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Selective survey on spaces of closed subgroups of topological groups

Igor V. Protasov

Abstract. We survey different topologizations of the set S(G) of all closed subgroups
of a topological group G and demonstrate some applications in Topological Grous, Model
Theory, Geometric Group Theory, Topological Dynamics.

MSC: 22A05, 22B05, 54B20, 54D30.
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Some words in place of introduction. For a topological group G, S(G) denotes the set
of all closed subgroup of G. There are many ways to endow S(G) with a topology related
to the topology of G. Among them, the most intensively studied are Chabauty topology
rooted in Geometry of Numbers and the Vietories topology went from General Topology;
both coincide if G is compact. The spaces of closed subgroups are interesting by their
own sake but also have some deep applications in Topological Groups and Model Theory,
Geometric Group Theory and Dynamical Systems. The survey is my subjective look at
this area.

Content: Chabauty spaces; Victories spaces; Other topologizations.

1 Chabauty spaces

1.1. From Minkowski to Chabauty. We recall that a lattice L in Rn is a discrete
subgroup of rank n. We denote min L the length of a shortest non-zero vector from L,
vol (Rn/L) is the volume of a basic parallelepiped of L .

A sequence (Lm)m∈ω of lattices in Rn converges to the lattice L if, for each m ∈ ω,
one can choose a basis a1(m), . . . , an(m) of Lm and a basis a1, . . . , an of L such that the
sequence (ai(m))m∈ω converges to ai for each i ∈ {1, . . . , n}. This convergence of lattices
was introduced by H. Minkowski [1], and its usage in Geometry of Numbers (see [2]) is
based on the following theorem of K. Mahler [3].

Theorem 1.1. Let M be a set of lattices in Rn. Every sequence in M has a convergent
subsequence if and only if there exist two constants C > 0, c > 0 such that min L > c,
vol (Rn \ L) < C for each L ∈ M.

What we know now as Chabauty topology was invented by C. Chabauty in [4] in order
to extend Theorem 1.1 to lattices in connected Lie groups. A discrete subgroup L of a
connected Lie group G is called a lattice if the quotient space G/L is compact.
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Let X be a Hausdorff locally compact space and let exp X denotes the set of all closed
subsets of X . The sets

{F ∈ exp X : F ∩K = ∅}, {F ∈ exp X : F ∩ U 6= ∅},

where K runs over all compact subsets of X and U runs over all open subsets of X ,
form the subbase of the Chabauty topology on exp X . The space exp X is compact and
Hausdorff. If X is discrete then exp X is homeomorphic to the Cantor cube {0, 1}|X|.

We note also that a net (Fα)α∈I converges in exp X to F if and only if

• for every compact K of X such that K ∩ F = ∅, there exists β ∈ I such that
Fα ∩K = ∅ for each α > β;

• for every x ∈ F and every neighbourhood U of x, there exists γ ∈ I such that
Fα ∩ U 6= ∅ for each α > γ.

If G is a locally compact group then S(G) is a closed subspace of exp G (so S(G) is
compact); S(G) is called the Chabauty space of G.

Theorem 1.2[4]. Let G be a connected unimodular Lie group. A set M of lattices in
G is relatively compact in M if and only if there exists constant C > 0 and a neighbourhood
U of the identity e of G such that L ∩ U = {e} and vol (G/L) < C for each L ∈ M.

With some technical improvement made in [5], the paper [4]is included in [6, Chapter
8].

1.2. Pontryagin-Chabauty duality. This duality was established in [7] and detal-
ized in [8]. We use the standard abbreviation LCA for a locally compact Abelian group.
Let G be a LCA-group, G∧ denotes its dual group, G∧ = Hom (G,R/Z) and let ϕ denotes
the canonical bijection S(G) −→ S(G∧), ϕ(X) = {f ∈ G∧ : X ⊆ ker f}.

Theorem 1.3. For every LCA-group G, the bijection ϕ : S(G) −→ S(G∧) is a
homeomorphism.

Typically, Theorem 1.3 applies to replace S(G) by S(G∧) in the case of a compact
Abelian group G.

In what follows we use the notations: Cn is the cyclic group of order n , Cp∞ is the
quasi-cyclic (or Prüffer) p-group, Z is the discrete group of integers, Zp is the group of
p-adic integers, Qp is the additive group of the field of p-adic numbers.

1.3. S(G) for compact G. The following two lemmas from [9] are the basic technical
tools in this area.

Lemma 1.1. If G,H are compact groups and ϕ : G −→ H is a continuous surjective
homomorphism then the mapping S(G) −→ S(H), X 7−→ ϕ(X) is continuous and open.

