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Abstract

We study the inhomogeneous Curie-Weiss model with external field, where the inhomo-

geneity is introduced by adding a positive weight to every vertex and letting the interaction

strength between two vertices be proportional to the product of their weights. In this model,

the sum of the spins obeys a central limit theorem outside the critical line. We derive a Berry-

Esseen rate of convergence for this limit theorem using Stein’s method for exchangeable pairs.

For this, we, amongst others, need to generalize this method to a multidimensional setting

with unbounded random variables.

1 Introduction, model and main results

The inhomogeneous Curie-Weiss model (ICW) was recently introduced in [14]. In this model,
every vertex has an Ising spin attached to it and also has a positive weight. The spins interact
with each other, where the (ferromagnetic) interaction strength between two spins is proportional
to the product of the weights of the vertices, and the spins also interact with an external field.

This model arose in the study of the annealed Ising model on inhomogeneous random graphs
[14]. In the inhomogeneous random graph model, an edge between two vertices is present in
the graph with a probability that is proportional to the product of the weights of the vertices.
Annealing the Ising model over these random graphs by taking appropriate expectations results
in a mean-field type model where spins interact with an average of their neighborhood. When
two weights are large, there will be an edge between them more often in the random graph, and
therefore the interaction strength in the annealed model will be large as well. Indeed, it can be
shown that the resulting interaction is, approximately, also proportional to the product of the
weights.

In [14], it is proved that in the ICW, and hence also the annealed Ising model on inhomoge-
neous random graphs, the sum of spins, in the presence of an external field or above the critical
temperature, satisfies a central limit theorem. The study of this model continued in [6], where
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critical exponents were computed and a non-standard limit theorem was obtained at the critical
point, and in [5], where large deviations of the sum of spins were studied.

Stein’s method for exchangeable pairs was introduced in [20] and is now a popular method
to obtain rates of convergence for central and other limit theorems. Given a random variable
X, Stein’s method is based on the construction of another variable X ′ (some coupling) such
that the pair (X,X ′) is exchangeable, i.e., their joint distribution is symmetric. The approach
essentially uses the elementary fact that if (X,X ′) is an exchangeable pair, then Eg(X,X ′) = 0
for all antisymmetric measurable functions g(x, y) such that the expectation exists. A theorem
of Stein shows that a measure of proximity of X to normality may be provided in terms of the
exchangeable pair, requiring X ′ − X to be sufficiently small, see [20, Theorem 1, Lecture III].
Stein’s approach has been successfully applied in many models, see e.g. [21] and references therein.
In [18], the range of application was extended by replacing the linear regression property by a
weaker condition. Moreover the method was successfully applied to several mean-field models in
statistical mechanics, including the (homogeneous) Curie-Weiss model [1, 8], the Hopfield model [9],
the Curie-Weiss-Potts model [10] and O(N) models [15, 16].

In this paper, we derive a Berry-Esseen rate of convergence for the central limit theorem of the
sum of spins in the ICW, i.e., we show that the Kolmogorov distance between the normalized sum
of spins and the normal distribution is bounded from above by a constant divided by the square
root of the number of vertices. This generalizes the results in [8] to the inhomogeneous setting
and also to the setting with an external field.

When deriving the so-called regression equation for the sum of spins, which is the starting
point of Stein’s method for exchangeable pairs, one sees that not only the sum of spins, but also a
weighted sum of spins shows up, where every spin value is multiplied by the weight of its vertex.
Hence, one obtains a two-dimensional regression equation. Looking at the joint distribution of
the sum of spins and the weighted sum of spins is for example also used to study their large
deviations [5]. Another complication that arises is that the weighted spin sum is not necessarily
uniformly bounded.

Multidimensional versions of Stein’s method for exchangeable pairs are for example studied in
[17] and [12]. Stein’s method for unbounded exchangeable pairs have for example been studied in [4]
and [19]. We combine ideas from the latter paper with ideas from [12] to derive bounds between
marginals of unbounded multidimensional random variables to the standard normal distribution.

The rest of this paper is organized as follows. In the next subsections we formally introduce
the ICW, state our main results and provide a short discussion. In Section 2, we prove the version
of Stein’s method we need. Finally, in Section 3, we use this to prove the Berry-Esseen bound for
the ICW.

1.1 The inhomogeneous Curie-Weiss model

We now formally introduce the model and present some preliminary results on this model. We
write [n] := {1, . . . , n} and to every vertex i ∈ [n] we assign a weight wi > 0. We need to make some
assumptions on the weight sequence (wi)i∈[n] which are stated below, where we write Wn = wI ,
with I ∼ Uni[n].

Condition 1.1 (Weight regularity). There exists a random variable W such that, as n → ∞,

(i) Wn
d−→ W ,
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(ii) E[W 2
n ] =

1
n

∑

i∈[n]w
2
i → E[W 2] < ∞,

(iii) E[W 3
n ] =

1
n

∑

i∈[n]w
3
i → E[W 3] < ∞.

Further, we assume that E[W ] > 0.

The inhomogeneous Curie-Weiss model is then defined as follows:

Definition 1.2 (Inhomogeneous Curie-Weiss model). Given the weights (wi)i∈[n], the inhomoge-
neous Curie-Weiss model is defined by the Boltzmann-Gibbs measure which is, for any
σ = {σi}i∈[n] ∈ {−1, 1}n, given by

µn(σ) =
e−Hn(σ)

Zn

, (1.1)

where Hn(σ) is the Hamiltonian given by

Hn(σ) = − β

2ℓn

(

∑

i∈[n]
wiσi

)2

− h
∑

i∈[n]
σi,

with β ≥ 0 the inverse temperature, h ∈ R the external magnetic field and

ℓn =
∑

i∈[n]
wi = nE[Wn],

and where Zn is the normalizing partition function, i.e.,

Zn =
∑

σ∈{−1,1}n
e−Hn(σ).

Note that we retrieve the standard Curie-Weiss model with external field by choosing wi ≡ 1.
The inhomogeneous Curie-Weiss model was obtained in [14] by annealing the Ising model over

inhomogeneous random graphs with these weights. In that case β has to be replaced by sinh β
and several error terms have to be considered. For simplicity, we here only study the model stated
above.

For a given configuration σ, let mn be the average spin value, i.e.,

mn =
1

n

∑

i∈[n]
σi.

Several properties of mn under the Boltzmann-Gibbs measure (1.1) have been obtained in [14].
We summarize the results that are important for this paper below.

In [14] first of all, it is shown that, for h 6= 0, the magnetization in the thermodynamic limit
equals

M(β, h) := lim
n→∞

E[mn] = E

[

tanh

(
√

β

E[W ]
Wx∗ + h

)]

, (1.2)
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where x∗ := x∗(β, h) is equal to the unique solution with the same sign as h of the fixed point
equation

x∗ = E

[

tanh

(
√

β

E[W ]
Wx∗ + h

)
√

β

E[W ]
W

]

. (1.3)

When h → 0, the model undergoes a phase transition, i.e., there exists a βc ≥ 0, such that the
spontaneous magnetization

M(β, 0+) := lim
hց0

M(β, h)

{

= 0, for β < βc,
> 0, for β > βc.

In [6], it is shown that for β = βc we also have that M(β, 0+) = 0. The critical value is given by

βc =
E[W ]

E[W 2]
.

