear quotients, then I has
a d-linear resolution [I3] Proposition 8.2.1].

The concept of variable-decomposable monomial ideal was first introduced by Rahmati
and Yassemi [19] as a dual concept of vertex-decomposable simplicial complexes. In case
that I = Iav, they proved that I is variable-decomposable if and only if A is vertex-
decomposable. Also they proved if a monomial ideal I is variable-decomposable, then
it has linear quotients. Hence for monomial ideal generated in one degree, we have the
following implications:

1 is variable-decomposable = [ has linear quotients = [ has a linear resolution.
However, there are ideals with linear resolution but without linear quotients, see [5], and
ideals with linear quotients which are not variable-decomposable, see [19, Example 2.24].

The problem of existing 2-linear resolution is completely solved by Froberg [12] (See

also [I8]). Any ideal of S which is generated by squarefree monomials of degree 2 can be
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assumed as edge ideal of a simple graph. Froberg proved that the edge ideal of a finite
simple graph G has a linear resolution if and only if the complementary graph G of G
is chordal. Trying to generalize the result of Froberg for monomial ideals generated in
degree d, d > 3, is an interesting problem on which several mathematicians including E.
Emtander [7] and R.Woodroofe [23] have worked.

It is known that monomial ideals with 2-linear resolution have linear quotients [14]. Let
I = IAv be a squarefree monomial ideal generated in degree d which has a linear resolution.
By a result of Eagon-Reiner [6], we know A is a Cohen-Macaulay of dimension n —d . In
[1] Soleyman Jahan and Ajdani proved if A is a Cohen-Macaulay simplicial complex of
codimension 2, then A is vertex-decomposable. Hence, by [19, Theorem 2.10], Iaov is a
variable-decomposable monomial ideal generated in degree 2. Therefore if I = I(G) is the
edge ideal of a simple graph G, then the following are equivalent:

(a) I has a linear resolution;
(b) I has linear quotients;
(c) I is variable-decomposable ideal.

So it is natural to look for some other classes of monomial ideals with the same property.

The paper proceeds as follows. In Section [I, we associated a simple graph G to a
squarefree monomial ideal I generated in degree d > 2. In Theorem [[T7], we show that
if Gy =2 C,,, m > 4, then [ has a linear resolution if and only if it has linear quotients
and it is equivalent to [ is a variable-decomposable. With the same assumption on G7,
we characterize all monomial ideals with a linear resolution.

In Section 2] we consider monomial ideal I where G is a tree. We prove that if I has
linear relations, then Gy is a tree if and only if projdim(/) = 1 (see Theorem 2.2)). In
Theorem we show that if Gy is a tree, then the following are equivalent:

(a) I has a linear resolution;

(b) I has linear relations;
(c) Ggu’v) is a connected graph for all w, and v in G(I);
(d) If w = ui,ua,...,us = v is the unique path between v and v in G, then F(u;) C

F(u;)) UF(ug) forall 1 <i<j<k<s;
(e) L has a linear resolution for all L C I, where G(L) C G(I) and G, is a line

In addition, it is shown that I has a linear resolution if and only if it has linear quotients
and if and only if it is variable-decomposable, provided that G is a tree (see Theorem
2.7).
Let A be the Scarf complex of I. In Theorem we prove that in the case that Gy
is a tree, I has a linear resolution if and only if Gy = Aj.

In Section [3l, as applications of our results in Corollary B.1] we characterize all Cohen-
Macaulay monomial ideals of codimension 2 with a linear resolution. Let ¢t > 2 and I;(C),)
(I+(Ly,)) be the path ideal of length ¢ for n-cycle C,, ( n-line L,). We show that I;(C},)
(I;(Ly,) has a linear resolution if and only if t =n—2ort =n—1 (t > n/2), see Corollary
B4 and Corollary

Finally, we consider simplicial complex A = (Fy,..., F,,). It is shown that A is con-
nected in codimension one if and only if G, is a connected graph, see Lemma [Tl In
Corollary F.2] we show that Iav has linear relations if and only if AF) is connected in
codimension one for all facets F' and G of A. Also, we introduce a simple graph Ga on
vertex set {F1,..., Fy,} which is isomorphic to G,,. As Corollaries of our results, we
show that if Ga is a cycle or a tree, then the following are equivalent:
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(a) A is Cohen-Macaulay;
(b) A is pure shellable;
(c) A is pure vertex-decomposable.

In addition, with the same assumption on Ga all Cohen-Macaulay simplicial complexes
are characterized.

Note that for monomial ideal I =< uq,...,u; > and monomial w in S, I has a linear
resolution (has linear quotients, is variable-decomposable) if and only if u/ has a linear
resolution (has linear quotients, is variable-decomposable). Hence, without the loss of
generality, we assume that ged(w; : u; € G(I)) = 1. Also, one can see that a monomial
ideal I has a linear resolution (has linear quotients, is variable-decomposable) if and only
if its polarization has a linear resolution (has linear quotients, is variable-decomposable).
Therefore in this paper we only consider squarefree monomial ideals.

1. MONOMIAL IDEALS WHOSE G IS A CYCLE

Let I be a monomial ideal which is generated in one degree. First, we recalling some
definitions and known facts which will be useful later.

Proposition 1.1. [I3] Proposition 8.2.1] Suppose I C S is a monomial ideal generated
in degree d. If I has linear quotients, then I has a d-linear resolution.

Let u = 2{* ... 2% be a monomial in S. Set F(u) :== {i : a; >0} ={i : =z | u}.
For another monomial v, we set [u,v] = 1 if 27" { v for all ¢ € F'(u). Otherwise, we set
[u,v] # 1. For a a monomial ideal I C S, set I, =< u; € G(I) : [u,u;] = 1 > and
I"=<uj e G(I): [u,u;] #1 >.

Definition 1.2. Let I be a monomial ideal with G(I) = {u1,...,umn}. A monomial
u = xi'...28" is called shedding if I,, # 0 and for each u; € G(I,) and | € F(u), there
exists u; € G(I*) such that u; : u; = ;. Monomial ideal I is r-decomposable if m =1 or
else has a shedding monomial u with | F((u) |< r + 1 such that the ideals I,, and I" are
r-decomposable.

