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LINEAR SYZYGY GRAPH AND LINEAR RESOLUTION

ERFAN MANOUCHEHRI AND ALI SOLEYMAN JAHAN

Abstract. For each squarefree monomial ideal I ⊂ S = k[x1, . . . , xn], we associate a
simple graph GI by using the first linear syzygies of I . In cases, where GI is a cycle or
a tree, we show the following are equivalent:
(a) I has a linear resolution;
(b) I has linear quotients;
(c) I is variable-decomposable.
In addition, with the same assumption on GI , we characterize all monomial ideals with
a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension
2 monomial ideals with a linear resolution. As an other application of our results, we
also characterize all Cohen-Macaulay simplicail complexes in cases that G∆

∼= GI
∆∨

is
a cycle or a tree.

Introduction

Let S = k[x1, . . . , xn] be the polynomial ring in n variables over a field k and I be a
monomial ideal in S. We say that I has a d-linear resolution if the graded minimal free
resolution of I is of the form:

0 −→ S(−d− p)βp · · · −→ S(−d− 1)β1 −→ S(−d)β0 −→ I −→ 0.

In general it is not easy to find ideals with linear resolution. Note that the free resolution
of a monomial ideal and, hence, its linearity depends in general on the characteristic of
the base field.

Let I ⊆ S be a monomial ideal. We denote by G(I) the unique minimal monomial set of
generators of I. We say that I has linear quotients if there exists an order σ = u1, . . . , um
of G(I) such that the colon ideal < u1, . . . , ui−1 >: ui is generated by a subset of the
variables, for i = 2, . . . ,m. Any order of the generators for which, I has linear quotients,
will be called an admissible order. Ideals with linear quotients were introduced by Herzog
and Takayama [16]. Note that linear quotients is purely combinatorial property of an ideal
I and, hence, does not depend on the characteristic of the base field. Suppose that I is a
graded ideal generated in degree d. It is known that if I has linear quotients, then I has
a d-linear resolution [13, Proposition 8.2.1].

The concept of variable-decomposable monomial ideal was first introduced by Rahmati
and Yassemi [19] as a dual concept of vertex-decomposable simplicial complexes. In case
that I = I∆∨, they proved that I is variable-decomposable if and only if ∆ is vertex-
decomposable. Also they proved if a monomial ideal I is variable-decomposable, then
it has linear quotients. Hence for monomial ideal generated in one degree, we have the
following implications:
I is variable-decomposable =⇒ I has linear quotients =⇒ I has a linear resolution.
However, there are ideals with linear resolution but without linear quotients, see [5], and
ideals with linear quotients which are not variable-decomposable, see [19, Example 2.24].

The problem of existing 2-linear resolution is completely solved by Fröberg [12] (See
also [18]). Any ideal of S which is generated by squarefree monomials of degree 2 can be
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assumed as edge ideal of a simple graph. Fröberg proved that the edge ideal of a finite
simple graph G has a linear resolution if and only if the complementary graph Ḡ of G
is chordal. Trying to generalize the result of Fröberg for monomial ideals generated in
degree d, d ≥ 3, is an interesting problem on which several mathematicians including E.
Emtander [7] and R.Woodroofe [23] have worked.

It is known that monomial ideals with 2-linear resolution have linear quotients [14]. Let
I = I∆∨ be a squarefree monomial ideal generated in degree d which has a linear resolution.
By a result of Eagon-Reiner [6], we know ∆ is a Cohen-Macaulay of dimension n− d . In
[1] Soleyman Jahan and Ajdani proved if ∆ is a Cohen-Macaulay simplicial complex of
codimension 2, then ∆ is vertex-decomposable. Hence, by [19, Theorem 2.10], I∆∨ is a
variable-decomposable monomial ideal generated in degree 2. Therefore if I = I(G) is the
edge ideal of a simple graph G, then the following are equivalent:

(a) I has a linear resolution;
(b) I has linear quotients;
(c) I is variable-decomposable ideal.

So it is natural to look for some other classes of monomial ideals with the same property.
The paper proceeds as follows. In Section 1, we associated a simple graph GI to a

squarefree monomial ideal I generated in degree d ≥ 2. In Theorem 1.17, we show that
if GI

∼= Cm, m ≥ 4, then I has a linear resolution if and only if it has linear quotients
and it is equivalent to I is a variable-decomposable. With the same assumption on GI ,
we characterize all monomial ideals with a linear resolution.

In Section 2, we consider monomial ideal I where GI is a tree. We prove that if I has
linear relations, then GI is a tree if and only if proj dim(I) = 1 (see Theorem 2.2). In
Theorem 2.6 we show that if GI is a tree, then the following are equivalent:

(a) I has a linear resolution;
(b) I has linear relations;

(c) G
(u,v)
I is a connected graph for all u, and v in G(I);

(d) If u = u1, u2, . . . , us = v is the unique path between u and v in GI , then F (uj) ⊂
F (ui) ∪ F (uk) for all 1 ≤ i ≤ j ≤ k ≤ s;

(e) L has a linear resolution for all L ⊆ I, where G(L) ⊂ G(I) and GL is a line

In addition, it is shown that I has a linear resolution if and only if it has linear quotients
and if and only if it is variable-decomposable, provided that GI is a tree (see Theorem
2.7).

Let ∆I be the Scarf complex of I. In Theorem 2.15 we prove that in the case that GI

is a tree, I has a linear resolution if and only if GI
∼= ∆I .

In Section 3, as applications of our results in Corollary 3.1, we characterize all Cohen-
Macaulay monomial ideals of codimension 2 with a linear resolution. Let t ≥ 2 and It(Cn)
(It(Ln)) be the path ideal of length t for n-cycle Cn ( n-line Ln). We show that It(Cn)
(It(Ln) has a linear resolution if and only if t = n− 2 or t = n− 1 (t ≥ n/2), see Corollary
3.4 and Corollary 3.5.

Finally, we consider simplicial complex ∆ = 〈F1, . . . , Fm〉. It is shown that ∆ is con-
nected in codimension one if and only if GI∆∨

is a connected graph, see Lemma 4.1. In

Corollary 4.2, we show that I∆∨ has linear relations if and only if ∆(F,G) is connected in
codimension one for all facets F and G of ∆. Also, we introduce a simple graph G∆ on
vertex set {F1, . . . , Fm} which is isomorphic to GI∆∨

. As Corollaries of our results, we
show that if G∆ is a cycle or a tree, then the following are equivalent:
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(a) ∆ is Cohen-Macaulay;

(b) ∆ is pure shellable;

(c) ∆ is pure vertex-decomposable.

In addition, with the same assumption on G∆ all Cohen-Macaulay simplicial complexes
are characterized.

Note that for monomial ideal I =< u1, . . . , um > and monomial u in S, I has a linear
resolution (has linear quotients, is variable-decomposable) if and only if uI has a linear
resolution (has linear quotients, is variable-decomposable). Hence, without the loss of
generality, we assume that gcd(ui : ui ∈ G(I)) = 1. Also, one can see that a monomial
ideal I has a linear resolution (has linear quotients, is variable-decomposable) if and only
if its polarization has a linear resolution (has linear quotients, is variable-decomposable).
Therefore in this paper we only consider squarefree monomial ideals.