We define the uniqueness CLT regime as

U = {(β, h) : β ≥ 0, h 6= 0 or 0 < β < βc, h = 0}. (1.4)

In the uniqueness CLT regime, the fixed point equation (1.3) has a unique solution, and the sum
of spins satisfies the central limit theorem, i.e., for (β, h) ∈ U ,

√
n (mn − E[mn])

d−→ N (0, χ),

where χ is the susceptibility given by

χ := χ(β, h) := lim
n→∞

∂

∂h
E[mn] =

∂

∂h
M(β, h). (1.5)

This was proved in [14] by analyzing cumulant generating functions. In this paper, we analyze the
rate of convergence for this central limit theorem.

We can make the value of the susceptibility more explicit by carrying out the differentiation of
the magnetization:

χ(β, h) =
∂

∂h
M(β, h) =

∂

∂h
E

[

tanh

(
√

β

E[W ]
Wx∗ + h

)]

= E

[(

1− tanh2

(
√

β

E[W ]
Wx∗ + h

))(

1 +

√

β

E[W ]
W

∂x∗

∂h

)]

.

Using the fixed point equation (1.3),

∂x∗

∂h
=

∂

∂h
E

[

tanh

(
√

β

E[W ]
Wx∗ + h

)
√

β

E[W ]
W

]

= E

[(

1− tanh2

(
√

β

E[W ]
Wx∗ + h

))(

1 +

√

β

E[W ]
W

∂x∗

∂h

)
√

β

E[W ]
W

]

.
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Solving for ∂x∗

∂h
gives

∂x∗

∂h
=

√

β
E[W ]

E

[(

1− tanh2
(√

β
E[W ]

Wx∗ + h
))

W
]

1− β
E[W ]

E

[(

1− tanh2
(√

β
E[W ]

Wx∗ + h
))

W 2
] ,

and hence

χ(β, h) = 1− E

[

tanh2

(
√

β

E[W ]
Wx∗ + h

)]

+

β
E[W ]

E

[(

1− tanh2
(√

β
E[W ]

Wx∗ + h
))

W
]2

1− β
E[W ]

E

[(

1− tanh2
(√

β
E[W ]

Wx∗ + h
))

W 2
] .

(1.6)
We define the finite size analogues of M(β, h) and χ(β, h), given in (1.2) and (1.6) respectively, as

Mn := Mn(β, h) := E

[

tanh

(
√

β

E[Wn]
Wnx

∗
n + h

)]

, (1.7)

and

χn := χn(β, h) := 1− E

[

tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

)]

(1.8)

+

β
E[Wn]

E

[(

1− tanh2
(√

β
E[Wn]

Wnx
∗
n + h

))

Wn

]2

1− β
E[Wn]

E

[(

1− tanh2
(√

β
E[Wn]

Wnx∗
n + h

))

W 2
n

] ,

respectively, where x∗
n := x∗

n(β, h) is equal to the unique solution (see Lemma 3.3 below that shows
this uniqueness) with the same sign as h of the fixed point equation

x∗
n = E

[

tanh

(
√

β

E[Wn]
Wnx

∗
n + h

)
√

β

E[Wn]
Wn

]

. (1.9)

1.2 Main results

Let dK denote the Kolmogorov distance, i.e., for random variables X and Y ,

dK(X, Y ) := sup
z∈R

|P(X ≤ z)− P(Y ≤ z)|.

Our main result is then as follows.

Theorem 1.3 (Berry-Esseen bound for the ICW). Let

Xn =
√
n
mn −Mn√

χn

, (1.10)
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with Mn and χn defined in (1.7) and (1.8) and let Z ∼ N (0, 1). Suppose that the weights
(wi) satisfy Condition 1.1(i)–(iii). Then, for all (β, h) ∈ U , there exists a constant 0 < C =
C(β, h, (wi)i) < ∞, such that

dK(Xn, Z) ≤
C√
n
. (1.11)

Note that the constant depends on the entire weight sequence (wi)i≥1. Since the quantities are
uniformly bounded, one can determine them knowing the entire sequence. Under Condtition 1.1(i)–
(ii),

dK(Xn, Z) = o(1).

Note that we do not normalize mn using its expectation and variance as was done in [14], but
instead use explicit quantities for this.
We prove this theorem in Section 3 by using a version of Stein’s method to estimate the distance
from a standard normal distribution of a one dimensional marginal if one has a d-dimensional
regression equation for exchangeable pairs. For this, suppose that X and X ′ are d-dimensional
random vectors for some d ≥ 1, and that (X,X ′) is an exchangeable pair, i.e., their joint distribu-
tion is symmetric. We write the vector of differences as D = X −X ′.
We suppose that we have a regression equation for (X,X ′) of the form

E[D |X ] = λΛX + λR, (1.12)

for some 0 < λ < 1, invertible matrix Λ and vector R.

Theorem 1.4 (Stein’s method). Suppose that (X,X ′) is an exchangeable pair for d-dimensional
vectors X and X ′ such that (1.12) holds. Then, with Z a standard normal random variable and
with X1 denoting the first component of vector X, we obtain

dK(X1, Z) ≤ E

[∣

∣

∣

∣

1− 1

2λ
E [ℓDD1 |X ]

∣

∣

∣

∣

]

+
1

λ
E
[∣

∣E [|ℓD|D1 |X ]
∣

∣

]

+

√
2π

4
E [|ℓR|] , (1.13)

where D1 = X1 − X ′
1, ℓ is the first row of Λ−1, i.e., ℓ := et1Λ

−1, and ℓD and ℓR, respectively,
denote the Euclidean scalar product of the vectors.

The proof of this theorem can be found in Section 2.

1.3 Discussion

Berry-Esseen bound for the sum of weighted spins In Section 3.2, we prove that also the
sum of weighted spins

∑

i∈[n]wiσi satisfies the central limit theorem. Berry-Esseen bounds for this
limit theorem can be derived in a similar way as is done for the sum of spins, although one needs
to assume the convergence of one more moment of W compared to Condition 1.1 because of the
extra factor wi. We make some more detailed remarks at the end of the paper.
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Limit theorems on the critical line. For h = 0 and β > βc, the solution to the fixed point
equation (1.3) is not unique. We expect that our bounds still hold when one conditions on the
magnetization being close to the value that corresponds to appropriate fixed point as was done for
example in the Curie-Weiss-Potts model, see [10, Theorem 1.5].

For h = 0 and β = βc the central limit theorem no longer holds. In [6], it is shown that one
has to rescale the sum of spins with a different power of n to obtain a limit theorem, and that the
limit is nonnormal. It would be interesting to generalize our methods also to this case, for example
by generalizing the density approach used in [8, 1]. However, when the weight distribution has a
sufficiently heavy tail, the limiting distribution is of a form that is not covered anymore by the
density approach.

Annealed Ising model on inhomogeneous random graphs As mentioned, the ICW arose
as an approximation for the annealed Ising model on inhomogeneous random graphs. We expect
that our results remain true for this model, although if one wants to prove this, extra error terms
caused by the approximation with the ICW have to be taken into account.

Quenched Ising model on inhomogeneous random graphs One can also look at the
quenched Ising model on inhomogeneous random graphs, i.e., the Ising model on a fixed reali-
zation of the random graph. In [13], it is shown that also in this case the central limit theorem
holds in the uniqueness CLT regime (1.4). It would be interesting to also obtain the rate of con-
vergence for this model. This model is not of mean-field type, but spins only interact with their
direct neighbors, which makes finding a suitable regression equation more difficult.

