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A REACTION COEFFICIENT IDENTIFICATION PROBLEM FOR
FRACTIONAL DIFFUSION*

ENRIQUE OTAROLAT AND TRAN NHAN TAM QUYEN?

Abstract. We analyze a reaction coefficient identification problem for the spectral fractional
powers of a symmetric, coercive, linear, elliptic, second—order operator in a bounded domain 2.
We realize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem
posed on the semi-infinite cylinder € x (0, 00). We thus consider an equivalent coefficient identifica-
tion problem, where the coefficient to be identified appears explicitly. We derive existence of local
solutions, optimality conditions, regularity estimates, and a rapid decay of solutions on the extended
domain (0,00). The latter property suggests a truncation that is suitable for numerical approxi-
mation. We thus propose and analyze a fully discrete scheme that discretizes the set of admissible
coefficients with piecewise constant functions. The discretization of the state equation relies on the
tensorization of a first-degree FEM in 2 with a suitable hp—FEM in the extended dimension. We
derive convergence results and obtain, under the assumption that in neighborhood of a local solution
the second derivative of the reduced cost functional is coercive, a priori error estimates.

Key words. coefficient identification problems, fractional diffusion, nonlocal operators, finite
elements, error estimates.
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1. Introduction. In recent times, it has become evident that many of the as-
sumptions that lead to classical models of diffusion are not always satisfactory or
even realistic: memory, heterogeneity or a multiscale structure might violate them.
In such a scenario, the assumption of locality does not hold and to describe diffusion
one needs to resort to nonlocal operators; classical integer order differential operators
fail to provide an accurate description. This is specially the case when long range
(i.e., nonlocal) interactions are to be taken into consideration. Different models of
diffusion have been proposed, fractional diffusion being one of them. An incomplete
list of problems where fractional diffusion appears includes finance [44], turbulent
flow [I7], quasi—geostrophic flows models [12] 41], models of anomalous thermoviscous
behaviors [18], peridynamics [21] [59], and imaging sciences [31} 29]. Even when hav-
ing a mathematical model based on fractional diffusion, in a practical setting could
occur that such a model is not exact: coefficients or source terms may be subject
to uncertainty or unknown. In addition, data or a priori information may be avail-
able: we may have a sparse and/or noisy measurement of the state of the system or
of an output of interest that we would like to match and/or a priori information of
some model coefficients. In such cases, one can resort to the solution of an inverse or
control problem to recover such parameters and define a more accurate, data-driven,
mathematical model. All these considerations motivate, the need to, on the basis of
physical observations, identify coefficients in a fractional diffusion model.

In this work we shall be interested in the analysis of a coefficient identification
problem for certain fractional powers of symmetric, coercive, self-adjoint, second or-
der differential operators in bounded domains with homogeneous Dirichlet boundary
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conditions. To make matters precise, for d € {2,3}, we let Q2 < R? be an open and
bounded domain with Lipschitz boundary 0€2. We define

Lw = —divy (AVw) + qu, (1.1)

supplemented with homogeneous Dirichlet boundary conditions. The diffusion matrix
A e C%1(Q,GL(R?)) is symmetric and uniformly positive definite and the reaction
term ¢ belongs to the following set of admissible coefficients:

Q:={qeLl®(Q)]0<q(z) <gae inQ}, g>0. (1.2)

For s € (0,1), we denote by £* the spectral fractional powers of the operator L.

Given s € (0,1) and a fixed function f: Q — R, we shall be concerned with the
analysis of the problem of identifying the reaction coefficient ¢ € Q in the Dirichlet
problem for fractional diffusion

L3u = fin Q (1.3)

from the observation data zs € L?(€2) of the exact solution u' satisfying the deter-
ministic noise model

Ju" = 23] 20y <6, (1.4)

where 6 > 0 denotes the level of measurement error. For f e H*({2), a weak formu-
lation for (I3 reads: Find u € H?*(§2) such that {(L%u,v) = {f,v) for all v € H*(Q).
This formulation admits a unique solution (see section 2l for notation and details).

We mention that the use of L?-observations of the exact state is quite popular
in computational inverse problems for elliptic partial differential equations (PDEs).
In practice, the observation is measured at certain points of the domain €2 and an
interpolation process is needed to derive distributed observations. Such observation
assumptions have been used by many authors; see, for instance [I], 19, [34, [35, [37]
[38, 49, 56]. As a first step, and in view of several technical difficulties that appears
in the analysis and approximation of (3], we assume that observations of u' are
available in 2. We briefly comment about the case of observations being available in
a subdomain Qs < © in Remark [5.11] below.

To solve the proposed identification problem in a stable manner, we will utilize
the standard output least squares method with Tikhonov regularization [3] [16] 23] 58].
In fact, for estimating the coefficient ¢ in (I3]) from the observations zs of the exact
solution u', we will invoke the following cost functional

1
T p@) = 51U (0) = zl72) + 52— 0" I3 0. (15)
where U denotes the so—called coefficient—to—solution operator, which associates to
an element ¢ € Q a unique weak solution u =: U(q) of problem (I3). In (T3, ¢*
corresponds to an a priori estimate of the coefficient g to be identified and p > 0
denotes the so—called regularization parameter. We will thus consider a minimizer of
the optimization problem

minJs o (q) (1.6)

as a reconstruction. One of the main difficulties in the analysis and design of solution
techniques for problem (L) is that £% is a nonlocal operator [, O] 10, [1T] 13, 14]. We
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must immediately notice that the coefficient ¢ to be identified does not appear explic-
itly neither in the strong nor the weak formulation of problem (L3]). The coefficient
q acts, however, modifying the spectrum of the differential operator £ and thus the
definition of the fractional powers L£*; see definition (2.6]) below. As a consequence,
the analysis of the coefficient identification problem (L6) is intricate.

The mathematical analysis of fractional diffusion has been one of the most studied
topics in the past decade [8 @ 10 [IT] 12, 14l 511 52, 46l [64]. A breakthrough in
the theory, that allows for the localization of L£*, is due to Caffarelli and Silvestre
[[1]. When Q = R? and £ = —A, i.e., in the case when £ coincides with the
Laplace operator in R?, Caffarelli and Silvestre proved that any power s € (0, 1) of the
fractional Laplacian (—A)® can be realized as the Dirichlet-to-Neumann map for an
extension problem posed on the upper half-space R‘ﬁl :=R? x (0,00) [II]. Such an
extension problem involves a nonuniformly but local elliptic PDE. This result was later
adapted in [I0, 14} 60] to bounded domains © and more general operators, thereby
obtaining a extension problem posed on the semi-infinite cylinder C := Q x (0, c0).
The latter corresponds to the following local boundary value problem

—div(y*AV) + qy*% =0 inC,
U =0 on 0rC, (1.7)
Ova W =dsf on Q x {0},

where A = diag{A, 1} € C%1(C, GL(R*1)) and 0.C := 09 x (0, 0) denotes the lateral
boundary of C. In addition, in (7)), ds denotes a positive normalization constant given
by ds := 2'72T(1 — 5)/T'(s) and the parameter « is defined as o := 1 — 2s € (—1,1)
(cf. [10, [IT], 14]). The conormal exterior derivative of % at © x {0} is defined by

Oy = — lim y*%,, (1.8)

y—0+

where the limit is understood in the distributional sense. We will call y € (0, ) the
extended variable and call the dimension d + 1 in Ri"‘l the extended dimension. With
the extension % at hand, the fractional powers of £ in (3] and the Dirichlet—to—
Neumann operator of problem ([7) are related by

dsL%u = 3,a? in . (1.9)

Motivated by applications to tomography and related techniques, the study of
parameter identification problems in PDEs has received considerable attention over
the past 50 years. A rather incomplete list of problems where parameter identifica-
tion problems appear includes modern medical imaging modalities, aquifer analysis,
geophysical prospecting and pollutant detection. We refer the interested reader to
[3. 4, 20, B8, [61] for a survey. In particular, the problem of identifying the reaction
coefficient in local and elliptic equations has been extensively studied; we refer the
reader to [34,[38] and references therein. In contrast to these advances, and to the best
of our knowledge, this is the first work addressing the study of a reaction coefficient
identification problem for fractional diffusion.

We provide a comprehensive treatment for a reaction coefficient identification
problem for the spectral fractional powers of a symmetric, coercive, linear, elliptic,
second—order operator in a bounded domain 2. We overcome the nonlocality of
fractional diffusion by using the results of Caffarelli and Silvestre [I1]. We realize
([C3) by (L7 and propose an equivalent identification problem. As a consequence,
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standard variational techniques are applicable since, in contrast to (3], the reaction
coefficient ¢ appears explicitly in the weak formulation of (7). This is one of the
highlights of our work. We rigorously derive existence and differentiability results,
optimality conditions and regularity estimates. We also present a numerical scheme,
and prove that there exists a sequence of local minima that converges to a local and
exact solution for all values of s.

