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REGULARITY THEORY FOR SECOND ORDER INTEGRO-PDES

CHENCHEN MOU AND YUMING PAUL ZHANG

Abstract. This paper is concerned with higher Hölder regularity for viscosity solutions to non-
translation invariant second order integro-PDEs, compared to [24]. We first obtain C1,α regularity
estimates for fully nonlinear integro-PDEs. We then prove the Schauder estimates for solutions if the
equation is convex.
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1. Introduction

We consider the following Hamilton-Jacobi-Bellman-Isaacs (HJBI) integro-PDE

I[x, u] := sup
α∈A

inf
β∈B

{

−tr aαβ(x)D
2u(x)− Iαβ [x, u] + bαβ(x) ·Du(x) + cαβ(x)u(x) + fαβ(x)

}

= 0 (1.1)

in a bounded domain Ω ⊂ R
d with the following boundary data

u(x) = g(x) in Ωc. (1.2)

The coefficients aαβ , bαβ , cαβ, fαβ are uniformly continuous in Ω, uniformly in α ∈ A and β ∈ B. The
Lévy measure has the form

Iαβ [x, u] =

∫

Rd\{0}

(u(x+ z)− u(x)− χB1
(z)Du(x) · z)Nαβ(x, z)dz, (1.3)

where Nαβ(·, z) is uniformly continuous in Ω for each fixed z ∈ R
d \ {0}, uniformly in α ∈ A and β ∈ B.

We require λI ≤ aαβ ≤ ΛI in Ω for some 0 < λ ≤ Λ and

0 ≤ Nαβ(x, ·) ≤ K(·) in R
d \ {0} (1.4)

for some measurable function K on R
d \ {0} satisfying

∫

Rd\{0}

min{|z|2, 1}K(z)dz < +∞. (1.5)

In this paper we extend K and Nαβ(x, ·) for any α ∈ A, β ∈ B, x ∈ Ω to functions on R
d by setting

Nαβ(x, 0) = K(0) = 0.

Here we want to emphasize that the assumption (1.4) we impose on Nαβ does not guarantee that the
nonlocal operator Iαβ has an order i.e. there exists a constant σ such that Iαβ [x, u(r·)] = rσIαβ [rx, u(·)].
Moreover, we notice that, with (1.5), the nonlocal operator Iαβ behaves like a second order operator
and is not well defined acting on any unbounded function. These features of the nonlocal term lead to
essential difficulties, which we will specify them later, in the proof of the regularity results.

In this paper we study C1,α and C2,α regularity results for second order uniformly elliptic integro-PDEs
as a consequence of the uniform ellipticity of the differential operators. The motivation of studying such
regularity results comes from the stochastic optimal control problems. Two mainly concerned problems
in the stochastic optimal control theory are the stochastic representation formulas for HJB equations
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and the optimal policies. Indeed, to obtain the stochastic representation for a degenerate HJB integro-
PDE, we could first derive it for the approximating equation, by adding ǫ∆u to the HJB integro-PDE,
which is a uniformly elliptic equation where the uniform ellipticity comes from the second order term.
The C2,α regularity for such uniformly elliptic HJB integro-PDE is crucial for the application of the Itô
formula for general Lévy processes to derive the representation for its solution and the optimal controls.
Then, by an approximation (“vanishing viscosity”) argument, we can obtain the representation for the
approximating equation converges to that for the degenerate HJB integro-PDE in L∞ sense as ǫ → 0.
And thus the stochastic representation for the degenerate HJB integro-PDE and a ǫ-optimal control are
obtained. We refer to [12,13,17] for more on the application of regularity theory to the stochastic optimal
control problems. The other motivation of studying regularity for the integro-differential operator I in
(1.1) comes from the generality of the operator. Indeed it has been proved that if I maps C2 functions
to C0 functions and satisfies the degenerate ellipticity assumption then I should have the form in (1.1),
see [8, 14].

Existence of a C2,α solution of the Dirichlet boundary value problem for a uniformly parabolic convex
second order integro-PDE has been obtained by R. Mikulyavichyus and G. Pragarauskas in [19] under
an additional assumption on the nonlocal term. The convexity assumption implies the equation studied
there are the convex and parabolic version of (1.1). Then the assumption on the nonlocal term in [19]
translated to our equation is that for every α ∈ A, β ∈ B, z ∈ R

d and x ∈ Ω, the kernel Na(x, z) = 0
if x + z 6∈ Ω. For the associated optimal control problem this corresponds to the requirement that
the controlled diffusions never exit Ω̄ and thus the boundary condition is different from the one in
(1.2). With a similar assumption, they also studied in [20,21] existence of viscosity solutions, which are
Lipschitz in x and 1/2 Hölder in t, of Dirichlet and Neumann boundary value problems for parabolic
degenerate Hamilton-Jacobi-Bellman (HJB) integro-PDEs where the nonlocal operators are of Lévy-Itô
form. In [22], one of the authors studied semiconcavity of viscosity solutions for degenerate elliptic HJB
integro-PDEs. If the control set is finite, existence of C2,α solutions of Dirichlet boundary value problems
for uniformly parabolic HJB integro-PDEs with nonlocal terms of Lévy-Itô type was investigated in [23].
At the end we mention that there are many recent C1,α and C2,α regularity results for purely nonlocal
equations, see e.g. [3–7,9,10,15,16,18,25,27,28], where regularity is derived as a consequence of uniform
ellipticity/parabolicity of the nonlocal part.

The first goal of the paper is to show the C1,α regularity estimates for (1.1). We adapt the approach
from [3] using the blow up and approximation techniques. We first rescale the solution u of (1.1) and
consider

v(x) := u(r(x − x0) + x0) for each x0 ∈ Ω and r > 0.

Since the nonlocal operator Iαβ is not scaling invariant, v satisfies a different equation Ir(x0)[x, v] = 0,
see (2.3). As [3], we need to find an operator, which has C1,α regularity, such that Ir(x0) is close to it
with respect to some weak topology for small r. Fortunately, with (1.4) and (1.5) we are able to prove
that Ir(x0) converges to a uniformly elliptic local operator as r → 0, see Lemma 3.1. In the Lemma,
we do not blow up the operator at one point in Ω, instead we consider operators of the form {Irk(xk)}k
with rk → 0. This leads to the weak convergence of {Ir(x0)}r independent of x0. We then apply Lemma
3.1 to prove an approximation Lemma, see Lemma 4.1, and the following C1,α regularity. We state in
an informal way here and will give the full result in Theorem 4.1.