Inhomogeneous versions of other mean-field models It would be interesting to see if
results for other mean-field models, such as the ones studied in [9, 10, 15, 16], can be generalized
to an inhomogeneous setting. For this, a complete multi-dimensional version of Stein’s method for
unbounded random variables will have to be derived.

In [7], continuous spin models on random graphs were studied in the annealed setting, also
resulting in a mean-field approximation. It would be interesting to see if the central limit theorem
for the sum of spins can also be proved using our techniques for that model.

2 Stein’s method, proof of Theorem 1.4

In this section, we prove the bound in (1.13), by using ideas from [19, Theorem 2.2] and [12]. Similar
ideas to obtain one-dimensional CLTs in a multidimensional setting were used in [3, Construction
1C].

Proof of Theorem 1.4. Note that it follows from the regression equation (1.12) that, for any func-

7



tion F : Rd → R
d such that all expectations below exist,

1

2λ
E

[

(

Λ−1(X ′ −X)
)t
(F (X ′)− F (X))

]

=
1

2λ
E

[

(

Λ−1(X ′ −X)
)t
(F (X ′) + F (X))

]

+
1

λ
E

[

(

Λ−1(X −X ′)
)t
F (X)

]

=
1

λ
E

[

(

Λ−1
E[D |X ]

)t
F (X)

]

= E
[

X tF (X)
]

+ E
[

(Λ−1R)tF (X)
]

,

where we used exchangeability in the second equality and (1.12) in the last equality. In particular,
by choosing F = fe1 for some function f : R → R such that all expectations below exist and
rewriting,

E [X1f(X1)] =
1

2λ
E [ℓD (f(X1)− f(X ′

1))]− E [ℓRf(X1)] . (2.1)

Here ℓ denotes the first row of Λ−1.
For z ∈ R, let fz be the solution of the Stein equation

f ′
z(x)− xfz(x) = 1{x≤z} − Φ(z), (2.2)

where Φ(z) is the distribution function of a standard normal random variable. The background
of this equation reads as follows. A standard Gaussian random variable Z is characterized by the
fact that for every absolutely continuous function f : R → R for which E

[

Zf(Z)
]

< ∞ it holds
that

E
[

f ′(Z)− Zf(Z)
]

= 0. (2.3)

This together with the definition of the Kolmogorov-distance is the motivation to study the Stein
equation. If we replace x by a random variable X and take expectations in the Stein equation
(2.2), we infer that

E
[

f ′
z(X)−Xfz(X)

]

= P[X ≤ z]− Φ(z).

The curious fact is that the left hand side of the last equation is frequently much simpler to bound
than the right hand side and leads to the successfulness of the method.

As shown in, e.g., [2, Lemma 2.3], fz satisfies, for all x ∈ R,

|xfz(x)| ≤ 1, |f ′
z(x)| ≤ 1, 0 < fz(x) ≤

√
2π

4
, (2.4)

and xfz(x) is an increasing function of x.
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If we take x = X1 in (2.2) and take expectations on both sides, we get, also using (2.1),

P[X1 ≤ z]− Φ(z) = E [f ′
z(X1)−X1fz(X1)]

= E [f ′
z(X1)]−

1

2λ
E [ℓD (fz(X1)− fz(X

′
1))] + E [ℓRfz(X1)]

= E

[

f ′
z(X1)

(

1− 1

2λ
ℓDD1

)]

+
1

2λ
E

[

ℓD

∫ 0

−D1

f ′
z(X1)dt

]

− 1

2λ
E

[

ℓD

∫ 0

−D1

f ′
z(X1 + t)dt

]

+ E [ℓRfz(X1)]

= E

[

f ′
z(X1)

(

1− 1

2λ
E [ℓDD1 |X ]

)]

+
1

2λ
E

[

ℓD

∫ 0

−D1

(

f ′
z(X1)− f ′

z(X1 + t)
)

dt

]

+ E [ℓRfz(X1)] .

Hence, we can bound, using (2.4),

|P[X1 ≤ z]− Φ(z)| ≤ E

[∣

∣

∣

∣

1− 1

2λ
E [ℓDD1 |X ]

∣

∣

∣

∣

]

+
1

2λ

∣

∣

∣

∣

E

[

ℓD

∫ 0

−D1

(

f ′
z(X1)− f ′

z(X1 + t)
)

dt

]∣

∣

∣

∣

+

√
2π

4
E [|ℓR|] . (2.5)

We use (2.2) again to rewrite the second term as:

1

2λ

∣

∣

∣

∣

E

[

ℓD

∫ 0

−D1

(

f ′
z(X1)− f ′

z(X1 + t)
)

dt

]∣

∣

∣

∣

=
1

2λ

∣

∣

∣

∣

E

[

ℓD

∫ 0

−D1

(

X1fz(X1)− (X1 + t)fz(X1 + t) + 1{X1≤z} − 1{X1+t≤z}
)

dt

]∣

∣

∣

∣

≤ 1

2λ

(∣

∣

∣

∣

E

[

ℓD

∫ 0

−D1

(

X1fz(X1)− (X1 + t)fz(X1 + t)
)

dt

]∣

∣

∣

∣

+

∣

∣

∣

∣

E

[

ℓD

∫ 0

−D1

(

1{X1≤z} − 1{X1+t≤z}
)

dt

]∣

∣

∣

∣

)

=:
1

2λ
(|I1|+ |I2|) .

Since xfz(x) is increasing in x,

0 ≤
∫ 0

−D1

(

X1fz(X1)− (X1 + t)fz(X1 + t)
)

dt ≤
∫ 0

−D1

(

X1fz(X1)− (X1 −D1)fz(X1 −D1)
)

dt

= D1 (X1fz(X1)−X ′
1fz(X

′
1)) .

9



Hence,

I1 = E

[

ℓD
(

1{ℓD<0} + 1{ℓD>0}
)

∫ 0

−D1

(

X1fz(X1)− (X1 + t)fz(X1 + t)
)

dt

]

≤ E

[

ℓD1{ℓD>0}

∫ 0

−D1

(

X1fz(X1)− (X1 + t)fz(X1 + t)
)

dt

]

≤ E
[

|ℓD|1{ℓD>0}D1 (X1fz(X1)−X ′
1fz(X

′
1))
]

= E
[

|ℓD|
(

1{ℓD<0} + 1{ℓD>0}
)

D1X1fz(X1)
]

= E [E [|ℓD|D1 |X ]X1fz(X1)]

≤ E [|E [|ℓD|D1 |X ]|] ,

where we used that it follows from exchangeability that

E
[

|ℓD|1{ℓD>0}D1 (X
′
1fz(X

′
1))
]

= −E
[

|ℓD|1{ℓD<0}D1 (X1fz(X1))
]

,

and that |X1fz(X1)| ≤ 1. Similarly,

I1 ≥ E

[

ℓD1{ℓD<0}

∫ 0

−D1

(

X1fz(X1)− (X1 + t)fz(X1 + t)
)

dt

]

≥ −E
[

|ℓD|1{ℓD<0}D1 (X1fz(X1)−X ′
1fz(X

′
1))
]

≥ −E [|E [|ℓD|D1 |X ]|] ,

Combining the upper and lower bound on I1 gives,

|I1| ≤ E [|E [|ℓD|D1 |X ]|] . (2.6)

We can show in a similar way, using that 1{x≤z} is non-increasing in x, that also

|I2| ≤ E [|E [|ℓD|D1 |X ]|] . (2.7)

Combining (2.5), (2.6) and (2.7) proves the theorem.

