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Connections between properties of the additive and the multiplicative

groups of a two-sided skew brace

Timur Nasybullov∗

Abstract

We study relations between the additive and the multiplicative groups of a two-sided skew
brace. In particular, we prove that if the additive group of a two-sided skew brace is finite solvable
(respectively, finitely generated nilpotent, finitely generated residually nilpotent, finitely generated
residually finite), then the multiplicative group of this skew brace is solvable (respectively, solvable,
residually solvable, residually finite). Also we prove that if the multiplicative group of a two-sided
skew brace is nilpotent of nilpotency class k, then the additive group of this skew brace is solvable
of class at most 2k. The letter result generalizes the result from [12, Theorem A.9] which says that
if the multiplicative group of a finite skew brace is abelian, then the additive group of this skew
brace is solvable.

In addition we solve two problems (Problem 19.49 and Problem 19.90(a)) concerning skew braces
which are formulated in the Kourovka notebook.
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1 Introduction

A skew brace A = (A,⊕,⊙) is an algebraic system with two binary algebraic operations ⊕, ⊙ such
that A⊕ = (A,⊕), A⊙ = (A,⊙) are groups and the equality

a⊙ (b⊕ c) = (a⊙ b)⊖ a⊕ (a⊙ c) (1)

holds for all a, b, c ∈ A, where ⊖a denotes the inverse to a element with respect to the operation ⊕
(we denote by a−1 the inverse to a element with respect to ⊙). The group A⊕ is called the additive

group of a skew brace A, and the group A⊙ is called the multiplicative group of a skew brace A. If A⊕

is abelian, then A is called a classical brace.
Classical braces were introduced by Rump in [10] in order to study non-degenerate involutive

set-theoretic solutions of the Yang-Baxter equation. Recall that a set-theoretical solution of the Yang-

Baxter equation is a pair (X, r), where X is a set and r : X ×X → X × X is a bijective map such
that

(r × id)(id × r)(r × id) = (id× r)(r × id)(id × r).

The solution (X, r) is said to be non-degenerate if for r(x, y) = (σ(x, y), τ(x, y)) the maps
σ(x, ·), τ(·, y) : X → X are bijective for fixed x, y ∈ X, and the solution is said to be involutive

if r2 = id. The Yang-Baxter equation first appeared in theoretical physics and statistical mechanics
in the works of Yang [14] and Baxter [2,3] and it has led to several interesting applications in different
fields of mathematics. For example, the Yang-Baxter equation appears in topology and algebra since it
is connected with braid groups. The problem of studying set-theoretical solutions of the Yang-Baxter

∗KU Leuven KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium, timur.nasybullov@mail.ru

1

http://arxiv.org/abs/1809.09418v1


equation was formulated by Drinfel’d in [6]. If A = (A,⊕,⊙) is a classical brace, then the pair (A, r)
for

r(x, y) =
(

⊖ x⊕ (x⊙ y), (⊖x⊕ (x⊙ y))−1 ⊙ x⊙ y
)

(2)

is a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation. So, classical braces
are useful for the study of the Yang-Baxter equation.

Skew braces were introduced by Guarnieri and Vendramin in [7] in order to study non-degenerate
set-theoretic solutions of the Yang-Baxter equation which are not necessarily involutive. For a given
skew brace A one can construct non-degenerate set-theoretic solutions of the Yang-Baxter equation
using formula (2). Skew braces have connections with other algebraic structures such as groups with
exact factorizations, Zappa-Szép products, triply factorized groups and Hopf-Galois extensions [12].
They also have applications in knot theory due to connections with biquandles and racks [1,12]. Some
algebraic aspects of skew braces are studied in [5,8,12]. A big list of problems concerning skew braces
is collected in [13].

Equality (1) makes the additive group A⊕ and the multiplicative group A⊙ of a skew brace A
strongly connected with each other. For example, the following problems formulated in the Kourovka
notebook [9, Problems 19.49, 19.90] tell about some of such connections.

1. Let A be a skew brace with left-orderable multiplicative group. Is the additive group of A
left-orderable?

2. Does there exist a skew brace with solvable additive group but non-solvable multiplicative group?

3. Does there exist a skew brace with nilpotent multiplicative group but non-solvable additive
group?

Questions 2 and 3 from the list above are known to have the negative answer in some particular cases.
For example, the following result is proved in [12, Corollary 1.23].