The continuity is easy but to prove the openness we need

Lemma 1.2. Let G be a compact group, X ∈ S(G). Then the following subsets from
a base of neighbourhoods of X is S(G):
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NX(U,N, x1, . . . , xn) = {u−1Y u : Y ∈ S(G), Y ⊆ XN, Y ∩ x1U 6= ∅, . . . , Y ∩ xnU 6= ∅, }

where U is a neighbourhood of the identity of G, N is closed normal subgroup such that
G/N is a Lie group, x1, . . . , xn are arbitrary elements of X , n ∈ N.

In particular, if G is a compact Lie group then Lemma 1.2 states that there is a
neighbourhood N of X such that each subgroup Y ∈ N is conjugated to some subgroup
of X . The key part in the proof of Lemma 1.2 plays the Montgomery-Yang theorem on
tubes [10], see also [11, Theorem 5.4 from Chapter 2].

We recall that the cellularity (or Souslin number) c(X) of a topological space X is the
supremum of cardinalities of disjoint families of open subsets of X . A topological space
X is called dyadic if X is a continuous image of some Cantor cube {0, 1}κ.

The weight w(X) of a topological space X is the minimal cardinality of open bases of
X .

Theorem 1.4 [9]. For every compact group G, we have c(S(G)) ≤ ℵ0. In addition,
if w(G) ≤ ℵ1 then S(G) is dyadic.

Theorem 1.5 [12]. Let a group G be either profinite or compact and Abelian. If
w(G) > ℵ2 then the space S(G) is not dyadic.

Theorem 1.6 [12]. Let G be an infinite compact Abelian group such that w(G) ≤ ℵ1.
Then the space S(G) is homeomorphic to the Cantor cube {0, 1}w(G) if and only if S(G)
has no isolated points.

An Abelian group G is called Artinian if every increasing chain of subgroups of G is
finite; every such group is isomorphic to the direct sum ⊕p∈F Cp∞ ⊕ K, where F is a
finite set of primes, K is a finite subgroup. An Abelian group G is called minimax if G
has a finitely generated subgroup N such that G/N is Artinian.

Theorem 1.7 [12]. For a compact Abelian group G, the space S(G) has an isolated
point if and only if the dual group G∧ is minimax.

1.4. S(G) for LCA G. The space S(R) is homeomorphic to the segment [0, 1].
By [13], S(R2) is homeomorphic to the sphere S4. For n ≥ 3, S(Rn) is not a topological
manifold and its structure is far from understanding, see [14].

Theorem 1.8 [15]. The space S(G) of a LCA-group G is connected if and only if
G has a subgroup topologically isomorphic to R.

If F is a non-solvable finite group then S(R×F ) is not connected [8, Proposition 8.6].

Theorem 1.9 [8]. The space S(G) of a LCA-group G is totally disconnected if
and only if G is either totally disconnected or each elements of G belongs to a compact
subgroup.

Some more information on S(G) for LCA G can be find in [8] and references there, in
particular, on topological dimension of S(G).
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By Theorems 1.4 and 1.3, c(S(G)) ≤ ℵ0 for every discrete Abelian group. We say that
a topological space X has Shanin number ω if any uncountable family F of non-empty
open subsets of X has an uncountable subfamily F ′ such that ∩F ′ 6= ∅ . Evidently, if a
space X has Shanin number ω then c(X) ≤ ℵ0 . By [16, Theorem 1], for every discrete
Abelian group G, the space S(G) has Shanin number ω. By [16, Theorem 3], for every
infinite cardinal τ , there exists a solvable discrete group G such that c(S(G)) = |G| = τ .

1.5. S(G) as a lattice. The set S(G) has the natural structure of a lattice with
the operations ∨ and ∧, where A∧B = A∩B and A∨B is the smallest closed subgroup
of G containing A and B. In this subsection, we formulate some results from [17] on
interrelations between the topological and lattice structures on S(G).

For g ∈ G, < g > denotes the subgroup of G topologically generated by g. A totally
disconnected locally compact group G is called periodic if < g > is compact for each g ∈ G
In this case, π(G) denotes the set of all prime numbers such that p ∈ π(G) if and only if
there is g ∈ G such that < g > is topologically isomorphic either to Cpn or to Zp; this g
is called a topological p-element.