3 Berry-Esseen bound for the ICW, proof of Theorem 1.3

We now use Theorem 1.4 to prove the Berry-Esseen bound in (1.11). First, we define our exchange-
able pairs and derive the regression equation in Section 3.1. Then we prove that the central limit
theorem holds for the weighted spin sum in Section 3.2 and in particular also show that certain
moments converge to that of the normal distribution. Finally, in Section 3.3, we bound all terms
of (1.13) to prove Theorem 1.3.

3.1 Exchangeable pairs and regression equation

We let Xn be as in (1.10). Let I ∼ Uni[n] and let σ′
I be drawn from the conditional distribution

given (σj)j 6=I . Define X ′
n as

X ′
n = Xn −

1√
n

σI − σ′
I√

χn
.

10



Then, (Xn, X
′
n) indeed is an exchangeable pair.

Let

M̃n := M̃n(β, h) :=

√

E[Wn]

β
x∗
n,

with x∗
n given in (1.9). Let

m̃n =
1

n

∑

j∈[n]
wjσj .

Let us define the constant

σ2(x∗
n, β, h) :=

1

1− β
E[Wn]

E

[(

1− tanh2
(√

β
E[Wn]

Wnx∗
n + h

))

W 2
n

] , (3.1)

and let χ̃n be the constant given by

χ̃n := χ̃n(β, h) := σ2(x∗
n, β, h)E

[(

1− tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

))

W 2
n

]

=
E

[(

1− tanh2
(√

β
E[Wn]

Wnx
∗
n + h

))

W 2
n

]

1− β
E[Wn]

E

[(

1− tanh2
(√

β
E[Wn]

Wnx∗
n + h

))

W 2
n

] . (3.2)

Now define X̃n as

X̃n =
√
n
m̃n − M̃n√

χ̃n

, (3.3)

and

X̃ ′
n = X̃n −

1√
n

wI(σI − σ′
I)√

χ̃n

,

so that also (X̃n, X̃
′
n) is an exchangeable pair.

From now on, we write X = (Xn, X̃n)
t and X ′ = (X ′

n, X̃
′
n)

t.
Denote by Fn the sigma algebra generated by (σi)i∈[n] and by F i

n the sigma algebra generated
by (σj)j∈[n],j 6=i. Also define

m̃i
n =

1

n

∑

j∈[n]:j 6=i

wjσj . (3.4)

Then, we can compute

µn(σi | F i
n) =

exp

(

β
2ℓn

(

∑

j∈[n]:j 6=iwjσj + wiσi

)2

+ h
∑

j∈[n] σj

)

∑

σ′
i∈{−1,1} exp

(

β
2ℓn

(

∑

j∈[n]:j 6=iwjσj + wiσ
′
i

)2

+ h
∑

j∈[n]:j 6=i σj + hσ′
i

)

=
exp

(

β
ℓn
wiσi

∑

j∈[n]:j 6=iwjσj + hσi

)

exp
(

β
ℓn
wi

∑

j∈[n]:j 6=iwjσj + h
)

+ exp
(

−
(

β
ℓn
wi

∑

j∈[n]:j 6=iwjσj + h
)) ,

11



and hence,

E[σ′
i | Fn] = E[σi | F i

n] = tanh





β

ℓn
wi

∑

j∈[n]:j 6=i

wjσj + h



 = tanh

(

βwi

E[Wn]
m̃i

n + h

)

. (3.5)

We obtain the following regression equation.

Lemma 3.1. Let us define

Gn(x; s) =
x2

2
− E

[

log cosh

(

√

β

E[Wn]
Wn(x+ s) + h

)]

, (3.6)

and Gn(x) = Gn(x; 0). Then for (β, h) ∈ U we obtain that

E

[(

Xn

X̃n

)

−
(

X ′
n

X̃ ′
n

)

| Fn

]

= λ

(

1 −c
0 1/σ2(x∗

n, β, h)

)(

Xn

X̃n

)

+ λ

(

R1 +R2

R̃1 + R̃2

)

, (3.7)

where σ2(x∗
n, β, h) is given in (3.1), and

λ = 1/n, σ2(x∗
n, β, h) =

1

G′′
n(x

∗
n)
, (3.8)

(the latter equality follows from (3.6), see below (3.20))

c =

√
χ̃n√
χn

β

E[Wn]
E

[(

1− tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

))

Wn

]

, (3.9)

and the error terms are given by

R1 =

√
n√
χn

1

n

∑

i∈[n]

(

tanh

(

βwi

E[Wn]
m̃n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

))

, (3.10)

R2 =

√
n√
χn

1

n

∑

i∈[n]

(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃n + h

)

)

+ cX̃n, (3.11)

R̃1 =

√
n√
χ̃n

1

n

∑

i∈[n]
wi

(

tanh

(

βwi

E[Wn]
m̃n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

))

, (3.12)

R̃2 =

√
n√
χ̃n

√

E[Wn]

β
G′

n

(
√

β

E[Wn]
m̃n

)

− 1

σ2(x∗
n, β, h)

X̃n. (3.13)

Proof. We start by computing E[X̃n − X̃ ′
n | Fn]. For this, note that

X̃n − X̃ ′
n =

1√
n

wI(σI − σ′
I)√

χ̃n

. (3.14)

12



Hence,

E[X̃n − X̃ ′
n | Fn] =

1√
n
√
χ̃n

1

n

∑

i∈[n]
wiE[σi − σ′

i | Fn]

=
1√

n
√
χ̃n

m̃n −
1√

n
√
χ̃n

1

n

∑

i∈[n]
wiE[σ

′
i | Fn]

=
1√

n
√
χ̃n

m̃n −
1√

n
√
χ̃n

1

n

∑

i∈[n]
wi tanh

(

βwi

E[Wn]
m̃i

n + h

)

=
1√

n
√
χ̃n

m̃n −
1√

n
√
χ̃n

1

n

∑

i∈[n]
wi tanh

(

βwi

E[Wn]
m̃n + h

)

+ λR̃1,

where R̃1 is given in (3.12). Observe that it follows immediately from the definition of Gn in (3.6)
that

G′
n(x) = x− E

[

tanh

(
√

β

E[Wn]
Wnx+ h

)
√

β

E[Wn]
Wn

]

= x− 1

n

∑

i∈[n]
tanh

(
√

β

E[Wn]
wix+ h

)
√

β

E[Wn]
wi, (3.15)

and hence, with x =
√

β
E[Wn]

m̃n,

E[X̃n − X̃ ′
n | Fn]− λR̃1 =

1√
n
√
χ̃n

√

E[Wn]

β
G′

n

(
√

β

E[Wn]
m̃n

)

=
λ

σ2(x∗
n, β, h)

X̃n + λR̃2, (3.16)

where λ and σ2(x∗
n, β, h) are given in (3.8) and R̃2 in (3.13). Note that λ

σ2(x∗
n,β,h)

X̃n is equal to the

first order Taylor expansion of G′
n around x∗

n and therefore it is to be expected that λR̃2, which is
the error made in doing so, is small.