Theorem 1.1. If u is a viscosity solution of (1.1) in B2, then there exist constants 0 < α < 1 and
C > 0 such that

‖u‖C1,α(B1) ≤ C

(

‖u‖L∞(Rd) + sup
α∈A,β∈B

‖fαβ‖L∞(B2)

)

.

The idea of the proof is similar to Theorem 52 [3]. However, because of the non-scale invariant nature
of I and the weak integrability assumption (1.5), there are several difficulties needed to be addressed. On
one hand, only with (1.5), any unbounded function can not be a test function of the nonlocal operator
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Iαβ . Unlike Theorem 52 [3], we need to consider inductively

wk := (u− ξlk)
((

νk(x− x0) + x0
))

/νk(1+α)

where ξ ∈ C∞
c (Rd), lk is a first order Taylor expansion of the approximation of u in each scale at x0

and ν ∈ (0, 1) is a sufficiently small constant. Another challenge, caused by (1.5), is that, to apply the
approximation Lemma on {wk}k, we need {wk}k to be uniformly bounded. This is not the case since we
keep zooming in on ξ. So we need to further cut off wk uniformly by max{−1,min{1, wk}}. And thus
we need to take care of the errors generated by the cut-offs. On the other hand, {wk}k is needed to be
compact to apply the approximation Lemma. Because Iαβ is not scale invariant, wk satisfies different
maximal equations for each k. Thanks to Theorem 4.1 [24], the compactness of {wk}k can be obtained
by a uniform interior Cα estimate for {wk}k. We want to mention that, in [15, 16], Tianling Jin and
Jingang Xiong also used an approximation argument to derive Schauder estimates for non-translation
invariant purely nonlocal linear and fully nonlinear equations.

After establishing the C1,α estimates, in Section 5 we seek for C2,α estimates for convex integro-PDEs
i.e. (1.1) where B is singleton. We do not follow the ideas in [1,2] to first prove C1,1 regularity estimates,
and then combine the weak Lǫ estimate and the oscillation lemma to obtain C2,α regularity estimates.
A small drawback of this method is that, more regularity assumptions on the kernel are required.
Another method given in [25] mainly makes use of a Liouville theorem and a blow-up procedure, where
it is important that the kernel has an order which is preserved under some rescaling and the rescaled
solutions have the same growth as the original one. However for us, to apply their method, more efforts
are required to study the rescaled equations, and the corresponding solutions which might have growing
L∞ bounds as the scale become small. It is because of the non-scale invariant nature of I and the
weak integrability assumption (1.5). We find a simpler way to solve this problem which is the method
developed by the first author in [23]. We first prove the a priori C2,α estimate, which is the second main
result in the manuscript. That is

Theorem 1.2. If u ∈ C2(B2) ∩ C
α(Rd) solves (1.1), where B is singleton, classically in B2, then

‖u‖C2,α(B1) ≤ C

(

‖u‖Cα(Rd) + sup
α∈A

‖fα‖Cα(B2)

)

.

See Theorem 5.1 for the full result. In the proof, we use the C1,α estimate given in Section 4 to
show that the nonlocal term is indeed a small perturbation compared to the second order term in (1.1).
With the a priori estimate, we then take a sequence of functions {uq}q and each solves an integro-
PDE, in the viscosity sense, where we truncate the kernels of the nonlocal term. We notice that the
comparison principle for such truncated integro-PDE is not necessary to hold. However, the existence
of such sequence is guaranteed by Perron’s method in [24]. Without loss of generality, we can assume
the solutions {uq}q are classical solutions since we can consider one part of the nonlocal term as a first
order term and the other part as a zero order term, and apply the classical C2,α estimates. Using the
a priori C2,α estimate, we obtain a uniform C2,α estimate for all uq and thus we can pass the limit to
obtain a classical solution u and its corresponding C2,α estimate. At the end, by comparing viscosity
solutions with the classical solution we are able to show that the classical solution u we construct is the
unique solution among all viscosity solutions.

2. Notation and Preliminaries

Throughout the paper, we assume that Ω is a bounded domain in R
d. By Br(x) we denote a ball in

R
d centered at x with radius r. We write Br := Br(0) for abbreviation.
Let O be a domain in R

d. We say that O satisfies the uniform exterior ball condition if there exists
r∗ > 0 such that for any x ∈ ∂O, there is a ball Br∗(y) ⊂ Oc and {x} = ∂Br∗(y) ∩ ∂O.
For any U, V ⊂ R

d, define the distance between the two sets as

d(U, V ) := inf{|x− y|, x ∈ U, y ∈ V }.
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For δ > 0 we denote by

Oδ := {x ∈ O, d(x,Oc) ≥ δ}.

For n ∈ N and α ∈ (0, 1), we denote by Cn,α(O) the set of functions defined in Ō whose nth derivatives
are uniformly α-Hölder continuous in Ō. By Cn,α

loc (O) we denote all functions whose nth derivatives are

locally α-Hölder continuous in O. We will briefly write Cα(O) := C0,α(O) and Cα
loc(O) := C0,α

loc (O). For
any u ∈ Cn,α(O), we define

[u]n,α;O :=

{

supx∈O,|j|=n |∂
ju(x)|, ifα = 0;

supx,y∈O,x 6=y,|j|=n
|∂ju(x)−∂ju(y)|

|x−y|α , ifα > 0,

and

‖u‖Cn,α(O) :=

{ ∑n
j=0[u]j,0,O, ifα = 0;

‖u‖Cn,0(O) + [u]n,α;O, ifα > 0.

We write USC(Rd) (LSC(Rd)) for the space of upper (lower) semicontinuous functions in R
d. For any

function u, we denote u+ := max{u, 0} and u− := −min{u, 0}. We denote by Md the class of d × d
symmetric matrices with real entries.

Let us introduce the rescaled operator Ir corresponding to I:

Ir(x0)[x, u] := r2I[r(x − x0) + x0, u(r
−1(· − x0) + x0)]. (2.1)

We define

Irαβ(x0)[x, u] =

∫

Rd

(u(x+ z)− u(x)− χB 1
r

(z)Du(x) · z)N r
αβ(x0, x, z)dz (2.2)

where

N r
αβ(x0, x, z) = rd+2Nαβ(r(x − x0) + x0, rz).

Then we have

0 ≤ N r
αβ(x0, x, z) ≤ Kr(z)

where Kr(z) := rd+2K(rz) satisfies
∫

Rd

min{|z|2, 1/r2}Kr(z)dz < +∞.

