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CHARACTERIZATIONS OF THE dTH-POWER RESIDUE MATRICES OVER

FINITE FIELDS

EVAN P. DUMMIT

Abstract. In a recent paper of the author with D. Dummit and H. Kisilevsky, we constructed a
collection of matrices defined by quadratic residue symbols, termed “quadratic residue matrices”,
associated to the splitting behavior of prime ideals in a composite of quadratic extensions of Q, and
proved a simple criterion characterizing such matrices. We then analyzed the analogous classes of
matrices constructed from the cubic and quartic residue symbols for a set of prime ideals of Q(

√

−3)
and Q(i), respectively. In this paper, the goal is to construct and study the finite-field analogues of
these residue matrices, the “dth-power residue matrices”, using the general dth-power residue symbol
over a finite field.

1. The dth-Power Residue Matrices

Our goal is to study the appropriate analogue of the residue matrices constructed in [1] in the finite-field
setting.

Let q be a prime power and d be a positive integer with d dividing q − 1, and let Fq denote the finite
field with q elements. We begin by recalling the standard definition and some basic properties of the
dth-power residue symbol for polynomials in Fq[t] .

Definition. If P is a monic irreducible polynomial over Fq and a ∈ Fq[t] is relatively prime to P , the

dth-power residue symbol
( a

P

)

d
is defined to be the unique dth root of unity in Fq with

( a

P

)

d
≡ a(|P |−1)/d (mod P )

where |P | denotes the norm of P , defined as qdeg(P ), the cardinality of Fq[t]/(P ).

We remark here that the dth power residue map
( ·

P

)

d
is a surjective homomorphism from the mul-

tiplicative group of nonzero residue classes modulo P to the group of dth roots of unity in Fq.

It will be convenient instead to consider the dth-power residue symbol as taking values in C: to this
end, choose a fixed isomorphism ϕ of the dth roots of unity in Fq with the complex dth roots of unity.

Definition. If P is a monic irreducible polynomial over Fq and a ∈ Fq[t], we define the modified

dth-power residue symbol
[ a

P

]

d
to be the complex root of unity with

[ a

P

]

d
= ϕ

(( a

P

)

d

)

.

We remark here (and will justify later) that the resulting class of matrices is independent of the
isomorphism ϕ: any other isomorphism will produce the same class of matrices.

Definition. Let d be a positive integer. A “cyclotomic sign matrix of dth roots of unity” is an n× n
matrix whose diagonal entries are all 0 and whose off-diagonal entries are all complex dth roots of
unity.

With the correct class of matrices in hand, we can now define the dth-power residue matrices.
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Definition. Let q be a prime power and d be an integer dividing q − 1. The “dth-power residue”
matrix associated to the monic irreducible polynomials P1, P2, . . . , Pn in Fq[t] is the n × n matrix

whose (i, j)-entry is the dth power residue symbol

[

Pi

Pj

]

d

.

Notice that the dth-power residue matrices are cyclotomic sign matrices of dth roots of unity. We
would like to characterize, for a given d and q, which cyclotomic sign matrices of dth roots of unity
actually arise as the dth-power residue matrix associated to some set of monic irreducible polynomials
over Fq. We should naturally expect dth-power reciprocity to impose some conditions.

Over Fq[t] the dth-power reciprocity law is as follows (cf. Theorem 3.3 of [3]): for any monic irreducible
polynomials P and Q in Fq[t],

(

P

Q

)

d

= (−1)(q−1) deg(P ) deg(Q)/d

(

Q

P

)

d

and for the modified residue symbols the statement is the same [except with square brackets].