Similarly,

E[Xn −X ′
n | Fn] =

1√
n
√
χn

mn −
1√

n
√
χn

1

n

∑

i∈[n]
tanh

(

βwi

E[Wn]
m̃i

n + h

)

= λXn +
1√

n
√
χn

1

n

∑

i∈[n]

(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃n + h

)

)

+ λR1.

Using a Taylor expansion, we see that tanh(x) ≈ tanh(a) + (1− tanh2(a))(x− a) for x close to a.
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Hence,

1√
n
√
χn

1

n

∑

i∈[n]

(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃n + h

)

)

≈ − 1√
n
√
χn

1

n

∑

i∈[n]

(

1− tanh2

(
√

β

E[Wn]
wix

∗
n + h

))

wi
β

E[Wn]

(

m̃n −
√

E[Wn]

β
x∗
n

)

= − 1√
n
√
χn

E

[(

1− tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

))

Wn

]

β

E[Wn]

√
χ̃n√
n
X̃n

= −λcX̃n, (3.17)

where c is defined in (3.9). Hence, we write

E[Xn −X ′
n | Fn] = λ(Xn − cX̃n) + λ(R1 +R2), (3.18)

where R2 is given in (3.11).
The lemma follows by combining (3.16) and (3.18).

3.2 Central limit theorem for weighted spin sums

In this section, we show that the weighted sum of spins
∑

i∈[n]wiσi obeys a central limit theorem.
We do this by showing that, if we normalize the sum properly, the moment generating function
converges to that of a normal distribution. This implies that the normalized sum converges to a
normal in distribution and, more importantly for us, that also all moments converge to that of
this normal. We also investigate sums of differently weighted spins.

We use the methods to prove the convergence of pressure of the inhomogeneous Curie-Weiss
model in [14, Sec. 2.1] to prove that certain cumulant generating functions converge, and the
methods to prove the CLT for the spin sum in [14, Sec. 2.2], of which the details can be found in
the proof of the CLT for the quenched Ising model on random graphs in [13, Sec. 2.3].

Lemma 3.2. Define the cumulant generating function

cn(s) =
1

n
logE

[

exp

(

s

√

β

E[Wn]

∑

i∈[n]
wiσi

)]

.

Then, for any constant a,

cn(s) =
1

n
log

∫∞
−∞ e

−nGn

(

x√
n
+a;s

)

dx
∫∞
−∞ e

−nGn

(

x√
n
+a

)

dx
,

where Gn(x; s) is defined in (3.6) with Gn(x) := Gn(x; 0).
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Proof. Note that

E

[

e
s
√

β

E[Wn]

∑

i∈[n] wiσi

]

=

∑

σ∈{−1,1}n e
s
√

β

E[Wn]

∑

i∈[n] wiσie
β

2nE[Wn ](
∑

i∈[n] wiσi)
2
+h

∑

i∈[n] σi

∑

σ∈{−1,1}n e
β

2nE[Wn ](
∑

i∈[n] wiσi)
2
+h

∑

i∈[n] σi

=

∑

σ∈{−1,1}n e
β

2nE[Wn](
∑

i∈[n] wiσi)
2
+
∑

i∈[n](s
√

β

E[Wn]
wi+h)σi

∑

σ∈{−1,1}n e
β

2nE[Wn](
∑

i∈[n] wiσi)
2
+h

∑

i∈[n] σi

. (3.19)

Hence, we can interpret the numerator as an inhomogeneous Curie-Weiss model, where also the

field is inhomogeneous, i.e., the field at vertex i is given by s
√

β
E[Wn]

wi + h. We can use the

Hubbard-Stratonovich transform e
t2

2 = E[etZ ], where Z is a standard normal random variable, to
rewrite the numerator of (3.19) as

∑

σ∈{−1,1}n
E

[

e

√

β

nE[Wn](
∑

i∈[n] wiσi)Z
]

e
∑

i∈[n](s
√

β

E[Wn]
wi+h)σi = 2nE

[

e
∑

i∈[n] log cosh
(√

β

E[Wn]
wi

(

Z√
n
+s

)

+h
)

]

=
2n√
2π

∫ ∞

−∞
e
∑

i∈[n] log cosh
(√

β
E[Wn]

wi

(

z√
n
+s

)

+h
)

e−
z2

2 dz

=
2n√
2π

∫ ∞

−∞
e
−n

[

1
2

(

z√
n

)2
−E

[

log cosh
(√

β

E[Wn]
Wn

(

z√
n
+s

)

+h
)]

]

dz

=
2n√
2π

∫ ∞

−∞
e
−nGn

(

z√
n
;s
)

dz =
2n√
2π

∫ ∞

−∞
e
−nGn

(

x√
n
+a;s

)

dx,

where we used the change of variables x = z − √
na in the last equality. The same computation

can be done for the denominator of (3.19), by setting s = 0.

An important role is played by the global minimum of Gn(x). In [14], it is shown that for
(β, h) ∈ U in the limit n → ∞ the global minimizer is given by the unique solution with the same
sign as h of the fixed point equation (1.3). We give a characterization of the global minimizer for
finite n in the next lemma.

Lemma 3.3. Suppose that Condition 1.1(i)–(ii) holds and that n is large enough. Then, for
0 ≤ β < βc and h = 0, the global minimizer of Gn(x) is given by x∗

n = 0. For β ≥ 0, h 6= 0, the
global minimizer of Gn(x) is given by the unique fixed point x∗

n with the same sign as h of the fixed
point equation (1.9). Furthermore, for all (β, h) ∈ U ,

G′′
n(x

∗
n) > 0.

Proof. Note that Gn is continuous and

G′
n(x) = x− E

[

tanh

(
√

β

E[Wn]
Wnx+ h

)
√

β

E[Wn]
Wn

]

,

and hence the global minimizer has to satisfy (1.9). We can also compute the second derivative:

G′′
n(x) = 1− E

[(

1− tanh2

(
√

β

E[Wn]
Wnx+ h

))

β

E[Wn]
W 2

n

]

. (3.20)
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For x 6= 0, it holds that 0 < tanh2(x) ≤ 1, and hence we can bound

G′′
n(x) > 1− β

E[W 2
n ]

E[Wn]
.

Therefore G′′
n(x) > 0 for x 6= 0 and β < βc and n large enough by Condition 1.1(ii), i.e., Gn is

strictly convex. Furthermore, using log cosh x ≤ |x|

lim
|x|→∞

Gn(x) ≥ lim
|x|→∞

x2

2
− E

[∣

∣

∣

∣

∣

√

β

E[Wn]
Wnx+ h

∣

∣

∣

∣

∣

]

= ∞. (3.21)

Therefore, for β < βc, Gn(x) has a unique local minimum, which must be a global minimum. For
h = 0 clearly x∗

n = 0 is a fixed point proving the first statement.
Now suppose that h > 0. Define

Hn(x) = E

[

tanh

(
√

β

E[Wn]
Wnx+ h

)
√

β

E[Wn]
Wn

]

.

Then Hn is continuous and

H ′
n(x) = E

[(

1− tanh2

(
√

β

E[Wn]
Wnx+ h

))

β

E[Wn]
W 2

n

]

,

and

H ′′
n(x) = −2E

[

tanh

(
√

β

E[Wn]
Wnx+ h

)(

1− tanh2

(
√

β

E[Wn]
Wnx+ h

))

(

β

E[Wn]

)3/2

W 3
n

]

.