Our presentation is organized as follows. The notation and functional setting
is described in section 2] where we also briefly describe, in §2.11 the definition of
spectral fractional diffusion and, in §2.2] its localization via the Caffarelli-Silvestre
extension property. In section [8] we introduce the extended identification problem
and prove that is equivalent to ([L6)). In addition, we derive the existence of local
solutions, study differentiability properties for the underlying coefficient—to—solution
operator, analyze optimality conditions and derive regularity estimates. In section
M we begin the numerical analysis of our problem. We introduce a truncation of
the state equation and a truncated identification problem. We derive approximation
properties of its solution. In section [B.1] we briefly recall the finite element scheme
of [2] that approximates the solution to (LT). In section we introduce a fully
discrete scheme for the truncated identification problem and derive convergence of
discrete solutions when the regularization parameter converges to zero. Finally, in
section 1.3 and under the assumption that in neighborhood of a local solution the
second derivative of the reduced cost functional is coercive, we derive convergence
results and a priori error estimates for the proposed fully discrete scheme.

2. Notation and preliminaries. We adopt the notation of [50, [53]. Through-
out this work Q is a convex polytopal subset of R? d e {2,3}, with boundary
0. Besides the semi-infinite cylinder C = Q x (0,00), we introduce the truncated
cylinder with base Q and height 9 as Cy := Q x (0,9) and its lateral boundary
0rCy := 382 x (0,9). Since the extended variable y will play a special role in the
analysis that we will perform, throughout the text, points z € C = Q x (0, 00) < R+!
will be written as

z=(2,y), 2eQcRY ye(0,0).

Whenever X is a normed space we denote by | - |x its norm and by X’ its dual.
For normed spaces X and Y we write X — Y to indicate continuous embedding.

By a < b we mean a < Cb with a constant C' that neither depends on a, b nor
the discretization parameters. The notation a ~ b signifies a < b < a. The value of
C might change at each occurrence.

Finally, since we assume (2 to be convex, in what follows we will make use, without
explicit mention, of the following regularity result [33]:

lwlm2(0) S [Lw]r2ge) Ywe H*(Q) n Hy(Q). (2.1)

2.1. Fractional powers of elliptic operators. In this section, we invoke spec-
tral theory [0 [39] and define the spectral fractional powers of the elliptic operator L.
To accomplish this task, we begin by noticing that in view of the assumptions on A
and ¢, the operator £ induces the following inner product on H}(Q):

ag : H} (Q) x H} (Q) — R, aq(w,v) = / (AVw - Vv + quv) da’. (2.2)
Q
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In addition, £ : H}(Q) — H~1(Q) defined by u — agq(u,-) is an isomorphism. The
eigenvalue problem

(A, ¢) e R x HI(Q\{0}:  aq(s,v) = M,0)12(0) Vv e H)(Q)

has a countable collection of solutions {Ag, o fken © RT x H}(Q), where {¢k}ren is
an orthonormal basis of L?({2) and an orthogonal basis of (H}(f2), aq(+,-)). The real
sequence of eigenvalues {\; }ren is enumerated in increasing order, counting multiplic-
ities and it accumulates at infinite.

With these ingredients at hand, we define, for s > 0, the fractional Sobolev space

1

[e¢] [oe] 2
H(Q) =L w= Z wier | wlws ) = (Z )\Zwi) < p. (2.3)
k=1 k=1

REMARK 2.1 (the equivalent space H*(2)). Let us denote by {uk, dr}ren the
eigenpairs of the Dirichlet Laplace operator in the bounded domain 2. Notice that
such a classic operator is obtained upon setting A = I and ¢ = 0 in (LLI)). With these
eigenpairs at hand, we define the space

1
[ee]

o0 2
HS(Q) =L w = Z ’wk;(bk | H’U}HHs(Q) = (Z uiwi) < 00 p. (24)
k=1

k=1

In the analysis that follows we will make use and mention when relevant that the
space H*(Q2), defined in ([23)), is equivalent to H*(€2): for w € H*(Q), we have that

Crlwlae () < |wlus0) < CT|wllw: (o), (2.5)

where CT and C} denote positive constants.

We denote by (-, -) the duality pairing between H*(2) and H*(Q); H *(Q) de-
notes the dual space of H*(£2). Through this duality pairing, the definition of the space
23) and the norm | - [gs(qy can both be extended to s < 0. By real interpolation
between L2(Q)) and H} (), we infer, for s € (0,1), that H*(Q) = [L?(Q), H}(Q)]s. If
s € (1,2], owing to ZII), we have that H*(Q) = H*(Q) n H}(Q) [28].

Fors=1and w = 220:1 wipr € HY(Q), we thus have that Lw = 220:1 AWk Pk €
H~(Q). For se (0,1) and w = ,°_, wrpy € H*(Q), the operator £ is defined by

0
LHN(Q) > H*(Q),  Low= ) Nwkps. (2.6)
k=1
A weak formulation for (L3]) reads as follows: Find u € H*(2) such that
LPu,vy ={f,v)y YveH(Q). (2.7)

Given f € H*(Q), problem (Z7) admits a unique weak solution u € H*(£2) [10, [14].
In addition, the following estimate can be derived [10 [I4]

lullgs @) < | flla-+)- (2.8)
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2.2. An extension property. The Caffarelli-Silvestre extension result requires
us to deal with the local but nonuniformly elliptic problem (7)) (cf. [6l [0} 1T} [14]).
It is thus instrumental to define Lebesgue and Sobolev spaces with the weight y,
where a € (—1,1). If D < R we define L?(y®, D) as the Lebesgue space for the
measure y“ dz. We also define the weighted Sobolev space

H'(y*,D):={we L*(y*, D) | [Vw| € L*(y*, D)},

where Vw is the distributional gradient of w. We equip H'(y%, D) with the norm

1

2
[l ye,py = ([w2gye o)+ IV0lE2(y00) (2.9)

Since @ € (—1,1), the weight y® belongs to the Muckenhoupt class Ag(RI*!) (cf.

22, 26, 32, 47, 63]). This in particular implies that H'(y%, D) with norm Z3) is
a Hilbert space and C®(D) n H!(y“, D) is dense in H'(y®, D) (cf. [63, Proposition
2.1.2, Corollary 2.1.6], [43] and [32, Theorem 1]).

We define the weighted Sobolev space

ﬁl(yo‘,C)z{weHl(ya,C) | w=0ond.C}, (2.10)
and immediately notice that H L(y®,C) can be equivalently defined as [14]

H'(y*,C)={w:C—>R: weH (Qx(rt) YO0<r<t<on,
w =0 on 0LC, vauLz(ya,C) < OO} (211)

As [50] inequality (2.21)] shows, the following weighted Poincaré inequality holds:
|w] 2oy < |Vl r2ec) Ywe H (y*,C). (2.12)

Consequently, the seminorm on H!(y®,C) is equivalent to (Z3).
For w e H(y®,C), trq w denotes its trace onto Q x {0} which satisfies

trgf_oll(yo‘,C) =H*(Q), [ tro w

() S Cora Wy 03 (2.13)

see [50, Proposition 2.5]. We notice that, if a function w belongs to H'(y®,C) then,
in view of (ZII), we have, for y > 0, that w(-,y) € H'/2(Q).
Define the continuous and coercive bilinear form ac : H'(y*,C) x H' (y*,C) — R:

ac(w, $)(q) = /C y* (AVw - Vé + qu) da’ dy. (2.14)

We shall simply write ac(w, ¢) or ac when no confusion arises. Notice that ac¢ induces
an inner product on H'(y®,C) and an energy norm. The latter is defined as follows:

|lwle = ac(w,w)? vYwe H'(y*,C). (2.15)

In view of the assumptions on A and ¢, we conclude that |w[c ~ [Vw| 2y c).
We now present a weak formulation for problem ([L7]):

U eH (y*,C):  ac(%,9)(q) = ds{f,trady Vo H ' (y*,C). (2.16)
6



The fundamental result of Caffarelli and Silvestre [I1], [I0, Proposition 2.2], [I4]
is stated bellow.

PROPOSITION 2.2 (Caffarelli-Silvestre extension result). Let s € (0,1) and u €
H?*(Q) be the solution to [L3)) with f e H *(Q). If Z solves [210), then

w = tro % in €, dsLu = 0y in Q, (2.17)

where ds = 21725T(1 — 5)/T'(s).
The H*(Q)-norm of u and the energy norm |-|¢ of % are related by

dsllulfe (o) = 1% 2- (2.18)

3. The extended identification problem. In order to analyze problem (L)
and design a numerical technique to efficiently solve it, we will consider an equiva-
lent minimization problem based on ([ZI6): the extended identification problem. To
describe it, we define the extended coefficient—to—solution operator

E:Q—H'(y*C), q— %), (3.1)

which, for a given coefficient ¢ € Q associates to it the unique weak solution % =:
E(q) € H'(y*,C) of problem (ZI6). With the map E at hand, we define, for p > 0
and zs € L?(€2), the cost functional

1 P
Ts.(0) = 5 1 B(a) — 23l + 5la = " o (32)
The extended identification problem thus reads as follows:

min Js,(q)- (33)

The following remark is in order.