1. monomial ideals whose GI is a cycle

Let I be a monomial ideal which is generated in one degree. First, we recalling some
definitions and known facts which will be useful later.

Proposition 1.1. [13, Proposition 8.2.1] Suppose I ⊆ S is a monomial ideal generated
in degree d. If I has linear quotients, then I has a d-linear resolution.

Let u = xa11 . . . xann be a monomial in S. Set F (u) := {i : ai > 0} = {i : xi | u}.
For another monomial v, we set [u, v] = 1 if xaii ∤ v for all i ∈ F (u). Otherwise, we set
[u, v] 6= 1. For a a monomial ideal I ⊆ S, set Iu =< ui ∈ G(I) : [u, ui] = 1 > and
Iu =< uj ∈ G(I) : [u, uj ] 6= 1 >.

Definition 1.2. Let I be a monomial ideal with G(I) = {u1, . . . , um}. A monomial
u = xa11 . . . xann is called shedding if Iu 6= 0 and for each ui ∈ G(Iu) and l ∈ F (u), there
exists uj ∈ G(Iu) such that uj : ui = xl. Monomial ideal I is r-decomposable if m = 1 or
else has a shedding monomial u with | F (u) |≤ r + 1 such that the ideals Iu and Iu are
r-decomposable.

A monomial ideal is decomposable if it is r-decomposable for some r ≥ 0 . A 0-
decomposable ideal is called variable-decomposable. In [19] the authors proved the follow-
ing result:

Theorem 1.3. Let I be a monomial ideal with G(I) = {u1, . . . , um}. Then I is decom-
posable if and only if it has linear quotients.

Let I be a squarefree monomial ideal and

F : 0 −→ Fp · · · −→ F1 −→ F0 −→ I −→ 0

be the minimal graded free S−resolution of I, where Fi =
⊕

j S(−j)
βij for all i. Set

ϕ : F0 −→ I and ψ : F1 −→ F0, where ϕ maps a basis element ei of F0 to ui ∈ G(I)
and ψ maps a basis element gi of F1 to an element of a minimal generating set of ker(ϕ).
Monomial ideal I has linear relations if ker(ϕ) is generated minimally by a set of linear
forms.

We associate to I a simple graph GI whose vertices are labeled by the elements of G(I).
Two vertices ui and uj are adjacent if there exist variables x, y such that xui = yuj. This
graph was first introduced by Bigdeli, Herzog and Zaare-Nahandi [3].
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Remark 1.4. If I is a squarefree monomial ideal, then two type of 3-cycle ui1 , ui2 , ui3
may appear in GI .

(i): If F (ui1) = A ∪ {j, k}, F (ui2 ) = A ∪ {i, k} and F (ui3) = A ∪ {i, j}. Then xiei1 −
xkei3 = (xiei1 −xjei2)+ (xjei2 −xkei3). In this case one of the linear forms can be written
as a linear combination of two other linear forms.

(ii): If F (ui1) = A∪ {i}, F (ui2) = A∪{j} and F (ui3) = A∪ {k}. In this case the three
linear forms are independent.

The number of the minimal generating set of ker(ϕ) in degree d + 1 is β1(d+1) and
β1(d+1) ≤| E(GI) |. It is clear that equality holds if GI has no C3 of type (i). If GI has a
C3 of type (i), then we remove one edge of this cycle. In this way, we obtain a graph GI

with no C3 of type (i) and called it the first syzygies graph of I.
Our aim is to study minimal free resolution of I via some combinatorial properties of

GI . Set xF :=
∏

i∈F xi for each F ⊂ [n] = {1, . . . , n}.

Remark 1.5. Let I be a squarefree monomial ideal. If ui = xFi
and uj = xFj

are two
elements in G(I) such that wiui = wjuj, then there exists a monomial w ∈ S such that
wi = wxFj\Fi

and wj = wxFi\Fj
.

Lemma 1.6. Let I be squarefree monomial ideal. If there is a path of length t between
u and v in GI , then one can obtain monomials wi and wj from the given path such that
wiu = wjv and degwi=degwj ≤ t.

Proof. We proceed by induction on t. The case t = 1 is obvious. Let t = 2 and u,w, v be
a path of length 2 in GI . Since u and w and w and v are adjacent, we have xi1u = xi2w
and xi3w = xi4v. Hence xi1xi3u = xi2xi4v.

Now assume that t > 2 and u = ui0 , ui1 , . . . , uit−1
, uit = v is a path of length t. Hence

u = ui0 , ui1 , . . . , uit−1
is a path of length t−1. Using induction hypothesis, we conclude that

there are monomials w
′

i and w
′

j such that w
′

iu = w
′

juit−1
, where degw

′

i = degw
′

j ≤ t− 1.
Since v and uit−1

are adjacent, there exist variable x, y such that xuit−1
= yv. Therefore

xw
′

iu = yw
′

jv and deg xw
′

i = deg yw
′

j ≤ t. �

The following example shows that the inequality degwi=degwj ≤ k can be pretty strict.

Example 1.7. Consider monomial ideal I =< u, v,w, z >⊂ k[x1, . . . , x5], where u =
x1x2x3, w = x1x2x4, z = x1x4x5 and v = x3x4x5. We have a path of length 3 between u
and v, but x4x5u = x1x2v.

•u •
w

•
z

•v

Lemma 1.8. Let I be squarefree monomial ideal which has linear relations. Then GI is
a connected graph.

Proof. For any ui, uj ∈ G(I), there exist monomials wi and wj such that wiui = wjuj and,
hence, wiei − wjej ∈ ker(ϕ) . Since ker(ϕ) is generated by linear forms one has :

wiei − wjej = fi1(xk1ei − xk2
′

ei2) + fi2(xk2ei2 − xk3
′

ei3) + . . .+ fit(xkteit − xkt+1

′

ej),

where fij ∈ S for j = 0, . . . , t. Therefore ui, ui2 , . . . , uit , uj is a path in GI . �

The following example shows that the converse of Lemma 1.8 is not true in general.
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Example 1.9. Consider monomial ideal I =< u, v,w, z, q >⊂ k[x1, . . . , x5], where u =
x1x2x3, v = x1x2x4, w = x1x4x5, z = x4x5x6 and q = x3x5x6. It is easy to see that GI is
the following connected graph.

•u •
v

•
w

•
z

•q

However I has not linear relations. It’s minimal free S-resolutions is:

0 −→ S(−6) −→ S(−4)4 + S(−5) −→ S(−3)5 −→ I −→ 0.

Remark 1.10. Let I be a squarefree monomial ideal and u = ui1 , ui2 , . . . , uit−1
, uit = v

be a path in GI . If r ∈ F (v) and r /∈ F (u), then xr is the coefficient of some eij in the
linear relations which comes from the given path.