Theorem 1.10. For a compact group G, the following statements are equivalent

(i) ∧ is continuous;

(ii) ∧ and ∨ are continuous;

(iii) G is the semidirect product K ⋋ P , where K is profinite with finite Sylow p-
subgroups, P is Abelian profinite and each Sylow p-subgroup of G is Zp, π(K)∩ π(P ) = ∅
and the centralizer of each Sylow p-subgroup of G has finite index in G.

Theorem 1.11. For a locally compact group G, the operation ∧ is continuous if and
only if the followings conditions are satisfied

(i) G is either discrete or periodic;

(ii) ∧ is continuous in S(H) for each compact subgroup H of G;

(iii) the centralizer of each topological p element of G is open.

We recall that a torsion group G is layerly finite if the set {g ∈ G : gn = e} is finite
for each n ∈ N. A layerly finite group G is called thin if each Sylow p-subgroup of G is
finite (equivalently, G has no subgroup isomorphic to Cp∞).

Theorem 1.12. Let G be a locally compact group. The operations ∧ and ∨ are
continuous if and only if G is periodic and topologically isomorphic to A × B × (C ⋋

D), where C has a dense thin layerly finite subgroup, A,B,D are Abelian with Sylow
p-subgroups Cp∞, Qp or Zp, the sets π(A), π(B), π(G), π(D) are pairwise disjoint and the
centralizer of each Sylow p-subgroup of G is open.
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1.6. From Chabauty to local method. A topological groupG is called topologically
simple if each closed normal subgroup of G is either G or {e}. Every topologically simple
LCA-group is discrete and either G = {e} or G is isomorphic to Cp.

Following the algebraic tradition, we say that a group G is locally nilpotent (solvable)
if every finitely generated subgroup is nilpotent (solvable).

In [18, Problem 1.76], V. Platonov asked whether there exists a non-Abelian topolog-
ically simple locally compact locally nilpotent group. Now we sketch the negative answer
to this question for locally solvable group obtained in [19].

Let G be a locally compact locally solvable group. We take g ∈ G \ {e}, choose a
compact neighbourhood U of G and denote by F the family of all topologically finitely
generated subgroups of G containing g. We may assume that G is not topologically finitely
generated so F is directed by the inclusion ⊂. For each F ∈ F , we choose AF , BF ∈ S(F )
such that BF ⊂ AF , AF and BF are normal in F , AF ∩ U 6= ∅, BF ∩ U = ∅ and AF/BF

is Abelian. Since S(G) is compact, we can choose two subnets (Aα)α∈I , (Bα)α∈I of the
nets (AF )F∈F , (BF )F∈I which converges to A,B ∈ S(G). Then A,B are normal in G and
A/B is Abelian. Moreover, x /∈ B and A∩U 6= ∅. If A 6= {G} then A is a proper normal
subgroup of G; otherwise G/B is Abelian.

In [20], the Chabauty topology was defined on some systems of closed subgroups of
locally compact group G. A system A of closed subgroups of G is called subnormal if

• A contains {e} and G;

• A is linearly ordered by the inclusion ⊂;

• for any subset M of A, the closure of
⋃

F∈M F ∈ A and
⋂

F∈M F ∈ A ;

• whenever A and B comprise a jump in A (i.e B ⊂ A and no members of A lie
between B and A), B is a normal subgroup of A.

If the subgroup A,B form a jump then A/B is called a factor of G. The system is
called normal if each A ∈ A is normal in G.

A group G is called an RN-group if G has a normal system with Abelian factors.
Among the local theorems from [20], one can find the following: if every topologically
finitely generated subgroup of a locally compact group G is an RN-group then G is an
RN-group. In particular, every locally compact locally solvable group is an RN-group.

In 1941, see [21, pp. 78-83], A.I. Mal’tsev obtained local theorems for discrete groups
as applications of the following general local theorem: if every finitely generated subsystem
of an algebraic system A satisfies some property P, which can be defined by some quasi
universal second order formula, then A satisfies P.

In [22], Mal’tsev’s local theorem was generalized on topological algebraic system. The
part of the model-theoretical Compactness Theorem in Mal’tsev arguments plays some
convergents of closed subsets. A net (Fα)α∈I of closed subsets of a topological space X
S-converges to a closed subset F if
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• for every x ∈ F and every neighbourhood U of x, there exists β ∈ I such that
Fα ∩ U 6= ∅ for each α > β;

• for every y ∈ X \ F , there exist a neighbourhood V of y and γ ∈ I such that
Fα ∩ V = ∅ for each α > γ.

