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HILBERT–KUNZ MULTIPLICITY OF THE POWERS OF AN IDEAL

ILYA SMIRNOV

Abstract. We study Hilbert–Kunz multiplicity of the powers of an ideal and establish existence
of the second coefficient at the full level of generality, thus extending a recent result of Trivedi. We
describe the second coefficient as the limit of the Hilbert coefficients of Frobenius powers and show
that it is additive in short exact sequences and satisfies a Northcott-type inequality.

1. Introduction

This note studies Hilbert–Kunz multiplicity – a multiplicity theory native to positive character-
istic which mimics the definition of Hilbert–Samuel multiplicity but replaces regular powers In by
Frobenius powers I [p

n] := {xpn | x ∈ I}.

Definition 1.1. Let (R,m) be a local ring of positive characteristic p > 0 and dimension d and I
be an m-primary ideal. Then the Hilbert–Kunz multiplicity of a finite R-module M with respect
to I is

eHK(I,M) = lim
q→∞

λ(M/I [q]M)

qd
,

where q = pe is a varying power of p.

As its name suggests, Hilbert–Kunz multiplicity originates from the work of Kunz ([Kun69,
Kun76]), who initiated the study of the sequence giving its definition. The existence of the limit
was proven later by Monsky ([Mon83]).

It is natural to seek relations between the classical Hilbert–Samuel theory of multiplicity and
the new theory. One such relation, in particular, is given by inequalities

1

d!
e(I) ≤ eHK(I) ≤ e(I),

where the left inequality directly follows from the inclusion I [q] ⊆ Iq. It was shown by Hanes
([Han03]) that the left inequality is never sharp, but Watanabe and Yoshida ([WY01, Theo-
rem 1.1]) and Hanes ([Han02, Corollary II.7]) proved that the inequality is sharp asymptotically,

i.e., lim
k→∞

d! eHK(Ik)
e(Ik)

= 1. Because e(Ik) = kd e(I), this result can be restated as lim
k→∞

d! eHK(Ik)
kd

= e(I).

Later, Hanes ([Han03, Theorem 3.2]) improved this by showing that

λ(R/(I [q])k) =

(

e(I)

d!
kd +O(kd−1)

)

qd.

Recently, Trivedi gave a further insight to the problem by describing the O(kd−1) term in the for-
mula. Recall that the Hilbert coefficients of I, ei(I), are defined by the Hilbert–Samuel polynomial:
for all k ≫ 0

λ(R/Ik) =
d
∑

i=0

(−1)i
(

k + d− 1− i

d− i

)

ei(I),
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where e0(I) = e(I). In [Tri17a] Trivedi showed that if R is a standard graded ring and I is a
homogeneous ideal generated in same degree, then

lim
k→∞

eHK(I
k)− e(Ik)/d!

kd−1
=

e(I)

2(d− 2)!
− lim

q→∞

e1(I
[q])

(d− 1)!qd
,

and the last limit exists. The goal of this article is to provide a proof of this result in a full level
of generality, i.e., when (R,m) is local and I is an arbitrary m-primary ideal.

We also want to point out that this result can be restated in the following form:

lim
k→∞

(

(d− 1)!
eHK(I

k)−
(

k+d−1
d

)

e(I)

kd−1

)

= − lim
q→∞

e1(I
[q])

qd
.

Comparing this with the formula defining the Hilbert coefficients, we want to pose the following
questions.

Question 1.2. Does the limit

lim
q→∞

ei(I
[q])

qd

exist for all i?

Question 1.3. Do we have for k ≫ 0 that

eHK(I
k) =

d
∑

i=0

(−1)i
(

k + d− 1− i

d− i

)

lim
q→∞

ei(I
[q])

qd
?

It is not surprising that eHK(I
k) should be eventually a polynomial. For example, if (R,m) is

a finite subring of a regular local ring (S, n), then [S : R] eHK(I) = eHK(IS)[S/n : R/n] ([WY00])
and, since Frobenius is flat in S ([Kun69]), eHK(IS) = λ(S/IS). Thus eHK(I

k) is a multiple of the
Hilbert–Samuel polynomial of IS in S. The hard task is to show that the Hilbert coefficients of
I [q] have the prescribed limit. We believe that this is explained by an analogue of Proposition 2.6
for further coefficients.