Remark 1.11. Let u = ui1 , ui2 , . . . , uit−1
, uit = v be a path in GI . We know there exist

minimal( with respect to divisibility) monomials w and w
′

such that wei1 −w
′

eit ∈ ker(ϕ)
and, hence,
wei1 − w

′

eit = fi1(xk1ei1 − xk2
′

ei2) + fi2(xk2ei2 − xk3
′

ei3) + . . .+

fit−1
(xkt−1

eit−1
− xkt

′

eit).

If for each j, 1 ≤ j ≤ t, F (uij ) ⊆ F (u)∪F (v) and xl | w, then xl ∤ w
′

. By Remark 1.10
xl is the coefficient of some eir which appear in the above equation. Hence, there exist
uij such that l ∈ F (uij ). Since F (uij ) ⊆ F (u) ∪ F (v) and l /∈ F (u), one has l ∈ F (v). So

xl ∤ w
′

. Similarly for arbitrary xr where xr | w
′

, one has xr ∤ w. Hence we conclude that

w = xF (v)\F (u) and w
′

= xF (u)\F (v).

Remark 1.12. Let wi1 and wit be two minimal monomials (with respect to divisibility)
in S such that wi1ei1 − witeit ∈ ker(ϕ). Assume that

wi1ei1 −witeit = fi1(xk1ei1−xk2
′

ei2)+fi2(xk2ei2−xk3
′

ei3)+ . . .+fit−1
(xkt−1

eit−1
−xkt

′

eit).

If xi ∤ ui1 and there exist uir , 2 ≤ r ≤ t, such that xi | uir , then xi | wi1 . We may
assume that r is the smallest number with the property that xi | uir . We know that

fir−2
(xkr−2

eir−2
− xkr−1

′

eir−1
) + fir−1

(xieir−1
− xkr

′

eir) is a part of above equation. Since

in the above equation eir−1
must be eliminated, we have fir−1

xi = fir−2
xkr−1

′

. Hence,

xi | fir−2
. Also, eir−2

must be eliminated and, hence, one has fir−2
xkr−2

= fir−3
xkr−2

′

.
Therefore xi | fir−3

. Continuing these procedures yields xi | fi1 , i.e xi | wi1 .
Similarly if xi ∤ uit and there exist uir , 1 ≤ r ≤ t− 1, such that xi | uir , then xi | wit .

For all u, v ∈ G(I), let G
(u,v)
I be the induced subgraph of GI on vertex set

V (G
(u,v)
I ) = {w ∈ G(I) : F (w) ⊆ F (u) ∪ F (v)}.

The following fact was proved by Bigdeli, Herzog and Zaare-Nahandi [3]. Here we
present a different proof of it.

Proposition 1.13. Let I be a squarefree monomial ideal which is generated in degree d.

Then I has linear relations if and only if G
(u,v)
I is connected for all u, v ∈ G(I).

Proof. Assume that I has linear relations and u, v ∈ G(I). We know that xF (v)\F (u)eu −
xF (u)\F (v)ev ∈ ker(ϕ) . Since ker(ϕ) is generated by linear forms
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xF (v)\F (u)eu − xF (u)\F (v)ev =

fi1(xk1ei1 − xk2
′

ei2) + fi2(xk2ei2 − xk3
′

ei3) + . . . + fit−1
(xkt−1

eit−1
− xkt

′

et).

Hence u = ui1 , ui2 , . . . , uit−1
, uit = v is a path in GI . Now it is enough to show that

F (uij ) ⊆ F (ui1)
⋃
F (uit) for all ij , 1 < j < t. Assume to the contrary that there exist k,

1 < k < t, such that F (uik) * F (ui1)
⋃
F (uit). Let l ∈ F (uik) and l /∈ F (ui1)

⋃
F (uit).

By Remark 1.12 xl | xF (v)\F (u) and xl | xF (u)\F (v). This is a contradiction.
For converse, we know that ker(ϕ) is generated by xFv\Fu

eu − xFu\Fv
ev, where u, v ∈

G(I). By our assumption, G
(u,v)
I is a connected graph for all u, v ∈ G(I). Therefore there

exist a path u = ui1 , ui2 , . . . , uit−1
, uit = v between u and v in G(u,v). By Remark 1.11,

one has

xF (v)\F (u)ei1 − xF (u)\F (v)eit = fi1(xk1ei1 − xk2
′

ei2) + . . .+ fit−1
(xkt−1

eit−1
− xkt

′

et).

Hence, xF (v)\F (u)ei1 − xF (v)\F (u)eit is a linear combination of linear forms. �

Lemma 1.14. Let I be a squarefree monomial ideal. Then one can assign to each cycle
of GI an element in ker(ψ).

Proof. Let ui1 , ui2 , . . . , uit−1
, uit , ui1 be a cycle in GI . Then we have two paths ui1 , ui2

and ui2 , . . . , uit , ui1 . Since {ui1 , ui2} ∈ E(GI), there exist variables x and y such that
xei1 − yei2 ∈ ker(ϕ) = Im(ψ). This is an element in the minimal set of generators of
ker(ϕ). Hence, there exist a basis element g of F1 such that ψ(g) = xei1 − yei2 .

By Lemma 1.6, there exist monomials w1 and w2 in S such that w1ei1 − w2ei2 =

fi2(xk2ei2 − xk3
′

ei3) + . . . + fit(xkteit − xkt+1

′

ei1) = ψ(
∑t

j=2 fijgij ). Remark 1.5 implies
that w1 = hxF (ui2

)\F (ui1
) = hx and w2 = hxF (ui1

)\F (ui2
) = hy. Therefore, we have

h(xei1 − yei2) = w1ei1 − w2ei2 .

This implies that hψ(g) = ψ(
∑t

j=2 fijgij ) and, hence, (hg −
∑t

j=2 fijgij ) ∈ kerψ. Since

g 6= gij for all 1 ≤ j ≤ r one has (hg −
∑t

j=2 fijgij ) 6= 0 �

Remark 1.15. Let w be an element of a minimal set of generators of ker(ψ). If w =∑
higi, where gi is a basis element of F1 and 0 6= hi ∈ S, then hi is a monomial. Without

loss of generality, we may assume that ψ(g1) = t1
′

e1 − t2e2. Let u ∈ supp(h1) be a
monomial. Since ut2e2 must be eliminated, there exist a basis element gj of F1 such that

ψ(gj) = (t2
′

e2 − t3el). Without loss of generality, we may assume j = 2 and l = 3. Hence,

t2
u

t2
′ = u

′

∈ supp(h2). Again since u′t3e3 must be eliminated, without loss of generality,

we may assume there exist a basis element g3 of F1 such that ψ(g3) = (t3
′

e3 − t4e4).