Using (2.1) and (2.2)

Ir(x0)[x, u] = sup
α∈A

inf
β∈B

{

−tr aαβ(r(x − x0) + x0)D
2u(x)− Irαβ(x0)[x, u]

+r bαβ(r(x − x0) + x0) ·Du(x) + r2 cαβ(r(x − x0) + x0)u(x) + r2 fαβ(r(x − x0) + x0)
}

. (2.3)

For abbreviation, we write

Iru(x) := Ir(0)[x, u].

For Λ > λ > 0 and any kernel K satisfying (1.5), we define the extremal operators for the second
order term and the nonlocal term:

P+(D2u)(x) := sup{tr(AD2u(x)), A ∈ Md, λI ≤ A ≤ ΛI},

P−(D2u)(x) := inf{tr(AD2u(x)), A ∈ Md, λI ≤ A ≤ ΛI},

P+
K,r(u)(x) :=

∫

Rd

(

u(x+ z)− u(x)− 1B1/r
(z)Du(x) · z

)+
Kr(z)dz,

P−
K,r(u)(x) :=

∫

Rd

(

u(x+ z)− u(x)− 1B1/r
(z)Du(x) · z

)−
Kr(z)dz.

We denote half relaxed limits of a sequence of functions {un}n by:

u∗(x) = lim sup
k→∞

{

un(x
′) : n ≥ k, x′ ∈ B1/k(x)

}
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and
u∗(x) = lim inf

k→∞

{

un(x
′) : n ≥ k, x′ ∈ B1/k(x)

}

.

Then we say un Γ-converge to u if u∗(x) = u∗(x) = u.

For the operator I, we make the following assumptions: in Ω

(A) aαβ(·), bαβ(·), cαβ(·), fαβ(·) are uniformly continuous and bounded,

(B) λI ≤ aαβ(·) ≤ ΛI for some 0 < λ ≤ Λ,

(C) for each σ > 0, Nαβ(·, z) is uniformly continuous for each z ∈ Bc
σ and (1.4) holds,

all uniformly in α ∈ A, β ∈ B.
In the last section we will further make use of the following conditions: in Ω

(A’) aαβ(·), bαβ(·), cαβ(·), fαβ(·) are uniformly α-Hölder continuous and bounded,

(C’)
∫

Rd min{1, |z|2}Nαβ(·, z)dz is uniformly α-Hölder continuous and (C) holds,

all uniformly in α ∈ A, β ∈ B.

By universal constants we mean constants depending on λ, Λ, d, K, bαβ and cαβ . We will denote
universal constants by C in the paper, possibly changing from one estimate to another.

Now we give the definition of viscosity solutions to (1.1).

Definition 2.1. A bounded function u ∈ USC(Rd) is a viscosity subsolution of (1.1) if whenever u− ϕ
has a maximum over R

d at x ∈ Ω for some bounded test function ϕ ∈ C2(Ω) ∩ C(Rd), then

sup
α∈A

inf
β∈B

{

−tr aαβ(x)D
2ϕ(x) − Iαβ [x, ϕ] + bαβ(x) ·Dϕ(x) + cαβ(x)u(x) + fαβ(x)

}

≤ 0.

A bounded function u ∈ LSC(Rd) is a viscosity supersolution is similar with the above maximum replaced
by minimum and ≤ replaced by ≥.
A bounded function u is a viscosity solution of (1.1) if u is both a viscosity subsolution and viscosity

supersolution of (1.1).

Definition 2.2. Let g be a continuous function in Ωc. A continuous bounded function u is a viscosity
solution of (1.1) with boundary data g if it is a viscosity solution of (1.1) and u = g in Ωc .

Below we define the weak convergence of operators.

Definition 2.3. Let U be an open subset of Rd. A sequence of operators Im is said to converge weakly
to I in U if for any test function ϕ ∈ L∞(Rd) ∩ C2(Bǫ(x0)) for some Bǫ(x0) ⊂ U , we have

Im[x, ϕ] → I[x, ϕ] uniformly in Bǫ/2(x0) as m→ ∞.

At the end, we give the following Cα regularity theorem which is a crucial ingredient for proving C1,α

regularity.

Lemma 2.1. Assume that − 1
2 ≤ u ≤ 1

2 in R
d such that u solves

P+(D2u) + P+
K,r(u) + C0r|Du| ≥ −f− in B1

and
P−(D2u) + P−

K,r(u)− C0r|Du| ≤ f+ in B1

in the viscosity sense for some C0 ≥ 0 and f ∈ Ld(B1). Then there exist universal constants ǫ∗, α and
C independent of r such that if ‖f‖Ld(B1) ≤ ǫ∗ we have

|u(x)− u(0)| ≤ C|x|α.

Proof. If r = 1, then the theorem is exact Theorem 4.1 [24]. The proof follows by almost the same
argument as that in Theorem 4.1 [24] since the estimate obtained in Corollary 3.14 [24] is independent
of r. �
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3. Weak Convergence Lemma

In this section we consider Ω = B2. Recall (2.3), we study the operators Irk
k := Irk

k (xk)[x, u] with
xk ∈ B1. Denoting x̃k := rk(x− xk) + xk, then

Irk
k ϕ(x) = sup

α∈Ak

inf
β∈Bk

{

−tr aαβ(x̃k)D
2ϕ(x) − Irkαβ(xk)[x, ϕ] + rkbαβ(x̃k) ·Dϕ(x)+

r2kcαβ(x̃k)ϕ(x) + r2kfαβ(x̃k)
}

.

(3.1)

Lemma 3.1. Suppose we have a sequence of operators Irk
k satisfying the requirements (A)(B)(C). Sup-

pose for some z ∈ B1, B1 ∋ xk → z and rk → 0 as k → ∞. Then Irk
k converges weakly to some I0 in

B2 where

I0u(x) := sup
α∈A

inf
β∈B

{−tr aαβ(z)D
2u(x)}. (3.2)

Proof. Fix x0 ∈ B2 and a test function ϕ ∈ C2(Bǫ(x0)) ∩ L
∞(Rd) for some Bǫ(x0) ⊂ B2.