A monomial ideal is decomposable if it is r-decomposable for some r > 0 . A 0-
decomposable ideal is called variable-decomposable. In [19] the authors proved the follow-
ing result:

Theorem 1.3. Let I be a monomial ideal with G(I) = {u1,...,un}. Then I is decom-
posable if and only if it has linear quotients.

Let I be a squarefree monomial ideal and
F:0—F,--—F—FN—I1-—0

be the minimal graded free S—resolution of I, where F; = B, S(— §)P4 for all 4. Set
p: Fy — I and ¢ : F; — Fy, where ¢ maps a basis element e; of Fj to u; € G(I)
and 1 maps a basis element g; of F} to an element of a minimal generating set of ker(yp).
Monomial ideal I has linear relations if ker(p) is generated minimally by a set of linear
forms.

We associate to I a simple graph G; whose vertices are labeled by the elements of G(I).
Two vertices u; and u; are adjacent if there exist variables x,y such that zu; = yu;. This
graph was first introduced by Bigdeli, Herzog and Zaare-Nahandi [3].
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Remark 1.4. If I is a squarefree monomial ideal, then two type of 3-cycle w;,, wi,, ui,
may appear in G7j.

(0): If Fuyy) = AU{j,k}, Fuy) = AU{i, k} and F(u;,) = AU{i,j}. Then xe;, —
TRei; = (i€, — xjei,) + (xje4, — xpe;,). In this case one of the linear forms can be written
as a linear combination of two other linear forms.

(23): If Fuy) = AU{i}, F(u,) = AU{j} and F(u;y) = AU{k}. In this case the three
linear forms are independent.

The number of the minimal generating set of ker(¢) in degree d + 1 is By(q41) and
Biw+1) <| E(G1) |- It is clear that equality holds if G; has no C3 of type (i). If G has a
C3 of type (i), then we remove one edge of this cycle. In this way, we obtain a graph Gy
with no Cj of type (i) and called it the first syzygies graph of I.

Our aim is to study minimal free resolution of I via some combinatorial properties of
Gr. Set xp := [[;ep o for each F' C [n] = {1,...,n}.

Remark 1.5. Let I be a squarefree monomial ideal. If u; = zp, and u; = @ F; are two
elements in G(I) such that w;u; = wju;, then there exists a monomial w € S such that
w; = wrp\F, and wWj = WL E\F; -

Lemma 1.6. Let I be squarefree monomial ideal. If there is a path of length ¢ between
u and v in Gy, then one can obtain monomials w; and w; from the given path such that
wiu = wjv and degw;=degw; < 1.

Proof. We proceed by induction on t. The case t = 1 is obvious. Let t = 2 and u, w, v be
a path of length 2 in G;. Since v and w and w and v are adjacent, we have x;, u = z;,w
and z;3w = x;4v. Hence x;, x,u = x4,7,v.

Now assume that ¢ > 2 and v = u;y, w;,,...,u;, ,,u;, = v is a path of length ¢. Hence
U = Uiy, Uiy, - - -, Ui, 1S & path of length t—1. Using induction hypothesis, we conclude that
there are monomials w;- and w;- such that w;u = w;-uitfl, where deg w; = deg w;- <t-—1.
Since v and w;, , are adjacent, there exist variable x,y such that zu;, , = yv. Therefore

Twiu = yw;-v and deg zw; = deg yw;- <t. O
The following example shows that the inequality deg w;=degw; < k can be pretty strict.

Example 1.7. Consider monomial ideal I =< wu,v,w,z >C kf[z1,...,x5], where u =
T1ToT3, W = T1Toxy4, 2 = T124%5 and v = x3x4T5. We have a path of length 3 between u
and v, but z4x5u = T1T90.

Lemma 1.8. Let I be squarefree monomial ideal which has linear relations. Then Gy is
a connected graph.

Proof. For any u;, u; € G(I), there exist monomials w; and w; such that w;u; = wju; and,
hence, w;e; — wje; € ker(p) . Since ker(yp) is generated by linear forms one has :

/ / /
W;€; — w]ej = fil (:Ek‘lei — Ty eiz) + fiz (xkzeig — Ty eig) + ...+ fit (:Ek‘teit - :Ek‘t+1 Ej),
where f;; € S for j =0,...,t. Therefore u;, u;,,...,u;,u; is a path in G7. O

The following example shows that the converse of Lemma is not true in general.
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Example 1.9. Consider monomial ideal I =< u,v,w,z,q >C k[x1,...,z5], where u =
T1ToT3, UV = T1T9T4, W = T1T4T5, 2 = T4x5T¢ and ¢ = x3x5x¢. It is easy to see that Gy is
the following connected graph.

<
S
b

However I has not linear relations. It’s minimal free S-resolutions is:
0 — S(—6) — S(—4)* + S(~5) — S(-3)> — I — 0.

Remark 1.10. Let I be a squarefree monomial ideal and v = w;,, %y, ..., Ui, ,, Ui, = U
be a path in G;. If r € F(v) and r ¢ F(u), then z, is the coefficient of some e;; in the
linear relations which comes from the given path.