Therefore t3
u
′

t3
′ = u

′′

∈ supp(h3). Continuing these procedures yields ψ(gl) = (tl
′

el − t1e1)

and tl
ul−2

tl
′ = ul−1 ∈ supp(hl). Hence we obtain a cycle in GI in this way. Now if there

exist another monomial v ∈ supp(h1) with u 6= v, then by the similar argument one can
find a new cycle in GI . Hence, Lemma 1.14 implies that w is a combination of some other
elements of ker(ψ), a contradiction. So hi is a monomial.

Lemma 1.16. Let I, ϕ and ψ be as mention in above. If kerϕ is generated by linear
forms, then corresponding to every element in a minimal set of generators of ker(ψ) there
is a cycle in GI .

Proof. Let
∑n

i=1 higi an element of a minimal generating set of ker(ψ). Then ψ(
∑n

i=1 higi)
=

∑n
i=1 hiψ(gi) = 0, where gi is a basis element of F1 and hi is monomial for i = 1, . . . .n.
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Then −h1ψ(g1) =
∑n

i=2 hiψ(gi). Assume that ψ(g1) = xi1ei1 −xi2ei2 . So ui1 , ui2 is a path
in GI .

The left-hand side of above equation is of the form wi1ei1 −wi2ei2 . By proof of Lemma
1.8, the right-hand side of the above equation is of the form

fi2(xk2ei2 − xk3
′

ei3) + fi3(xk3ei3 − xk4
′

ei4) + . . .+ fit(xkteit − xkt+1

′

ei1),

where eit 6= ei2 . If eit = ei2 , then xkt+1

′

= xi1 and xkt = xi2 . Hence, g1 appears in the
right-hand side of equation , a contradiction. Thus ui2 , ui3 , . . . , uit , ui1 is a path which is
different from path ui1 , ui2 . �

Theorem 1.17. Let I ⊂ S be a squarefree monomial ideal such that GI
∼= Cm, m ≥ 4.

Then the following conditions are equivalent:

(a) I has a linear resolution;
(b) m = n and with a suitable relabeling of variables for all j one has xi | uj for all i,

i+ 1 6= j and i 6= j, where n+ 1 = 1;
(c) I is variable-decomposable ideal;
(d) I has linear quotients.

Proof. (a) ⇒ (b) : Assume that I has a linear resolution. Since GI is a cycle, by Lemma
1.14 and Lemma 1.16, ker(ψ) =< w >. Let w =

∑m
i=1 higi where gi is a basis element of

F1 and hi is a monomial in S for i = 1, . . . ,m. Without loss of generality, we may assume
that GI = u1, u2, . . . , um, u1. Then

ψ(w) =
∑m

i=1 hiψ(gi) = h1(xt1e1−xt2
′

e2)+h2(xt2e2−xt3
′

e3)+. . .+hm(xtmem−xt1
′

e1) = 0.

Therefore, h1xt1e1 = hmxt1
′

e1. Since, I has d-linear resolution and deg(ei) = d, we

conclude that deg(hi) = 1 for all i. Consequently, h1 = xt1
′

and hm = xt1 . By similar

argument hj = xtj
′

and hj = xtj+1
. Hence, xtj+1

= xtj
′

for all 1 ≤ j ≤ m− 1. So ker(ϕ)
is minimally generated by the following linear forms.

(xtme1 − xt2e2), (xt1e2 − xt3e3), (xt2e3 − xt4e4), . . . ,
(xtm−2

em−1 − xtmem), (xtm−1
em − xt1e1).

For an arbitrary variable xi in S there exits ui and uj in G(I) such that xi | ui and
xi ∤ uj . Hence, by Remark 1.10 xi ∈ {xt1 , xt2 , . . . , xtm}. It is clear that the variables
xt1 , xt2 , . . . , xtm are distinct and, hence, n = m.

Set xt−1
= xtm−1

, xtm+1
= xt1 , e0 = em and em+1 = e1. For 1 ≤ i ≤ m − 1, we

have ϕ(xti−2
ei−1 − xtiei) = 0 and, hence, xti | ui−1 and xti ∤ ui. Also, from ϕ(xtiei+1 −

xti+2
ei+2) = 0, we have xti ∤ ui+1 and xti | ui+2. By Remark 1.10 xti | uj for j 6= i, i+ 1.

(b) ⇒ (c) : It is easy to see that Ix1
=< u1, u2 > is variable-decomposable, Ix1 =<

u3, . . . , un > and u = x1 is a shedding variable. Also, it is clear that x2 is a shedding vari-
able for Ix1 and (Ix1)x2 =< u4, . . . , un >, (I

x1)x2
=< u3 >. Continuing these procedures

yields that Ix1 is variable-decomposable. Hence, I is variable-decomposable ideal.
(c) ⇒ (d) follows by Theorem 1.3.
(d) ⇒ (a) follows by Proposition 1.1. �

Corollary 1.18. Let I ⊂ S be a squarefree monomial ideal generated in degree 2 and
assume that GI

∼= Cm, m ≥ 4. Then I has a linear resolution if and only if m = 4.

Remark 1.19. Let I be a squarefree monomial ideal. If GI
∼= C3, then I has linear

quotients. Hence I has a linear resolution.
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Let I be a squarefree monomial ideal generated in degree 2. We may assume that
I = I(G) is the edge ideal of a graph G. Hence, by Fröberg’s result, I(G) has a linear
resolution if and only if Ḡ is a chordal graph. If G ∼= Cm, then Ḡ is chordal if and only if
m = 3 or m = 4. In this situation G ∼= Cm if and only if GI

∼= Cm. Hence, in this case
our result is coincide to Fröberg’s result.

Corollary 1.20. Let I be a squarefree monomial ideal generated in degree d where GI
∼=

Cm. If d+ 2 < n or m 6= n, then I can not has a d-linear resolution.

Example 1.21. Consider monomial ideal I =< xy, zy, zq, qx >⊂ k[x, y, z, q]. The graph
GI is 4-cycle. Since d = 2, n = 4 and d+ 2 = n, I has a 2-linear resolution.

0 −→ S(−4) −→ S(−3)4 −→ S(−2)4 −→ I −→ 0.

Example 1.22. For monomial ideal I =< xyz, yzq, zqw, qwe,wex, xye >⊂ k[x, y, z, q, e, w],
we have GI

∼= C6. Therefore I has not a 3-linear resolution, since d = 3, n = 6 and
d+ 2 < n. The resolution of I is:

0 −→ S(−6) −→ S(−4)6 −→ S(−3)6 −→ I −→ 0.

2. Linear resolution of monomial ideals whose GI is a tree

Let I be a squarefree monomial ideal such that GI is a tree. In this section we study
linear resolution of such monomial ideals. We know that each line is a tree, therefore first
we consider the following:

Proposition 2.1. Let I =< u1, . . . , um > be a squarefree monomial ideal generated in
degree d. If GI = u1, u2, . . . , um is a line, then the following conditions are equivalent:

(a) I has a linear resolution;
(b) For any 1 ≤ j ≤ k ≤ i ≤ m

F (uk) ⊆ F (ui) ∪ F (uj);

(c) I is variable-decomposable ideal;
(d) I has linear quotients.