Theorem 1.1. Let A be a finite skew brace. If A⊕ is nilpotent, then A⊙ is solvable.

Another result is formulated in [12, Theorem A.9] and proved in [4, Theorem 2] in terms of
Hopf-Galois structures.

Theorem 1.2. Let A be a finite skew brace. If A⊙ is abelian, then A⊕ is solvable.

In the present text we are going to study the formulated problems for two-sided skew braces.
The skew brace is called two-sided if together with equality (1) the equality

(a⊕ b)⊙ c = (a⊙ c)⊖ c⊕ (b⊙ c) (3)

holds for all a, b, c ∈ A. If the multiplicative group of a skew brace A is abelian, then this skew
brace is two-sided. However, not every two-sided skew brace has abelian multiplicative group (see [12,
Example 1.18]). Two-sided classical braces are in one-to-one correspondence with radical rings [11].
So, the notion of a two-sided skew brace generalizes the notion of a radical ring. In the present
paper we prove that if the additive group of a two-sided skew brace is finite solvable (respectively,
finitely generated nilpotent, finitely generated residually nilpotent, finitely generated residually finite),
then the multiplicative group of this skew brace is solvable (respectively, solvable, residually solvable,
residually finite). Also we prove that if the multiplicative group of a two-sided skew brace is nilpotent
of nilpotency class k, then the additive group of this skew brace is solvable of class at most 2k. The
letter result generalizes Theorem 1.2.
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2 Definitions and known results

In this section we recall some notions and known facts about skew braces. Equality (1) implies that
the unit element of A⊕ coincides with the unit element of A⊙, we denote this element by 1. Also from
equality (1) follows that the equality

a⊙ (⊖b⊕ c) = a⊖ (a⊙ b)⊕ (a⊙ c) (4)

holds for all a, b, c ∈ A.
For a ∈ A the map λa : x 7→ ⊖a⊕ (a ⊙ x) is an automorphism of the group A⊕. Moreover, the

map a 7→ λa gives a homomorphism A⊙ → Aut(A⊕). The subset I of A is called an ideal of A if I
is a normal subgroup of both A⊕, A⊙ and λa(I) = I for all a ∈ A. The letter condition means that
a ⊕ I = a ⊙ I for all a ∈ A. It is clear that I is itself a skew brace, so, we can speak about I⊕, I⊙.
For an ideal I of a skew brace A the quotient A/I is a natural skew brace defined on the set of cosets
a⊕ I with the operations given by (a⊕ I)⊕ (b⊕ I) = (a⊕ b)⊕ I, (a⊕ I)⊙ (b⊕ I) = (a⊙ b)⊕ I. The
skew brace A/I has the additive group (A/I)⊕ = A⊕/I⊕ and multiplicative group (A/I)⊙ = A⊙/I⊙.
A skew brace is called simple if it has no proper ideals.

According to [5] for elements a, b ∈ A denote by a ∗ b = ⊖a ⊕ (a ⊙ b) ⊖ b = λa(b) ⊖ b. Direct
calculations imply the equality

a ∗ (b+ c) = (a ∗ b)⊕ b⊕ (a ∗ c)⊖ b (5)

for a, b, c ∈ A. For subsets X,Y ⊆ A denote by X ∗ Y the subgroup X ∗ Y = 〈x ∗ y | x ∈ X, y ∈ Y 〉⊕
of A⊕ additively generated by elements x ∗ y for x ∈ X, y ∈ Y . The following result is proved
in [5, Proposition 2.1]

Proposition 2.1. Let A be a skew brace. Denote by A(1) = A, A(k+1) = A(k) ∗ A for k > 1. Then

A(k) is an ideal of A for all k.

A skew brace A is called trivial if a⊕ b = a⊙ b for all a, b ∈ A. The following statement is proved
in [5, Proposition 2.3].

Proposition 2.2. Let A be a skew brace. Then A(2) is the smallest ideal of A such that A/A(2) is a

trivial skew brace.

3 Examples and counterexamples

In this section we give examples of skew braces which give answers to several problems.