REMARK 3.1 (non—uniqueness). Due to the lack of strict convexity of the cost
functional J5,, the uniqueness of a minimizer, when it exists, cannot be guaranteed.

The previous remark motivates the following definition [62 Section 4.4].

DEFINITION 3.2 (local solution). A coefficient ¢ is said to be a local solution for
problem (B.3)) if there exists € > 0 such that for all g € Q that satisfies ¢ — ¢ r2(n) < €
we have that J, 5(¢) < J,,5(q)-

In the following result we state the equivalence between the fractional identifica-
tion problem (L) and the extended one (B3).

THEOREM 3.3 (equivalence of (L) and ([33])). The coefficient ¢* € Q is a local
solution of (B:3) if and only if ¢* € Q is a local solution of (LH). In addition, we have

tro E(q*) = U(qh), (3.4)

where trq is defined as in §2.21
Proof. Let ¢t € Q. In view of ([2I7) we immediately conclude that trq E(gt) =
U(q*) and that

1 P 1 p
§\|U(qi) — 25 72() + QHQi — ¢* 72y = 5” tro B(q*) — 25720 + 5”‘11 — " 720

Consequently, J57p(qi) = j57p(qi). This implies our claim and concludes the proof. O
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3.1. Existence of solutions. We present the following result.

THEOREM 3.4 (existence of solutions). The regularization problem [B3) has a
solution qs,p.

Proof. Let (¢n)neny < Q be a minimizing sequence for problem B3), i.e.,

. 1 P
i (1t B0.) = 20 + lan )

n—0o0
= lnf _H tIng(Q) Z5Hl2 S 2Hq q HZ,2 2 )
qeQ 2 ) @)

such a sequence does exist by the definition of the infimum. We immediately notice
that in view of [57, Theorem 1.7] we can conclude that Q is a weakly™ compact subset
of L*(Q); see also [54, Remark 2.1] and [7, Theorem 3.16]. Consequently, we deduce
the existence of ¢s, € Q and a subsequence (gn, )ken < (Gn)nen such that (gn, )ren
converges weakly™ to ¢s , in L*(Q), i.e.,

lim [ g, xda’ = / a.pxda’ Yy e LY(Q). (3.5)
Q Q

k—o0

On the other hand, in view of (Z8), ([ZIS8), and Remark 21l we have that
(En, )ken, defined by E,, := E(q,), is bounded in H'(y* C). We conclude the
existence of © € H'(y®,C) and a nonrelabeled subsequence (E,, )ken such that

E,, —© in H'(y*,0), E,, — ©in L*(y*,C), k1 co. (3.6)

In addition, since trg : H'(y*,C) — H*() is linear and continuous, the compact
embedding H*(Q2) — L*(Q) [45, Theorem 3.27] reveals that

trq B, — trq© in H*(Q),  trq E,, — trq© in L*(Q), k1 co. (3.7)

We recall that H*(§2), that is defined in ([2.4)), is equivalent to the space H*(f2); see
Remark 21

In what follows we derive that © = E(gs,). Let n e Nand ¢ € H'(y~,C). From
definitions (ZI6) and (214, we obtain that

Ayl f, tr @) = /C Y (AVE,, - Vo + quy, Eny6) dar = /C Y (G — 15,0 da

+ / y* (AVE,, Vo +¢5,00¢) dz + / Y¥an, (B, — O)pda =: I, + I, + III,.
C C

We proceed to estimate I,. To accomplish this task, we define, a.e. x’ € Q, the
function x(2) := fooo y*O(2',y)o(2’,y) dy and notice that x € L*(). In fact,

Ixlzr ) = /Q ’/000 ya9($lay)¢($lay)dy’ da’
< [ 06 0ole’ )] ds < 1Ol z2m ) < =
where we have used that © € H'(y®,C). This, together with (&J), yields
/Cy“an®¢dx= /Qan </Owya®(x’,y)¢($’7y)dy> da’ = /Qanxdx’

—>/q5)pxd:v’=/yo‘q57p®¢dx (3.8)
Q c
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as k T o0. As a consequence, when k 1 oo, the term I, — 0.
Applying directly (B6]), we conclude, as k 1 oo, that

10 — / 4 (AVEn, - Vo + 45,00) dr — / " (AVO - V6 +¢5,08) de.  (3.9)
c c
To control the term IIlj, we proceed as follows. First, notice that

I, | =

an En, (2, y) — 0@ y)]e(',y) da’ dy‘ / G (v) dy,
where

G (y) := 4 [ Eny (5 9) = O 9) 2 @60 9) 2@ -

Since E,, € H'(y*,C), @II) implies that {E,, (-,y)} c HY2(Q) for ae. y €
(0,00). This and the trace estimate ([2I3)) allow us to conclude that {E,, (-,y)} con-
verges to O(-,y) in L?(Q2) and thus that, a.e. y € (0,0), (u (y) — 0 as ng 1 0.
In addition, it can be proved that ({,, )ken is uniformly integrable and that, for ev-
ery € > 0, there exists a set A < (0,00) of finite measure such that, for all ny,
i) 4 Gny dy < € the latter being a consequence of the exponential decay of Ey, in the
extended variable y [50, Proposition 3.1]. We can thus apply the Vitali convergence
theorem [27), Section 6] to conclude that

Iny () En, (2',y) — (2, y)]o(a',y) dz’ dy| — 0, (3.10)

Q

as k 1 oo.
It thus follows from B.8)-BI0) that

/C y* (AVO -V + 45,00) dr = du(f.tra &) Vo e H'(y.C),

i.e., we have thus proved that © = E(qgs,,).
We now invoke the fact that trg E,, — tro E(gs,,) in L*(2) and that |- |12(q) is
weakly lower semicontinuous to conclude that

1 P
Tp.s4p.6) = 5l tra Elgs,) — 25l72() + las.p —a* 1720
< liminf 1” tro En, — 26]32.q) + BHQ —q*|7-
mint | o ni £2() T 5lldn. L2(Q)
= inf 1H‘DI‘QE‘((})—Z’6H22 +£Hq_q*‘|22 :
o\ 2 L2(Q) 2 L2(Q)

Consequently, gs,, is a minimizer for problem (B.3]). This concludes the proof. O

REMARK 3.5 (local solution). With Definition[B2at hand, the results of Theorem
B4l immediately yield the existence of a local solution gs,, for (B3]).

THEOREM 3.6 (existence of solutions). The fractional regularization problem
(T6) has a solution gs,.

Proof. The result follows directly from the results of Theorems and B4l O
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3.2. Optimality conditions. We begin with a classical result.
LEMMA 3.7 (first-order optimality condition). If g5, € Q minimizes the func-
tional Js 5, then gs,, solves the variational inequality

(T5.p(85.0), 0 — @5.0) L2(52) = 0 (3.11)

for every q e Q.
To explore ([BIT)), in what follows, we derive the Fréchet and thus the Gateaux

differentiability of the map E. To accomplish this task, we follow standard arguments
(see, for instance, [48]) and define, for ¢ € Q, the map

U L*(Q) - H'(y*,C),  h— U(h) =1, (3.12)

where ¢ € H'(y,C) solves
o (0,6) (@) = = [ y"hB@)ods Vo< H'(G".C). (313)

Since h € L®(Q) and E(q) € H'(y*,C), a simple application of the Lax Milgram
Lemma reveals that there exist a unique ¢ that solves (B.I3]) together with the estimate

IVY]L2ye ey S I0lLe @)l flla-s()- (3.14)

Consequently, the map ¥ : L®(Q) — H'(y,C) is linear and continuous.

LEMMA 3.8 (first-order Fréchet differentiability). Let E : Q@ — H'(y*,C) be
the extended coefficient-to—solution operator defined in ([BIl). The map E is first—
order Fréchet differentiable. In addition, for ¢ € Q and h € L*(f2), we have that
E'(q)h = ¥(h), where ¥ is defined as in (312)-B.I3), and that

IVE" (@)hll2(yec) < 1l IRl (@), (3.15)

where the hidden constant is independent of ¢ and h.
Proof. Let ¢ € Q and consider h € L*(Q) such that ¢ + h € Q. In view of (ZI0)
and the definition of E, given by (B, we arrive at the identity
ac (E(q),9) (¢) = ds{f,tra ¢) = ac (E(q + h),d) (¢ +h)  VoeH'(y*,C). (3.16)

This, and the fact that ¢ solves BI3)) allow us to conclude that

97 AV (Bl + 1) = B(@) - Vo + (g + 1) (Bla+ 1) = B(@) 6] da
- /C YRE(Q)6de = ac (6,0) () Vo e MM (y*,C). (317)
Consequently, we arrive at
o (Bla+1) = E(a) = ¥(h).0) (g 1) = = [ y"hw(ods Vo<l (4.0,
which implies that
IV (B(g + h) — B(@) — B(0) |0 < Il n oy [ 9 (R 2y
< 1l ey Flis—e(e: (3.15)
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where, to obtain the last estimate, we have used (BI4)).