Proof. (a) ⇒ (b) : Suppose, on the contrary, there exist 1 ≤ j < k < i ≤ m and l ∈ F (uk)
such that l /∈ F (ui) ∪ F (uj). Since I has a linear resolution, we have xF (ui)\F (uj)ej −

xF (uj)\F (ui)ei = fi(xk1ei−xk2
′

ei+1)+fi+1(xk2ei+1−xk3
′

ei+2)+. . .+fj−1(xkj−1
ej−1−xkt

′

ej).

By Remark 1.12, xl | xF (uj)\F (ui) and xl | xF (ui)\F (uj) which is a contradiction.

(b) ⇒ (c) : Let F (u2) \ F (u1) = {l}. From the facts that F (u2) ⊆ F (u1) ∪ F (ui),
l ∈ F (u2) and u2 : u1 = xl, we conclude that l ∈ F (ui) for all 2 ≤ i ≤ m, Ixl

=< u1 >
and x1 is a shedding. By induction on m, Ixl is variable-decomposable, since Ixl in a line
of length m− 1.

(c) ⇒ (d) follows by Theorem 1.3.
(d) ⇒ (a) follows by Proposition 1.1.

Theorem 2.2. If I is a squarefree monomial ideal which has linear relations, then GI is
a tree if and only if proj dim(I) = 1.

Proof. If GI is a tree, then GI has no cycle. Therefore by Lemma 1.16, ker(ψ) = 0. Hence
the linear resolution of I is of the form

0 −→ F1 −→ F0 −→ I −→ 0
8



and proj dim(I) = 1.
Conversely, assume that proj dim(I) = 1. Then ker(ψ) = 0 and by Lemma 1.14 GI has

no cycle. Since I has linear relations, by Lemma 1.8, GI is a connected graph. Therefore
GI is a tree. �

Proposition 2.3. Let I be a squarefree monomial ideal with proj dim(I) = 1. Then I
has a linear resolution if and only if GI is a connected graph.

Proof. Assume that GI is a connected graph. Since proj dim(I) = 1, Lemma 1.14 implies
that GI has no cycle and, hence, it is a tree. So it is enough to show I has linear relations.
For ui, uj ∈ G(I) there exist a unique path between ui and uj in G(I). Assume that

wei − w
′

ej = fi1(xk1ei1 − xk2
′

ei2) + fi2(xk2ei2 − xk3
′

ei3) + . . . + fit−1
(xkt−1

eit−1
− xkt

′

eit)

be an element of ker(ϕ) which is obtained from this path. If wei −w
′

ej = xF (uj)\F (ui)ei −
xF (ui)\F (uj)ej , we are done. So assume that the equality does not holds. Then xF (uj)\F (ui)ei−
xF (ui)\F (uj)ej is a minimal element in ker(ϕ). Hence, there exists g ∈ F1 such that

ψ(g) = xF (uj)\F (ui)ei − xF (ui)\F (uj)ej . Remark 1.5 implies that there exists a mono-

mial h ∈ S such that hψ(g) = wei − w
′

ej = fi1ψ(gi2) + . . . + fit−1
ψ(git−1

). Therefore
ψ(hg − fi1gi2 − · · · − fit−1

git−1
) = 0 and hg − fi1gi2 − · · · − fit−1

git−1
6= 0, a contradiction.

The converse follows from Lemma 1.8. �

Proposition 2.4. Let I =< u1, . . . , um > be a squarefree monomial ideal generated in
degree d which has linear quotients. Assume that GI is a tree and v is a monomial in
degree d which is a leaf in G<I,v>. Then the following conditions are equivalent:

(a) < I, v > has a linear resolution;
(b) Let ui be the branch of v and F (ui) \ F (v) = {l}, then l ∈

⋂m
t=1 F (ut);

(c) < I, v > has linear quotients.

Proof. (a) ⇒ (b) : Suppose, on the contrary, that there exist a 1 ≤ j ≤ m such that
l /∈ F (uj). Let v, ui = ui1 , ui2 , . . . , uit−1

, uit = uj be the unique path between v and
uj . Without loss of generality, we may assume that l ∈ F (uir) for all r, 1 ≤ r ≤ t − 1.
Since < I, v > has a linear resolution, we have xF (uj)\F (v)ev − xF (v)\F (uj)ej = f0(xi0ev −
x
i1

′ei1) + f1(xi1ei1 − x
i2

′ei2) + . . . + ft−1(xit−1
eit−1

− x
it

′ et). By Remark 1.12, we know

that xl | xF (uj)\F (v) and xl | xF (v)\F (uj), this is a contradiction .

(b) ⇒ (c) : We now that there is an admissible order v1, v2, . . . , vm of G(I). Since by
our assumption {l} = F (ui) \ F (v) and l ∈ F (uj) for any 1 ≤ j ≤ m, we conclude that
the order v1, v2, . . . , vm, v is an admissible order for < I, v >.

(c) ⇒ (a) follows from Proposition 1.1. �

Proposition 2.5. Let I =< u1, . . . , um > be a squarefree monomial ideal generated in
degree d. If GI is a tree, then I has a linear resolution if and only if L has a linear
resolution for all L ⊆ I, where G(L) ⊂ G(I) and GL is a line.

Proof. Assume that I has a linear resolution. Since GI is a tree, we have proj dim(I) =
1. So if L ⊂ I with G(L) ⊂ G(I) and GL is a line, then L has linear relations and
proj dim(L) = 1. Therefore L has a linear resolution.

For the converse, by our assumption there exists a monomial ideal J0 ⊂ I such that
G(J0) = {ui1 , . . . , uit} ⊂ G(I), GJ0 is a line and has linear resolution. Therefore J0 has
linear quotients. Take v ∈ V (GI) \ V (GJ0) such that v and uij are adjacent in GI for
some 1 ≤ j ≤ t. Set F (uij ) \ F (v) = {l}. Since J0 has linear quotients there exist a path
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between uir and uij for all 1 ≤ r ≤ t. Therefore we have line uir , . . . , uij , v in GI . By
our hypothesis L =< uir , . . . , uij , v > has a linear resolution and Proposition 2.1 implies
that F (uij ) ⊆ F (v) ∪ F (uir). Therefor {l} ∈ F (uir ) and Proposition 2.4 implies that
J1 =< J0, v > has linear quotients. Now replace J0 by J1 and do the same procedure until
we obtain I. �

Theorem 2.6. Let I be a squarefree monomial ideal which is generated in one degree. If
GI is a tree, then the following conditions are equivalent:

(a) I has a linear resolution;
(b) I has linear relations;

(c) G
(u,v)
I is a connected graph for all u, and v in G(I);

(d) If u = u1, u2, . . . , us = v is the unique path between u and v in GI , then F (uj) ⊂
F (ui) ∪ F (uk) for all 1 ≤ i ≤ j ≤ k ≤ s;

(e) L has a linear resolution for all L ⊆ I, where G(L) ⊂ G(I) and GL is a line

Proof. (a) ⇒ (b) is trivial. (b) ⇒ (c) follows from Proposition 1.13. (c) ⇒ (d) : for all

1 ≤ i ≤ j ≤ k ≤ s, G
(ui,uk)
I is connected and uj is a vertex of this graph. Therefore

F (uj) ⊂ F (ui) ∪ F (uk). (d) ⇒ (e) follows from Proposition 2.1. (e) ⇒ (a) follows from
Proposition 2.5. �

Theorem 2.7. Let I be a squarefree monomial ideal generated in degree d. If GI is a
tree, then the following are equivalent:

(a) I has a linear resolution;
(b) I is variable-decomposable ideal;
(c) I has linear quotients.

