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CHARACTERIZATIONS OF THE dTH-POWER RESIDUE MATRICES OVER
FINITE FIELDS

EVAN P. DUMMIT

ABSTRACT. In a recent paper of the author with D. Dummit and H. Kisilevsky, we constructed a
collection of matrices defined by quadratic residue symbols, termed “quadratic residue matrices”,
associated to the splitting behavior of prime ideals in a composite of quadratic extensions of Q, and
proved a simple criterion characterizing such matrices. We then analyzed the analogous classes of
matrices constructed from the cubic and quartic residue symbols for a set of prime ideals of Q(v/—3)
and Q(¢), respectively. In this paper, the goal is to construct and study the finite-field analogues of
these residue matrices, the “dth-power residue matrices”, using the general dth-power residue symbol
over a finite field.

1. THE dTH-POWER RESIDUE MATRICES

Our goal is to study the appropriate analogue of the residue matrices constructed in [I] in the finite-field
setting.

Let g be a prime power and d be a positive integer with d dividing ¢ — 1, and let IF; denote the finite
field with ¢ elements. We begin by recalling the standard definition and some basic properties of the
dth-power residue symbol for polynomials in F[t] .

Definition. If P is a monic irreducible polynomial over F, and a € F,[¢] is relatively prime to P, the

dth-power residue symbol ( %) is defined to be the unique dth root of unity in F, with
d

ay _ (PI-1)/d
(P)d =a (mod P)

where |P| denotes the norm of P, defined as ¢2°¢(") the cardinality of F,[t]/(P).

We remark here that the dth power residue map (F) is a surjective homomorphism from the mul-
tiplicative group of nonzero residue classes modulo P to the group of dth roots of unity in IF,.

It will be convenient instead to consider the dth-power residue symbol as taking values in C: to this
end, choose a fixed isomorphism ¢ of the dth roots of unity in F; with the complex dth roots of unity.

Definition. If P is a monic irreducible polynomial over F, and a € F,[t], we define the modified

dth-power residue symbol {E} to be the complex root of unity with {2} =y ((ﬁ) )

Plg Pla PJa
We remark here (and will justify later) that the resulting class of matrices is independent of the
isomorphism ¢: any other isomorphism will produce the same class of matrices.

Definition. Let d be a positive integer. A “cyclotomic sign matrix of dth roots of unity” is an n x n
matrix whose diagonal entries are all 0 and whose off-diagonal entries are all complex dth roots of
unity.

With the correct class of matrices in hand, we can now define the dth-power residue matrices.
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Definition. Let g be a prime power and d be an integer dividing ¢ — 1. The “dth-power residue”
matrix associated to the monic irreducible polynomials P, Ps, ..., P, in Fy[t] is the n x n matrix

P.
whose (i, j)-entry is the dth power residue symbol [Fl] .
Jjla
Notice that the dth-power residue matrices are cyclotomic sign matrices of dth roots of unity. We
would like to characterize, for a given d and ¢, which cyclotomic sign matrices of dth roots of unity
actually arise as the dth-power residue matrix associated to some set of monic irreducible polynomials
over F,. We should naturally expect dth-power reciprocity to impose some conditions.

Over F,[t] the dth-power reciprocity law is as follows (cf. Theorem 3.3 of [3]): for any monic irreducible

polynomials P and @ in F,[t],
(f) _ (< 1)(a—1) dex(P) dex(@)/d (Q)
Q d P d

and for the modified residue symbols the statement is the same [except with square brackets].

2. CHARACTERIZATIONS OF THE dTH-POWER RESIDUE MATRICES

Observe that if (¢ — 1)/d is even then the dth-power reciprocity law is symmetric, and thus all of the
dth-power matrices are symmetric. The converse is also true:

Theorem 1. Let g be a prime power and d be an integer dividing ¢ — 1 with (¢ — 1)/d even. If M is
an n X n cyclotomic sign matriz of dth roots of unity, then the following are equivalent:

(a) The matrix M is symmetric.
(b) The matriz M is the dth-power residue matriz associated to distinct monic irreducible polyno-
mials Py, Pa, ..., P, in Fyt].

Proof. (a) implies (b): We inductively construct monic irreducible polynomials P, ..., P, for which
M is the dth-power residue matrix. For the base case, let P; be any monic irreducible polynomial of
positive degree. For the inductive step, suppose that Pi, ... , P, are monic irreducible polynomials

P.

such that | = | = m; ; for 1 <4, < k. For each 1 < j < k, choose a nonzero residue class u; modulo
Jjld

P; such that {&} = My41,;. By the Chinese Remainder Theorem and Kornblum’s function-field

analogue of Dirichlet’s Theorem on primes in arithmetic progression (cf. Theorem 4.7 of [R]) we may

choose a monic irreducible polynomial Py satisfying the congruences P11 = u; (mod P;) for all

P

1 < j < k. By construction, we have [ = my41,; for all 1 < 5 <k, and dth-power reciprocity

J ld

P, . . .
along with the form of M ensures that also { } =m; k41 for all 1 <7 <k is satisfied. Thus, M
d

k+1
is the dth-power residue matrix associated to Py, ..., P,, as claimed.