Remark 1.11. Let v = u;,, uj,, ..., u;, ,,u;, = v be a path in G;. We know there exist
minimal( with respect to divisibility) monomials w and w’ such that we;, —w'e;, € ker(p)
and, hence,

wey, —w'e, = fiy (T, € — Tky €ir) + fia (Thylin — Thy €35) + .-+

fit—l('xkt—leitfl — Thy eit)'

If for each j, 1 < j <t, F(u;;) C F(u)UF(v) and z; | w, then x; tw'. By Remark [LI0
x; is the coefficient of some e; which appear in the above equation. Hence, there exist
u;; such that | € F(u;;). Since F(u;;) € F(u) U F(v) and [ ¢ F(u), one has | € F(v). So
xy t w'. Similarly for arbitrary x, where z, ] w’, one has x, f w. Hence we conclude that
W= Tp(u)\F(w) A W= Tp)\Fe):

Remark 1.12. Let w;, and w;, be two minimal monomials (with respect to divisibility)
in S such that w;, e;, —w;,e;, € ker(p). Assume that

Wiy €4y — Wiy €4y = fi1 (wkleil _xk2,6i2)+fi2 (xkzeiz _xkslelé) +o. +fit71(xktfle7;t71 _xkt,eit)'
If x; { u;, and there exist u;., 2 < r < t, such that x; | w;,, then z; | w;;. We may
assume that 7 is the smallest number with the property that x; | u;,. We know that
Firo(@p o€ir o — i)+ fir_y (zies,_, — a1, €;,) is a part of above equation. Since
in the above equation e;,_, must be eliminated, we have f; ,x; = fi_,ax,_, . Hence,
;| fi,_,- Also, e; _, must be eliminated and, hence, one has f;, _,r _, = fi,_sTh _, -
Therefore z; | fi. . Continuing these procedures yields z; | fi,, i.e z; | wi,.
Similarly if x; t u;, and there exist u;., 1 <r <t — 1, such that x; | u;,, then z; | w;,.

For all u,v € G(I), let Ggu’v) be the induced subgraph of G on vertex set
V(GF™) = {w € G(I) : Fw) € Fu) U F()}.

The following fact was proved by Bigdeli, Herzog and Zaare-Nahandi [3]. Here we
present a different proof of it.

Proposition 1.13. Let [ be a squarefree monomial ideal which is generated in degree d.
Then I has linear relations if and only if Ggu’v) is connected for all u,v € G(I).
Proof. Assume that I has linear relations and u,v € G(I). We know that @ g\ peu)€u —

T )\ F(v)€v € ker(p) . Since ker(y) is generated by linear forms
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TR@)\F(u)fu = TFu)\F(v)€v =
fil(xkleil - xkzleiz) + fiz(xkzeiz - xk3,6i3) +...+ fitfl(‘rkt—leitfl - xkt,et)‘
Hence u = w;,, Uiy, ..., %, ,,u;, = v is a path in G;. Now it is enough to show that
F(ui;) € F(uiy ) U F(ui,) for all 45, 1 < j < t. Assume to the contrary that there exist k,
1 < k < t, such that F(u;,) € F(ui,) JF(us,). Let I € F(u;,) and I ¢ F(ui,)JF (us, ).
By Remark [LT2] 7; | 2 p(u)\ () and ;| g\ ). This is a contradiction.
For converse, we know that ker(y) is generated by zp,\p,eu — Tp,\F, €0, Where u,v €

G(I). By our assumption, Ggu’v) is a connected graph for all u,v € G(I). Therefore there
exist a path u = u;,, Ui, ..., u;, ,,u; = v between u and v in G, By Remark [T}

one has

TR\ F(u) €1 — TFu\F ()i = fir (Thy€iy — Ty €iy) + oo+ firy (Thy_s €3,y — Tk, €4).
Hence, Zp )\ F(u)€i — TF(w)\F(u)€i, 1S a linear combination of linear forms. O

Lemma 1.14. Let I be a squarefree monomial ideal. Then one can assign to each cycle
of G an element in ker(v).

Proof. Let w;,,uiy,...,u; ,,ui,,u;; be a cycle in Gy. Then we have two paths wu;, ,u;,
and iy, ..., Ui, u;,. Since {u;,u;,} € E(Gr), there exist variables x and y such that
xe;, — ye;, € ker(p) = Im(¢). This is an element in the minimal set of generators of
ker(y). Hence, there exist a basis element g of F} such that ¢(g) = ze;, — yei,.

By Lemma [[[0] there exist monomials w; and wsy in S such that wie;; — wae;, =
Fir(Tholiy — Thy €35) + - oo+ fi, (Tp,05, — a:ktﬂleil) = ¢(Z§:2 fi;9i;). Remark implies
that wy = hxF(uiz)\F(uil) = hx and wy = hxF(uil)\F(uiz) = hy. Therefore, we have

h(ze;, — yei,) = wie;, — waei,.

This implies that hiy(g) = ¢(Z§-:2 fi;9:;) and, hence, (hg — Z;ZQ fi;9i;) € ker. Since
g # gi; for all 1 < j <r one has (hg—zz»:zfijgij);éO O

Remark 1.15. Let w be an element of a minimal set of generators of ker(¢y). If w =
> higi, where g; is a basis element of F; and 0 # h; € S, then h; is a monomial. Without
loss of generality, we may assume that ¥(g;) = t1'e1 — taes. Let u € supp(h1) be a
monomial. Since utoes must be eliminated, there exist a basis element g; of F7 such that
P(g5) = (t es — tze;). Without loss of generality, we may assume j = 2 and [ = 3. Hence,
tghl, = supp(hz). Again since u'tzes must be eliminated, without loss of generality,

we may assume there exist a basis element gs of Fy such that ¢(gs) = (t3'e3 — tseq).
Therefore tgz‘—, =" € supp(hg). Continuing these procedures yields ¢(g;) = (tllel —tie)
3

and “:

1
exist another monomial v € supp(h;) with u # v, then by the similar argument one can
find a new cycle in G;. Hence, Lemma [[.T14] implies that w is a combination of some other

elements of ker(v), a contradiction. So h; is a monomial.

-2
7

= u!~! € supp(h;). Hence we obtain a cycle in G in this way. Now if there

Lemma 1.16. Let I, ¢ and 9 be as mention in above. If ker ¢ is generated by linear
forms, then corresponding to every element in a minimal set of generators of ker(¢) there
is a cycle in G7.

n

Proof. Let )" | hig; an element of a minimal generating set of ker(¢)). Then ¢ (> | h;g;)
=", hito(g;) = 0, where g; is a basis element of F} and h; is monomial for i = 1,....n.
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Then —h1(g1) = Y 1o hitb(gi). Assume that ¢(g1) = x;,€;, — ®i,€i,. SO u;y, u;, is a path
in Gy.