Since Wn is a positive random variable, we conclude that Hn is concave for x ≥ 0. Since Hn(0) > 0
and Hn is bounded, there is a unique positive solution to x = Hn(x), call this solution x∗

n. Since
G′

n(0) < 0 it follows from (3.21) that x∗
n is a local minimizer. For any solution x− < 0 of (1.9),we

have that
Gn(x

−) > Gn(−x−) ≥ Gn(x
∗
n),

since x∗
n is the unique positive local minimizer. Hence, x∗

n is also the unique global minimizer.
The proof for h < 0 is similar.
Since x∗

n is the unique global minimizer, we must have that G′′
n(x) ≥ 0, so it only remains to show

that this inequality is strict for (β, h) ∈ U . For h 6= 0, we know that

lim
n→∞

χn(β, h) = χ(β, h) < ∞.

Since we can rewrite (1.8) as

χn = 1− E

[

tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

)]

+

β
E[Wn]

E

[(

1− tanh2
(√

β
E[Wn]

Wnx
∗
n + h

))

Wn

]2

G′′
n(x

∗
n)

.

it must hold that G′′
n(x

∗
n) > 0 for n large enough.
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We can now investigate the moment generating function of the normalized weighted spin sum.

Proposition 3.4. Suppose that Condition 1.1(i)–(ii) holds. Then,

lim
n→∞

E

[

exp

{

s
(

√

β

E[Wn]

1√
n

∑

i∈[n]
wiσi −

√
nx∗

n

)

}]

= ec
′′(0) s

2

2 ,

where
c(s) = lim

n→∞
cn(s),

and cn is defined in Lemma 3.2. In particular,
√

β

E[Wn]

1√
n

∑

i∈[n]
wiσi −

√
nx∗

n
d−→ N (0, c′′(0)) ,

and all moments of the l.h.s. converge to that of this normal distribution.

Proof. Note that, with sn = s√
n
,

logE

[

exp

{

s
(

√

β

E[Wn]

1√
n

∑

i∈[n]
wiσi −

√
nx∗

n

)

}]

= ncn(sn)− nsnx
∗
n

= n

(

cn(0) + (c′n(0)− x∗
n)sn + c′′n(s

∗
n)
s2n
2

)

= ncn(0) +
√
n(c′n(0)− x∗

n)s+ c′′n(s
∗
n)
s2

2
,

for some s∗n ∈ (0, sn). Clearly cn(0) = 0.
As mentioned, the numerator of (3.19) can be interpreted as the partition function of an Ising

model, and hence cn(s) is the difference of two pressures. Hence, the convergence of cn(s) can be
proved as in [14, Sec. 2.1]. Moreover, this means that the monotonicity and convexity properties
of the Ising model can be used to show that

lim
n→∞

c′′n(sn) = c′′(0),

see [13, Sec. 2.3] for details.
It remains to show that

√
n(c′n(0)− x∗

n) = o(1). For this, we use Lemma 3.2 with a = x∗
n and

d

ds
Gn(x; s) = G′

n(x+ s)− (x+ s),

to obtain that

√
n(c′n(0)− x∗

n) =
√
n

∫∞
−∞

(

x√
n
+ x∗

n −G′
n(

x√
n
+ x∗

n)
)

e
−nGn

(

x√
n
+x∗

n

)

dx

∫∞
−∞ e

−nGn

(

x√
n
+x∗

n

)

dx
−√

nx∗
n

=

∫∞
−∞

(

x−√
nG′

n(
x√
n
+ x∗

n)
)

e
−nGn

(

x√
n
+x∗

n

)

dx

∫∞
−∞ e

−nGn

(

x√
n
+x∗

n

)

dx
.
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Taylor expanding G′
n(

x√
n
+ x∗

n) and Gn(
x√
n
+ x∗

n) around x∗
n gives

√
n(c′n(0)− x∗

n) =

∫∞
−∞ (x−√

nG′
n(x

∗
n)−G′′

n(x
∗
n)x+O(1/

√
n)) e−nGn(x∗

n)−
√
nG′

n(x
∗
n)x−G′′

n(x
∗
n)

x2

2
+O(1/

√
n)dx

∫∞
−∞ e−nGn(x∗

n)−
√
nG′

n(x
∗
n)x−G′′

n(x
∗
n)

x2

2
+O(1/

√
n)dx

= (1−G′′
n(x

∗
n))

∫∞
−∞ xe−G′′

n(x
∗
n)

x2

2
+O(1/

√
n)dx

∫∞
−∞ e−G′′

n(x
∗
n)

x2

2
+O(1/

√
n)dx

+O(1/
√
n) = O(1/

√
n),

where we used that G′
n(x

∗
n) = 0 and that in the limit n → ∞ the integral in the numerator equals

0 since this is an integral over an odd function.

In the above proposition, we use an explicit centering. Instead, we can also center with the
expectation. In that case, we can prove a similar result also when the spins are weighted by
different quantities as we show now.

Lemma 3.5. Suppose that (ti)i∈[n] is a sequence satisfying Condition 1.1(i)–(ii) with Wn replaced
by Tn := tI , with I ∼ Uni[n]. Let

c̃n(s) =
1

n
logE

[

exp

(

s
∑

i∈[n]
tiσi

)]

.

Then,

lim
n→∞

E

[

exp

{

s
( 1√

n

∑

i∈[n]
ti(σi − E[σi])

)

}]

= ec̃
′′(0) s

2

2 ,

where
c̃(s) = lim

n→∞
c̃n(s).

In particular,
1√
n

∑

i∈[n]
ti(σi − E[σi])

d−→ N (0, c̃′′(0)) ,

and all moments of the l.h.s. converge to that of this normal distribution.

Proof. We proceed as in the previous proposition. We write,with sn = s√
n
,

logE

[

exp

{

s
( 1√

n

∑

i∈[n]
ti(σi − E[σi])

)

}]

= nc̃n(0) +
√
n

(

c̃′n(0)−
1

n

∑

i∈[n]
tiE[σi]

)

s+ c̃′′n(s
∗
n)
s2

2
,

for some s∗n ∈ (0, sn). Again, c̃n(0) = 0. Since c̃n(s) is a cumulant generating function,

c̃′n(0) =
1

n
E

[

∑

i∈[n]
tiσi

]

,

so that c̃′n(0)− 1
n

∑

i∈[n] tiE[σi] = 0. That limn→∞ c̃′′n(s
∗
n) = c̃′′(0) can be shown as above.
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3.3 Bounds on error terms

We are working in the setting of Lemma 3.1. Recall that X = (Xn, X̃n)
t, X ′ = (X ′

n, X̃
′
n)

t and
λ = 1

n
. Note that the inverse of the matrix Λ in (3.7) is given by

Λ−1 =

(

1 c σ2(x∗
n, β, h)

0 σ2(x∗
n, β, h)

)

,

so that with the notations of Theorem 1.4 we obtain

ℓDD1 = (Xn −X ′
n)

2 + c σ2(x2
n, β, h) (Xn −X ′

n)(X̃n − X̃ ′
n),

To prove our main result, we apply Theorem 1.4. We first bound the first term of (1.13):

Lemma 3.6. We have the following bound:

E

[∣

∣

∣

∣

1− 1

2λ
E

[

(Xn −X ′
n)

2 + c σ2(x∗
n, β, h) (Xn −X ′

n)(X̃n − X̃ ′
n)
∣

∣Fn

]