Since W : L*(Q) — H'(y*,C) is a linear and continuous map, we have thus
obtained that the map FE is first-order Fréchet differentiable and that E'(¢)h = ¥(h).
The estimate (3I3) follows from (3I4). This concludes the proof. O

Define, for g € Q and a.e 2’ € Q,

)i [ B @, y) dy. (3.19)

2
Invoking (2.8) and (2.I8), we obtain, for every ¢ € Q, that |le(q)|r1 () < HfH]%I,S(Q).
REMARK 3.9 (first-order Fréchet differentiability). Notice that, if [e(q)||L=() <
00, an alternative bound for the right-hand side of ([BI3]) can be obtained on the basis
of basic estimates and the Poincaré inequality (Z12I):

1
< Il s le (@) oy | V6] 2y -

/ Y hE(q)p da
C

The solution ) of problem BI3) thus satisfies that

1
IVYlL2(yec) < [hl2@lle(@)Ee -
Consequently,
1
IVE ()| r2(ye ) < [Pl L2l e(@)]F 0 () (3.20)

where g € Q and h € L*(Q).
We thus present the following regularity result.
LEMMA 3.10 (|e(q)]z=() < ©). Let s € (0,1) and n € {2,3}. If f € L*(Q) n
H'=%(Q), then e(q) € L®(Q).
Proof. We immediately notice that, by definition, e(z’) > 0 for a.e. 2’ € .
Now, we observe that

o0 0
div, (AV,re(q)) = / y*E(q)divy (AVy E(q)) dy + / YV E(q) AV E(q) dy.
0 0

On the other hand, since E(q) solves problem (7)), we have —divy (AVy E(q)) +
qE(q) = y=*0,(y*0,E(q)) a.e. in C. Consequently,

/0 " yE (@)[=diva: (AVa E(q)) + qE(q)] dy
= /OO E(q)oy(y*dyE(q)) dy = — lim E(q)y“ 0, E(q) — /Oo y*(0yB(q))* dy.
0 y— 0

We invoke [50), formula (2.34)] to conclude that —lim, o E(q)y*0,E(q) = u(q)dsf,
where u(q) = trq E(q) solves (L3). Thus, e = e(q) solves

— div, (AV,e) + ge = dy fulq) — /0 W VE(q)AVE(q) dy = F(2/) — G('). (3.21)

Notice that, since E(q) € H'(y*,C), we have G € L'(Q). In addition, since f €
H'=%(Q), u(g) € H'*$(Q). This implies, on the basis of a Sobolev embedding result,
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that u(q) € L5(2). Since f € L3(Q), we can thus conclude that F' € L*(Q). We now
invoke the regularity results of [50, Theorem 2.7] to explore regularity estimates for
G. In fact, on the basis of the fact that A € C%1(Q, GL(R?)), basic computations
reveal that

0

o0
|vwas/'yﬂVE@W@VEmnwr+/ y* |V E(¢)VE(g)| dy.
0 0

Thus, an application of [50, Theorem 2.7] yields

VGl £ IVE@) 2o o) Ve VE@) | L2 (ye.) + [VE(@) 7240 ¢
S | F s | fle—s ) + 1 F15-s 0y S 1Fla-o ) 1 Fle—s (-

Consequently, G € WH(Q). This, combined with a Sobolev embedding result guar-
antees that G € L*(Q) for every u < d/(d —1). Thus, F — G € L*(Q) for every
u<d/(d—1). Since  is convex, we can thus apply standard regularity estimates for
problem [B.2I)) to conclude that e(q) € W2#(Q) for every u < d/(d —1). This implies
that e(q) € L*(Q) when d = 2.

For n = 3 we proceed as follows. Notice that F(2') — G(2') < F(2') for a.e.
2/ € Q. This implies that e satisfies

—divy (AVye) +qge < Fin 2, e =0 on 0.
We now consider the problem
—divy (AVp9) +qp = F in Q, =0 on 0.

Since € is convex, elliptic regularity theory reveals that ¢ € H2(2) and thus that
¢ € L*(Q). Now, notice that —divy (AVye) +ge < F = —divy (AVy ) + gp in Q
and e = ¢ = 0 on 9. An application of a weak maximum principle [30, Theorem
8.1] allows us to conclude that e < ¢ a.e. in Q. Since e = 0 a.e. in 2, we have thus
proved that e is bounded in L*(Q2). This concludes the proof. O

To describe the variational inequality ([B.I1]), we introduce the adjoint variable

P ecH (y*,C):  ac(w, P)(q) = dsltrq E(q) — z5,w) Ywe H' (y*,C). (3.22)

With this adjoint state at hand, we define the auxiliary variable
1 o¢]
v =7 | vrE@2 (3.23)
5J0

1
Notice that, for ¢ € Q, p(q) € L*(Q) and [p(q)[r20) < le(@)]7 (0|2l L2(ye0)-
The optimality conditions (BI1]) in this setting now read as follow.
THEOREM 3.11 (first-order optimality condition). If ¢s5, € Q minimizes the
functional Js,,, then gs,, solves the variational inequality

(p(@5,0) + (5.0 = %), 0 — G5.p) 12y =0 Vg€ Q, (3.24)

where p(qs,,) € L2(Q) is defined in [B23).
Proof. Since E is differentiable, an application of (BT reveals that

(tra E(gs,p) — 25, tra E'(45,))(q — ¢5.0))22(2) + (@50 — 4% a4 — 45,0 12(2) = 0.
12



Invoking (BI3) and the results of Lemma[3.8 we obtain that E'(¢s,,)(q — gs,5) solves
ac(E'(gs,0)(a—as,0),w)(gs,0) = — /c Vv (4—5,0)E(g5,,)wdz Yw e H' (y*,C). (3.25)

By setting w = E’(¢5,,) (¢ — ¢s,p) € H'(y~,C) in B22) and using first (3:25) and then
B23) we arrive at

ds(tra E(qs,p) — 25, tra E'(¢5,0)(q — 65,0)) = ac(E'(45,0)(q — 5.p), P (65,0)) (45.0)

= —/Cy“(q — 45,0)E(q5,0) P (45,p) dx = (dsp(g5,0), 4 — G5,0) 12(02) -

This concludes the proof. O

In what follows we present higher—order differentiability results for the extended
coeflicient—to—solution operator E.

LEMMA 3.12 (high-order Fréchet differentiability). The map E : Q — H'(y*,C)
is infinitely Fréchet differentiable on the set Q@ < L*(Q). In addition, for ¢ € Q
and m = 2, the action of the m—th Fréchet derivative at ¢, E(™ (q), in the direction
(hi,hay ...y him) € L®(Q)™, that is denoted by v = E) (q)(hy, ha, ..., hm), corresponds
to the unique solution to

el .0 ac(o) ==Y [ n B @] oda (3.26)
i=1
for all ¢ € ﬁl(y“,C), where & = (h1,...,hi—1, hit1, ..., hm). Furthermore,

IVlr2iecy S IFlm-se) [ [ 1hil =) (3.27)

i=1

where the hidden constant is independent of q and h.

Proof. On the basis of an induction argument, the proof follows the arguments
developed in the proof of Lemma [B.8 For brevity we skip details. O

In order to derive error estimates for the truncated identification problem (The-
orem [LT7)) and the numerical scheme proposed in section 3] (Theorem [0, in what
follows we assume that 7, g’ 0 is coercive in a neighborhood of a local solution: If gs,
denotes a local solution for problem B3], then there exists € > 0 such that for every
q in the neighborhood |§ — g5 [ 12(q) < €, We have that

. 0
T5(@)(4:9) = 5720, (3.28)

for all ¢ € L*(2). Since a local solution ¢ belongs to Q and Js,, is Fréchet dif-
ferentiable with respect to the L*(€)-topology (see Remark ([B3) and Lemma B.T2])
the assumption ([B28)) is well-formulated; see [42] Assumption 2.20]. In the context
of inverse problems, we would like to mention [55, Theorem 3.5], where the author
proves that, for a general non-linear ill-posed problem, [328)) is satisfied provided a
structural source condition is fulfilled. Such a source condition has been proven to
be fulfilled for the local reaction coefficient identification problem that involves the
operator L (s = 1) (see, e.g., [24] [35]).
13



3.3. A regularity result. Define
1,41 (¢) (") := min {7, max {0, ¢(2)}} for all 2’ in . (3.29)

In view of [B24)), standard argument allow us to conclude that

1
45 — oy (q* - ;p(qa,n) | (3.30)

Define, for g € Q and a.e 2’ € 2,

1

b)) =5 [P0 (3.31)

The same arguments used in the proof of Lemma [B.10 allow us to conclude that
|p(q)]| 2=y < . With this estimate and the result of Lemma B.I0 at hand, we
present the following regularity estimate.