The left-hand side of above equation is of the form w;, e;; —w;j,e;,. By proof of Lemma
[[.8 the right-hand side of the above equation is of the form

/ / !
fiz ($k26i2 — Lks eis) + fi3($k3€i3 = Ly ei4) oo+ fit ($kteit = Lhyyq ei1)’

where e;, # e;, . If e;, = €;,, then xktH/ = x;, and z, = xz;,. Hence, g; appears in the
right-hand side of equation , a contradiction. Thus w;,, u;,, ..., u;,,u;; is a path which is
different from path w;,, u;,. O

Theorem 1.17. Let I C S be a squarefree monomial ideal such that G; = C,,, m > 4.
Then the following conditions are equivalent:

(a) I has a linear resolution;

(b) m = n and with a suitable relabeling of variables for all j one has z; | u; for all 4,
i+ 1+#jandi# j, wheren+1=1;

(c) I is variable-decomposable ideal;

(d) I has linear quotients.

Proof. (a) = (b) : Assume that I has a linear resolution. Since Gy is a cycle, by Lemma
14 and Lemma [[I6] ker(¢) =< w >. Let w = )" h;g; where g; is a basis element of
F1 and h; is a monomial in S for i = 1,...,m. Without loss of generality, we may assume
that Gy = uq,ua, ..., Upm,u;. Then

Pw) =" hi(g:) = hl(l‘tlel—$t2/62)+h2(l‘t262—$t3/63)—|—. . .+hm(:z:tmem—:nt1,el) =0.

Therefore, hixi, e = hmxtllel. Since, I has d-linear resolution and deg(e;) = d, we
conclude that deg(h;) = 1 for all i. Consequently, h; = :L'tll and hy,, = x,. By similar
argument h; = xtj/ and h; =z, ,. Hence, 4, , = a:tj’ for all 1 < j <m —1. So ker(p)
is minimally generated by the following linear forms.

(21,61 — Try€2), (T4, €2 — Tps€3), (Tr,€3 — Ty,€4), ...,

(T4, ym—1 — Tt,,€m), (T4, €m — Ty €1).

For an arbitrary variable z; in S there exits u; and w; in G(I) such that z; | u; and
x; 1 u;. Hence, by Remark x; € {x4,, Ty, ..., x4, }. It is clear that the variables
Tty Ttys - - -, Xy, are distinct and, hence, n = m.

Set x4, = Ty, Ty, = Ty, €0 = €y and €,y = €1, For 1 <0 < m — 1, we
have ¢(zy, ,ei—1 — x,€;) = 0 and, hence, 4, | u;—1 and x¢, { u;. Also, from ¢(xy,ei41 —
Ty, ,eiv2) = 0, we have @y, { uiy1 and xy; | wiyo. By Remark [LI0 @y, | u; for j # i3+ 1.

(b) = (c) : It is easy to see that I, =< wuj,ug > is variable-decomposable, "1 =<
ug, ..., U, > and u = x1 is a shedding variable. Also, it is clear that x2 is a shedding vari-
able for I*' and (I"')"2 =< uy,...,up >, (I")z, =< ug >. Continuing these procedures
yields that I*! is variable-decomposable. Hence, I is variable-decomposable ideal.

(¢) = (d) follows by Theorem [[.3]

(d) = (a) follows by Proposition [I.1] O

Corollary 1.18. Let I C S be a squarefree monomial ideal generated in degree 2 and
assume that G; = C,,, m > 4. Then [ has a linear resolution if and only if m = 4.

Remark 1.19. Let I be a squarefree monomial ideal. If Gy = (3, then [ has linear
quotients. Hence I has a linear resolution.
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Let I be a squarefree monomial ideal generated in degree 2. We may assume that
I = I(G) is the edge ideal of a graph G. Hence, by Froberg’s result, I(G) has a linear
resolution if and only if G is a chordal graph. If G = C,,, then G is chordal if and only if
m = 3 or m = 4. In this situation G = C,, if and only if G; = C,,. Hence, in this case
our result is coincide to Froberg’s result.

Corollary 1.20. Let I be a squarefree monomial ideal generated in degree d where Gy =
Cn. If d+2 < n or m # n, then I can not has a d-linear resolution.

Example 1.21. Consider monomial ideal I =< zy, 2y, 2q, qv >C k[x,y, z,q]. The graph
G is 4-cycle. Since d =2, n =4 and d + 2 = n, I has a 2-linear resolution.

0— S(—4) — S(-3)* — S(-2)* — T —0.

Example 1.22. For monomial ideal I =< zyz, yzq, zquw, que, wex, xye >C klz,y, z,q, e, w],
we have G7 = (. Therefore I has not a 3-linear resolution, since d = 3, n = 6 and
d + 2 < n. The resolution of [ is:

0 — S(—6) — S(—4)® — S(-3)5 — T — 0.

2. LINEAR RESOLUTION OF MONOMIAL IDEALS WHOSE (G; IS A TREE

Let I be a squarefree monomial ideal such that Gy is a tree. In this section we study
linear resolution of such monomial ideals. We know that each line is a tree, therefore first
we consider the following:

Proposition 2.1. Let I =< uq,...,u,, > be a squarefree monomial ideal generated in
degree d. If G; = u1,us,...,un, is a line, then the following conditions are equivalent:
(a) I has a linear resolution;
(b) Forany 1<j<k<i<m
Flug) € F(ui) U F(u;);
(c) I is variable-decomposable ideal;
(d) I has linear quotients.

Proof. (a) = (b) : Suppose, on the contrary, there exist 1 < j < k <i<m and ! € F(uy)
such that [ ¢ F(u;) U F(u]) Since I has a linear resolution, we have zp(,, NF())€

TP\ Flug) € = Ji @ €i— Ty €ip1)+ fir1 (ThyCis1— Ty €ipo)+. . A fjo1(h,_ €1~ Tk, €)-
By Remark [LI2} 2 | 2p(u,)\F(u;) and 21 | ¥ p,)\F(u;) Which is a contradiction.