∣

∣

∣

∣

]

≤ E[|R3 +R4 +R5 + R̂3 + R̂4 + R̂5|],

where

R3 =
1

χn

1

n

∑

i∈[n]
σi

(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

)

)

,

R4 =
1

χn

1

n

∑

i∈[n]
tanh

(
√

β

E[Wn]
wix

∗
n + h

)(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− E[σi]

)

,

R5 =
1

χn

1

n

∑

i∈[n]
tanh

(
√

β

E[Wn]
wix

∗
n + h

)

(E[σi]− σi) ,

R̂3 =
c σ2(x∗

n, β, h)√
χnχ̃n

1

n

∑

i∈[n]
wiσi

(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

)

)

,

R̂4 =
c σ2(x∗

n, β, h)√
χnχ̃n

1

n

∑

i∈[n]
wi tanh

(
√

β

E[Wn]
wix

∗
n + h

)(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− E[σi]

)

,

R̂5 =
c σ2(x∗

n, β, h)√
χnχ̃n

1

n

∑

i∈[n]
wi tanh

(
√

β

E[Wn]
wix

∗
n + h

)

(E[σi]− σi) .

Proof. Note that

(Xn −X ′
n)

2 =
1

nχn
(σI − σ′

I)
2 =

2

nχn
(1− σIσ

′
I).
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Hence, also using (3.5),

1

2λ
E[(Xn −X ′

n)
2 | Fn] =

1

χn

(

1− 1

n

∑

i∈[n]
σiE[σ

′
i | Fn]

)

=
1

χn

(

1− 1

n

∑

i∈[n]
σi tanh

(

βwi

E[Wn]
m̃i

n + h

))

=
1

χn

(

1− E

[

tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

)]

)

+
1

χn

1

n

∑

i∈[n]
σi

(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

)

)

+
1

χn

1

n

∑

i∈[n]
tanh

(
√

β

E[Wn]
wix

∗
n + h

)(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− E[σi]

)

+
1

χn

1

n

∑

i∈[n]
tanh

(
√

β

E[Wn]
wix

∗
n + h

)

(E[σi]− σi)

=
1

χn

(

1− E

[

tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

)]

)

+R3 +R4 +R5.

Since

(Xn −X ′
n)(X̃n − X̃ ′

n) =
wI

n
√
χnχ̃n

(σI − σ′
I)

2 =
2wI

n
√
χnχ̃n

(1− σIσ
′
I),

it can be shown in a similar way, by incorporating the extra factor wI , that

c σ2(x∗
n, β, h)

2λ
E

[

(Xn −X ′
n)(X̃n − X̃ ′

n)
∣

∣Fn

]

=
c σ2(x∗

n, β, h)√
χnχ̃n

E

[(

1− tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

))

Wn

]

+ R̂3 + R̂4 + R̂5.

The lemma follows by observing that

1

χn

(

1− E

[

tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

)]

)

+
c σ2(x∗

n, β, h)√
χnχ̃n

E

[(

1− tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

))

Wn

]

=
1

χn

(

1− E

[

tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

)]

+

β
E[Wn]

E

[(

1− tanh2
(√

β
E[Wn]

Wnx
∗
n + h

))

Wn

]2

G′′
n(x

∗
n)

)

= 1,

which follows from (3.20) and (1.8).

We bound the second term of (1.13) in a similar way:

20



Lemma 3.7.

1

λ
E

[∣

∣

∣
E

[∣

∣

∣
(Xn −X ′

n) + c σ2(x∗
n, β, h) (X̃n − X̃ ′

n)
∣

∣

∣
(Xn −X ′

n)
∣

∣Fn

]∣

∣

∣

]

≤ 2E[|R̄3+R̄4+R̄5+Ř3+Ř4+Ř5|],

where

R̄3 =
1

χn

1

n

∑

i∈[n]

(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

)

)

,

R̄4 =
1

χn

1

n

∑

i∈[n]

(

E[σi]− tanh

(
√

β

E[Wn]
wix

∗
n + h

))

,

R̄5 =
1

χn

1

n

∑

i∈[n]
(σi − E[σi]) ,

Ř3 =
c σ2(x∗

n, β, h)√
χnχ̃n

1

n

∑

i∈[n]
wi

(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

)

)

,

Ř4 =
c σ2(x∗

n, β, h)√
χnχ̃n

1

n

∑

i∈[n]
wi

(

E[σi]− tanh

(
√

β

E[Wn]
wix

∗
n + h

))

,

Ř5 =
c σ2(x∗

n, β, h)√
χnχ̃n

1

n

∑

i∈[n]
wi (σi − E[σi]) .

Proof. We have that

|ℓD|D1 = |(Xn −X ′
n) + c σ2(x∗

n, β, h) (X̃n − X̃ ′
n)|(Xn −X ′

n)

=
1

n

[

1

χn
+

c σ2(x∗
n, β, h)√
χnχ̃n

wI

]

|σI − σ′
I |(σI − σ′

I)

=
2

n

[

1

χn
+

c σ2(x∗
n, β, h)√
χnχ̃n

wI

]

(σI − σ′
I),

where the last equality follows, since |σI − σ′
I | can only take values 2 or 0.

Hence with m̃i
n given by (3.4) we obtain

1

λ
E [|ℓD|D1 | Fn] =

2

n

n
∑

i=1

[

1

χn
+

c σ2(x∗
n, β, h)√
χnχ̃n

wi

] [

σi − tanh

(

βwi

E[Wn]
m̃i

n + h

)]

=
2

n

n
∑

i=1

[

1

χn

+
c σ2(x∗

n, β, h)√
χnχ̃n

wi

] [

(

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

)

)

+

(

E[σi]− tanh

(
√

β

E[Wn]
wix

∗
n + h

))

+ (σi − E[σi])

]

.

Expanding out both square brackets gives the six error terms of the lemma.

21



The error terms can be bounded as follows.

Lemma 3.8.

E[|R1|] ≤
β√
χn

E[W 2
n ]

E[Wn]

1√
n
,

E[|R2|] ≤
χ̃n√
χn

(

β

E[Wn]

)2

E[W 2
n ]E[X̃

2
n]

1√
n
,

E[|R3|],E[|R̄3|],E[|R4|],E[|R̄4|] ≤
β
√
χ̃n

χn

E[|X̃n|]
1√
n
+

β

χn

E[W 2
n ]

E[Wn]

1

n
,

E[|R̃1|] ≤
β√
χ̃n

E[W 3
n ]

E[Wn]

1√
n
,

E[|R̃2|] ≤ 2
√

χ̃n

(

β

E[Wn]

)2

E[W 3
n ]E[X̃

2
n]

1√
n
,

E[|R̂3|],E[|Ř3|],E[|R̂4|],E[|Ř4|] ≤
βc σ2(x∗

n, β, h)√
χn

E[W 2
n ]

E[Wn]
E[|X̃n|]

1√
n
+

βc σ2(x∗
n, β, h)√

χnχ̃n

E[W 3
n ]

E[Wn]

1

n
.

Proof. Since tanh is 1-Lipschitz, m̃n − m̃i
n = wiσi/n and |σi| = 1,

∣

∣

∣

∣

tanh

(

βwi

E[Wn]
m̃n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

)∣

∣

∣

∣

≤ βw2
i

nE[Wn]
.