THEOREM 3.13 (regularity estimate). Let g5, be a local solution for B3). If
q* € HY(Q), then g5, € H' (). In addition, we have that
IVargs pllz2) + [ Varp(g5.0)220) S [Vard®™| 220

1 1
o I (@50 oy + (o) + sl e ) le(@s) Enys (3:32)

where the hidden constant is independent of qs,, and the problem data.
Proof. Notice that, since E(gs,) and #(gs,,) belong to H'(y~,C), definition
(323) implies that

1 0
Vm'P(qé,p) = *d_/o Y (VI'E(qé,p)g(qé,p) + E(qé,p)vz/gz(qé,p)) dy. (3.33)

Similar arguments to the ones developed in Remark combined with stability esti-
mates for the problems that E(gs,,) and #(gs,,) solve reveal that
1
IVarp(gs.0)l22) S IVE(gs.0) |22y 0) IP(45,0) 170 )
1
1925, 2.0 le(@5.0) | or o

)
1 1
< e IP(@5.)] ey + (i + Isllinec@)le(@s, )] e -

We now prove that ¢s, € H L(Q). To accomplish this task, notice that, in view
of the assumption ¢* € H'(Q), the previous estimate reveals that ¢* — p~'p(gs ) €
H(Q). We can thus invoke 40, Theorem A.1], which guarantees that, if p € H (),
then max{p,0} € H'(2), formula (3.30), and definition [B:29), to conclude that g5, €
H(Q) with the estimate

IVaerasplz) < IVarp(@s,0)l20) + IVerd™ [ 22 0)-

This concludes the proof. O
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4. The truncated identification problem. Since the extended identification
problem of section B]is posed on the semi-infinite cylinder C = 2 x (0, ), a first step
towards discretization consists in the truncation of the cylinder C to the bounded
domain Cy = Q x (0,9) and study the effect of truncation.

We begin our analysis by defining the weighted Sobolev space

ﬁl(ya,cy) = {we Hl(yo‘,Cy) cw =0 on 0rCy qu},

where Qy := Q x {7}, and the bilinear form a, : H*(y,Cy) x H'(y*,Cy) by

ay(w, d)(q) = /C'ya (AVw - Vo + quo) da.

With this setting at hand, we introduce the coefficient—to—solution operator:
H:Q— H'(y",Cy) (4.1)
which, given a coefficient ¢, associates to it the unique solution v =: H(q) of problem

ve H'(y*,Cy):  ay(v,9)(q) = d(f,trady Yo e H'(y*,Cy). (4.2)
We also introduce the cost functional

1

p
Rs,p(q) = 5” tro H(q) — 26H2L2(Q) + 5”‘1 —q* H%z(g)- (4.3)

The truncated identification problem thus reads as follows:

miy Ris,p(q)- (4.4)

To describe first—order optimality conditions we introduce the adjoint variable

peH' (y*,Cy) s ay(w,p)(q) = dltro H(q) — zs,w) Ywe H'(y*,Cy),  (4.5)

and define
1 o8]
t(q) = *d—/ y*H(q)p dy. (4.6)
s JO

Notice that in (6] we have used the trivial extension by zero for y > &
Define, for ¢ € Q and a.e 2’ € Q,

b)) =5 [ H@E Ry (4.7)
and
s0)) =5 [ ¥ ) (18)

Notice that we have used, again, trivial extensions by zero for y > 9. We immediately
notice that, an application of the results of Lemma B.I0 yield [h(q)|z» ) < o and
It(@)] Lo () < o

15



The arguments elaborated in the proof of Theorems B4l and BTl allow us to
obtain the following results.

THEOREM 4.1 (existence and first-order optimality condition). The regulariza-
tion problem (@A) has a solution rs,. In addition, if r5, minimizes [@E4), then 75,
solves the variational inequality

(v(rs,p) + p(r5,p —4%),a —75,p)L2() =0 Vg€ Q, (4.9)

where t(rs,,) € L*(Q) is defined in ([EG).

REMARK 4.2 (local solution). In view of the results of Theorem ] we conclude
that problem (@4 has a local solution 75, in the sense of Definition

The arguments elaborated in the proof of Theorem BI3] allow us to immediately
arrive at the following regularity estimate.

THEOREM 4.3 (regularity estimate). Let 15, be a local solution for ([@Z). If
q* € HY(Q), then rs, € H' (). In addition, we have that

HVI/T&PHL?(Q) + Hvz/r(T&p)HLQ(Q) < IVarg® HL?(Q)
1 1
1 e N6 (@5.0) Eon iy + (1 F ey + Izallr-e () IB(@5.0) By, (4:20)

where the hidden constant is independent of s, and the problem data.

4.1. Auxiliary estimates. The following error estimates are instrumental for
the error analysis that we will perform in section .3

LEMMA 4.4 (exponential error estimate ). Let ¢ € Q and & = 1. If % (q) and
v(q) denote the solutions to problems [2I6) and [@2), respectively, then

| tra(% (q) —v(@)|us ) S V(% (q) —v(@)|L2(ye0) S e_myﬂl”fHH*S(Q)a (4.11)

where A1 corresponds to the first eigenvalue of operator L. The hidden constant is
independent of % , v, q, and the problem data.
Proof. We invoke the problems that % (¢) and v(q) solve to arrive at

/C Y (AV(% (q) — v(q) - Vo + q(% (q) — v(@)d) dz =0 Vo e B (4°,Cy).

Notice that we have used that ¢ € H'(y*,Cy) can be extended by zero to C. An
argument based on Céa’s Lemma immediately yields

IV (% (a) = v(@)|12(ye ¢,y < WE(IV(Z (@) = E)r2yecy)r € € H (", Co)}.

The right—hand side of the previous expression is bounded as in [50, Lemma 3.3]. In
fact, [0, Lemma 3.3] provides the estimate

IV(% (@) = v(@)| 2 c) S €Vl (o).
This, combined with the fact that [50, Proposition 3.1]

VI £

IVN% (@) L2y crey) S € ()5

allows us to conclude. O
LEMMA 4.5 (exponential error estimate II). Let g € Q and r € L*(§2). We thus
have the following estimate:

1 1
T3 (@) = Ri (@] < e f ey (19(0) |0y + 18(0) |y ) 1720,
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where the hidden constant is independent of q, v, and the problem data. The func-
tionals Js5,, and Rs,, are defined by B.2) and [{@3)), respectively.
Proof. First, notice that, in view of definitions ([B.23]) and (G]), we have that

Ts.p(@)r = R p(@)r = (p(q) = ©(@), ) L2 (0)-
It thus suffices to bound the term [p(q) — t(q)||z2(q). In fact, we have that

/0 . y* [E(9)2(q) — H(qg)p(q)] dy

1
Ip(q) — (@) z2) = a

s L2(Q)

1

ds

/OOO y* [(E(q) — H(q)) Z(q) — H(q)(p(q) — Z(q))] dy

L2(Q)

Standard estimates allow us to arrive at
1
[p(a) = v(@lr2@) < IP(@7 ) E(@) — H(a)|L2(y c)

1
8@ e 12(@) — 2@ 2200

This, in view of the Poicaré inequality (212), the exponential error estimate (1T,
and the stability estimate for the problem that p(q) — £ (q) solve allow us to conclude

1
< eV p(@)d | Flir oy

T 18(@) 0 0 | tra(H (@) = E@) o) (412)

where (A1)2 = (Ai(¢))2 denotes the first eigenvalue of the operator £. Applying
(#11), again, we conclude that

1 1
(@) = @)l 2 S € F i) (P@ ooy + 0@ Fgey) - (413)

This implies the desired estimate and concludes the proof. O
LEMMA 4.6 (stability estimate). Let ¢, € Q and E be the extended coefficient—
to—solution operator defined in [BI) We thus have the following error estimate:

| tra(% (q) = % ()= ) S |V(%(0) = % (") |2(yo.0) S 6770 lg = T2,

where % (q) = E(q) and % (r) = E(r) and the hidden constant is independent of F,
q, T, and the problem data.

Proof. Since % (q) — % (r) € H'(y*,C), the first estimate follows immediately
from the trace estimate (2I3). The remaining estimate follows upon exploiting the
problems that % (¢) and % (r) solve. In fact, notice that % (q) — % (r) satisfies

/C y [AV(Z (q) — % (r) - Vo + a(% (q) — % (r)6] do + /C Y (g — 1) (o da =0

for all ¢ € H'(y™,C). We can thus set ¢ = % (q) — % (r) € H*(y*,C) and obtain, on
the basis of (ZI3]), Fubini’s theorem, and the Cauchy—Schwarz inequality that

IV (% (q) = % () 7240 )

/OOO v\ (r)(' )| (@)« y) — % (r) (2, y)] dy

Ip(q) — (@)l z2(o)

< g =7z o)

L2(Q)

Nl=

< la-rlemy ( | e [ / " @) - %(r)(x',y>|2dy] dx'> |
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where, we recall that e is defined in (I9). Thus,

V(% (@) = % ()20 ) S la = Tle2@) e oo o) 1% (0) = 2 (7] 12y )

which, in view of the Poincaré inequality (ZI2), allows us to arrive at the desired
estimate. O

4.2. Convergence. The following result is important since guarantees that ev-
ery strict local minimum of problem (B.3]) can be approximated by local minima of
@),

THEOREM 4.7 (convergence result). Let g5, € Q be a strict local minimum of
B3). Then, there exists a sequence {rs,} of local minima for @A) such that