Proof. (a) ⇒ (b) : We know that proj dim(I) = 1, since GI is a tree and I has a linear
resolution. With out loss of generality we may assume that u1 is a vertex of degree one in
GI and u2 be the unique neighborhood of u1 in GI . Set F (u2) \F (u1) = {l}. Proposition

1.13 implies that G
(u1,ui)
I is a connected graph for all ui. If l 6∈ F (ui) for some i > 2,

then F (u2) * F (u1) ∪ F (ui) and u2 /∈ V (G
(u1,ui)
I ). Therefore G

(u1,ui)
I is not connected, a

contradictions. Hence Ixl
= {u1} and G(Ixl) = G(I) \ {u1}. It is easy to see that xl is a

shedding variable. Since GIxl is a tree and has linear relations, by induction on |G(I)|, we
conclude that Ixl is variable-decomposable. Therefore I is variable-decomposable ideal.
(b) ⇒ (c) follows by Theorem 1.3. (c) ⇒ (a) follows by Proposition 1.1. �

Remark 2.8. In Theorem 2.7, we show that if GI is a tree and I has a linear resolution,
then I has linear quotients. In the following we present an admissible order for I in this
case. we choose order ur1 , . . . , urm for the elements of G(I) such that the subgraph on
vertices {ur1 , . . . , urt} is a connected graph for 1 ≤ t ≤ m. We show tat this order is
an admissible order. If this order is not an admissible order, then there exists a j < i
such that for all k < i with F (urk) \ F (uri) = {l}, we have l /∈ F (urj ). Since there is a
path urj , . . . , urk , uri Remark 1.12 implies that xl | xF (uri

)\F (urj
) and xl | xF (urj

)\F (uri
), a

contradiction.

A simplicial complex ∆ over a set of vertices [n] = {1, . . . , n} is a collection of subsets of
[n] with the property that {i} ∈ ∆ for all i and if F ∈ ∆, then all subsets of F are also in ∆.
An element of ∆ is called a face and the dimension of a face F is defined as |F |− 1, where
|F | is the number of vertices of F . The maximal faces of ∆ under inclusion are called facets
and the set of all facets denoted by F(∆). The dimension of the simplicial complex ∆ is
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the maximal dimension of its facets. A subcollection of ∆ is a simplicial complex whose
facets are also facets of ∆. In other words a simplicial complex generated by a subset of
the set of facets of ∆. Let ∆ be a simplicial complex on [n] of dimension d− 1. For each
0 ≤ i ≤ d − 1 the ith skeleton of ∆ is the simplicial complex ∆(i) on [n] whose faces are
those faces F of ∆ with | F |≤ i + 1. We say that a simplicial complex ∆ is connected
if for facets F and G of ∆ there exists a sequence of facets F = F0, F1, . . . , Fq−1, Fq = G
such that Fi ∩ Fi+1 6= ∅ for i = 0, . . . , q − 1. Observe that ∆ is connected if and only if
∆(1) is connected.

Let ∆ be a simplicial complex on [n]. The Stanley-Reisner ideal of ∆ is a squarefree
monomial ideal I∆ =< xi1 . . . xip | {xi1 , . . . , xip} /∈ ∆ >. Conversely, let I ⊆ k[x1, . . . , xn]
be a squarefree monomial ideal. The Stanley-Reisner complex of I is the simplicial complex
∆ on [n] such that I∆ = I. The Alexander dual of ∆ is the simplicial complex ∆∨ =<
{x1, . . . , xn} \ F | F /∈ ∆ > .

Definition 2.9. [9] Let ∆ be a simplicial complex. A facet F ∈ F(∆) is said to be a
leaf of ∆ if either F is the only facet of ∆ or there exists a facet G ∈ F(∆) with G 6= F ,
called a branch F , such that H ∩ F ⊆ G ∩F for all H ∈ F(∆) with H 6= F . A connected
simplicial complex ∆ is a tree if every nonempty subcollection of ∆ has a leaf. If ∆ is not
necessarily connected, but every subcollection has a leaf, then ∆ is called a forest.

If ∆ is a simplicial tree, then we can always order the facets F1, . . . , Fq of ∆ such that
Fi is a leaf of the induced subcomplex < F1, . . . , Fi−1 >. Such an ordering on the facets
of ∆ is called a leaf order. A simplicial complex ∆ is a quasi-forest if ∆ has a leaf order.
A connected quasi-forest is called a quasi-tree.

Consider an arbitrary monomial ideal I =< u1, . . . , um >. For any subset σ of {1, . . . ,m},
we write uσ for the least common multiple of {ui | i ∈ σ} and set aσ = deguσ. Let G(I) =
{u1, . . . , um}. The Scarf complex ∆I is the collection of all subsets of σ ⊂ {1, . . . ,m}
such that uσ is unique. As first noted by Diane Taylor [21], given a monomial ideal I in a
polynomial ring S minimally generated by monomials u1, . . . , um, a free resolution of I can
be given by the simplicial chain complex of a simplex with m vertices. Most often Taylors
resolution is not minimal. The Taylor complex F∆I

supported on the Scarf complex ∆I is
called the algebraic Scarf complex of the monomial ideal I. For more information about
Taylor complex we refer to [17].

The following results will be used later.

Lemma 2.10. [17]If I is a monomial ideal in S, then every free resolution of S/I contains
the algebraic Scarf complex F∆I

as a subcomplex.

Proposition 2.11. [10, Corollary 4.7] Every simplicial tree is the Scarf complex of a
monomial ideal I and supports a minimal resolution of I.

In [11] Faridi and Hersey studied minimal free resolution of squarefree monomial ideals
with projective dimension 1. They prove the following.

Theorem 2.12. Let I be a squarefree monomial ideal in a polynomial ring S and ∆ be a
simplicial complex such that I = I∆. Then the following statements are equivalent:

(a) proj dim I ≤ 1;
(b) ∆∨ is a quasi-forest;
(c) S/I has a minimal free resolution supported on a graph-tree.

If ∆ is a simplicial complex and dim∆ = 1, then the geometric realization of ∆ is a
graph. In this situation we say ∆ is a graph.
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Lemma 2.13. Let I be a monomial ideal. Set G = ∆
(1)
I . If GI is a c3-free graph, then

GI is a subgraph of G.