Example 3.1. On the set of integers consider two operations ⊕ and ⊙ given by the formulas.

a⊕ b = a+ (−1)ab, a⊙ b = a+ b

Then A = (Z,⊕,⊙) is a skew brace with infinite cyclic multiplicative group A⊙ = Z and infinite
dihedral additive group A⊕ = Z⋊−id Z2.

This skew brace gives negative answers to the following two problems.

[12, Question A.10]. Let A be a skew brace with multiplicative group isomorphic to (Z,+). Is it
trues that the additive group of A is also isomorphic to (Z,+)?

The group A⊕ is not abelian, therefore the answer to [12, Question A.10] is negative.

[9, Problem 19.49]. Let A be a skew brace with left-orderable multiplicative group. Is the additive
group of A left-orderable?

3



The group A⊙ is infinite cyclic and therefore is left-orderable group. At the same time the group
A⊕ has 2-torsion, therefore A⊕ is not left-orderable and the answer to [9, Problem 19.49] is negative.

Recently the preprint [5] appeared, where the same example is constructed [5, Theorem 5.8]. In
this preprint it is noticed that this example gives the answer to [12, Question A.10]. Since this example
is not too big and we constructed it before reading [5], we decided not to delete it from the text and
notice that it also solves [9, Problem 19.49].

Example 3.2. For n ≥ 2 denote by Un the set of strictly upper triangular matrices of degree n over
Z. For A,B ∈ Un denote by A⊕B, A⊙B the matrices from Un of the following form

A⊕B = A+B, A⊙B = (In +A)(In +B)− In,

where In is the identity matrix. It is obvious that (Un,⊕) is the group isomorphic to Z
n(n−1)/2, and

(Un,⊙) is the group isomorphic to the group UTn(Z) of upper unitriangular matrices over Z. For
arbitrary matrices A,B,C ∈ Un we have

A⊙ (B ⊕ C) = A⊙ (B + C)

= (In +A)(In +B + C)− In

= (In +A)(In +B)− In + (In +A)C

= (In +A)(In +B)− In + (In +A)(In + C)− (In +A)

=
(

(In +A)(In +B)− In
)

−A+
(

(In +A)(In + C)− In
)

= (A⊙B)⊖A⊕ (A⊙C),

therefore An = (Un,⊕,⊙) is a skew brace with (An)⊕ = Z
n(n−1)/2, (An)⊙ = UTn(Z).

Let A be a skew brace which is a direct sum of skew braces An from Example 3.2 for n = 2, 3, . . . ,
i. e. A = {a = (a2, a3, . . . ) | ai ∈ Ai, |supp(a)| < ∞} and operations are componentwise. The additive
group A⊕ is isomorphic to the direct sum of infinite number of copies of Z, i. e. A⊕ is abelian. The
multiplicative group A⊙ is isomorphic to the direct sum of groups UTn(Z) for n = 2, 3, . . . Since the
group UTn(Z) is solvable of degree ⌈log2(n)⌉, the group A⊙ is not solvable. The skew brace A gives
an answer to the following problem.

[9, Problem 19.90(a)]. Does there exist a skew brace with solvable additive group but non-solvable
multiplicative group?

Example 3.3. For n ≥ 2 denote by Tn the set of invertible upper triangular matrices of degree n over
Z. Since every matrix X from Tn can be uniquely expressed as a product X = (In +A)a of the upper
unitriangular matrix (In +A) and diagonal matrix a, the set Tn can be considered as the set of pairs
Tn = {(A, a) | A ∈ Un, a ∈ Dn}, where Dn is the set of diagonal matrices of degree n with ±1 on the
diagonal. For (A, a), (B, b) ∈ Tn denote by (A, a) ⊕ (B, b), (A, a) ⊙ (B, b) the following matrices from
Tn

(A, a)⊕ (B, b) = (A+B, ab), (A, a) ⊙ (B, b) =
(

(A+ In)a(B + In)a
−1 − In, ab

)

.

Using direct calculations it is easy to see that An = (Tn,⊕,⊙) is a skew brace. The additive group A⊕

is isomorphic to Z
n(n−1)/2 ⊕Z

n
2 , and the multiplicative group A⊙ is isomorphic to the group Tn(Z) of

upper triangular matrices of degree n over Z with isomorphism given by (A, a) 7→ (In +A)a.