{rsp} — a5 (4.14)

as the truncation parameter & 1 co.
Proof. Since g5, € Q is a strict local minimum of ([B3), we conclude the existence
of € > 0 such that gs,, is the unique strict solution to the following problem:

min  J5,(q),  Qas,) =1{0€ Q: |q—asplr2) <€} (4.15)
q€Q(gs5,p)

Let us now consider the following truncated optimization problem over Q(gs,,):

TEIer(qu;’p)R@p(r). (4.16)
It is immediate that Q(gs,,) # &. This implies that ([ZIG) has at least one solution.
Let 75, := 15,(9) be a solution to @IG) for 7 > 9 > 1. Notice that {rs,} is a
bounded sequence in L*(£2). As in the proof of Theorem B4 we deduce the existence
of a non-relabeled subsequence {rs,} that converges weakly* to ¢ in L*(Q2). In
addition, notice that the arguments elaborated in the proof of Theorem B.4] combined
with the results of Lemma [£.4] allow us to arrive at

Ts.p(q) < hyHi)lOIéf Rs,p(T5,p)-
We can thus conclude that

Ts5.0(a5,p) < T5,5(q) <liminfRs ,(rs,,) < limsupRs ,(7s,p)
¥ —0 Y —00

< limsup Ré,p(%,p) = j&p(qzi,p)-
y—0
Since (ID) has a unique solution, we can thus conclude that the sequence {rs,}
converges strongly in L*(Q) to gs,,: [gs,p — 75,0l 2(0) — 0 as 9 1 oo. This implies that
the constraint rs, € Q(gs,,) is not active when 9 is sufficiently large. Consequently,
s, is a local solution of problem ([@4)). This concludes the proof. O

4.3. Error estimates. The next result shows how {rs,}, a sequence of local
minima of (@4, approximates a local solution g¢s , of problem (B3]).

THEOREM 4.8 (exponential error estimate). Let g5, be a local solution of problem
@B3). If the assumption B28) holds and {rs,} denotes a sequence of local minima
of Q) that converges to qs, as ¥ 1 o0 in L*(Q), then

1 1
las.0 — sl < €l (1@ + R@IEeiy) . (47)
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where k = (A (T(;)p))% and Ai(rs,,) denotes the first eigenvalue of the operator L with
q replaced by r5,. The hidden constant is independent of qs,,, 7s,,, and the problem
data.

Proof. In view of ([B:28]), we choose € > 0 sufficiently small such that, for ¢ in the
neighborhood [|§ — ¢5,,[ 22(0) < €, the following estimate holds:

) 9
T @)(0:0) = SlalTa) Yae L7(Q). (4.18)

Since the sequence {rs ,} converges to gs, in L?(Q) as 9 1 o0, we deduce the
existence of 9p such that, for 9 > 9p, we have [ g5, — 75, L2(0) < €. We are thus able
to set, for ¥ = 9y and (€ [0,1], ¢ = r5,, — g5, and ¢ = Cgs,, + (1 — {)r5,, and invoke
the estimate (ZI8) to obtain that

0 .
5”7“5,13 — 5.0 %2(52) < T5p( (15,0 = Go.0:T6.0 = Go,0)

= j(;,p(”,p)(r&p - q&p) - jé,p(‘]&p)(r&p - q&p)-

Notice that || — g5l 2() = (1 = O g5, — 76,0l 12(0) <€
In view of (B.II) we immediately conclude that —J; (4s5,0)(7s,p — 45,0) < 0. On
the other hand, [9) reveals that —Rj ,(rs,) (75, — 45,0) = 0. Consequently,

0
s, = G020y < (T3 p(15.0): 76,0 = G5.,0) 12(2) — (R, (15,0)5 76,0 — 46,0) L2(02)-

We now exploit that J; ,(75,,) = p(75,0) + p(rs,, — ¢*) and that R ,(rs,) = t(rs,) +
p(rs,, — ¢*) to obtain the following estimate

0
5”7"5,p - q5,p“%2(9) < (p(rap) +p(rsp = 4%) 15,0 — ds,0)12(0)
= (v(r5,0) + p(rs,p — @), 75,0 — qéyp)LQ(Q) = (p(rs,p) —t(15,0) 76,0 — q&p)L?(Q)-

The control of the term (p(rs,) —t(75,), 75, — 5,p) 12() follows from Lemma L5l In
fact, we have that

1 1
Ib(rs0) — €7 ) 2@y < €41 i@y (D@ gy + 100 ey ) -

This concludes the proof. O

THEOREM 4.9 (exponential error estimate). Let g5, be a local solution of problem
B3). If the assumption B28) holds and {rs,} denotes a sequence of local minima
of Q) that converges to qs,, as ¥ 1 w0 in L*(Q), then

V(% (45.0) = v(75.0)) L2y )
1 1 1
<€ ey (14 oo o) (IP@1 7o) + (@) 30y ) )+ (419)
where k = (A1 (T(;)p))% and A1 (rs,,) denotes the first eigenvalue of the operator L with
q replaced by r5,. The hidden constant is independent of qs,,, 75,5, and the problem

data.
Proof. To derive the estimate ([@I9) we proceed as follows:

V(% (45.0) = v(r5.0)) L2y 0) < V(% (a5,0) = % (75.0))| L2y )
+HIV(# (r5.0) = v(rsp))|2(yec) = T+ 1L (4.20)
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The control of the term I follows from applying, first, the estimate of Lemma [£.6] and
then (@I7). In fact, we have that

1
1 < le(ra ) ey 060 — 70l L2

L L 1
< e (s ) 1oy | i) (IP(@) 7o) + B0 ) -
The estimate for the second term II follows from (EII)):
I < 6’“y/4\|f|\H—s<n)-

The collection of the estimates for I and II yield the desired result. O

5. A discretization scheme. In this section we present a fully discrete scheme
that approximate solutions to the fractional identification problem (L6]). In view of
the localization results of Theorem and the exponential error estimates of Theo-
rems.8 and A9l in what follows, we design and analyze an efficient solution technique
to solve the truncated identification problem ([Z4)). We begin by introducing ingredi-
ents for a suitable finite element discretization of the truncated equation ([€2).

5.1. Finite element methods. We follow [2] and introduce a finite element
technique that is based on the tensorization of a first—degree FEM in Q) with a suitable
hp—-FEM on the extended domain (0,9). The scheme achieves log—linear complexity
with respect to the number of degrees of freedom in the domain 2. To present it, we
first introduce, on the extended interval [0, 9], the following geometric meshes with
M elements and grading factor o € (0, 1):

G =A{Ln}m—r, L =1[0,90M7"], I = [0 oo™, (5.1)

with i € {2,..., M}. The main motivation for considering the meshes GM, that are
refined towards y = 0, is to compensate the rather singular behavior of %, solution
to problem ZI6), as y | 0; see [50, Theorem 2.7] and [2, Theorem 4.7]. On these

meshes, we consider a linear degree vector r = (r1,...,r3r) € NM with slope s:
r; =1+ [s(i — 1)], where ¢ = 1,2,..., M. We thus introduce the finite element space

S7((0,9),G2") = {vm € C[0,7] s varlr,, €Pr (Im), I € G om =1,..., M},
and the subspace of S7((0,9),GM) containing functions that vanish at y = 9
S101((0,9),G5") = {var € §7((0,9),G5") s v (9) = 0} .

Let 7 = {K} be a conforming partition of {) into simplices K. We denote by T a
collection of conforming and shape regular meshes that are refinements of an original
mesh 9. For 7 € T, we define hy = max{diam(K) : K € 7} and N = #.7, the
number of degrees of freedom of .7. We introduce the finite element space

Sé(Q,y) = {UhEC(Q):Uh|KEP1(K) VK e y, ’Uh|ag =0}.

With the meshes GM and .7 at hand, we define 7y = 7 ® GM and the finite—
dimensional tensor product space

VN(Zy) = S5(, 7) ® 57,,((0,7),6)) < H' (y*,C). (5:2)

We write V(Zy) if the arguments are clear from the context.
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With this discrete setting at hand, we define the finite element approximation
V € V(7y) of the solution v € H*(y,Cy) to problem ([Z2) as follows:

VeV(T): ac(V,W)(q) = dy(f, tta W) YW € V(Ty). (5.3)

The following a priori error estimate can be obtained [2] Theorem 5].

THEOREM 5.1 (a priori error estimate). For arbitrary, fived o € (0,1), let GM
be the geometric mesh defined in (B1I), where & ~ |loghz|, with a sufficiently large
implied constant, and assume that M, the number of elements in GM | satisfies cy M <
Y < oM, with absolute constants ¢; and co. If V € V(TJy) denotes the solution to
E3) then, there exists a minimal slope $min, independent of ho and f, such that for

linear degree vectors r with slope § = Sy, there holds
lu = tra Vg o) < IV(Z = V)lr2ye.c) S ha|fllm-+0)- (5.4)

The hidden constant is independent of u, %, V, f and the discretization parameters.