1.1. Methods. Trivedi’s proof uses uniform convergence of Hilbert–Kunz density function that
she developed in [Tri17b], thus her methods can be applied only in the graded setting. Our
approach uses uniform convergence techniques for Hilbert–Kunz function pioneered by Tucker
in [Tuc12] and allows us to simplify the proofs and generalize the results of [Tri17a]. Using the
improved techniques, we are able to show the additivity property of the new limit invariant defined
by e1(I

[q]) (Proposition 2.6).

2. Main results

2.1. A uniform convergence result. First, we establish a refinement of [Tuc12, Lemma 3.2].

Lemma 2.1. Let (R,m) be a local ring of characteristic p > 0 and M be a finitely generated

R-module. Then for every m-primary ideal I there exists a constant C such that for all q, k ≥ 1
we have

λ(M/(I [q])kM) < C(qk)dimM .

Proof. Let µ be the number of generators of I, then Iµq ⊆ I [q], so

λ(M/(I [q])kM) ≤ λ(M/IµkqM).

Using the Hilbert–Samuel function of M with respect to I we may find a constant B such that
λ(M/InM) ≤ BndimM , so for all k and q we have

λ(M/IµkqM) ≤ B(µkq)dimM = B(µ)dimM(kq)dimM .
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Thus the claim follows for the constant C := B(µ)dimM . �

Now following [Tuc12, Lemma 3.3] we can easily obtain the following lemma.

Lemma 2.2. Let (R,m) be a reduced local ring of dimension d > 0 and characteristic p > 0
and M,N be finitely generated R-modules. Suppose Mp

∼= Np for any minimal prime p such that

dimR/p = dimR. Then for every m-primary ideal I there exists a constant C such that for all

k, q ≥ 1 we have

| λ(M/(I [q])kM)− λ(N/(I [q])kN)| < C(kq)d−1.

The lemma now can be applied to modules F∗M and M . Recall that we use F∗M to denote
an R-module obtained from M via the restriction of scalars through the Frobenius endomorphism
F : R → R. Thus F∗M is isomorphic to M as an abelian group, but elements of R act as p-powers.
So, for any ideal I, IF∗M ∼= F∗I

[p]M .
The ranks of M and F e

∗
M can be compared via a result of Kunz ([Kun76, Proposition 2.3]) who

observed how localization affects the residue field: if p ⊆ q are prime ideals then

[k(p) : k(p)p] = [k(q) : k(q)p]pdimRq/pRq .

It follows that in a reduced local ring (R,m, k), for every minimal prime p such that dimR/p =

dimR, the vector spaces (F∗M)p ∼= F∗Mp and ⊕pd[k:kp]Mp have equal dimension. Now, as in [Smi,
Section 3] we may use the improved constant of Lemma 2.1 to follow [Tuc12, Proposition 3.4,
Corollary 3.5, Theorem 3.6] and obtain the following result.

Theorem 2.3. Let (R,m) be a local ring of dimension d > 0 and characteristic p > 0, I an m-

primary ideal, and M be a finitely generated R-module. There exists a constant C and a constant

q0 ≥ 1 such that for every q, q′, k ≥ 1
∣

∣

∣

∣

λ(M/(I [q0q])kM)

qd
−

λ(M/(I [q0q
′q])kM)

(q′)dqd

∣

∣

∣

∣

< C
kd−1

q
.

Corollary 2.4. Let (R,m) be a local ring of dimension d > 0 and characteristic p > 0, I be an

m-primary ideal, and M be a finitely generated R-module. Then the bisequence

λ(M/(I [q])kM)

qdkd−1

converges uniformly, independently of k, to its limit eHK(I
k,M)/kd−1.

Proof. First, observe that

lim
q′→∞

λ(M/I [q0q
′q]M)

(q′)dqd
= eHK(I

[q0],M) = qd0 eHK(I,M).

Thus, after letting let q′ → ∞ in Theorem 2.3 it follows that
∣

∣

∣

∣

λ(M/(I [qq0])kM)

qd
− qd0 eHK(I

k,M)

∣

∣

∣

∣

< C
kd−1

q
.