The direct sum of skew braces An from Example 3.3 for n = 2, 3, . . . gives another example of a
skew brace which answers [9, Problem 19.90(a)].
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4 Two-sided skew braces

In this section we study connections between properties of the additive and the multiplicative groups
of two-sided skew braces. The following simple technical lemma is true for two-sided skew braces.

Lemma 4.1. If A is a two sided skew brace, then the equality

c−1 ⊙ (a⊕ b)⊙ c = (c−1 ⊙ a⊙ c)⊕ (c−1 ⊙ b⊙ c)

holds for all a, b, c ∈ A.

Proof. Applying equalities (1), (4) and (3) using direct calculations we have

c−1 ⊙ (a⊕ b)⊙ c
(3)
= c−1 ⊙

(

(a⊙ c)⊖ c⊕ (b⊙ c)
)

(1)
= (c−1 ⊙ a⊙ c)⊖ c−1 ⊕ c−1

(

⊖ c⊕ (b⊙ c)
)

(4)
= (c−1 ⊙ a⊙ c)⊖ c−1 ⊕ c−1 ⊖ (c−1 ⊙ c)⊕ (c−1 ⊙ b⊙ c)

= (c−1 ⊙ a⊙ c)⊕ (c−1 ⊙ b⊙ c),

the lemma is proved. �

Lemma 4.1 has the following corollary which answers the question [13, Problem 38] in the case
when A is a finite skew brace.

Corollary 4.2. Let A be a finite two-sided skew brace with solvable additive group. Then A is simple

if and only if A is a trivial skew brace of prime order p.

Proof. If A is a trivial skew brace of prime order p, then it is obviously simple, and we need to
prove only the if part of the corollary. From Lemma 4.1 follows that the map a 7→ c−1 ⊙ a ⊙ c is an
automorphism of A (and therefore an automorphism of A⊕), therefore every characteristic subgroup
of A⊕ is an ideal of A. Denote by I the commutator subgroup of A⊕. Since A⊕ is solvable, I 6= A.
Since I is characteristic in A⊕, it is an ideal of A, and since A is simple, I = 1 and A⊕ is abelian. For
a prime p dividing |A| denote by J the Sylow p-subgroup of A⊕. Since A⊕ is abelian, there is only
one Sylow p-subgroup in A⊕, therefore J is characteristic in A⊕ and J is an ideal of A. Since A is
simple, A = J and |A| = pn for some n, so, the corollary follows from [5, Corollary 4.8]. �

If A is a two sided skew brace, then Theorem 1.1 can be generalized in the following form.

Theorem 4.3. Let A be a two-sided skew brace. Then

1. If A is finite and A⊕ is solvable, then A⊙ is solvable,

2. If A⊕ is finitely generated and nilpotent, then A⊙ is solvable,

3. If A⊕ is finitely generated and residually nilpotent, then A⊙ is residually solvable,

4. If A⊕ is finitely generated and residually finite, then A⊙ is residually finite.

Proof. 1) If A⊕ is abelian, then the result follows from Theorem 1.1. If A⊕ is not abelian, then
denote by I the commutator subgroup of A⊕. Since I 6= 1 is a characteristic subgroup of A⊕, it is
an ideal of A. The quotient A/I has a solvable additive group (A/I)⊕. Therefore using induction
on the order of a skew brace we can assume that (A/I)⊙ is solvable. Also since I⊕ is solvable, using
induction on the order of a skew brace we can assume that I⊙ is solvable. Therefore A⊙ is solvable.

2) If A⊕ is finitely generated abelian, then A⊕ is a direct product of a finite abelian group B and
a free abelian group Z

n for some n. Since B is a characteristic subgroup of A⊕, it is an ideal of A (in
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particular, B is a skew brace). Since B⊕ is finite and abelian, from Theorem 1.1 follows that B⊙ is
solvable.