5.2. A fully discrete scheme. We begin by defining the discrete sets
Q7)={QeL*(Q):Qxk ePy(K) VKe T}, Qu(7)=Q(7)n Q,

and the discrete coefficient-to-solution operator F' : @ — V(.75 ), which associates to
an element ¢ € Q the unique discrete solution V' =: F(q) of problem (&3). With this
operator at hand, we define the discrete reduced cost functional

1 P
Ds (@) = 3l tra F(@Q) — 25130y + 21Q — *[32(0) (55)
and the following fully discrete approximation of the identification problem (Z4):

in D . 5.6
o 5.0(Q) (5.6)

LEMMA 5.2 (existence of discrete solutions). The discrete problem ([56) has a
solution Qs,p.

Proof. Let (Qn)neny < Qqa(7) be a minimizing sequence for problem (&@). We
thus have the existence of a nonrelabeled subsequence of (@, )nen that converges, in
the L?(Q)-norm, to an element @ of the finite dimensional space Qu4(7). Standard
arguments reveal that the sequence (F(Qy,)),,cy converges to F/(Q) in the space V(7).
This concludes the proof. 0

In order to present the following result, we define the set

Z(uh) := {qge Q| U(qg) = u'}, (5.7)

In (&), U denotes the coefficient—to—solution operator associated to problem (L3]).
We assume that u' is an exact state of our identification problem. This immediately
yields Z(u') # . Notice that, in view of Theorem [33] we have that Z(u') = {q €
Q| trq E(q) = u'}.

We now introduce the concept of ¢*-minimum-norm solution for the fractional
identification problem (L0]).

LEMMA 5.3 (¢*-minimum-norm solution). The optimization problem

: 2
oin lg — a*[ 720 (5.8)
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attains a solution, which is called a q*-minimum-norm solution of the identification
problem.
Proof. Let (¢n)nen < Z(u') be a minimizing sequence for problem (5.8), i.e.,
nhj& lgn — q* H%?(Q) = quIr%fm) lg —q* H%?(Q);

such a sequence does exist by the definition of the infimum. In view of the arguments
elaborated in the proof of Theorem [34] we deduce the existence of a subsequence
(Gny, )ken < (qn)nen and an element § € Q such that (g, )reny converges weakly to §
in L2(Q) and trq % (¢n, ) converges strongly to trq % (§) in L?(2). Since ¢,, € Z(u'),
it follows that tro % (q,,) = u' for all k € N. Consequently, ¢ € Z(u'). Now, since
|- [ z2() is a weakly lower semi-continuous function, we conclude that

I = 4" 0 < lminf lan, — 320y = i l00 — a0y = nf | Ja = a*[ sy
This means that ¢ is a solution of problem This concludes the proof. O

Since it will be instrumental in the analysis that we will perform, we introduce the
L?(Q)-orthogonal projection operator . : L?(2) — Q(7) as follows: For K € .7
and q € L?(Q2), 7, is defined as [25, Section 1.63]

1
Tl = W/Kq(:v’)dx/. (5.9)

Notice that m» Q < Qu4(Z0). In addition, for 1 < p < w0, o € (0,1], and g € WP (Q),
we have the following error estimate [25], Proposition 1.135]:

lg — marq Loy < P lalwer (o) (5.10)

In the following result we show that the finite element solutions of problem (G.6l)
converge to a ¢*-minimum-norm solution of problem (B.8]). We stress that the results
of Theorem [5:4] below do not require assuming (B:28).

THEOREM 5.4 (convergence of solutions). Let (J},,), be a sequence of con-
forming, shape-regular, and quasi-uniform meshes of 2 and let hy, := hg, be the
meshwidth of . Assume that there exists 0 <y < 1 such that q' € W2(Q) with ¢
being a solution of (B8). Let (8,), . be a sequence in RT, and consider py, := ps,, p,

neN
to be such that
52 h2Y
pn — 0, p—"HO, and pLHO as n | oo. (5.11)

Let (2n)pen = (26, ) pen e a sequence in L*() such that |[u' — 2| 12(0) < 6, and let
Qn be a minimizer of the following problem (cf. (&.6)):

. . 1 2 Pn %112
QB D, (Q)i= 3|0 (@) — 2l + F1Q - Iy (.12

Then, there exists a subsequence of (Qn)nen that converges to a solution of (B.8) in
L2(Q) asn 1 . If ' is unique, then convergence holds for the whole sequence.
Proof. Since @, is optimal for problem (5.12]), we immediately arrive at

1 Pn
Do pn(@n) < 5l 110 F(marg") = 2nli2(0) + 5 Imard’ = 0720, (5.13)
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where 7, is defined as in (59)).
We now proceed to estimate the first term on the right-hand side of (&I3). In
view of the estimates (5.4) and |u’ — z,[ 12(q) < 6n, we obtain that

| trq F(mrq") = 2nll12() < [ulmerg") —tra F(marg") | r2 () + u(a") —u(merg") 120
+ zn — U(QT)HL%Q) < Cha fl-s ) + |u(g") — U(Wm'qT)Hm(Q) +0n. (5.14)
We now invoke the extension property (2I7) and the identity ([ZI8) to arrive at
lulq") — u(mer g r2) = [tra % (q") — tra % (7rq") | L2 (o)
< | tre%(q") — tra % (mrq")|ms () < 1% (a") = % (mrq")c. (5.15)
It thus suffices to bound |% (¢') — % (7wq')|c. Let ¢ € HY(y*,C). We invoke the

problems that % (¢') and % (7,q") solve, combined with the estimates of Remark
B9 to arrive at

w@mwf%mMM@mU=Awwmtwwwmwwmwy

1
< 7mara" = 20y le(mard") e ) |6 22y c)-
This implies, in view of the estimate (B.I0), that
1
1% (q") = % (zorq") e < hY1a" w2 le(mardh)| 2o -

This, combined with (BI4)—(ETI5) allow us to conclude

1
| tro F(WCE’QT) - ZWHL2(Q) < 0n + h;yz|qT|W%2(Q) He(ﬂ—:ﬂ’qT)Hiw(Q)
+ o f -+ (5.16)
With the previous estimate at hand, we invoke (EI1)—(EI3) and conclude that

limsup [Qn — ¢*| 720y < l¢" — ¢*[72q)- (5.17)

n—ao0

The estimate (.17 yields the existence of § € Q and a non-relabeled subsequence
(Qn)nen such that (Qn)nen converges weakly™ to ¢ in L*(€2). The arguments devel-
oped in the proof of Theorem B4l thus yield | tro (% (Qn) —%(q))|l2() — 0 asn 1 .
On the other hand, the trace estimate (ZI3) and (54)), reveal that

[ tra(% (Qn) — F(Qn))ll2) S V(% (Qn) — F(Qu))ll2(ye,0) S hnl fllur-s) — 0

as n T o0. Consequently,

| tra % (@) = u'l12() = lim | tro % (Qn) — 220
< lim | tro (% (Qn) = F(@n))|L2(@) + lim | tro F(@n) = znl12(0) = 0,

where we have used that
.1 . 1 t 2
Jim o tre F(@n) = 2nllr2(@) < N ( Slltre F(marq') = 2ul12(q)

Pn
+ 2~ 0l ) =0, (518)
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which follows from (5.13)), (5I4), and (5.16). We have thus concluded that g e Z(u').
Finally, since ¢! solves ([5.8)), the fact that (Q,, )nen converges weakly to g in L2(€2),
and the estimate (5I7) allow us to conclude that

lg" — ¢* 17200 < 18— ¢*[132q) < lim inf 1Qn — ¢* 1720

< 1im5;01p 1Qn — ¢*[720) < lg" — ¢* 1720
n—

Consequently, ¢ solves (B.8). In addition, lim, « [|@rn — ¢* Hsz(Q) =g —q* HQLz(Q)-
This concludes the proof. 0

5.3. A priori error estimates. In this section we provide an a priori error anal-
ysis for the fully discrete identification problem (5.6) when approximating solutions
to ([L6). To accomplish this task, we follow [42] and introduce, for € > 0, hgy > 0,
and a local solution rs , of problem (4], the following minimization problem:

min D, , 5.19
ocn 5,0(Q) (5.19)

where the functional Dj , is defined in (B3]) and Q(rs,) = {Q € Qua(T) : |Q —
75,0l 2() < €}. The next result guarantees existence of solutions for problem (G.19J).

LEMMA 5.5 (existence of solutions). If hg is sufficiently small, then problem
EI9) has a solution Rs ,.

Proof. Define Q) := m75,. A density argument reveals that, if h is sufficiently
small, then ||Q — 75, 12(q) < €. Consequently, Q(r5,,) # . We thus invoke standard
arguments to obtain the desired result. This concludes the proof. O

In the following result, we state a coercivity property for the second order deriva-
tives of the discrete reduced cost functional in a neighborhood of a local solution 75,
of problem (4.4)).

LEMMA 5.6 (local coercivity of Df ). If the assumption [B.28) holds, 5, denotes
a local solution for problem (E4) and hg is sufficiently small, then there exist ¢ > 0
such that for every q € Q that belongs to neighborhood |G — 75, 12(Q) < €, we have
that

. 0
D5 ,(@)(a:9) = ZHqH2L2(Q)’ (5.20)

for all g € L*(Q).