2. Characterizations of the dth-Power Residue Matrices

Observe that if (q − 1)/d is even then the dth-power reciprocity law is symmetric, and thus all of the
dth-power matrices are symmetric. The converse is also true:

Theorem 1. Let q be a prime power and d be an integer dividing q − 1 with (q − 1)/d even. If M is
an n× n cyclotomic sign matrix of dth roots of unity, then the following are equivalent:

(a) The matrix M is symmetric.
(b) The matrix M is the dth-power residue matrix associated to distinct monic irreducible polyno-

mials P1, P2, . . . , Pn in Fq[t].

Proof. (a) implies (b): We inductively construct monic irreducible polynomials P1, . . . , Pn for which
M is the dth-power residue matrix. For the base case, let P1 be any monic irreducible polynomial of
positive degree. For the inductive step, suppose that P1, ... , Pk are monic irreducible polynomials

such that

[

Pi

Pj

]

d

= mi,j for 1 ≤ i, j ≤ k. For each 1 ≤ j ≤ k, choose a nonzero residue class uj modulo

Pj such that

[

uj

Pj

]

d

= mk+1,j . By the Chinese Remainder Theorem and Kornblum’s function-field

analogue of Dirichlet’s Theorem on primes in arithmetic progression (cf. Theorem 4.7 of [R]) we may
choose a monic irreducible polynomial Pk+1 satisfying the congruences Pk+1 ≡ uj (mod Pj) for all

1 ≤ j ≤ k. By construction, we have

[

Pk+1

Pj

]

d

= mk+1,j for all 1 ≤ j ≤ k, and dth-power reciprocity

along with the form of M ensures that also

[

Pi

Pk+1

]

d

= mi,k+1 for all 1 ≤ i ≤ k is satisfied. Thus, M

is the dth-power residue matrix associated to P1, . . . , Pn, as claimed.

(b) implies (a): This follows immediately from dth-power reciprocity, since
(

Pi

Pj

)

d

=

(

Pj

Pi

)

d

for all pairs (i, j) with i 6= j. �

When (q − 1)/d is odd, dth-power reciprocity takes a form quite similar to quadratic reciprocity over
Q, with polynomials of even and odd degree behaving like rational primes congruent to 1 and 3 (mod

4), respectively: if either P or Q has even degree, then
(

P
Q

)

d
=
(

Q
P

)

d
, and if both have odd degree

then
(

P
Q

)

d
= −

(

Q
P

)

d
.
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Observe that the property of whether a cyclotomic sign matrix is a dth-power residue matrix is invariant
under conjugation by a permutation matrix (simply permute the underlying polynomials accordingly).
If we reorder the polynomials so that the first s have odd degree and the remaining n− s have even
degree, then by dth-power reciprocity the associated dth-power residue matrix M has the form

(

A B
Bt S

)

where A is an s×s skew-symmetric cyclotomic sign matrix of dth roots of unity, S is an (n−s)×(n−s)
symmetric cyclotomic sign matrix of dth roots of unity, and B is an s × (n − s) matrix all of whose
entries are dth roots of unity. (Here Bt denotes the transpose of B.)

We now show that every matrix having the form above is a dth-power residue matrix when (q − 1)/d
is odd, and give an additional characterization:

Theorem 2. Let q be a prime power and d be an integer dividing q − 1 with (q − 1)/d odd. If M is
an n× n cyclotomic sign matrix of dth roots of unity, then the following are equivalent:

(a) There exists an integer s with 1 ≤ s ≤ n such that the matrix M can be conjugated by a
permutation matrix into a block matrix of the form

(

A B
Bt S

)

where A is an s × s skew-symmetric cyclotomic sign matrix of dth roots of unity, S is an
(n−s)× (n−s) symmetric cyclotomic sign matrix of dth roots of unity, and B is an s× (n−s)
matrix all of whose entries are dth roots of unity. (Here Bt denotes the transpose of B.)

(b) The matrix M is the dth-power residue matrix associated to a set of distinct monic irreducible
polynomials P1, P2, . . . , Pn in Fq[t].