(b) = (c) : Let F(UQ) \ F(uy) = {l}. From the facts that F(uz) C F(u1) U F(u;),
l € F(ug) and ug : u; = x;, we conclude that [ € F'(u;) for all 2 < i <m, I, =< u; >
and 7 is a shedding. By induction on m, I*! is variable-decomposable, since I*! in a line
of length m — 1.

(¢) = (d) follows by Theorem

(d) = (a) follows by Proposition [I1]

Theorem 2.2. If [ is a squarefree monomial ideal which has linear relations, then Gy is
a tree if and only if projdim(I) = 1.

Proof. If G is a tree, then Gt has no cycle. Therefore by Lemma [[.T6] ker(¢)) = 0. Hence
the linear resolution of I is of the form

0— FF — Fy—1—70
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and projdim(/) = 1.

Conversely, assume that projdim(I) = 1. Then ker(¢)) = 0 and by Lemma [[.T4] G has
no cycle. Since I has linear relations, by Lemma [[.8 G is a connected graph. Therefore
G is a tree. O

Proposition 2.3. Let I be a squarefree monomial ideal with projdim(/) = 1. Then I
has a linear resolution if and only if G is a connected graph.

Proof. Assume that Gy is a connected graph. Since projdim(/) = 1, Lemma [[.T4] implies
that Gt has no cycle and, hence, it is a tree. So it is enough to show I has linear relations.
For u;,u; € G(I) there exist a unique path between u; and u; in G(I). Assume that

we; — w/ej = fil ($k16i1 - :Ekz/eiz) + fi2 (:Ekzeiz - :Ekg/eis) .ot fitfl(xk?tfleitfl - ':Ukt/eit)
be an element of ker(y) which is obtained from this path. If we; — w/ej = TP (uy)\F(u;)€i —
T F(u;)\F(u;) €5, We are done. So assume that the equality does not holds. Then x gy )\ pu;)€i —
TF(u;)\F(u;)€; 18 @ minimal element in ker(¢). Hence, there exists g € Fj such that
V() = Tru)\F(u)€ — TF(u)\F(u;)€j- Remark implies that there exists a mono-
mial h € S such that hi)(g) = we; — w'e; = fi,(gi,) + - + fi, 1(gi, ). Therefore

¢(h.g - filgiz - fitfl.gitfl) =0 and hg - filgig -t fitflgit71 # 0, a contradiction.
The converse follows from Lemma [L.8] O
Proposition 2.4. Let I =< uy,...,u, > be a squarefree monomial ideal generated in

degree d which has linear quotients. Assume that G is a tree and v is a monomial in
degree d which is a leaf in G- ,~. Then the following conditions are equivalent:

(a) < I,v > has a linear resolution;
(b) Let u; be the branch of v and F(u;) \ F(v) = {l}, then I € (%, F(u);
(¢) < I,v > has linear quotients.

Proof. (a) = (b) : Suppose, on the contrary, that there exist a 1 < j < m such that
l ¢ F(uj). Let v,u; = w;,uiy,...,ui_,,u;, = uj be the unique path between v and
uj. Without loss of generality, we may assume that [ € F(u;,) for all 7, 1 <r <t —1.
Since < I,v > has a linear resolution, we have & gy, )\ F(v)€v = TF(w)\F(u;)€j = folxigey —
z; r€i) + fi(@i€, —a;€;) + ...+ fi1(@i,_ €, — x;re). By Remark [L12, we know
that z; | 2pu)\F) and i | Tr)\F,), this is a contradiction .

(b) = (c) : We now that there is an admissible order vy, vo, ..., v, of G(I). Since by
our assumption {l} = F'(u;) \ F(v) and | € F(u;) for any 1 < j < m, we conclude that

the order vy, vs,...,v,,v is an admissible order for < I,v >.
(¢) = (a) follows from Proposition [[.1] O
Proposition 2.5. Let I =< uy,...,u, > be a squarefree monomial ideal generated in

degree d. If Gy is a tree, then I has a linear resolution if and only if L has a linear
resolution for all L C I, where G(L) C G(I) and G, is a line.

Proof. Assume that I has a linear resolution. Since Gy is a tree, we have projdim(I) =
1. Soif L C I with G(L) C G(I) and G|, is a line, then L has linear relations and
projdim(L) = 1. Therefore L has a linear resolution.

For the converse, by our assumption there exists a monomial ideal Jy C I such that
G(Jo) = {uiy,...,ui, } € G(I), Gy, is a line and has linear resolution. Therefore .Jy has
linear quotients. Take v € V(Gy) \ V(Gy,) such that v and u;; are adjacent in G for
some 1 < j <t. Set F(u;;) \ F(v) = {l}. Since Jo has linear quotients there exist a path
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between u;, and w;; for all 1 < r < t. Therefore we have line w;,,...,u;;,v in G;. By
our hypothesis L =< u;,,...,u;;,v > has a linear resolution and Proposition 2.1] implies
that F(u;;) € F(v) U F(u;,). Therefor {I} € F(u;.) and Proposition [Z4] implies that
J1 =< Jy,v > has linear quotients. Now replace Jy by J; and do the same procedure until
we obtain [. O

Theorem 2.6. Let I be a squarefree monomial ideal which is generated in one degree. If
(1 is a tree, then the following conditions are equivalent:

(a) I has a linear resolution;
I has linear relations;

(b)

(c) G(u “)is a connected graph for all u, and v in G(I);

(d) If U = ui,Us,...,us = v is the unique path between u and v in Gy, then F(u;) C
F(u;) U F(uy) for all 1 <i<j<k<s;

(e) L has a linear resolution for all L C I, where G(L) C G(I) and G, is a line

Proof. (a) = (b) is trivial. (b) = (c) follows from Proposition (¢) = (d) : for all
1<i<j <k <s, Ggui’uk) is connected and w; is a vertex of this graph. Therefore
F(uj) C F(u;) U F(ug). (d) = (e) follows from Proposition 211 (e) = (a) follows from
Proposition O

Theorem 2.7. Let I be a squarefree monomial ideal generated in degree d. If Gy is a
tree, then the following are equivalent:

(a) I has a linear resolution;
(b) I is variable-decomposable ideal;
(¢) I has linear quotients.