Hence, the assertion is obtained by replacing C by C/qd0 and q by qq0. �

2.2. Existence of the limit and its addivity. We want to use the uniform convergence via the
following standard result: if for a bisequence aq,k

• lim
q→∞

aq,k exists uniformly of k, and

• lim
k→∞

aq,k exists for all (sufficiently large) q,

then lim
q,k→∞

aq,k exists and the iterated limits exist, and they are all equal.
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Proposition 2.5. Let (R,m) be a local ring of dimension d > 0 and characteristic p > 0, M be a

finitely generated R-module, and I be an m-primary ideal. Then the following two limits exist and

are equal

lim
k→∞

(

(d− 1)!
eHK(I

k,M)−
(

k+d−1
d

)

e(I,M)

kd−1

)

= − lim
q→∞

e1(I
[q],M)

qd
.

In other words,

eHK(I
k,M) = e(I,M)

(

k + d− 1

d

)

− lim
q→∞

e1(I
[q],M)

qd

(

k + d− 2

d− 1

)

+ o(kd−1).

Proof. Observe that in the left side of the assertion we have

lim
k→∞

eHK(I
k,M)−

(

k+d−1
d

)

e(I,M)

kd−1
= lim

k→∞

lim
q→∞

λ(M/(Ik)
[q]
M)−

(

k+d−1
d

)

e(I [q],M)

qdkd−1
.

Now, we may use Corollary 2.4 to interchange the order of limits and get that

lim
q→∞

lim
k→∞

(

(d− 1)!
λ(M/(I [q])kM)−

(

k+d−1
d

)

e(I [q],M)

qdkd−1

)

= − lim
q→∞

e1(I
[q],M)

qd
.

�

We record the following additive property.

Proposition 2.6. Let (R,m) be a local ring of dimension d > 0 and characteristic p > 0 and I be

an m-primary ideal. Let

0 → L → M → N → 0

be an exact sequence of finitely generated R-modules. Then

lim
q→∞

e1(I
[q],M)

qd
= lim

q→∞

e1(I
[q], N)

qd
+ lim

q→∞

e1(I
[q], L)

qd
.

Proof. First of all, Hilbert–Kunz multiplicity is additive in short exact sequences, so by Corol-
lary 2.4 for any ε > 0 there exists q0 such that for all k ≥ 1 and all q ≥ q0 we have

1

qdkd−1

∣

∣λ(M/(I [q])kM)− λ(L/(I [q])kL)− λ(N/(I [q])kN)
∣

∣ <
ε

4
.

For any given q ≥ q0 and ε, we may find k such that
∣

∣

∣

∣

1

kd−1

(

λ(M/(I [q])kM)− e(I [q],M)

(

k + d− 1

d

))

+ e1(I
[q],M)

∣

∣

∣

∣

<
ε

4

and similarly for N and L.
Furthermore, we may rewrite
∣

∣e1(I
[q],M)− e1(I

[q], N)− e1(I
[q]), L)

∣

∣ ≤
∣

∣

∣

∣

1

kd−1

(

λ(M/(I [q])kM)− λ(N/(I [q])kN)− λ(L/(I [q])kL)
)

+ e1(I
[q],M)− e1(I

[q], N)− e1(I
[q], L)

∣

∣

∣

∣

+
1

kd−1

∣

∣λ(M/(I [q])kM)− λ(N/(I [q])kN)− λ(L/(I [q])kL)
∣

∣ .
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But multiplicity is additive in short exact sequences, so
∣

∣

∣

∣

1

kd−1
(λ(M/(I [q])kM)− λ(N/(I [q])kN)− λ(L/(I [q])kL)) + e1(I

[q],M)− e1(I
[q], N)− e1(I

[q], L)

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

kd−1

(

λ(M/(I [q])kM)− e(I [q],M)

(

k + d− 1

d

))

+ e1(I
[q],M)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

kd−1

(

λ(N/(I [q])kN)− e(I [q], N)

(

k + d− 1

d

))

+ e1(I
[q], N)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

kd−1

(

λ(L/(I [q])kL)− e(I [q], L)

(

k + d− 1

d

))

+ e1(I
[q], L)

∣

∣

∣

∣

<
3

4
ε.