Proof. One has V (G) = V (GI) = G(I). Let {ui, uj} ∈ E(GI). Assume that {ui, uj} is
not an edge in G. Then there exits σ ⊂ {1, . . . ,m} such that {i, j} 6= σ and u{i,j} = uσ.
Let r ∈ σ \ {i, j}, then F (ur) ⊆ F (ui)∪F (uj). We may assume that F (ui) = A∪ {i} and
F (uj) = A∪{j}. Hence F (ur) ⊆ A∪{i, j}. Therefore {ui, ur} and {uj , ur} are in E(GI),
which is a contradiction. �

Remark 2.14. Let I be a monomial ideal which has a linear resolution and ui, uj ∈ G(I).
Assume that ui = ui1 , .., uit−1

, uit = uj is a path between ui and uj . Then xF (uj)\F (ui)ei−
xF (ui)\F (uj)ej ∈ ker(ϕ) and is a linear combination of linear forms which comes from the

given path. By Remark 1.10 and Remark 1.12, F (uir ) ⊆ F (ui)
⋃
F (uj), for all i ≤ r ≤ j.

Theorem 2.15. Assume that I is a squarefree monomial ideal generated in degree d. If
GI is a tree, then I has a linear resolution if and only if GI

∼= ∆I .

Proof. Assume that I has a linear resolution. By Theorem 2.2 proj dim I ≤ 1 and by
Lemma 2.10 dim∆I = 1. By Lemma 2.13 GI is a subgraph of ∆I . Now let {ur, ut} ∈ ∆I .
Suppose that {ur, ut} /∈ E(GI). Since xF (ut)\F (ur)er − xF (ur)\F (ut)et ∈ ker(ϕ) and I ha a
linear resolution, we have

xF (ut)\F (ur)er − xF (ur)\F (ut)et = fr(xkrer − x
kr+1

′ eir+1
) + . . .+ fj(xkjeij − x

kt
′ et).

Set σ = {r, ir+1, . . . , ij , t}. By Remark 2.14 mσ = m{r,t}, which is a contradiction.
Conversely assume that GI

∼= ∆I . Therefore ∆I ia a tree. By Proposition 2.11 ∆I

supports a minimal free resolution of I. Therefore by Theorem 2.12 proj dim I ≤ 1. If
proj dim I = 0, then I is principal monomial ideal and, hence, I has a linear resolution.

Let proj dim I = 1. If I has not a linear resolution, then there exists xF (uj)\F (ui)ei −
xF (ui)\F (uj)ej ∈ ker(ϕ) such that this element belong to a minimal set of generators of

ker(ϕ) and deg(xF (ui)\F (uj)) ≥ 2. There exists a unique path ui = ui1 , ui2 , . . . , uit−1
, uit =

uj between ui and uj in GI . By Lemma 1.6 and Remark 1.5 there exists a monomial w
such that
w(xF (uj)\F (ui)ei − xF (ui)\F (uj)ej) = fi1(xk1ei1 − xk2

′

ei2) + fi2(xk2ei2 − xk3
′

ei3) + . . . +

fit−1
(xkt−1

eit−1
− xkt

′

eit).

Set ψ(g) = xF (uj)\F (ui)ei − xF (ui)\F (uj)ej , ψ(g1) = xk1ei1 − xk2
′

ei2 , . . . , ψ(gt−1)

= xkt−1
eit−1

− xkt
′

eit . Then ψ(Σt−1
r=1firgr − wg) = 0. Since Σt−1

r=1firgr − wg 6= 0, one has
ker(ψ) 6= 0, which is a contradiction. �

3. linear resolution of some classes of monomial ideals

In this section as applications of our results, we determine linearity of resolution for
some classes of monomial ideals.

Let I be a squarefree Cohen-Macaulay monomial ideal of codimension 2 and ∆ be a
simplicial complex such that I = I∆. In [15] the authors showed that ∆ is shellable.
Moreover one can see that ∆ is vertex decomposable, see [1]. Now assume that I is
generated in one degree. Since proj dim(I) = 1, as a corollary of Proposition 2.3 and
Theorem 2.7, we have:

Corollary 3.1. Let I be a squarefree Cohen-Macaulay monomial ideal of codimension 2.
Then I has a linear resolution if and only if GI is a connected graph. Indeed in this case
GI is a tree and the following conditions are equivalent:
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(i) I has a linear resolutions;
(ii) I has linear quotients;
(iii) I is variable decomposable.

The following example shows that there are Cohen-Macaulay monomial ideal of codi-
menstion 2 with and without a linear resolution.

Example 3.2. (i)- let I = (xy, yz, zt) ⊂ K[x, y, z, t] . Then I is Cohen-Macaulay mono-
mial ideal of codimenstion 2 with a linear resolutions

(ii)- let I =< xy, zt >⊂ K[x, y, z, t]. It is easy to see that I is a Cohen-Macaulay
monomial ideal of codimension 2 which has not a linear resolution.

Remark 3.3. Let I be a squarefree monomial ideal. If GI is a complete graph, then the
following statements hold.

(a) I has a linear resolution;
(b) I is variable-decomposable ideal;
(c) I has linear quotients.

In [4] Conca and De Negri introduced path ideal of a graph. Let G be a directed graph
on vertex set {1, . . . , n}. For integer 2 ≤ t ≤ n, a sequence i1, . . . , it of distinct vertices
of G is called a path of length t, if there are t − 1 distinct directed edges e1, . . . , et−1,
where ej is an edge from ij to ij+1. The path ideal of G of length t is the monomial ideal

It(G) =<
∏t

j=1 xij >, where i1, . . . , it is a path of length t in G. Let Cn denote the n-cycle

on vertex set V = {1, . . . , n}. In [8, proposition 4.1] it is shown that S/I2(Cn) is vertex
decomposable/ shellable/ Cohen-Macaulay if and only if n = 3 or 5. Saeedi, Kiani and
Terai in [20] showed that if 2 < t ≤ n, then S/It(Cn) is sequentially Cohen-Macaulay if and
only if t = n, t = n−1 or t = (n−1)/2. In [1] it is shown that S/It(Cn) is Cohen-Macaulay
if and only if it is shellable and if and only if It(Cn) is vertex decomposable.

It is easy to see that if t < n−1, then GIt(Cn)
∼= Cn. Hence, by Theorem 1.17 It(Cn) has

a linear resolution if and only if t = n− 2. For t = n− 1, since GIt(G) is a complete graph,
It(G) has a linear resolution. Also, in these cases having a linear resolution is equivalent
to have linear quotients and it is equivalent to variable decomposability of It(Cn).

Corollary 3.4. It(Cn) has a linear resolution if and only if t = n − 2 or t = n − 1.
Moreover the following conditions are equivalent:

(a) It(G) has a linear resolution;
(b) It(G) is variable-decomposable ideal;
(c) It(G) has linear quotients.

Corollary 3.5. Let Ln be a line on vertex set {1, . . . , n} and It(Ln) be the path ideal of
Ln. Then It(Ln) has a linear resolution if and only if t ≥ n

2 .