(b) implies (a): This follows immediately from dth-power reciprocity, since
(%), (#)
Pi )4 P/ g
for all pairs (4, j) with @ # j. O

When (¢ — 1)/d is odd, dth-power reciprocity takes a form quite similar to quadratic reciprocity over
Q, with polynomials of even and odd degree behaving like rational primes congruent to 1 and 3 (mod

4), respectively: if either P or @ has even degree, then (E)d = (%)d, and if both have odd degree

then (£) = (8) . )
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Observe that the property of whether a cyclotomic sign matrix is a dth-power residue matrix is invariant
under conjugation by a permutation matrix (simply permute the underlying polynomials accordingly).
If we reorder the polynomials so that the first s have odd degree and the remaining n — s have even
degree, then by dth-power reciprocity the associated dth-power residue matrix M has the form

(5 5)

where A is an s X s skew-symmetric cyclotomic sign matrix of dth roots of unity, S is an (n—s) x (n—s)
symmetric cyclotomic sign matrix of dth roots of unity, and B is an s X (n — s) matrix all of whose
entries are dth roots of unity. (Here B! denotes the transpose of B.)

We now show that every matrix having the form above is a dth-power residue matrix when (¢ — 1)/d
is odd, and give an additional characterization:

Theorem 2. Let g be a prime power and d be an integer dividing ¢ — 1 with (¢ — 1)/d odd. If M is
an n X n cyclotomic sign matriz of dth roots of unity, then the following are equivalent:

(a) There exists an integer s with 1 < s < n such that the matrix M can be conjugated by a
permutation matrix into a block matriz of the form

(5 5)

where A is an s X s skew-symmetric cyclotomic sign matrixz of dth roots of unity, S is an
(n—3s) x (n—s) symmetric cyclotomic sign matriz of dth roots of unity, and B is an s X (n—s)
matriz all of whose entries are dth roots of unity. (Here Bt denotes the transpose of B.)

(b) The matriz M is the dth-power residue matriz associated to a set of distinct monic irreducible
polynomials Py, Ps, ..., P, in F[t].

(c) If M = (mjy), then m;, = tmy ; for all j,k with 1 < j,k <n, and there exists an integer s
with 1 < s < n such that the diagonal entries of MM consist of s occurrences of n+ 1 — 2s
and n — s occurrences of n — 1.

Proof. (a) implies (b): Follows by the same proof as in Theorem 1, except we additionally impose the
condition that the degree of the polynomial Py is odd if k¥ < s or even if k > s, in order to obtain
the correct entries below the diagonal.

(b) implies (c): Suppose that M is the dth-power residue matrix associated to the distinct monic
irreducible polynomials Py,...,P,. The first part of the criterion in (c) follows immediately from
dth-power reciprocity.

For the second part, rearrange the polynomials, if necessary, so that the first s have odd degree and
the remaining n — s have even degree. Note also that for any dth root of unity r in Fy, @(r7!) =

p(r) = = (r).
For 1 < j < s, the jth diagonal element of MM is

=3 (2], 3], 5o (R),(R), ) =2

since by dth-power reciprocity the first s terms are —1 (except for the jth, which is 0), and the other
n — s terms are +1.

For s + 1 < j < n, the jth diagonal element of MM is

oem, (3] L5+ ((8),(3).) -

since by dth-power reciprocity all terms are +1 (except for the jth, which is 0), proving (c).
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(c) implies (a): Suppose that m; = £my, ; for each pair (j, k), and that the diagonal entries of the
matrix MM consist of s occurrences of n + 1 — 2s and n — s occurrences of n — 1.

Whenever j # k, by the assumptions that m; , = *my ; and that the m; are dth roots of unity, we
see that m; ,Ty; is either +1 (when mj, = my ;) or —1 (when mj, = —my ;).

By conjugating M by an appropriate permutation matrix we may place the s occurrences of n+1 —2s
in the first s rows of M M. For s < j < n, we have

(MM)J'J‘ = Zm%kmk’j =n — 1,
k=1

but since there are only n — 1 nonzero terms in the sum, we necessarily have m;my; = 1 for each
j # k, and hence mj =my; forall 1 <k <mand s <j<n.

For 1 < j <'s, we have

(MM)]‘J = ij,kmkd =n+1-2-#{1<k<s:mjpm,,; =—1}

k=1
since m; rmy,; = +1 whenever j > s and m; My ; can only be 1 or —1. But now since there at
most s terms in the count, and (MM);; = n+ 1 — 2s, we see that m; ;mr; = —1 and hence that
mjk = —mg ; for 1 <k <s. Thus M has the form in (a), completing the proof. O

Remark. Observe that both condition (a) of Theorem 1, and conditions (a) and (c¢) of Theorem 2,
are wholly independent of the choice of isomorphism ¢ between the dth roots of unity in F, and the
complex dth roots of unity, and therefore we see that the classes of dth-power residue matrices are the
same no matter which ¢ is used.

In a similar manner to the way the quadratic, cubic, and quartic residue matrices classify certain types
of decomposition configurations over number fields (cf. [2]), the fact that not every n x n cyclotomic
sign matrix of dth roots of unity arises as a dth-power residue matrix has implications for the possible
decomposition configurations for primes in abelian extensions of F,(t) with Galois group (Z/dZ)™.
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