Proof. See [42 Lemma 4.7]. O

LEMMA 5.7 (uniqueness). Let e > 0 be sufficiently small such that (B20) holds
for G € Q(rs,,) and ge L*(Q). If ha is sufficiently small, then problem ([G19) admits
a unique solution Rs ,.

Proof. Let us assume that problem (EI9) admits two solutions R; and Rp in
Q(rs,p) which are such that Ry # Ry. The differentiability properties of Ds , yield

1 ~
ID57P(R1) = D57P(R2) + Dé,p(R2)(R1 - RQ) + ipg,p(R)(Rl — Ry, By — R2)7
where R = (R + (1 — ()R, and € [0,1]. Notice that |R — sl L2() < €

Since Ry solves (5.19), then Dj (R2)(R1 — Rz) > 0. This and an application of
the second order optimality condition (520) allow us to conclude that

0
Ds,p(R1) = Ds,p(R2) + gHRl — Rall72q)
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which immediately yields R; = Ro. This, that is a contradiction with the fact that
R1 # R, concludes the proof. O

In the following result we show that the solution Rs , to problem (5.19) is a local
solution to problem (&.6). To accomplish this task, we follow arguments elaborated
in [T15] [42].

LEMMA 5.8 (Rs,, solves problem (5.6])). Let € > 0 be sufficiently small such that
(E20) holds for g € Q(rs,,) and g€ L*(Q). Let Rs,, be a solution of (L.19) such that
Rs, — 15, as h — 0 in L?(Q). If ho is sufficiently small, then Rs,, is a solution of
problem (B.6).

Proof. Since R, solves ([5.19), we have that

Ds p(Rs,p) < D5 p(Q) YQ € Qua(T) : |Q — 75,5

Let Q € Qua(7) such that |Q — Rs yll12() < €/2. Then, since Rs, — 75, as hg — 0
in L2(2), we have, for h sufficiently small, that

LZ(Q) < €. (521)

1Q —7s5pll2) < |Q — Rsplr2) + I1Rsp — Tsplr2(0) < €/2+¢€¢/2=¢.

Consequently, if Q € Qqq(.7) is such that |Q—Rs | 2(0) < €/2, then [|Q—75 [ 12(0) <
€. In view of (L2I]), we can thus conclude that

D§,p(R5,p) < Dé,p(Q) VQ e Qad(y) : HQ - R57p|

This proves that Rs , solves (G.6]) and concludes the proof. O
We now derive an a priori error estimate for our fully discrete scheme.
THEOREM 5.9 (a priori error estimate). Let s, be a local solution for problem
(). Let € and hg sufficiently small such that the result of Lemma [5.7 hold. If
q* € HY(Q2), we thus have the following error estimate

L2(Q) < 6/2.

I7s.0 — Rs pllL2) < ha,

where the hidden constant is independent of v5,, Rs ,, and ho.

Proof. We proceed in several steps.

We begin this step by choosing € > 0 sufficiently small such that, for ¢ € Q
that lies in the neighborhood |§ — 75, L2(0) < €, we have that

. 0
5.0(D(@0,0) = Flaliz0) VYo L*(Q), (5.22)

and, for Q € Quq(.7) in the neighborhood |Q — 75,0l L2() < €, we have that

A 0
D5,(Q)(4:9) = 7llal 72y Vae L?(Q). (5.23)
Let us now introduce the following optimization problem:

min R . 5.24
e 5.0(Q) (5.24)
We recall that Q(r5,,) := {Q € Qua(T) : |Q — 75l 12(0) < €} and that R; , is defined
in [@3). Notice that, if hs is sufficiently small, then (5.24) has a unique solution
Zs,p-
A basic application of the triangle inequality allows us to arrive at

r2@) < 75,0 = Zsplz2) + 25,0 — Rs pll2(0)- (5.25)
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We proceed to estimate the term |5, — Zs [ 12(q). To accomplish this task,
we set, for ¢ € [0,1], § = (r5,, + (1 — () Zs,, and notice that
1G = rsplr2) = (1= Qlrsp — Zspllrz@) < (1 =Qe<e

We can thus invoke (5.22) with g = 5, — Z5,, and obtain that

0 R

3 Irs.0 — Z&pH%Q(Q) S Rg,p(Q)(T&p — Zs,ps 5.0 — Zs,p)

= Rg,p(T‘qu)(T&P - Z&p) - %,p(Z&p)(T&p - Z&p)

= Rg,p(r&p)(”,p — Zs.p) — g,p(Zé,p)(r&p — TMarTs,p) — Rg,p(Z&p)(WCE’r&p — Zs.p);

7. denotes the L2(2)-orthogonal projection operator introduced in (5.9).

We now invoke the optimality condition [.3) to arrive at R ,(rs,,)(rs,0 — Zs,p) <
0. On the other hand, the optimality condition for problem (5.24]), for h sufficiently
small, yields —R ,(Zs ) (72750 — Zs,p) < 0. Thus,

0
lrse = Zs.pl 120y < —R5,,(Zs )5, — Tarts,p)-

Notice that Rg,p(z&p)(”,p —wrs,p) = (¢(Zs,p) +0(Zsp—q%), 76,0 — 7T1’T51P)L2(Q)' On

the other hand, since Zs, € Q(.7), (B9) yields p(Zs,,7s,, — Ta'75,)12() = 0. We
can thus use (59, again, to arrive at the estimate

4
2

75,0 — Zs.p |%2(Q) < p(q* — o q* 5,0 — TwTs,p) L2(0)
— ((Zs,p) = Tart(Zs,p), 75,0 — TarTs,0) 12() -

Consequently,
I76.0 = Zs,plZ2() < Irs0 = Torrspli2@) + 16(Zs,p) — Tat(Zs,)| 220
0 = ma® 2oy < 0 (1900 Bagq + IVars ol 2ag) + Vot Zsp) 3 )

Notice that, in view of the fact that ¢* € H*(f2), the regularity results of Theorem F3]

allow us to conclude that the norms involved in the right-hand side of the previous

expression are uniformly bounded.
We now estimate | Zs, — Rs, |

r2(@) in ([E25). To accomplish this task, we set

Q = CRé,p + (1 - C)Zé,pa C € [07 1]7

and notice that |Q — 75, r2(0) < ¢ Rsp — roplrzca) + (1= Ol Zsp —r5pl1200) < €.
We can thus invoke the second order optimality condition (5.23)) with ¢ = Z5, — Rs,,,
to arrive at

0 R
ZHR&p - Z&p”%?(ﬂ) S Dg,p(Q)(R&p = Zs.ps Rsp = Zs,p)

= ’Dé,p(R&p)(R&p - Z57p) - D:S,p(Z&p)(R&p - Zti,p)-

We now invoke the first—order optimality condition for problem (B.6]) and conclude
that Dj (Rs,,)(Rs,p — Zs,p) < 0. On the other hand, the first-order optimality con-
dition for (5.24)) yields R ,(Zs,)(Rs,p — Zs,5) = 0. Thus,

0
ZHR&p - Z&p”%?(ﬂ) < Rg,p(z&p)(R&p — Zs,p) — Dg,p(Z5>P)(R5>P — Zs.p)-
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Consequently, we can obtain that || R, — Zs ,|12(q) < ho.

The assertion follows from collecting all the estimates we obtained in previous
steps. O

We conclude with the following result.

COROLLARY 5.10 (a priori error estimates). Let 15, be a local solution for prob-
lem (Z4). Let € and hg sufficiently small such that the result of Lemma[5.7 hold. If
q* € H'(Q), we thus have the existence of a sequence {Qs,,} of local minima of (G.6)
such that

75,0 — Qs,pllL2(0) < ho,

where the hidden constant is independent of 75 ,, Qs,p, and ha.
Proof. The results of Lemma show that R; , solves (5.6). The desired error
estimate thus follows from Theorem O
REMARK 5.11 (extensions). We discuss a few extensions of this work.
e QObservations on a subdomain. Let us consider the case where observations of
the exact solution u' are only available in a subset Qqps of : 25 € L?(Qops)-
Let us consider a suitable L?(§)-extension of zs:

s )% in Qobs,
5= .
u* in - O\Qops

where u* is an a priori estimate of the data. With this extension at hand, we
can write the following extended minimization problem:

- S 1 ~ p
i To.p @), Ts,0(q) := 5l tra B(g) — 25l + gla— 0* 2. (5:26)
It can be proved that this problem attains a solution gs ,, as in the case with
full observations, which is also a minimizer of the original problem

min J5 ,(q),  Js.,(q) := LU(e) - 25200 + Cla— ¢ oy (5.27)
q€Q 2 2
The design of an efficient solution technique may be of interest.

e Boundary observations. Boundary observations have been considered for co-
efficient identification problems involving simple PDEs; see [36] and references
therein. If £ is supplemented with Neumann boundary conditions, the ar-
guments developed in our work could be of use for exploring identification
problems when boundary measurements are considered.
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