Let p > |B| be a prime number. Denote by Ip the subgroup of A⊕ generated by p-th powers
(with respect to ⊕) of all elements. Since Ip is a characteristic subgroup of A⊕, it is an ideal of A. The
quotient A/Ip has the order pn. Therefore the multiplicative group (A/Ip)⊙ is nilpotent of nilpotency
class at most n and for arbitrary elements x1, . . . , xn+1 ∈ A we have [x1, . . . , xn+1]⊙ ⊕ Ip = Ip, where
[x1, . . . , xn+1]⊙ denotes the simple commutator of length n+ 1 of elements x1, . . . , xn+1 with respect
to ⊙. Therefore for all elements x1, . . . , xn+1 the commutator [x1, . . . , xn+1]⊙ belongs to Ip for all

p > |B|. Hence the n-th derived subgroup A
(n)
⊙ of A⊙ belongs to ∩p>|B|Ip = B (this equality follows

from the fact that p > |B|). Since B⊙ is solvable, A⊙ is solvable.
If A⊕ is nilpotent of class k > 1, then denote by I the smallest nontrivial term of the lower central

series of A⊕. Since I is a characteristic subgroup of A⊕, it is an ideal of A. The quotient A/I has a
finitely generated nilpotent additive group (A/I)⊕ of nilpotency class k−1. Therefore using induction
on the nilpotency class of A⊕ we can assume that (A/I)⊙ is solvable. Since A⊕ is finitely generated
nilpotent, I⊕ is finitely generated abelian, and by the paragraph above I⊙ is solvable. Therefore A⊙

is solvable.
3) Let x ∈ A. Denote by I the minimal member of the lower central series of A⊕ which does not

contain x (such member exists since A⊕ is residually nilpotent). Since I is characteristic subgroup
of A⊕, it is an ideal of A. The quotient A/I has finitely generated nilpotent additive group (A/I)⊕,
therefore from 2) follows that (A/I)⊙ is solvable.

4) Since A⊕ is residually finite, for an element x 6= 1 there exists a normal subgroup N ⊳ A⊕ of
index n such that x /∈ N . Since A⊕ is finitely generated, there exists only a finite number of subgroups
of index n, therefore there is a characteristic subgroup I = ∩ϕ∈Aut(A⊕)ϕ(N) of A⊕ of finite index such
that x /∈ I. Since I is characteristic, it is an ideal of A, therefore it is a normal subgroup of A⊙. �

The following lemma can be thought as a stronger version of Proposition 2.1 which is true for
two-sided skew braces.

Lemma 4.4. Let A be a two-sided skew brace and X be a normal subgroup of A⊙. Then X ∗ A is

an ideal of A.

Proof. For arbitrary elements x ∈ X, a, b ∈ A we have the equality

b⊕ (x ∗ a)⊖ b = b⊕ λx(a)⊖ a⊖ b = b⊖ λx(b)⊕ λx(b⊕ a)⊖ (b⊕ a) = ⊖(x ∗ b)⊕ (x ∗ (b⊕ a)),

therefore (X ∗A)⊕ is a normal subgroup of A⊕. Again for arbitrary elements x ∈ X, a, b ∈ A we have

λb(x ∗ a) = λb(λx(a)⊖ a) = λbλx(a)⊖ λb(a) = λbλxλ
−1
b (λb(a))⊖ λb(a) = (b⊙ x⊙ b−1) ∗ λb(a), (6)

therefore λb(X ∗ A) = X ∗ A for all elements b ∈ A. For elements x, y ∈ X, a, b ∈ A we have
(x ∗ a)⊙ (y ∗ b) = (x ∗ a)⊕λx∗a(y ∗ b), therefore X ∗A is closed under multiplication and we can speak
about (X ∗ A)⊙. Finally, using Lemma 4.1 for arbitrary elements x ∈ X, a, b ∈ A we have

b−1 ⊙ (x ∗ a)⊙ b = b−1 ⊙ (⊖x⊕ (x⊙ a)⊖ a)⊙ b

= ⊖(b−1 ⊙ x⊙ b)⊕ (b−1 ⊙ x⊙ a⊙ b)⊖ (b−1 ⊙ a⊙ b)