It is obvious that rkbαβ(x̃k) · Dϕ(x), r
2
kcαβ(x̃k)ϕ(x), r

2
kfαβ(x̃k) → 0 uniformly in x ∈ Bǫ/2(x0), α ∈

∪kA, β ∈ ∪kB. The nonlocal term
∣

∣

∣
Irkαβ [x, ϕ]

∣

∣

∣
≤

∫

Rd

∣

∣

∣

∣

ϕ(x + z)− ϕ(x)− χB 1
rk

(z)Dϕ(x) · z

∣

∣

∣

∣

Krk(z)dz.

=

∫

Bǫ/4

+

∫

Bc
ǫ/4

∩B
r
−1/2
k

+

∫

Bc

r
−1/2
k

=: I1 + I2 + I3.

Then the first part of the integration

I1 =

∫

Bǫ/4

|ϕ(x + z)− ϕ(x)−Dϕ(x) · z|Krk(z)dz

≤

∫

Bǫ/4

‖D2ϕ‖L∞(B3ǫ/4(x0))|z|
2Krk(z)dz

≤‖D2ϕ‖L∞(B3ǫ/4(x0))

∫

Brkǫ/4

|z|2K(z)dz.

The second part

I2 ≤C(‖ϕ‖L∞(Rd) + ‖Dϕ‖L∞(B3ǫ/4(x0)))

∫

Bc
ǫ/4

∩B
r
−1/2
k

(1 + |z|)Krk(z)dz

≤C(‖ϕ‖L∞(Rd) + ‖Dϕ‖L∞(B3ǫ/4(x0)))

∫

Bc
rkǫ/4

∩B
r
1/2
k

(r2k + rk|z|)K(z)dz

≤C(‖ϕ‖L∞(Rd) + ‖Dϕ‖L∞(B3ǫ/4(x0)))(ǫ
−2 + ǫ−1)

∫

Bc
rkǫ/4

∩B
r
1/2
k

|z|2K(z)dz.

The last part

I3 ≤C(‖ϕ‖L∞(Rd) + ‖Dϕ‖L∞(B3ǫ/4(x0)))

∫

Bc

r
−1/2
k

(1 + χB 1
rk

(z)|z|)Krk(z)dz

≤C(‖ϕ‖L∞(Rd) + ‖Dϕ‖L∞(B3ǫ/4(x0)))

∫

Bc

r
1/2
k

(r2k + χB1
(z)rk|z|)K(z)dz

≤C(‖ϕ‖L∞(Rd) + ‖Dϕ‖L∞(B3ǫ/4(x0)))r
1
2

k

∫

Bc

r
1/2
k

min{|z|2, 1}K(z)dz.

Therefore, the integrals I1, I2 and I3 all go to 0 uniformly in x ∈ Bǫ/2(x0) as k → +∞.
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We conclude that

|Irkαβ [y, ϕ]|+ |rkbαβ(y) ·Dϕ(y)|+ |r2kcαβ(y)ϕ(y)| + |r2kfαβ(y)| ≤ ω(rk, ϕ, ǫ,K) (3.3)

uniformly in Bǫ/2(x0) where ω(rk, ϕ, ǫ,K) → 0 as rk → 0 independent of α, β, x ∈ Bǫ/2(x0).
For the remaining second order term, since

aαβ(x̃k) → aαβ(z) uniformly in x as rk → 0,

we find

Irk
k ϕ(x) → I0ϕ(x) uniformly in x ∈ Bǫ/2.

�

Lemma 3.2. Let {Irk
k }k ∪ {I0} are given by (3.1) and (3.2) satisfying (A)(B)(C), and {uk}k ∪ {u} ⊂

LSC(Rd) be a sequence of uniformly bounded functions in R
d such that as k → ∞

rk → 0, uk → u in the Γ sense in B1,

Irk
k → I0 weakly in B1,

Irk
k uk(x) ≤ ηk in B1, with ηk → 0 as k → ∞.

Then I0u(x) ≤ 0 in B1.
The similar result holds if we replace LSC(Rd) by USC(Rd) and the two “ ≤ ”s by “ ≥ ”s.

Proof. Let ϕ ∈ C2(B1) ∩ C(R
d) be a bounded text function such that ϕ touches u strictly from below

at x ∈ B1. Since uk Γ-converges to u in B1, we can find xk and dk such that ϕ + dk touches uk from
below locally at xk where xk → x, dk → 0 as k → ∞. Let ϕk = ϕ+ dk and thus

Irk
k ϕk(xk) ≤ ηk for k large enough.

The goal is to show I0ϕ(x) ≤ 0.
We have

I0ϕ(x) ≤ |I0ϕ(x) − Irk
k ϕ(x)| + |Irk

k ϕ(x) − Irk
k ϕk(xk)|+ Irk

k ϕk(xk)

=: I1 + I2 + I3.

By the weak convergence assumption of the operator Irk
k , we have I1 → 0 as k → ∞. And I3 ≤ ηk → 0,

as k → ∞, is given by the assumption.
Now we show I2 → 0. Recall the definition of Irk

k in (3.1). It is not hard to see that

|Irk
k ϕk(xk)− Irk

k ϕ(xk)| ≤ C|dk|

which goes to 0 as k → ∞. We only need to show |Irk
k ϕ(x) − Irk

k ϕ(xk)| → 0. This is guaranteed by the

requirements (A)(C), ϕ ∈ C2(B1) ∩C(R
d) and xk → x. We then conclude with I2 → 0.

�

4. C1,α Regularity

The main theorem of this section is a C1,α regularity for solutions of (1.1). Before proving it, we first
give the following Lemma.

Lemma 4.1. For any x0 ∈ B1 and r > 0, let Ir(x0) and I0(x0) are given in (2.3) where the corre-
sponding coefficients satisfy the requirements (A)(B)(C) with Ω = B2. Suppose that given M, ǫ > 0 and
a modulus of continuity ρ, assume that there exist r0, η > 0 indepent of x0 such that

r ≤ r0, I
0(x0)[x, v] = 0 in B1,

Ir(x0)[x, u] ≥ −η, Ir(x0)[x, u] ≤ η in B1,

u = v in ∂B1, |u(x)| + |v(x)| ≤M,

|u(x)− u(y)|+ |v(x) − v(y)| ≤ ρ(|x− y|) for all x, y ∈ B1.
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Then

|u− v| ≤ ǫ in B1.

Proof. The proof is very much the same as Lemma 7 [3]. If the statement is false, there exists

M, ǫ, xk, rk, ηk, uk, vk, x0

such that

xk ∈ B1 , x0 ∈ B1 and xk → x0,

rk → 0 and ηk → 0,

the assumptions of the lemma are valid for each k,

sup |uk − vk| ≥ ǫ in B1.