(c) If M = (mj,k), then mj,k = ±mk,j for all j, k with 1 ≤ j, k ≤ n, and there exists an integer s

with 1 ≤ s ≤ n such that the diagonal entries of MM consist of s occurrences of n + 1 − 2s
and n− s occurrences of n− 1.

Proof. (a) implies (b): Follows by the same proof as in Theorem 1, except we additionally impose the
condition that the degree of the polynomial Pk+1 is odd if k ≤ s or even if k > s, in order to obtain
the correct entries below the diagonal.

(b) implies (c): Suppose that M is the dth-power residue matrix associated to the distinct monic
irreducible polynomials P1, . . . , Pn. The first part of the criterion in (c) follows immediately from
dth-power reciprocity.

For the second part, rearrange the polynomials, if necessary, so that the first s have odd degree and
the remaining n − s have even degree. Note also that for any dth root of unity r in Fq, ϕ(r

−1) =

ϕ(r)−1 = ϕ(r).

For 1 ≤ j ≤ s, the jth diagonal element of MM is

(MM)j,j =

n
∑

k=1

[

Pj

Pk

]

d

[

Pk

Pj

]

d

=

n
∑

k=1

ϕ

(

(

Pj

Pk

)

d

(

Pk

Pj

)−1

d

)

= n+ 1− 2s

since by dth-power reciprocity the first s terms are −1 (except for the jth, which is 0), and the other
n− s terms are +1.

For s+ 1 ≤ j ≤ n, the jth diagonal element of MM is

(MM)j,j =

n
∑

k=1

[

Pj

Pk

]

d

[

Pk

Pj

]

d

=

n
∑

k=1

ϕ

(

(

Pj

Pk

)

d

(

Pk

Pj

)−1

d

)

= n− 1

since by dth-power reciprocity all terms are +1 (except for the jth, which is 0), proving (c).
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(c) implies (a): Suppose that mj,k = ±mk,j for each pair (j, k), and that the diagonal entries of the

matrix MM consist of s occurrences of n+ 1− 2s and n− s occurrences of n− 1.

Whenever j 6= k, by the assumptions that mj,k = ±mk,j and that the mj,k are dth roots of unity, we
see that mj,kmk,j is either +1 (when mj,k = mk,j) or −1 (when mj,k = −mk,j).

By conjugating M by an appropriate permutation matrix we may place the s occurrences of n+1− 2s
in the first s rows of MM . For s < j ≤ n, we have

(MM)j,j =

n
∑

k=1

mj,kmk,j = n− 1,

but since there are only n − 1 nonzero terms in the sum, we necessarily have mj,kmk,j = 1 for each
j 6= k, and hence mj,k = mk,j for all 1 ≤ k ≤ n and s < j ≤ n.

For 1 ≤ j ≤ s, we have

(MM)j,j =

n
∑

k=1

mj,kmk,j = n+ 1− 2 ·#{1 ≤ k ≤ s : mj,kmk,j = −1}

since mj,kmk,j = +1 whenever j > s and mj,kmk,j can only be 1 or −1. But now since there at

most s terms in the count, and (MM)j,j = n + 1 − 2s, we see that mj,kmk,j = −1 and hence that
mj,k = −mk,j for 1 ≤ k ≤ s. Thus M has the form in (a), completing the proof. �

Remark. Observe that both condition (a) of Theorem 1, and conditions (a) and (c) of Theorem 2,
are wholly independent of the choice of isomorphism ϕ between the dth roots of unity in Fq and the
complex dth roots of unity, and therefore we see that the classes of dth-power residue matrices are the
same no matter which ϕ is used.

In a similar manner to the way the quadratic, cubic, and quartic residue matrices classify certain types
of decomposition configurations over number fields (cf. [2]), the fact that not every n× n cyclotomic
sign matrix of dth roots of unity arises as a dth-power residue matrix has implications for the possible
decomposition configurations for primes in abelian extensions of Fq(t) with Galois group (Z/dZ)n.
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