Proof. (a) = (b) : We know that projdim(I) = 1, since Gy is a tree and I has a linear
resolution. With out loss of generality we may assume that u; is a vertex of degree one in
Gr and ug be the unique neighborhood of u; in Gy. Set F(ug) \ F(u1) = {l}. Proposition

[[LT13] implies that G(ul’ui) is a connected graph for all u;. If [ ¢ F(u;) for some i > 2,

then F(ug) € F(u1) U F(u;) and ug ¢ V(G (ul’ul)) Therefore G( 1) s not connected, a
contradictions. Hence I, = {u1} and G(I*") = G(I) \ {u1}. It is easy to see that z; is a
shedding variable. Since Gy« is a tree and has linear relations, by induction on |G(I)|, we
conclude that 1™ is variable-decomposable. Therefore I is variable-decomposable ideal.

(b) = (c) follows by Theorem [[3l (¢) = (a) follows by Proposition [Tl O

Remark 2.8. In Theorem 27 we show that if G| is a tree and [ has a linear resolution,
then I has linear quotients. In the following we present an admissible order for [ in this
case. we choose order u,,,...,u,, for the elements of G(I) such that the subgraph on
vertices {uy,,...,ur, } is a connected graph for 1 < ¢t < m. We show tat this order is
an admissible order. If this order is not an admissible order, then there exists a j < ¢
such that for all & < i with F'(u,,) \ F(u,,) = {l}, we have [ ¢ F(u,;). Since there is a
path w,, ..., U, u, Remark [LT2]implies that x; | TP (ur)\F(ur,) and x; | LB, \F(ur,) s
contradiction.

A simplicial complex A over a set of vertices [n] = {1,...,n} is a collection of subsets of
[n] with the property that {i} € A for all i and if ' € A, then all subsets of F are also in A.
An element of A is called a face and the dimension of a face F' is defined as |F| — 1, where
|F'| is the number of vertices of F'. The maximal faces of A under inclusion are called facets
and the set of all facets denoted by F(A). The dimension of the simplicial complex A is
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the maximal dimension of its facets. A subcollection of A is a simplicial complex whose
facets are also facets of A. In other words a simplicial complex generated by a subset of
the set of facets of A. Let A be a simplicial complex on [n] of dimension d — 1. For each
0 <4 < d— 1 the ith skeleton of A is the simplicial complex A® on [n] whose faces are
those faces F' of A with | F' |< ¢+ 1. We say that a simplicial complex A is connected
if for facets F' and G of A there exists a sequence of facets F' = Fy, Fy,...,Fy_1,F;, =G
such that F; N Fj1q1 # 0 for i = 0,...,q — 1. Observe that A is connected if and only if
AW is connected.

Let A be a simplicial complex on [n]. The Stanley-Reisner ideal of A is a squarefree
monomial ideal In =< x;, ...z, | {#5,..., 25, } ¢ A >. Conversely, let I C k[xy,...,x,]
be a squarefree monomial ideal. The Stanley-Reisner complex of [ is the simplicial complex
A on [n] such that In = I. The Alexander dual of A is the simplicial complex AY =<
{z1,...;2 )\ F | F ¢ A>.

Definition 2.9. [9] Let A be a simplicial complex. A facet F' € F(A) is said to be a
leaf of A if either F'is the only facet of A or there exists a facet G € F(A) with G # F,
called a branch F, such that HNF C GNF for all H € F(A) with H # F. A connected
simplicial complex A is a tree if every nonempty subcollection of A has a leaf. If A is not
necessarily connected, but every subcollection has a leaf, then A is called a forest.

If A is a simplicial tree, then we can always order the facets Fi, ..., F, of A such that
F; is a leaf of the induced subcomplex < Fi,...,F;_1 >. Such an ordering on the facets
of A is called a leaf order. A simplicial complex A is a quasi-forest if A has a leaf order.
A connected quasi-forest is called a quasi-tree.

Consider an arbitrary monomial ideal I =< uyq, ..., u,, >. For any subset o of {1,...,m},
we write u, for the least common multiple of {u; | i € o} and set a, = degu,. Let G(I) =
{u1,...,um}. The Scarf complex A; is the collection of all subsets of o C {1,...,m}
such that u, is unique. As first noted by Diane Taylor [21], given a monomial ideal I in a
polynomial ring S minimally generated by monomials w1, . .., um,, a free resolution of I can
be given by the simplicial chain complex of a simplex with m vertices. Most often Taylors
resolution is not minimal. The Taylor complex Fa, supported on the Scarf complex Ay is
called the algebraic Scarf complex of the monomial ideal I. For more information about
Taylor complex we refer to [17].

The following results will be used later.

Lemma 2.10. [I7]If I is a monomial ideal in S, then every free resolution of S/I contains
the algebraic Scarf complex Fa, as a subcomplex.

Proposition 2.11. [I0, Corollary 4.7] Every simplicial tree is the Scarf complex of a
monomial ideal I and supports a minimal resolution of I.

In [I1] Faridi and Hersey studied minimal free resolution of squarefree monomial ideals
with projective dimension 1. They prove the following.

Theorem 2.12. Let I be a squarefree monomial ideal in a polynomial ring S and A be a
simplicial complex such that I = In. Then the following statements are equivalent:
(a) projdim I < 1;
(b) AV is a quasi-forest;
(¢) S/I has a minimal free resolution supported on a graph-tree.
If A is a simplicial complex and dim A = 1, then the geometric realization of A is a

graph. In this situation we say A is a graph.
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Lemma 2.13. Let I be a monomial ideal. Set G = Agl). If Gy is a c3-free graph, then
(1 is a subgraph of G.