By Lemma 3.1, Irk(xk) converges weakly to I0(x0) in B1.
Since uk, vk share the same modulus of continuity in B1, by passing to a subsequence, we may assume

that

uk → u, vk → v in L∞(B1)

where u, v are bounded continuous function in B1. Also by the assumption that uk = vk on ∂B1, we
have

u = v =: g on ∂B1.

By Lemma 3.2, u, v solves
{

I0(x0)[x,w] = 0 in B1,

w = g on ∂B1.

By comparison principle, we derive that u = v which contradicts

sup |uk − vk| ≥ ǫ in B1.

Then the proof follows.
�

The following theorem shows the C1,α estimates for (1.1). The proof follows from the idea of Theorem
52 [3]. Comparing to the C1,α regularity result in [3], the major differences are the following: 1. since
our operator I is non-scale invariant, we have to use a uniform interior Cα estimate for all scaling
operators {Ir}r; 2. with the weak integrability assumption (1.5) on K, the nonlocal operator Iαβ is not
well defined acting on any unbounded function, and thus we need to cut off our solutions and take care
of the errors generated by the cut-off.

Theorem 4.1. Let I given in (1.1) satisfy (A)(B)(C) with Ω = B2. Suppose u ∈ L∞(Rd) solves
I[x, u] = 0 in B2 in the viscosity sense. Then there exist constants 0 < α < 1 and C > 0 such that

‖u‖C1,α(B1) ≤ C

(

‖u‖L∞(Rd) + sup
α∈A,β∈B

‖fαβ‖L∞(B2)

)

,

where C depends on λ, Λ, supα∈A,β∈B ‖bαβ‖L∞(B2), supα∈A,β∈B ‖cαβ‖L∞(B2), K and d.

Proof. Fix any x0 ∈ B1, we remind you that

Ir(x0)[x, u] = r2I[x0 + r(x − x0), u(x0 + r−1(· − x0))].

By Lemma 3.1, as rk → 0
Irk(x0) → I0(x0).

In particular I0(x0) has interior C
1,β estimates for some universal constant β > 0.

The proofs and constants below will be independent of x0 since our Lemma 4.1 is independent of x0.
For simplicity let us assume x0 = 0. Also without loss of generality, we can assume that

‖u‖L∞(Rd) ≤ 1. (4.1)
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Using Lemma 2.1, we have u ∈ Cβ(B1).
As done in Theorem 52 [3] we will show that there is a δ, ν ∈ (0, 14 ) and a sequence of linear functions

lk(x) = ak + bkx such that

sup
B

2δνk

|u− lk| ≤ νk(1+α), (4.2)

|ak − ak−1| ≤ ν(k−1)(1+α), (4.3)

νk−1|bk − bk−1| ≤ Cν(k−1)(1+α) (4.4)

and |u− lk| ≤ ν−k(α′−α)δ−1−α′

|x|1+α′

for x ∈ Bc
2δνk . (4.5)

Here we took any α, α′ such that 0 < α < α′ < β. Once this is done, it is standard to obtain the C1,α

estimate of u (at the origin) follows.
When k = 0, let l−1 = l0 = 0. Since (4.1) holds, we have (4.2)-(4.5). We proceed by induction.

Assume (4.2)-(4.5) are satisfied up to some k and we will show (4.2)-(4.5) for k + 1.
Let ξ : Rd → [0, 1] such that ξ is continuous and

ξ(x) = 1 for |x| ≤ 3, ξ(x) = 0 for |x| ≥ 4.

We define

wk(x) :=
(u− ξlk)(δν

kx)

νk(1+α)
and w′

k(x) := max{min{wk(x), 1},−1}.

The reason we define w′
k is that w′

k is uniformly bounded independent of k.
By (4.2), |w′

k| = |wk| ≤ 1 in B2. Then in B2

Ikw
′
k(x) := Iδνk

(0)[x,w′
k] = sup

α
inf
β
{−tr aαβ(x)D

2wk(x)− Iδν
k

αβ (0)[x,w′
k]+

δνkbαβ(x) ·Dwk(x) + δ2ν2kcαβ(x)wk(x) + δ2ν2kfαβ(x)}.

By the inductive requirements we have on ak, bk, they are uniformly bounded. Since ‖u‖∞ ≤ 1 and ξlk
is uniformly bounded, |wk| ≤ Cν−k(1+α) in R

d. By (4.5), for all x ∈ Bc
2 ∩B2δ−1ν−k ,

|wk(x)| ≤ |x|1+α′

.

And, for any x ∈ Bc
2δ−1ν−k ,

|wk(x)| ≤ Cν−k(1+α) ≤ Cδ−(1+α′)ν−(1+α′)k ≤ C|x|1+α′

.

Also since w′
k is bounded, we can assume that for x ∈ Bc

2

|wk|+ |w′
k − wk| ≤ Cmin{|x|1+α′

, ν−k(1+α)}. (4.6)
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Thus, if we restrict x in a smaller ball B3/2 and denote by s := δνk(≤ δ)

|Iδν
k

αβ (0)[x,w′
k − wk]|

≤

∫

{z:|x+z|≥2}∩Bs−1

|w′
k − wk|(x+ z)Ks(z)dz +

∫

Bc
s−1

|w′
k − wk|(x+ z)Ks(z)dz

≤ C

(

∫

Bc
1/2

∩Bs−1

|x+ z|1+α′

Ks(z)dz +

∫

Bc

s−1

ν−k(1+α)Ks(z)dz

)

≤ C

(

∫

Bc
1/2

∩Bs−1

|z|1+α′

Ks(z)dz + δ2νk(1−α)

∫

Bc

s−1

δ−2ν−2kKs(z)dz

)

≤ C

(

∫

Bc
1/2

∩B
s−1/2

|z|2Ks(z)dz + s(1−α′)/2

∫

Bc

s−1/2
∩Bs−1

|z|2Ks(z)dz + δ2νk(1−α)

∫

Bc
s−1

δ−2ν−2kKs(z)dz

)

≤ C

(

∫

Bc
s/2

∩B
s1/2

|z|2K(z)dz + s(1−α′)/2 + δ2νk(1−α)

)

≤ C

(

∫

B
s1/2

|z|2K(z)dz + s(1−α′)/2 + δ2νk(1−α)

)

≤ C

(

∫

B
δ1/2

|z|2K(z)dz + δ(1−α′)/2 + δ2

)

=: ω1(δ)

where ω1(δ) → 0 as δ → 0. Then for any x ∈ B3/2, we have

Ikwk(x) = δ2νk(1−α) sup
α∈A

inf
β∈β

{−tr aαβD
2u− Iαβ [·, u− ξlk] + bαβ ·Du

+ cαβu+ fαβ − bαβ · bk − cαβlk}(δν
kx)

= δ2νk(1−α) sup
α∈A

inf
β∈B

{−tr aαβD
2u− Iαβ [·, u] + bαβ ·Du

+ cαβu+ fαβ − bαβ · bk − cαβlk + Iαβ [·, ξlk]}(δν
kx).