= (b−1 ⊙ x⊙ b) ∗ (b−1 ⊙ a⊙ b),

therefore (X ∗A)⊙ is a normal subgroup of A⊙ and X ∗ A is an ideal of A. �

Lemma 4.5. Let A be a two-sided skew brace and Z be the center of A⊙. Then I = (A∗Z)⊕ (Z ∗A)
is an ideal of A such that the group I⊕ is abelian.
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Proof. We need to check that I is a normal subgroup of both A⊕, A⊙ and that λa(I) = I for all
a ∈ A. By Lemma 4.5, the set Z ∗ A is an ideal of A. Using this fact, for a ∈ A, x ∈ Z we have

a ∗ x = ⊖a⊕ (a⊙ x)⊖ x = ⊖a⊕ x⊖ x⊕ (x⊙ a)⊖ a⊕ a⊖ x

= ⊖a⊕ x⊕ (x ∗ a)⊕ a⊖ x = ⊖a⊕ x⊕ a⊖ x⊕ c (7)

for c = (x ⊖ a)⊕ (x ∗ a)⊖ (x⊖ a) ∈ Z ∗ A. For arbitrary elements a, b ∈ A, x ∈ Z using equality (7)
several times we have

⊖b⊕ (a ∗ x)⊕ b
(7)
= ⊖b⊖ a⊕ x⊕ a⊖ x⊕ c⊕ b c ∈Z ∗ A,

= ⊖b⊖ a⊕ x⊕ a⊖ x⊕ b⊕ c1 c1 ∈Z ∗ A,

= ⊖(a⊕ b)⊕ x⊕ (a⊕ b)⊖ x⊕ x⊖ b⊖ x⊕ b⊕ c1 c1 ∈Z ∗ A,

(7)
= ((a⊕ b) ∗ x)⊕ c2 ⊖ ((b ∗ x)⊕ c3)⊕ c1 c1, c2, c3 ∈Z ∗ A,

= ((a⊕ b) ∗ x)⊖ (b ∗ x)⊕ c4 c4 ∈Z ∗ A,

therefore ⊖b⊕ (A ∗Z)⊕ b ⊆ I for arbitrary b ∈ A, and I⊕ is a normal subgroup of A⊕. For arbitrary
elements a, b ∈ A, x ∈ Z we have

(b⊙ a⊙ b−1)⊙ (⊖b⊕ x⊕ b)
(4)
= (b⊙ a⊙ b−1)⊖ (b⊙ a)⊕ ((b⊙ a⊙ b−1)⊙ (x⊕ b))

(1)
= (b⊙ a⊙ b−1)⊖ (b⊙ a)⊕ (b⊙ a⊙ b−1 ⊙ x)⊖ (b⊙ a⊙ b−1)

⊕ (b⊙ a)

= (b⊙ a⊙ b−1)⊖ (b⊙ a)⊕ x⊕ (x ∗ (b⊙ a⊙ b−1))⊕ (b⊙ a)

= (b⊙ a⊙ b−1)⊖ (b⊙ a)⊕ x⊕ (b⊙ a)⊕ c

for c = ⊖(b⊙a)⊕ (x ∗ (b⊙a⊙ b−1))⊕ (b⊙a) ∈ Z ∗A. From this equality and equality (7) follows that

(b⊙ a⊙ b−1) ∗ (⊖b⊕ x⊕ b) = ⊖(b⊙ a)⊕ x⊕ (b⊙ a)⊖ (⊖b⊕ x⊕ b)⊕ c1 c1 ∈Z ∗A

= ⊖(b⊙ a)⊕ x⊕ (b⊙ a)⊖ b⊖ x⊕ b⊕ c1 c1 ∈Z ∗A

(7)
= ((b⊙ a) ∗ x)⊕ c2 ⊖ (b ∗ x)⊕ c3 ⊕ c1 c1, c2, c3 ∈Z ∗A

= ((b⊙ a) ∗ x)⊖ (b ∗ x)⊕ c c ∈Z ∗A

Therefore for x ∈ Z, a, b ∈ A the element (b ⊙ a ⊙ b−1) ∗ (⊖b ⊕ x ⊕ b) belongs to I. For arbitrary
elements b ∈ A, x ∈ Z we have b⊕ λb(x) = b⊙ x = x⊙ b = x⊕ λx(b) = x⊕ (x ∗ b)⊕ b, therefore

λb(x) = ⊖b⊕ x⊕ b⊕ c (8)

for c = ⊖b⊕ (x ∗ b)⊕ b ∈ Z ∗ A. If in equality (6) we change x and a, then we have the equality