Proof. One has V(G) = V(Gr) = G(I). Let {u;,u;} € E(Gr). Assume that {u;,u;} is
not an edge in G. Then there exits o C {1,...,m} such that {7, j} # o and uy; j; = Ue-
Let r € o\ {¢,7}, then F'(u,) C F(u;) U F(uj). We may assume that F'(u;) = AU {i} and
F(uj) = AU{j}. Hence F(u,) € AU{i,j}. Therefore {u;, u,} and {u;,u,} are in E(Gy),
which is a contradiction. O

Remark 2.14. Let I be a monomial ideal which has a linear resolution and u;,u; € G(I).
Assume that u; = u;,, .., u;,_,,u;, = u; is a path between u; and u;. Then L ;)\ F(ui) € —
TP (u)\F(u;)€j € ker(yp) and is a linear combination of linear forms which comes from the
given path. By Remark [LT0l and Remark [LT2] F(u;,) C F(u;) | F(u;j), for all 1 <r < j.

Theorem 2.15. Assume that [ is a squarefree monomial ideal generated in degree d. If
Gy is a tree, then I has a linear resolution if and only if G; = Aj.

Proof. Assume that I has a linear resolution. By Theorem projdim/ < 1 and by
Lemma 2T0ldim A; = 1. By Lemma 2I3] G is a subgraph of A;. Now let {u,,u:} € Aj.
Suppose that {u,,u;} ¢ E(Gr). Since gy )\F(u,)€r — TFu)\F(u)ét € ker(p) and I ha a
linear resolution, we have

T P (ug)\F(ur)€r = TF(up)\F(ug) €t = fr(xkrer — ijr+1/ eir+1) +...+ fj(xkjeij — Ty et).

Set o = {r,ir41,...,45,t}. By Remark .14l m, = my,. 4y, which is a contradiction.

Conversely assume that G; = Aj. Therefore A; ia a tree. By Proposition 211 Ay
supports a minimal free resolution of I. Therefore by Theorem projdim/I < 1. If
projdim I = 0, then [ is principal monomial ideal and, hence, I has a linear resolution.

Let projdim [ = 1. If I has not a linear resolution, then there exists  p )\ F(u;)€i —
TP (u)\F(u;)€j € ker(yp) such that this element belong to a minimal set of generators of
ker(yp) and deg(xF(ui)\F(uj)) > 2. There exists a unique path u; = u;,, Uiy, ..., Wi, |, Ui, =
u; between u; and u; in G7. By Lemma and Remark there exists a monomial w
such that

WL F )\ Flu) € — TRu\Fup)€) = fi (@ren — Thy €iy) + fio (Thoeiy — s i) + . +
fit71($kt—1eit,1 - ':Ukt Eit).

Set Y(9) = Tpuj)\F(u;)€i — TFu)\F(uy)€i» Y(91) = Thy €3y — Thy €igs - Y(g1-1)
= Tp, €, , — xkt,eit. Then ¢(EZ;11firgr —wg) = 0. Since Ei;llfirgT —wg # 0, one has
ker(¢)) # 0, which is a contradiction. O

3. LINEAR RESOLUTION OF SOME CLASSES OF MONOMIAL IDEALS

In this section as applications of our results, we determine linearity of resolution for
some classes of monomial ideals.

Let I be a squarefree Cohen-Macaulay monomial ideal of codimension 2 and A be a
simplicial complex such that I = Ia. In [I5] the authors showed that A is shellable.
Moreover one can see that A is vertex decomposable, see [I]. Now assume that I is
generated in one degree. Since projdim(I) = 1, as a corollary of Proposition and
Theorem 2.7 we have:

Corollary 3.1. Let I be a squarefree Cohen-Macaulay monomial ideal of codimension 2.
Then I has a linear resolution if and only if G is a connected graph. Indeed in this case
(1 is a tree and the following conditions are equivalent:
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(i) I has a linear resolutions;
(ii) I has linear quotients;
(iii) I is variable decomposable.

The following example shows that there are Cohen-Macaulay monomial ideal of codi-
menstion 2 with and without a linear resolution.

Example 3.2. (i)- let I = (zy,yz,2t) C K[z,y,2,t] . Then I is Cohen-Macaulay mono-
mial ideal of codimenstion 2 with a linear resolutions

(17)- let I =< zy,zt >C Klz,y,2,t]. It is easy to see that I is a Cohen-Macaulay
monomial ideal of codimension 2 which has not a linear resolution.

Remark 3.3. Let I be a squarefree monomial ideal. If GG is a complete graph, then the
following statements hold.

(a) I has a linear resolution;
(b) I is variable-decomposable ideal;
(c) I has linear quotients.

In [4] Conca and De Negri introduced path ideal of a graph. Let G be a directed graph
on vertex set {1,...,n}. For integer 2 < t < n, a sequence iy, ...,%; of distinct vertices
of GG is called a path of length ¢, if there are t — 1 distinct directed edges eq1,...,er_1,
where e; is an edge from %, to 7;11. The path ideal of G of length ¢ is the monomial ideal
I(G) =< H;zl x;; >, where iy, ..., is a path of length ¢ in G. Let C,, denote the n-cycle
on vertex set V = {1,...,n}. In [§, proposition 4.1] it is shown that S/I>(C,,) is vertex
decomposable/ shellable/ Cohen-Macaulay if and only if n = 3 or 5. Saeedi, Kiani and
Terai in [20] showed that if 2 < ¢t < n, then S/I;(C)},) is sequentially Cohen-Macaulay if and
onlyift =n,t =n—1ort= (n—1)/2. In [1] it is shown that S/I;(C,,) is Cohen-Macaulay
if and only if it is shellable and if and only if I;(C,,) is vertex decomposable.

It is easy to see that if t < n—1, then Gy, (c,) = C,. Hence, by Theorem [LT7 /;(Cy,) has
a linear resolution if and only if t =n —2. For t = n — 1, since Gy, () is a complete graph,
I;(G) has a linear resolution. Also, in these cases having a linear resolution is equivalent
to have linear quotients and it is equivalent to variable decomposability of I;(C,).

Corollary 3.4. [;(C,) has a linear resolution if and only if t = n —2 or t = n — 1.
Moreover the following conditions are equivalent:

(a) I;(@) has a linear resolution;
(b) I(G) is variable-decomposable ideal;
(¢) It(G) has linear quotients.