Now for any 0 < ǫ < 1 to be determined, let r0 := r0(ǫ), η := η(ǫ) be given in Lemma 4.1. Since
I[x, u] = 0 in B2 and

bαβ · bk, cαβlk, |Iαβ [·, ξlk]|

are uniformly bounded in B2δνk , we have in B3/2

|Ikwk(x)| ≤ Cδ2νk(1−α) ≤ Cδ2.

Therefore in B3/2

|Ikw
′
k(x)| ≤ Cδ2 + ω1(δ) < η (4.7)

if δ := δ(ǫ) is taken to be small. Also we can require δ ≤ r0.
Because w′

k satisfies (4.7), again using Lemma 2.1, we have ‖w′
k‖Cβ(B1)

≤ C for some C independent

of k. Then let us consider a function h which solves
{

I0(x0)[x, h] = 0 in B1,

h = w′
k on ∂B1.

By Lemma 4.1, |w′
k − h| ≤ ǫ in B1. By C1,β estimates, we can take l̄ = ā+ b̄x to be the linear part of

h at the origin. Since |w′
k| ≤ 1 in B1 and 0 < ǫ < 1, we have |ā| ≤ 1 + ǫ. By the C1,β regularity for

I0(x0), we also have |b̄| ≤ C for some C independent of k.
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Also we have for some constant C1 > 0 independent of k

|h(x)− l̄(x)| ≤ C1|x|
1+β in B1/2.

So

|wk(x) − l̄(x)| ≤ ǫ+ C1|x|
1+β in B1/2. (4.8)

Using (4.6), we have

|wk(x)− l̄(x)| ≤ 1 + ā+ b̄ ≤ C in B1, (4.9)

|wk(x)− ξ(δνkx)l̄(x)| ≤ |wk(x)| + |l̄(x)| ≤ C|x|1+α′

+ C|x| in Bc
1. (4.10)

We define

lk+1(x) := lk(x) + νk(1+α) l̄(
x

δνk
),

wk+1(x) :=
(u− ξ lk+1)(δν

k+1x)

ν(k+1)(1+α)

( where wk+1(x) =
(wk − l̄)(νx)

ν1+α
if x ≤ δ−1ν−k).

Then (4.3)(4.4) for k + 1 follows.

Now let ν be sufficiently small such that max{νβ−α, C1ν
α′−α} ≤ 1/8 and then we take ǫ ≤ ν1+β .

Using (4.8)(4.9)(4.10), we have

|wk+1(x)| ≤ νβ−α + C1ν
α′−α|x|1+α′

≤
1

8
(1 + |x|1+α′

) in Bν−1/2, (4.11)

|wk+1(x)| ≤ Cν−(1+α) for x ∈ Bν−1\Bν−1/2,

|wk+1(x)| ≤
|wk(νx) − ξ(δνk+1x)l̄(νx)|

ν(1+α)
≤ C|ν|α

′−α|x|1+α′

+ Cν−α|x| for x ∈ R
d\Bν−1 .

From the above estimates, we can further choose ν small enough such that

|wk+1(x)| ≤
1

2
|x|1+α′

for all x ∈ Bc
2. (4.12)

Since

wk+1(x) =
(u − ξlk+1)(δν

k+1x)

ν(k+1)(1+α)
=

(u− lk+1)(δν
k+1x)

ν(k+1)(1+α)

in B2, by (4.11) and ν < 1
4 , |wk+1(x)| ≤ 1 in B2 and thus (4.2) holds for k + 1.

For x ∈ Bc
2δνk+1 , by (4.12) we have

|(u − lk+1)(x)| ≤
1

2
ν(k+1)(1+α)|δ−1ν−k−1x|1+α′

≤ ν−(k+1)(α′−α)δ−1−α′

|x|1+α′

.

So (4.5) holds for k + 1. This completes the inductive step and the proof. �

Corollary 4.2. Let I given in (1.1) satisfy (A)(B)(C). Suppose u ∈ L∞(Rd) solves I[x, u] = 0 in Ω in
the viscosity sense. Then there exist constants 0 < α < 1 and C > 0 such that

‖u‖C1,α(Ωδ) ≤ C

(

‖u‖L∞(Rd) + sup
α∈A,β∈B

‖fαβ‖L∞(Ω)

)

,

where C depends on δ, λ, Λ, supα∈A,β∈B ‖bαβ‖L∞(Ω), supα∈A,β∈B ‖cαβ‖L∞(Ω), K and d.
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5. C2,α Regularity

In this section we will show that the following Dirichlet problem






Ĩ[x, u] := sup
α∈A

{−tr aα(x)D
2u(x)− Ĩα[x, u] + bα(x) ·Du(x) + cα(x)u(x) + fα(x)} = 0, in Ω,

u = g, in Ωc,
(5.1)

with a bounded function g ∈ C(Rd) and

Ĩα[x, u] =

∫

Rd

(u(x+ z)− u(x)− χB1
(z)Du(x) · z)Nα(x, z)dz, (5.2)

admits a unique viscosity solution u, which is C2,α
loc (Ω).

To study (5.1), we first consider
{

Ĩq[x, uq] = 0 in Ω,

u = g in Ωc,
(5.3)

where Ĩq is defined by replacing Ĩα by the truncated nonlocal operator

Ĩα,q[x, u] :=

∫

Rd

(u(x+ z)− u(x)− χB1
(z)Du(x) · z)Nα(x, z)χ|z|≥1/q dz

in (5.1). The idea is to use the C1,α estimates obtained in the previous section to derive the uniform
C2,α estimates for uq, which allows us to pass the limit up a subsequence and obtain a classical solution
u of (5.1). Comparing viscosity and classical solutions, we know that u is the unique viscosity solution
of (5.1). We first start with the following a priori estimates.