Proof. Let Ln = 1, . . . , n be a line. It is easy to see that GIt(Ln)
∼= Ln−t+1 and It(Ln) =<

∏t
i=1 xi, . . . ,

∏2t
i=t+1 xi, . . . ,

∏n
i=n−t+1 xi >. If n−t+1 > t+1, then F (u2) * F (u1)

⋃
F (un).

Hence Theorem ?? implies that It(G) has not a linear resolution. If n− t+ 1 ≤ t+ 1, i.e
t ≥ n

2 , then it is clear that for any 1 ≤ j ≤ k ≤ i ≤ m one has:

F (uk) ⊆ F (ui)
⋃
F (uj).

Therefore, by Proposition 2.1, It(G) has a linear resolution and the equivalent conditions
hold. �
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4. Cohen-Macaulay simplicial complex

Let ∆ =< F1, . . . , Fm > be a simplicial complex on vertex set [n] and I∆ ⊂ k[x1, . . . , xn]
be its Stanley-Reisner ideal. For each F ⊂ [n], we set F̄i = [n]\Fi and PF = (xj : j ∈ F ).
It is well known that I∆ =

⋂m
i=1 PF̄i

and I∆∨ = (xF̄i
: i = 1, . . . ,m), see [13]. The

simplicial complex ∆ is called pure if all facets of it have the same dimension. It is easy to
see that ∆ is pure if and only if I∆∨ is generated in one degree. The k-algebra k[∆] = S/I∆
is called the Stanley-Reisner ring of ∆. We say that ∆ is Cohen-Macaulay over k if k[∆]
is Cohen-Macaulay. It is known ∆ is a Cohen-Macaulay over k if and only if I∆∨ has a
linear resolution, see [6]. Since every Cohen-Macaulay simplicial complex is pure, in this
section, we consider only pure simplicial complexes.

The simplicial complex ∆ is called shellable if its facets can be ordered F1, F2, . . . , Fm

such that, for all 2 ≤ i ≤ m, the subcomplex 〈F1, . . . , Fi−1〉 ∩ 〈Fi〉 is pure of dimension
dim(Fi)− 1.

For the simplicial complexes ∆1 and ∆2 defined on disjoint vertex sets, the join of ∆1

and ∆2 is ∆1 ∗∆2 = {F ∪ G : F ∈ ∆1, G ∈ ∆2}. For a face F in ∆, the link, deletion
and star of F in ∆ are respectively, denoted by link∆ F , ∆\F and star∆ F and are defined
by link∆ F = {G ∈ ∆ : F ∩ G = ∅, F ∪ G ∈ ∆}, ∆ \ F = {G ∈ ∆ : F * G} and
star∆ F = 〈F 〉 ∗ link∆ F .

A face F in ∆ is called a shedding face if every face G of star∆ F satisfies the following
exchange property: for every i ∈ F there is a j ∈ [n] \ G such that (G ∪ {j}) \ {i} is a
face of ∆. A simplicial complex ∆ is recursively defined to be k-decomposable if either
∆ is a simplex or else has a shedding face F with dim(F ) ≤ k such that both ∆ \ F
and link∆ F are k-decomposable. 0-decomposable simplicial complexes are called vertex
decomposable.

It is clear that xF̄i
and xF̄j

are adjacent in GI∆∨
if and only if Fi and Fj are connected

in codimension one, i.e, |Fi ∩ Fj | = |Fi| − 1. A simplicial complex ∆ is called connected
in codimension one or strongly connected if for any two facets F and G of ∆ there exists
a sequence of facets F = F0, F1, . . . , Fq−1, Fq = G such that Fi and Fi+1 is connected in
codimension one for each i = 1, . . . , q − 1 . Hence we have the following:

Lemma 4.1. A simplicial complex ∆ is connected in codimension one if and only if GI∆∨

is a connected graph.

For facets F andG of ∆, we introduced a subcomplex ∆(F,G) = 〈L ∈ F(∆) : F∩G ⊂ L〉.

It is easy to see that ∆(F,G) is connected in codimension one if and only if G
(xF̄ ,xḠ)
I∆∨

is a

connected graph. Hence by Proposition 1.13 we have:

Corollary 4.2. Let ∆ be a simplicial complex on vertex set [n]. Then I∆∨ has linear

relations if and only if ∆(F,G) is connected in codimension one for all facets F and G of
∆.

Suppose that ∆ is a simplicial complex of dimension d, i.e, |Fi| = d + 1 for all i. We
associate to ∆ a simple graph G∆ whose vertices are labeled by the facets of ∆. Two
vertices Fi and Fj are adjacent if Fi and Fj are connected in codimension one. If Fi and
Fj are adjacent in G∆, then | Fi ∩ Fi+1 |= d. It is easy to see that | F̄i ∩ F̄j |= n− d− 2.
Therefor xF̄i

and xF̄j
is adjacent in GI∆∨

and, hence, G∆
∼= GI∆∨

.

Now assume that G∆
∼= GI∆∨

is a line. Proposition 2.1, implies that I∆∨ has a linear

resolution if and only if for any 1 ≤ j ≤ k ≤ i ≤ m, F̄k ⊆ F̄i

⋃
F̄j . By Eagon-Reiner [6],

we have the following:
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Corollary 4.3. Let ∆ =< F1, . . . , Fm > be a pure simplicial complex. IfG∆ = F1, F2, . . . , Fm

is a line, then ∆ is a Cohen-Macaulay if and only if Fi∩Fj ⊆ Fk for any 1 ≤ j ≤ k ≤ i ≤ m.
Moreover in this case the following conditions are equivalent:

(a) ∆(F,G) is connected in codimension one for all facets F and G in ∆.
(b) ∆ is Cohen-Macaulay.
(c) ∆ is shellabe
(d) ∆ is vertex decomposable simplicial complex.

Also a consequence of Theorem 1.17, we have:

Corollary 4.4. Let ∆ =< F1, . . . , Fm > be a pure simplicial complex. If G∆
∼= Cm, then

∆ is a Cohen-Macaulay if and only if m = n and with a suitable relabeling of facets Fi,
we have i ∈ Fi ∩ Fi+1 and i /∈ Fj for all j 6= i, i + 1 ( Fm+1 = F1). Moreover in this case
∆ is shellabe and vertex decomposable simplicial complex.

Again a corollary of Theorem 2.7, Theorem 2.15 and Theorem 2.6 we have:

Corollary 4.5. Let ∆ =< F1, . . . , Fm > be a pure simplicial complex. If G∆ is a tree,
then the following conditions are equivalent:

(a) ∆(F,G) is connected in codimension one for all facets F and G in ∆.
(b) if F = F1, F2, . . . , Fs = G is a unique path in G∆, then Fi ∩ Fk ⊂ Fj for all

1 ≤ i ≤ j ≤ k ≤ s.
(c) ∆ is Cohen-Macaulay.
(d) ∆ is shellabe
(e) ∆ is vertex decomposable.
(f) G∆

∼= ∆I∆∨
.
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