From this, the bounds on R1 and R̃1 follow. Using that tanh is 1-Lipschitz, it also follows with
(3.3) that

∣

∣

∣

∣

∣

tanh

(
√

β

E[Wn]
wix

∗
n + h

)

− tanh

(

βwi

E[Wn]
m̃i

n + h

)

∣

∣

∣

∣

∣

≤ wi

∣

∣

∣

∣

∣

√

β

E[Wn]
x∗
n −

β

E[Wn]
m̃i

n

∣

∣

∣

∣

∣

= wi
β

E[Wn]

∣

∣

∣
M̃n − m̃n + wi

σi

n

∣

∣

∣
≤ wi

β
√
χ̃n

E[Wn]
|X̃n|

1√
n
+

βw2
i

nE[Wn]
.

From this, the bounds on R3, R̄3, R̂3 and Ř3 follow. Observe that, by (3.5),

E[σi] = E
[

E[σi | F i
n]
]

= E

[

tanh

(

βwi

E[Wn]
m̃i

n + h

)]

,

and | tanh(x)| ≤ 1, so that the bounds for R3 and R̂3 also hold for R4, R̄4 and R̂4, Ř4, respectively.
To bound R2, we use the Taylor expansion

tanh(x) = tanh(a) + (1− tanh2(a))(x− a)− tanh(ξ)(1− tanh2(ξ))(x− a)2,
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for some ξ between x and a. From the computations in (3.17) it follows that

|R2| ≤

∣

∣

∣

∣

∣

∣

√
n√
χn

1

n

∑

i∈[n]
tanh(ξi)(1− tanh2(ξi))

(

βwi

E[Wn]
m̃n −

√

β

E[Wn]
wix

∗
n

)2
∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

√
n√
χn

1

n

∑

i∈[n]
tanh(ξi)(1− tanh2(ξi))

(

βwi

E[Wn]

)2
χ̃n

n
X̃2

n

∣

∣

∣

∣

∣

∣

≤ χ̃n√
χn

(

β

E[Wn]

)2

E[W 2
n ]X̃

2
n

1√
n
,

where we used that | tanh(x)| ≤ 1.

To bound R̃2, we expand G′
n

(√

β
E[Wn]

m̃n

)

around x∗
n and use that G′

n(x
∗
n) = 0 by definition of

x∗
n, and use (3.3) and (3.8) to obtain that, for some ξ between

√

β
E[Wn]

m̃n and x∗
n,

R̃2 =

√
n√
χ̃n

√

E[Wn]

β
G′

n

(
√

β

E[Wn]
m̃n

)

− 1

σ2(x∗
n, β, h)

X̃n

=

√
n√
χ̃n

√

E[Wn]

β
G′′

n(x
∗
n)

(
√

β

E[Wn]
m̃n − x∗

n

)

−G′′
n(x

∗
n)X̃n

+

√
n√
χ̃n

√

E[Wn]

β
G′′′

n (ξ)

(
√

β

E[Wn]
m̃n − x∗

n

)2

=
1√
n

√

χ̃n

√

β

E[Wn]
X̃2

nG
′′′
n (ξ).

Differentiating (3.20) gives

G′′′
n (ξ) = 2

(

β

E[Wn]

)3/2

E

[

tanh

(
√

β

E[Wn]
Wnξ + h

)(

1− tanh2

(
√

β

E[Wn]
Wnξ + h

))

W 3
n

]

.

Since | tanhx| ≤ 1, we obtain

|G′′′
n (ξ)| ≤ 2

(

β

E[Wn]

)3/2

E[W 3
n ],

from which the bound on R̃2 follows.

We now combine all results to prove our main result.

Proof of Theorem 1.3. We apply Theorem 1.4. To show that the first term of (1.13) is O(1/
√
n)

it suffices to show, by Lemma 3.6, that

E[|R3|],E[|R4|],E[|R5|],E[|R̂3|],E[|R̂4|],E[|R̂5|] ≤
C√
n
,
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where C is a constant not depending on n that may change from line to line.
For the second term of (1.13), it suffices to show, by Lemma 3.7, that

E[|R̄3|],E[|R̄4|],E[|R̄5|],E[|Ř3|],E[|Ř4|],E[|Ř5|] ≤
C√
n
.

Note that it follows from Proposition 3.4 that E[|X̃n|] is uniformly bounded. By Condi-
tion 1.1(i)–(iii), also the first three moments of Wn are uniformly bounded. From this and
Lemma 3.8, the bounds on E[|R3|],E[|R̄3|],E[|R̂3|],E[|Ř3|],E[|R4|],E[|R̄4|],E[|R̂4|] and E[|Ř4|] fol-
low. Remark that this is one of the places where we see that the constant in our Berry-Esseen
bound depends on (wi)i≥1.

By rewriting

E[|R5|] =
1

χn
E





∣

∣

∣

∣

∣

∣

1√
n

∑

i∈[n]
tanh

(
√

β

E[Wn]
wix

∗
n + h

)

(σi − E[σi])

∣

∣

∣

∣

∣

∣





1√
n
,

it can be seen that E[|R5|] is of the form considered in Lemma 3.5 with ti = tanh
(√

β
E[Wn]

wix
∗
n + h

)

.

Hence, it follows from Lemma 3.5 that
√
nE[|R5|] is uniformly bounded. A similar argument holds

for R̄5, R̂5 and Ř5.

For the third term in (1.13), note that by (3.7) that R =

(

R1 +R2

R̃1 + R̃2

)

and we have that

E [|ℓR|] = E

[

|R1 +R2 + cσ2(x∗
n, β, h)(R̃1 + R̃2)|

]

,

and it follows from Lemma 3.8 and the uniform boundedness of the first three moments of Wn and
all moments of X̃n that also this term can be bounded from above by C/

√
n.

If we only assume Condition 1.1(i)–(ii) and suppose that maxi∈[n]wi ≥ c
√
n for some c > 0,

then

E[W 2
n ] =

1

n

∑

i∈[n]
w2

i ≥ c2 +
1

n

∑

i:i 6=argmaxwj

w2
i

n→∞−→ c2 + E[W 2],

which is in contradiction to Condition 1.1(ii). Hence, maxi∈[n]wi = o(
√
n) and also

E[W 3
n ] =

1

n

∑

i∈[n]
w3

i ≤ max
i∈[n]

wi E[W
2
n ] = o(

√
n).

This suffices to prove the second statement of Theorem 1.3.

When one wants to prove the Berry-Esseen bound for the weighted sum of spins, the role of
Xn and X̃n can be interchanged. In fact, Xn can be ignored in that case and in the first factor
of (1.13), we have to estimate

1

2λ
E[ℓDD1 | Fn] =

σ2(x∗
n, β, h)

χ̃n

∑

i∈[n]
w2

i (1− σiE[σ
′
i | Fn])

≈ σ2(x∗
n, β, h)

χ̃n
E

[(

1− tanh2

(
√

β

E[Wn]
Wnx

∗
n + h

))

W 2
n

]

. (3.22)
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Since we want this to be equal to 1, we choose χ̃n as in (3.2). The approximation in (3.22) can
be made precise as in Lemma 3.6 and the resulting error terms can be shown to be O(1/

√
n) as

in Lemma 3.8 under the assumption of one extra moment in Condition 1.1. Also the other terms
in (1.13) can then be shown to be O(1/

√
n) as in Lemmas 3.7 and 3.8.
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