Every net of closed subsets of an arbitrary (!) topological space has a convergent
subnet. If X is a Hausdorff locally compact space then S-convergence coincides with
convergence in the Chabauty topology.

1.7 Spaces of marked groups. Let Fk be the free group of rank k with the free
generators x1, . . . , xk and let Gk denotes the set of all normal subgroups of Fk. In the
metric form, the Chabauty topology on Gk was introduced in [23] as a reply on the
Gromov’s idea of topologizations of some sets of groups [24].

Let G be a group generated by g1, . . . , gk. The bejection xi 7−→ gi g1, . . . , gn can be
extended to the homomorphism f : Fk −→ G. With the correspondence G 7−→ ker f , Gk

is called the space marked k-generated groups.
A couple of papers in development of [23] is directed to understand how large in

topological sense are well-known classes of finitely generated groups, or how a given k-
generated group is placed in Gk, see [25]. Among applications of Gk, we mention the
construction of topologizable Tarski Monsters in [26].

1.8 Dynamical development. Every locally compact group G acts on the Chabauty
space S(G) by the rule: (g,H) 7−→ g−1Hg. Under this action, every minimal closed
invariant subset of S(G) is called a uniformly recurrent subgroup, URS for short. The
study of URSs was initiated by Glasner and Weiss [27] with the following observation.

Let a locally compact group G acts on a compact X so that is G minimal, i.e. the
orbit of each point x ∈ X is dense. We consider the mapping Stab : X −→ S(G) defined
by Stab(x) = {g ∈ G : gx = x}. Then there is the unique URS contained in the closure of
Stab(X). This URS is called the stabilizer URS. Glasner and Weiss asked whether every
URS of a locally compact group G arises as the stabilizer URS of a minimal action of G
on a compact space. This question was answered in the affirmative in [28].

2 Vietoris spaces

For a topological space X , the Victoris topology on the set exp X of all closed subsets of
X is defined by the subbase of open sets

{F ∈ exp X : F ⊆ U}, {F ∈ exp X : F ∩ V 6= ∅},

where U,V run over all open subsets of X .
A net (Fα)α∈I converges to F in exp X if and only if
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• for each open subset U of X such that F ⊆ U , there exists β ∈ I such that Fα ⊆ U
for each α > β;

• for each x ∈ F and each neighbourhood V of x, there exists γ ∈ I such that
Fα ∩ V 6= ∅ for each α > γ.

If X is regular then S(G) is closed in exp G. As to my knowledge, the spaces S(G),
where G needs not to be compact, endowed with the Vietoris topologies appeared in [29]
with characterization of LCA-groups G such that the canonical mapping ϕ : S(G) −→
S(G∧) is a homeomorphism.

2.1. Compactness. It is naively to ask a constructive description of arbitrary
topological groups G with compact space S(G) because we know nothing even about G
with S(G) = 2.

Theorem 2.1. [30]. Let G be a locally compact group. The space S(G) is compact if
and only if G is one of the following groups

(i) G is compact;

(2) Cp∞
1
× . . .×Cp∞

n

×K, where p1, . . . , pn are distinct prime numbers, K is finite and
each pi is not a divisor of |K|;

(3) Qp ×K, where K is finite and p does not divide |K|.

Similar characterization of groups with compact S(G) is given in [31] provided that
G has a base at the identity consisting of subgroups.

Theorem 2.2. [32]. Let G be a locally compact group. A closed subset F of S(G) is
compact if and only if the following conditions are satisfied

(i) every descending chain of non-compact subgroups from F is finite;

(ii) every closed subset F ′ of F has only finite number of non-compact subgroups
maximal in F ;

(iii) if a closed subset F ′ of F has no non-compact subgroups then ∪F ′ is compact.

Two corollaries: every compact in L(G) consisting of non-compact subgroups is scat-
tered; a subset F is compact if and only if F is countably compact.

For locally compact groups with σ-compact space S(G) see [33], a description of LCA-
groups with locally compact space S(G) is obtained in [34].
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A topological group G is called inductively compact if every finite subset of G is
contained in compact subgroup. For a group G, K(G) and IK(G) denote the sets of all
compact and closed inductively compact subgroups.

Theorem 2.3. [35]. For every locally compact group G, IK(G) is the closure of
K(G).

Two corollaries: if G is a connected Lie group then K(G) is closed; S(G) is a k-space
for each locally compact group G of countable weight, i.e. the topology of S(G) is uniquely
determined by the family of all compact subsets of S(G).