Theorem 5.1. Suppose (A’)(B)(C’) hold and α is a sufficiently small universal constant. If u ∈

C2(Ω) ∩ Cα(Rd) solves Ĩ[x, u] = 0 in Ω classically, then

‖u‖C2,α(Ωδ)) ≤ C

(

‖u‖Cα(Rd) + sup
α∈A

‖fα‖Cα(Ω)

)

where C depends on δ, λ, Λ, supα∈A ‖bα‖Cα(Ω), supα∈A ‖cα‖Cα(Ω), K and d.

Proof. Let ψ ∈ C∞
c (Ω) and 0 ≤ ψ ≤ 1. For some 1 > δ̃ > 0, assume

supp{ψ} ⊂ Ω2δ̃, Ω3δ̃ ⊂ {ψ = 1}.

Then ψu is a classical solution of

sup
α

{−traα(x)D
2(ψu)(x) + bα(x) ·D(ψu)(x) + cα(x)(ψu)(x) + f̃α(x)} = 0 (5.4)

where

f̃α(x) :=u(x)tr aα(x)D
2ψ(x) + tr aα(x)Dψ(x) ⊗Du(x)− u(x)bα(x) ·Dψ(x) + fα(x)ψ(x) − Ĩα[x, ψu]

+

∫

Rd

(ψ(x+ z)− ψ(x) − χB1
(z)Dψ(x) · z)u(x+ z)Nα(x, z) dz

+

∫

Rd

(u(x+ z)− u(x))Dψ(x) · zNα(x, z)χB1
(z) dz.

Applying Corollary 4.2, we obtain ‖u‖C1,α(Ωδ̃)
≤ C

(

‖u‖L∞(Rd) + supα∈A ‖fα‖L∞(Ω)

)

. Then, using u ∈

C1,α
loc (Ω), (A’), (C’) and ψ ∈ C∞

c (Ω), we know

bα(x) ·D(ψu)(x), cα(x)(ψu)(x), u(x)tr aα(x)D
2ψ(x),

tr aα(x)Dψ(x) ⊗Du(x), u(x)bα(x) ·Dψ(x), fα(x)ψ(x)
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are uniformly Cα in Ω. Then, by ψ ∈ C∞
c (Ω), u ∈ Cα(Rd) and (C’), we have

∫

Rd

(ψ(x + z)− ψ(x)− χB1
(z)Dψ(x) · z)u(x+ z)Nα(x, z) dz

=

∫

B1

2Σ|γ|=2
zγ

γ!

(
∫ 1

0

(1− t)∂γψ(x+ tz)dt

)

u(x+ z)Nα(x, z) dz

+

∫

Bc
1

(ψ(x+ z)− ψ(x))u(x + z)Nα(x, z) dz

is uniformly Cα in Ω. Also
∫

Rd

(u(x+ z)− u(x))Dψ(x) · zNα(x, z)χB1
(z) dz

=

∫

Bδ̃

Σ|γ|=1z
γ

(
∫ 1

0

(1− t)∂γu(x+ tz)dt

)

Dψ(x) · zNα(x, z)dz

+

∫

B1\Bc
δ̃

(u(x+ z)− u(x))Dψ(x) · zNα(x, z)dz

is uniformly Cα in Ω since u ∈ C1,α
loc (Ω) ∩ C

α(Rd), ψ ∈ C∞
c (Ω) and (C’) holds.

As for Ĩα[x, ψu], we decompose it into two terms, i.e. for 0 < ǫ < δ̃

Ĩα,q[x, ψu] =

∫

Bǫ

((ψu)(x + z)− (ψu)(x)−D(ψu)(x) · z)Nα(x, z) dz

+

∫

Bc
ǫ

((ψu)(x + z)− (ψu)(x)− χB1
(z)D(ψu)(x) · z)Nα(x, z) dz =: I1(x) + I2(x).

The second part I2 is uniformly Cα in Ω since ψu ∈ C1,α(Rd) and (C’) holds. The first part

I1(x) =

∫

Bǫ

2Σ|γ|=2
zγ

γ!

(
∫ 1

0

(1− t)∂γ(ψu)(x+ tz)dt

)

Nα(x, z) dz.

We find for x, y ∈ Ωδ̃

|I1(x) − I1(y)| ≤

∫

Bǫ

2Σ|γ|=2
zγ

γ!

(
∫ 1

0

(1− t)∂γ |(ψu)(x+ tz)− (ψu)(y + tz)| dt

)

K(z) dz

≤ C

∫

Bǫ

|z|2
∫ 1

0

‖(ψu)‖C2,α(Ωδ̃)
|x− y|αdtK(z) dz

≤ cǫ ‖(ψu)‖C2,α(Ω) |x− y|α

= cǫ ‖(ψu)‖C2,α(Ω
2δ̃)

|x− y|α

where cǫ is a universal constant depending only on ǫ and it converges to 0 as ǫ→ 0.
We proved that

‖f̃α‖Cα(Ωδ̃)
≤ C(δ̃, ǫ)

(

‖u‖Cα(Rd) + ‖f‖Cα(Ω)

)

+ cǫ‖(ψu)‖C2,α(Ω
2δ̃)
.

Using the interior C2,α estimates for local elliptic equations, we have

‖ψu‖C2,α(Ω
2δ̃)

≤ C(δ̃, ǫ)
(

‖u‖Cα(Rd) + ‖f‖Cα(Ω)

)

+ c(δ̃, ǫ)‖(ψu)‖C2,α(Ω
2δ̃)

where c(δ̃, ǫ) is a constant such that c(δ̃, ǫ) → 0 as ǫ → 0 for each δ̃ > 0. If select c(δ̃, ǫ) ≤ 1/2 and

δ := 3δ̃, we obtain the desired result. �

Lemma 5.1. Suppose g ∈ Cκ(Ωc), (A’)(B)(C’) hold and Ω satisfies the uniform exterior ball condition.
Then, if u solves (5.1) in the viscosity sense, we have u ∈ Cα(Rd) for some α > 0.
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Proof. From the proof of Theorem 5.6 [23], there exist C2, γ > 0 such that, for any x ∈ ∂Ω and y ∈ R
d,

we have
|u(x)− u(y)| ≤ C2|x− y|γ .