Thus, combining the estimates, we get that for any q ≥ q0,

1

qd
∣

∣e1(I
[q],M)− e1(I

[q], N)− e1(I
[q]), L)

∣

∣ <
1

qd
3

4
ε+

1

4
ε < ε.

�

Thus, we generalize [Tri17a, Proposition 3.8].

Corollary 2.7. Let (R,m) be a local ring of dimension d > 0 and characteristic p > 0. Then for

any finitely generated R-module M we have

lim
q→∞

e1(I
[q],M)

qd
=

∑

dimR/p=d

λ(Mp) lim
q→∞

e1(I
[q], R/p)

qd
.

Proof. Apply Proposition 2.6 to a prime filtration of M . �

2.3. Further remarks. In [WY01, Theorem 1.8] Watanabe and Yoshida proved the following
generalization of [Ooi87b, Theorem 4.3].

Theorem 2.8. Let (R,m) be a Cohen–Macaulay local ring of dimension d and I be an m-primary

ideal. Then

eHK(I
n) ≤ e(I)

(

n+ d− 2

d

)

+eHK(I)

(

n+ d− 2

d− 1

)

= e(I)

(

n + d− 1

d

)

−(e(I)−eHK(I))

(

n + d− 2

d− 1

)

Moreover, if R is weakly F-regular and analytically unramified1 then the equality holds for some

n ≥ 2 if and only if I is stable, i.e., I2 = IJ for a minimal reduction J of I.

This theorem provides us an evidence for Question 1.3 and a recipe for computing eHK(I
n). For

example, it can be applied to integrally closed ideals in a two-dimensional rational singularity.

Corollary 2.9 (Northcott-type inequality). Let (R,m) be a Cohen–Macaulay local ring of dimen-

sion d and I be an m-primary ideal. Then

lim
q→∞

e1(I
[q])

qd
≥ e(I)− eHK(I).

Proof. We may use Theorem 2.8 and Proposition 2.5, or directly apply Northcott’s inequality.
Namely, in [Nor60, Theorem 1] Northcott proved that every m-primary ideal J in a Cohen–
Macaulay ring satisfies the inequality e1(J) ≥ e(J) − λ(R/J). Applying this to J = I [q] and
passing to the limit, we see that

lim
q→∞

e1(I
[q])

qd
≥ e(I)− eHK(I).

1It was brought to my attention by Kriti Goel that these assumptions are missing in the published version of
this article.
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�

Since the second coefficient of eHK(I
n) is the limit of the first Hilbert coefficients, naturally

it should carry some information about I. Huneke and Ooishi ([Hun87, Theorem 2.1], [Ooi87a,
Theorem 3.3]) showed that Northcott’s inequality is equality if and only if I is stable. Comparing
this with Theorem 2.8, we are naturally led to the following speculation.

Conjecture 2.10. Let (R,m) be a weakly F-regular analytically unramified2 Cohen-Macaulay local

ring. Then an m-primary ideal I is stable if and only if lim
q→∞

e1(I [q])
qd

= e(I)− eHK(I).

The conjecture will follow if we will be able to show that

eHK(I
n) = e(I)

(

n + d− 1

d

)

− lim
q→∞

e1(I
[q])

qd

(

n+ d− 2

d− 1

)

+ lim
q→∞

e2(I
[q])

qd

(

n + d− 3

d− 2

)

+ o(nd−2).

Then, since e2(J) ≥ 0 by [Nar63], it follows that for n ≫ 0

eHK(I
n) ≥ e(I)

(

n + d− 1

d

)

− lim
q→∞

e1(I
[q])

qd

(

n+ d− 2

d− 1

)

,

so if lim
q→∞

e1(I [q])
qd

= e(I)− eHK(I), then Theorem 2.8 shows that I must be stable.

We may also give upper bounds on the limit. For example, Elias ([Eli08, Proposition 2.1])
showed that in a Cohen–Macaulay ring of dimension at least one we have

e1(J) ≤ (e(R)− 1)(e(J)− e(R) ord(J)) + e1(R).

Taking J = I [q] and passing to the limit we get

lim
q→∞

e1(I
[q])

qd
≤ (e(R)− 1) e(I).

Note that there exists a fixed C such that mCq ⊆ I [q], thus lim
q→∞

ord(I [q])/qd = 0 if d > 1.
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