2.2. Metrizability and normality. LCA-groups G with metrizable and nor-
mal space S(G) are characterized by S. Panasyuk in the candidate thesis Normality and
metrizability of the space of closed subgroups, Kyiv University, 1989. These lists are com-
pletely constructive but too cumbrous so we formulate only

Theorem 2.4. For a discrete Abelian group G, the following statements are equivalent

(i) S(G) is metrizable;

(ii) S(G) is normal;

(iii) G has a finitely generated subgroup H such that G/H = Cp∞
1
× . . .×Cp∞

n

, where
p1, . . . , pn are distinct primes.

In general case, metrizability and normality of S(G) are not equivalent but if G a con-
nected semisimple Lie group then S(G) is metrizable iff S(G) is normal iff G is compact,
see [36], [37]. The space S(G) of every connected solvable Lie group is metrizable [36].

2.3. Some cardinal invariants. We remind that c(X) denotes the cellularity of X .

Theorem 2.5.[9] For every infinite locally compact group G, we have c(S(G)) ≤ c(G).

Theorem 2.6. [38]. For every locally compact group G, the following conditions are
equivalent

(i) S(G) is of countable pseudocharacter;

(ii) S(G) is of countable tightness;

(iii) S(G) is sequential;

8



(iv) w(G) ≤ ℵ0.

3 Other topologizations

3.1. Bourbaki uniformities. Let (X,U) be a uniform space. The uniformity U induces

the uniformity Ũ on the set F(X) all non-empty closed subsets of X which has as a base
the family of sets of the form

{(A,B) ∈ F(X)× F(X) : B ⊆ U(A), A ⊆ U(B)},

whenever U ∈ U . The uniformity Ũ was introduced in [39, Chapter 2, § 1] and Ũ is called
the Bourbaki (sometimes, Hausdorff-Bourbaki) uniformity.

Let G be a topological group. We endow G with the left uniformity L and F (G)

with the Bourbaki uniformity L̃. We denote by L(G) and B(G) the subspaces of F(G)
consisting of all subgroups and all totally bounded subsets of G.

Theorem 3.1.[40] Let a group G has a base at the identity consisting of subgroups.
The space L(G) is compact if and only if G is totally bounded and K

⋂
G is dense in K

for each closed subgroup K from the completion of G.

In particular, if L(G) is compact then G is totally minimal.

Theorem 3.2.[40] If a group G is complete in the left uniformity then B(G) is com-
plete.

We recall that a topological group G is almost metrizable if each neighbourhood of e
contains a compact subgroup K such that the set of all open subsets containing K has a
countable base. Every metrizable and every locally compact topological group are almost
metrizable.

Theorem 3.3.[40] If an almost metrizable group G is complete in the left uniformity
then F(G) is complete.

In [41], Theorem 3.3 is proved with the bilateral uniformity on G (and so on F(G))
in place of the left uniformity.

3.2. Functionally balanced groups. For a topological group G, the set F(G) has
the natural structure of a semigroup with the operation (A,B) 7−→ cl AB.

Theorem 3.4.[42] For a topological group G, the following statements are equivalent

(i) F(G) is a topological semigroup;
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(ii) for every subset X of G and every neighbourhood U of e, there exists a neighbour-
hood V of e such that V X ⊆ XU ;

(iii) every bounded left uniformly continuous function on G is right uniformly contin-
uous.

A topological group G is called balanced (or a SIN-group) if left and right uniformities
of G coincide. A group G is called functionally balanced if G satisfies (iii) of Theorem
3.4. The study of functionally balanced groups was initiated by G. Itzkowitz [43].

The equivalence of (ii) and (iii) in Theorem 3.4 is a criterion for a topological group
to be functionally balanced. In [44], this criterion was used to show that each almost
metrizable functionally balanced group is balanced.

3.3. Lattice topologies. These topologies on a complete lattice L(G) of closed
subgroup are algebraically defined by the lattice structure of L(G).

For example, a net (Aα)α∈I in L(G) order-converges to A ∈ L(G) if there exist
two nets (Bα)α∈I , (Cα)α∈I in L(G) such that, for each α ∈ I, Bα ⊆ Aα ⊆ Cα and
∨α∈IBα = ∧α∈ICα = A. By [45], for a compact group G, every net in L(G) has an
order-convergent subset if and only if L(G) endowed with the Shabauty topology is a
topological lattice, see Theorem 1.10.

More on the lattices topologies on L(G) in the case of a compact G can be find in [46].