λb(a ∗ x) = (b⊙ a⊙ b−1) ∗ λb(x). (9)

So, summarizing together equalities (5), (8), (9) and the fact that (b⊙ a⊙ b−1) ∗ (⊖b⊕ x⊕ b) belongs
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to I for arbitrary elements a, b ∈ A, x ∈ Z we have

λb(a ∗ x)
(9)
= (b⊙ a⊙ b−1) ∗ λb(x)

(8)
= (b⊙ a⊙ b−1) ∗ (⊖b⊕ x⊕ b⊕ c) c ∈Z ∗ A

(5)
= (b⊙ a⊙ b−1) ∗ (⊖b⊕ x⊕ b)

⊕ (⊖b⊕ x⊕ b)⊕ ((b⊙ a⊙ b−1) ∗ c)⊖ (⊖b⊕ x⊕ b) c ∈Z ∗ A

= (b⊙ a⊙ b−1) ∗ (⊖b⊕ x⊕ b)

⊖ b⊕ x⊕ b⊖ (b⊙ a⊙ b−1)⊕ ((b⊙ a⊙ b−1)⊙ c)⊖ c⊖ b⊖ x⊕ b c ∈Z ∗ A

= (b⊙ a⊙ b−1) ∗ (⊖b⊕ x⊕ b)

⊖ b⊕ x⊕ b⊖ (b⊙ a⊙ b−1)⊕ (b⊙ a⊙ b−1)⊕ c1 ⊖ c⊖ b⊖ x⊕ b c, c1 ∈Z ∗ A

= (b⊙ a⊙ b−1) ∗ (⊖b⊕ x⊕ b)⊕ c2 c2 ∈Z ∗ A,

therefore for arbitrary element b ∈ A we have λb(A ∗ Z) ⊆ I and then λb(I) ⊆ I. Finally, from
Lemma 4.1 follows that for arbitrary elements x ∈ X, a, b ∈ A we have

b−1 ⊙ (a ∗ x)⊙ b = (b−1 ⊙ a⊙ b) ∗ (b−1 ⊙ x⊙ b),

therefore (A ∗ Z)⊙ is a normal subgroup of A⊙, I⊙ is a normal subgroup of A⊙ and therefore I is an
ideal of A.

For arbitrary elements a, b, c, d ∈ A, using equalities (1) and (3) we have the following equality

(a⊕ b)⊙ (c⊕ d)
(1)
= ((a⊕ b)⊙ c)⊖ (a⊕ b)⊕ ((a⊕ b)⊙ d)

(3)
= (a⊙ c)⊖ c⊕ (b⊙ c)⊖ b⊖ a⊕ (a⊙ d)⊖ d⊕ (b⊙ d)

= (a⊙ c)⊖ c⊕ (b⊙ c)⊖ b⊕ (a ∗ d)⊕ (b⊙ d). (10)

From the other hand, applying equalities (1) and (3) in the another sequence we have the following
equality

(a⊕ b)⊙ (c⊕ d)
(3)
= (a⊙ (c⊕ d))⊖ (c⊕ d)⊕ (b⊙ (c⊕ d))

(1)
= (a⊙ c)⊖ a⊕ (a⊙ d)⊖ d⊖ c⊕ (b⊙ c)⊖ b⊕ (b⊙ d)

= (a⊙ c)⊕ (a ∗ d)⊖ c⊕ (b⊙ c)⊖ b⊕ (b⊙ d). (11)

Since expression (10) and (11) represent the same element of A, they must be equal, this fact means
that for all a, b, c, d ∈ A we have the equality

(⊖c⊕ (b⊙ c)⊖ b)⊕ (a ∗ d) = (a ∗ d)⊕ (⊖c⊕ (b⊙ c)⊖ b). (12)

Applying equality (12) to elements a, c ∈ Z, b, d ∈ A, we conclude that (Z ∗ A)⊕ is abelian; applying
this equality to elements b, d ∈ Z, a, c ∈ A, we conclude that (A ∗ Z)⊕ is abelian; and applying the
same equality to elements a, b ∈ Z, c, d ∈ A we conclude that every element from (A ∗Z)⊕ commutes
(with respect to ⊕) with every element from (Z ∗ A)⊕, therefore I⊕ is abelian group. �

Theorem 4.6. Let A be a two-sided skew brace. If A⊙ is nilpotent of nilpotency class k, then A⊕ is

solvable of class at most 2k.