The rest of the proof follows from Lemma 3 [3]. Fix x0 ∈ Ω, y ∈ R
d and let 2r = d(x0,Ω

c) = |x0 − x1|
for some x1 ∈ ∂Ω. If |x0 − y| ≥ r/2, we have

|y − x1| ≤ |y − x0|+ |x0 − x1| ≤ 5|x0 − y|,

and thus

|u(y)− u(x0)| ≤ |u(y)− u(x1)|+ |u(x1)− u(x0)|

≤ C2 (|y − x1|
γ + |x1 − x0|

γ)

≤ C|y − x0|
γ .

Now consider the case that |x0 − y| ≤ r/2. Without loss of generality, we assume 0 = x0 ∈ Ω and
‖u‖L∞(Rd) = 1/2. Define ρ(x) := C2|x|

γ ,

v(x) := u(rx) − u(x1) and v̄(x) := min {ρ(4r),max {v(x),−ρ(4r)}} . (5.5)

Then we have |x1| = 2r, v(x1/r) = 0 and

v(x) = v̄(x) for all x ∈ B2 ⊂ B4(x1/r). (5.6)

Notice that, for any x ∈ R
d, we have

|v(x)| = |u(rx) − u(x1)| ≤ ρ(|rx − x1|) ≤ ρ(2r + r|x|)

and ‖v‖L∞(Rd) ≤ 1. And thus we have

|v(x)− v̄(x)| ≤ min{(ρ(2r + r|x|) − ρ(4r))+, 2} in R
d. (5.7)

Using (5.6) and (5.7), we have for any x ∈ B1
∣

∣

∣
Ĩrα(0)[x, v − v̄]

∣

∣

∣
≤

∫

|x+z|≥2

min{(ρ(2r + r|x + z|)− ρ(4r))+, 2}K
r(z)dz

≤

∫

|z|≥1

min{(ρ(3r + r|z|)− ρ(4r))+, 2}K
r(z)dz

≤ C

∫

|z|≥1

min{|rz|γ , 1}Kr(z)dz

= Cr2
∫

|z|≥r

min{|z|γ, 1}K(z)dz

≤ Crγ
∫

|z|≥r

min{|z|2, 1}K(z)dz ≤ Crγ .

Thus we proved in B1,

| sup
α∈A

{

−tr aα(rx)D
2v̄(x)− Ĩrα(0)[x, v̄] + r bα(rx) ·Dv̄(x)

+r2 cα(rx)(v̄(x) + u(x1)) + r2 fα(rx)
}

| ≤ Crγ . (5.8)

Using Lemma 2.1, we have for x ∈ B1/2

|v̄(x) − v̄(0)| ≤ C(Crγ + ρ(4r))|x|β = Crγ |x|β

and thus for any y ∈ Br/2

|u(y)− u(0)| ≤ Crγ(
|y|

r
)β .

If β > γ, using y ∈ Br/2 we have

Crγ(
|y|

r
)β ≤ Crγ(

|y|

r
)γ ≤ C|y|γ .
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If β ≤ γ, Crγ( |y|r )β ≤ C|y|β .
Finally, we let α = min{β, γ} and finish the proof. �

Theorem 5.2. Suppose cα ≥ 0, (A’)(B)(C’) hold and Ω satisfies the uniform exterior ball condition.
Then there exists u solves (5.1) classically with a bounded function g ∈ Cκ(Ωc) for some κ > 0.

Proof. Using Theorem 5.7 [24], we obtain that (5.3) admits a viscosity solution uq ∈ C(Rd). Without
loss of generality, we can assume that uq solves (5.3) classically, see Theorem 5.3 [23]. Then, using
Theorem 5.1 and Lemma 5.1, we have there exists an α > 0 such that

‖uq‖C2,α(Ωδ)) + ‖uq‖Cα(Rd) ≤ C

(

‖g‖Cκ(Ωc) + sup
α∈A

‖fα‖Cα(Ω)

)

where C is independent of q. Using a diagonal argument, there exist a subsequence of {uq}q and its

limit u ∈ C2,α
loc (Ω) ∩ C

α(Rd) such that u solves (5.1) classically.
�

Theorem 5.3. Suppose the conditions in Theorem 5.2 hold. Then (5.1) admits a unique viscosity

solution u, which is C2,α
loc (Ω) ∩ C

α(Rd) for some α > 0.

Proof. According to Theorem 5.2, (5.1) admits a classical solution u. Suppose there is another viscosity
solution v(6≡ u) of (5.1). Then maxRd |u− v| is obtained inside Ω, i.e. there exists x0 ∈ Ω such that

|u− v|(x0) = max
Rd

|u− v| = σ > 0.

We first assume that u(x0) > v(x0). By u ∈ C2,α
loc (Ω), we can view u as a test function and thus

sup
α∈A

{−tr aα(x0)D
2u(x0)− Ĩα[x0, u] + bα(x0) ·Du(x0) + cα(x0)v(x0) + fα(x0)} ≥ 0.

Then

−σ inf
α∈A

cα(x0) = Ĩ[x0, u]− σ inf
α∈A

cα(x0) ≥ sup
α∈A

{−traαD
2u− Ĩα[·, u] + bα ·Du+ cαv + fα}(x0) ≥ 0.

We get a contradiction if infα cα(x0) > 0, otherwise we do a perturbation argument as follows. Take

C3 = sup
α∈A,x∈Ω

|bα(x)|.

Recall Lemma 5.5 [24], there exists a function ψ ∈ C2(Ω) ∩ C(Rd) such that

1 ≤ ψ ≤ 2,

P+(D2ψ) + P+
K(ψ) + C3|Dψ| ≤ −1 in Ω.

Now instead of considering u as a test function, we choose u− ǫψ where ǫ < σ/4. Then

u− ǫψ ≤ u− ǫ = v − ǫ in Ωc

and
(u − ǫψ)(x0) ≥ v(x0) + σ − 2ǫ > v(x0) + 2ǫ.

So we can assume v − (u− ǫψ) obtains its minimum at some x′0 ∈ Ω and thus

Ĩ[x0, u− ǫψ] ≥ 0

which is equivalent to

Ĩ[x0, u− ǫψ] = sup
α∈A

{−tr aαD
2(u− ǫψ)− Ĩα[·, (u− ǫψ)] + bα ·D(u− ǫψ) + cα(u− ǫψ) + fα}(x0)

≤ Ĩ[x0, u] + ǫ sup
α∈A

{tr aαD
2ψ + Ĩα[·, ψ] + |bα||Dψ| − cαψ}(x0)

≤ −ǫ < 0,

which leads to a contradiction. So u(x0) ≤ v(x0). A similar argument shows that u(x0) ≥ v(x0). In all
we finish the proof. �
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