Corollary 3.5. Let L, be a line on vertex set {1,...,n} and I;(L,) be the path ideal of
Ly. Then I;(Ly) has a linear resolution if and only if ¢ > %.

Proof. Let L, =1,...,n be aline. It is easy to see that Gy,(r,,) & Ln—t+1 and I;(Ly) =<

Tl iy s H?itﬂ Ty [ ygq @i > n—t4+1 > t+1, then F(ug) € F(u1) | F(un).
Hence Theorem 77 implies that I;(G) has not a linear resolution. If n —¢t +1 <t 41, i.e
t> %, then it is clear that for any 1 < j < k < i < m one has:

Fug) © F(ui) U F(uj).

Therefore, by Proposition 2] I;(G) has a linear resolution and the equivalent conditions
hold. U
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4. COHEN-MACAULAY SIMPLICIAL COMPLEX

Let A =< Fy, ..., F,, > be asimplicial complex on vertex set [n] and In C k[z1,...,zy]
be its Stanley-Reisner ideal. For each F' C [n], we set F; = [n]\ F; and Pp = (zj: j € F).
It is well known that Ia = (L, Pg and Iav = (zp : i = 1,...,m), see [13]. The
simplicial complex A is called pure if all facets of it have the same dimension. It is easy to
see that A is pure if and only if Tav is generated in one degree. The k-algebra k[A] = S/Ia
is called the Stanley-Reisner ring of A. We say that A is Cohen-Macaulay over k if k[A]
is Cohen-Macaulay. It is known A is a Cohen-Macaulay over k if and only if Iov has a
linear resolution, see [6]. Since every Cohen-Macaulay simplicial complex is pure, in this
section, we consider only pure simplicial complexes.

The simplicial complex A is called shellable if its facets can be ordered Iy, Fy, ..., F,,
such that, for all 2 < i < m, the subcomplex (Fi,..., F;_1) N (F;) is pure of dimension
dim(F;) — 1.

For the simplicial complexes A; and Ay defined on disjoint vertex sets, the join of A
and Ay is Ay x Ay = {FUG : F € Ay, G € Ay}. For a face F in A, the link, deletion
and star of F'in A are respectively, denoted by linka F'; A\ F' and stara F' and are defined
by linkn F ={G €A : FNG=9, FUGe A}, A\F={GeA : F ¢ G} and
starp F' = (F') % linka F.

A face F' in A is called a shedding face if every face GG of stara F' satisfies the following
exchange property: for every ¢ € F there is a j € [n] \ G such that (G U {j}) \ {i} is a
face of A. A simplicial complex A is recursively defined to be k-decomposable if either
A is a simplex or else has a shedding face F' with dim(F) < k such that both A\ F
and linka F' are k-decomposable. 0-decomposable simplicial complexes are called vertex
decomposable.

It is clear that x5 and xp are adjacent in Gy, if and only if F; and Fj are connected
in codimension one, i.e, |F; N F;| = |F;| — 1. A simplicial complex A is called connected
in codimension one or strongly connected if for any two facets F' and G of A there exists
a sequence of facets F' = Fy, F1,...,F,_1,F; = G such that F; and F;{ is connected in
codimension one for each i =1,...,¢g — 1 . Hence we have the following:

Lemma 4.1. A simplicial complex A is connected in codimension one if and only if G7,.,
is a connected graph.

For facets F' and G of A, we introduced a subcomplex A% = (L € F(A): FNG C L).

(F.G

It is easy to see that AZC) is connected in codimension one if and only if Ggiﬁv 26 is a

connected graph. Hence by Proposition [L13] we have:

Corollary 4.2. Let A be a simplicial complex on vertex set [n]. Then Ianv has linear
relations if and only if A¥G) is connected in codimension one for all facets F' and G of

A.

Suppose that A is a simplicial complex of dimension d, i.e, |F;| = d + 1 for all i. We
associate to A a simple graph Ga whose vertices are labeled by the facets of A. Two
vertices F; and F) are adjacent if F; and F} are connected in codimension one. If F; and
Fj are adjacent in Ga, then | F; N Fy4; |= d. It is easy to see that | F; N F; |[=n —d — 2.
Therefor x5 and rp s adjacent in Gp,, and, hence, GA = G|, .

Now assume that Ga = G, is a line. Proposition 2] implies that Iav has a linear
resolution if and only if for any 1 < j < k <i<m, F, C F} UFj- By Eagon-Reiner [0],
we have the following:
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Corollary 4.3. Let A =< Fy,..., F,;, > be a pure simplicial complex. If GA = F1, Fs, ..., Fy,
is a line, then A is a Cohen-Macaulay if and only it ;NF; C Fforany 1 <j <k <i<m.
Moreover in this case the following conditions are equivalent:

(a) AFG) is connected in codimension one for all facets F' and G in A.
(b) A is Cohen-Macaulay.

(¢) A is shellabe
(d) A is vertex decomposable simplicial complex.

Also a consequence of Theorem [[L.T7], we have:

Corollary 4.4. Let A =< F}, ..., F,, > be a pure simplicial complex. If Go = C,,, then
A is a Cohen-Macaulay if and only if m = n and with a suitable relabeling of facets Fj,
we have ¢ € F; N Fj41 and @ ¢ Fj for all j # 4,9+ 1 ( Fjpq41 = F1). Moreover in this case
A is shellabe and vertex decomposable simplicial complex.

Again a corollary of Theorem 27, Theorem 2.T5 and Theorem we have:

Corollary 4.5. Let A =< F,..., F,;, > be a pure simplicial complex. If Ga is a tree,
then the following conditions are equivalent:

(a) AW is connected in codimension one for all facets F' and G in A.

(b) if FF = Fi,Fy,...,Fs = G is a unique path in Ga, then F; N F;, C F; for all
1<i<j<k<s.

(c) A is Cohen-Macaulay.

(d) A is shellabe

(e) A is vertex decomposable.

(f) Ga = A[Av.
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