3.4. Segment topologies. Let G be a topological group, PG is the family of all
subsets of G, [G]<ω is the family of all finite subsets of G. Each pair A,B of subsets of
PG closed under finite unions define the segment topology on L(G) with a base consisting
of the segments.

[A,G \B] = {X ∈ L(G) : A ⊆ X ⊆ G \B}, A ∈ A, B ∈ B.

These topologies are studied in [47] in the following three cases: A = B = [G]<ω;
A = PG and B = [G]<ω; A = [G]<ω, B = PG

3.5. (Σ,Θ)-topologies. This general construction for topologizations of the set
L(G) of closed subgroups of a topological group G from [48] produces Chabauty, Vietoris,
Bourbaki topologies and a plenty of other topologies

We assume that, for each H ∈ L(G), Σ(H) is some family of open subsets of G,
Σ = ∪H∈L(G) Σ(H) and the following conditions are satisfied

• if U,V ∈ Σ(H) then U ∩ V contains some W ∈ Σ(H);

• for every U ∈ Σ(H), there exists V ∈ Σ(H) such that U ∈ Σ(K) for each K ∈ L(G),
K ⊆ V;

•
⋂

U∈Σ(H) U = H for each H ∈ L(G).
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Then the family {X ∈ L(G) : X ⊆ U}, U ∈ Σ is a base for the Σ-topology on L(G).
Let τ denotes the topology of G, Pτ is the family of all subsets of τ . We assume that,

for each H ∈ L(G), Θ(H) is some subset of Pτ such that the following conditions are
satisfied

• for every α, β ∈ Θ(H), there is γ ∈ Θ(H) such that α < γ, β < γ (α < β means
that, for every U ∈ α, there exists V ∈ β such that V ⊆ U);

• for every α ∈ Θ(H), there exists β ∈ Θ(H) such that if K ∈ L(G) and K ∩ V 6= ∅
for each V ∈ β, then α < γ for some γ ∈ Θ(K);

• for each H ∈ L(G) and every neighbourhood V of x, there exists α ∈ Θ(H) such
that x ∈ U , U ⊆ V for some U ∈ α.

Then the family {X ∈ L(G) : X∩U 6= ∅ for each U ∈ α}, where α ∈ Θ(H), H ∈ L(G),
is a base for the Θ-topology on L(G).

The upper bound of Σ- and Θ-topologies is called the (Σ,Θ)-topology.
A net (Hα)α∈I converges in (Σ,Θ)-topology to H ∈ L(G) if and only if

• for any U ∈ Σ(H), there exists β ∈ I such that Hα ⊆ U for each α > β;

• for any α ∈ Θ(H), there exists γ ∈ I such that Hα ∩ V 6= ∅ for each α > γ.

In [48], one can find characterizations of G with compact and discrete L(G) in some
concrete (Σ,Θ)-topologies.

3.6. Hyperballeans of groups. Let G be a discrete group. The set {Fg : g ∈
G,F ∈ [G]<ω} is a family of balls in the finitary coarse structure on G. For coarse
structures and balleans see [49] and [50]. The finitary coarse structure on G induces the
coarse structure on L(G) in which {X ∈ L(G) : X ⊆ FA, A ∈ FX}, F ∈ [G]<ω is the
family of balls centered at A ∈ L(G). The set L(G) endowed with structure is called a
hyperballean of G. Hyperballeans of groups carefully studied in [51] can be considered as
asymptotic counterparts of Bourbaki uniformities.
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[39] Bourbaki, N. Éléments de matématique. Fascicule II. Livre III: Topologie générale.
Chapitre 1: Structures topologiques. Chapitre 2: Structures uniformes, Hermann,
Paris, 1940.

[40] Protasov, I.V.; Saryev A. Bourbaki spaces of topological groups. Ukrain. Mat. Zh.
42 (1990), 542-549

[41] Romaguera, S.; Sanchis, M. Completeness of hyperspaces of topological groups. J.
Pure Applied Algebra 149 (2000), 287-293.

[42] Protasov, I.V.; Saryev A. Semigroup of closed subsets of a topological group. Izv. AN
Turkmen SSR. Ser. Fiz.-the. Nauk, 1988, 3 (1990), 21-25.

[43] Itzkowitz, G.L. Continuous measures, Baire category, and uniformly continuous
functions in topological groups. Pacific J. Math. 54 (1974), 115-125.

[44] Protasov, I.V. Functionally balanced groups. Mat. Zametki 49 (1991), N6, 87-90.

[45] Protasov, I.V. Order convergence in the lattice of subgroups of a topological group.
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