Proof. We will prove the statement using induction on the nilpotency class k of A⊙. If k = 1, then
the group A⊙ is abelian. By Proposition 2.2 the skew brace A/(A ∗A) is trivial, i. e. a⊙ b = a⊕ b for
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all a, b ∈ A/(A ∗A), therefore (A/(A ∗A))⊕ is abelian. By Lemma 4.5 the group (A ∗A)⊕ is abelian,
so, A⊕ has a normal abelian subgroup (A∗A)⊕ with abelian quotient A⊕/(A∗A)⊕, i. e. A⊕ is solvable
of class at most 2. The basis of induction (k = 1) is proved.

Let k > 1, denote by Z the center of A⊙ and let I = (A ∗Z)⊕ (Z ∗A). By Lemma 4.5 the set I
is an ideal of A with abelian group I⊕. For all x ∈ Z, a ∈ A there exist some elements c, d ∈ I such
that x⊙ a = x⊕ a⊕ c, a⊙ x = a⊕ x⊕ d, therefore the set J = Z ⊕ I is the ideal of A. Since Z ⊆ J ,
the multiplicative group (A/J)⊙ of A/J is nilpotent of nilpotency class at most k− 1, therefore using
induction hypothesis we can assume that (A/J)⊕ is solvable of class at most 2(k − 1). So, we have a
normal series of groups A⊕ > J⊕ > I⊕ > 1 such that A⊕/J⊕ is solvable of class at most 2k−2, J⊕/I⊕
and I⊕ are abelian, therefore A⊕ is solvable of class at most 2k. �

If the multiplicative group of a skew brace is abelian, then this skew brace is two-sided. The
following result follows from Theorem 4.6 and generalizes Theorem 1.2.

Corollary 4.7. Let A be a skew brace. If A⊙ is abelian, then A⊕ is metabelian.

Corollary 4.7 generalizes Theorem 1.2 in two directions: at first, Corollary 4.7 is true for skew
braces of arbitrary cardinality (not only for finite skew braces), at second, it gives the upper bound
of the solvability degree of A⊕ (A⊕ must be metabelian). Also the proof of Theorem 4.6 (which
implies Corollary 4.7) is elementary, i. e. it does not use classification of finite simple groups and other
advanced results from finite group theory which are used in the proof of [4, Theorem 2] which implies
Theorem 1.2.
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[5] F. Cedó, A. Smoktunowicz, L. Vendramin, Skew left braces of nilpotent type, ArXiv:Math/1806.01127.
[6] V. Drinfel’d, On some unsolved problems in quantum group theory, Quantum groups (Leningrad, 1990),

1-8, Lecture Notes in Math., 1510, Springer, Berlin, 1992.
[7] L. Guarnieri, L. Vendramin, Skew braces and the Yang-Baxter equation, Math. Comp., V. 86, N. 307,

2017, 2519–2534.
[8] A. Konovalov, A. Smoktunowicz, L. Vendramin, On skew braces and their ideals, ArXiv:Math/1804.04106.
[9] The Kourovka notebook, Unsolved problems in group theory. Edited by V. D. Mazurov and E. I. Khukhro,

19-th. ed.. Russian Academy of Sciences Siberian Division. Institute of Mathematics, Novosibirsk, 2018.
[10] W. Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, V. 307, N. 1, 2007,

153–170.
[11] W. Rump, Modules over braces, Algebra Discrete Math., N. 2, 2006, 127–137.
[12] A. Smoktunowicz, L. Vendramin, On skew braces (with an appendix by N. Byott and L. Vendramin),

Journal of combinatorial algebra, V. 2, N. 1, 47–86.
[13] L. Vendramin, Problems on skew left braces, ArXiv:Math/1807.06411.
[14] C. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function

interaction, Phys. Rev. Lett., V. 19, 1967, 1312–1315.

9


	1 Introduction
	2 Definitions and known results
	3 Examples and counterexamples
	4 Two-sided skew braces

