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Abstract. In this paper, we establish an interesting duality between two different quantum information-
processing tasks, namely, classical source coding with quantum side information, and channel coding
over c-q channels. The duality relates the optimal error exponents of these two tasks, generalizing
the classical results of Ahlswede and Dueck. We establish duality both at the operational level and
at the level of the entropic quantities characterizing these exponents. For the latter, the duality is
given by an exact relation, whereas for the former, duality manifests itself in the following sense:
an optimal coding strategy for one task can be used to construct an optimal coding strategy for the
other task. Along the way, we derive a bound on the error exponent for c-q channel coding with
constant composition codes which might be of independent interest.

1. Introduction

Duality is one of the most elegant and useful notions in mathematics. It allows one to relate
pairs of seemingly different concepts, mathematical structures, problems and their solutions. In
the words of Atiyah [1], duality is a “principle”, the first consideration of which dates back many
centuries. It has found applications in diverse fields of mathematics, ranging from group theory,
topology, analysis and geometry to convex optimization and information theory. In physics, duality
plays a fundamental role in fields like quantum mechanics, electromagnetism and quantum field
theory. Over the years, the notion of duality has been generalized, adapted and modified in various
different contexts.

The first observation of a “curious and provocative” duality in information theory was by Shannon
[2]. He pointed out that the fundamental information-theoretic problems of data compression (or
source coding) and data transmission (or channel coding) can be studied as information-theoretic
duals of each other. More precisely, this duality is evident for the following pair of source- and
channel coding problems: (a) lossy data compression (or rate distortion), in which the decompressed
data is required to satisfy a certain distortion constraint, and (b) channel coding with cost constraint,
in which one associates a cost function to the channel inputs. In the former, the aim is to find
the optimal stochastic map between the input source alphabet and the output alphabet of the
compression-decompression scheme, which minimizes the mutual information between the input
and output of the scheme. In the latter, the aim is to find the optimal input distribution for the
given channel (i.e. stochastic map) which maximizes the mutual information between the channel
input and output, subject to the cost constraint. This duality was exploited to design iterative
algorithms for the optimization of mutual information [3], [4], and later Gupta and Verdú studied
under what circumstances the capacity-achieving channel encoder-decoder pair attains the rate-
distortion function [5].

Pradhan et al, [6] described a different duality between source- and channel coding as follows.
They specified the conditions under which a pair of encoding and decoding maps for source coding
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(respectively, channel coding) is a functional dual to a channel (respectively, source) coding scheme,
in the sense that the optimal encoding map for one problem is functionally identical to the optimal
decoding map for the other problem. The notion of duality was also extended to source and channel
coding with side information [6]–[8] and to multiuser systems [9].

Moreover, the particular case of source coding with side information at the decoder (so-called
Slepian-Wolf coding [10]) exhibits a natural duality with channel coding. Letting X and Y denote
the random variables of the source sequences and the side information, respectively, the conditional
probability {PY |X(Y |x)}x can be interpreted as giving the transition probabilities describing a
channel. Csiszár recognized this relation [11] and pointed out a mirror-symmetry between the
entropic error exponents of Slepian-Wolf coding and channel coding [11]–[21]. Moreover, if the
induced channel satisfies a so-called cyclic symmetry condition, an identity between the entropic
error exponents between source and channel coding can be proved. It was later shown that certain
linear block codes that cause a channel decoding error also leads to a Slepian-Wolf decoding error,
and vice versa [22]. In addition, Ahlswede and Dueck showed how to construct source codes with
side information from channel codes and vice-versa, and used this construction to establish a duality
between the associated asymptotic entropic error exponents [23, Theorem 1].

Although the dualities in classical information theory have been extensively studied, they have
not been studied much in the quantum regime. Inspired by the classical setting [24]–[26], it was
shown that the channel simulation with quantum side information can be used to construct a lossy
data compression protocol [27]–[29]. Additionally, Renes considered classical data compression with
quantum side information in which an initial joint quantum state was partially measured to yield the
classical random variable to be compressed. He showed that in this case, such a data compression
protocol can be used to implement privacy amplification against a quantum adversary for a classical
random variable resulting from performing a certain complementary measurement [30]. Renes also
considered a notion of duality via complementary channels to relate lossy source coding with privacy
amplification [31], and channel coding with randomness extraction [32].

In this paper, we consider a generalization of the duality studied by Ahlswede and Dueck, namely
a duality between the optimal error exponent for classical source coding with quantum side infor-
mation and classical-quantum channel coding. This stems from a construction of source codes from
channel codes and vice-versa, and hence can be termed operational duality.

We consider an n-blocklength classical-quantum (c-q) source that outputs sequences x with values
in a finite alphabet X n with some probability p(x), along with a quantum state ρxBn on a Hilbert

space H⊗n
B . When the sequence is x = (x1, . . . , xn), the corresponding quantum state is ρxBn =

ρx1
B ⊗ · · · ⊗ ρxn

B . Such a source can be characterized by a c-q state

ρXnBn =
∑

x∈Xn

p(x)|x〉〈x| ⊗ ρxBn .

In a compression-decompression scheme, this quantum state plays the role of quantum side infor-
mation and is sent to the decoder. In a fixed-length compression-decompression scheme for a c-q
source, each sequence x ∈ X n is mapped to a shorter sequence in a set Z with size |Z| = ⌈2nR⌉ by
an encoding map Es. Here, R ∈ (0, log |X |) is the rate of the compression-decompression scheme;
R bits are used per letter after compression. To decompress, the compressed sequence E(x) along
with the quantum state ρxBn is subject to a decoding map Ds, which outputs a sequence x̂ ∈ X n.
If x = x̂, then the protocol has successfully compressed and decompressed x (with the help of the
side information ρxBn at the decoder); otherwise, an error has occurred. Together, the encoder and
decoder constitute a compression-decompression code (Es,Ds) of rate R for the source ρXnBn .

The simplest example of an n-blocklength c-q source is a memoryless (or i.i.d.) one for which
ρXnBn = ρ⊗n

XB for some c-q state ρXB. We consider the minimal probability of error over all

compression-decompression codes of rate R for ρ⊗n
XB, denoted P ⋆

e, s(n,R), and the associated expo-

nent es(n,R) = − 1
n log(P ⋆

e, s(n,R)). The subscript s is used to denote source coding, as opposed to
channel coding.
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Besides i.i.d. sources, another class of c-q source is of particular relevance to this work, namely
the class of uniform sources of a fixed type. Recall that the type of a sequence x ∈ X n is its
empirical distribution. For a fixed type Q, we consider a c-q source which outputs any sequence
x = (x1, . . . , xn) of type Q with uniform probability (over all sequences of type Q), along with

quantum side information ρx1
B ⊗· · · ρxn

B . We denote the c-q state associated to the source by ρ
(Q)
XnBn ;

note that this state only depends on Q and the quantum side information {ρxB}x∈X . Thus, while

ρ
(Q)
XnBn is not an i.i.d. source, it is still highly structured. As before, we consider the minimal

probability of error over all compression-decompression codes of rate R for this source, denoted
P ⋆
e, s(n,R,Q), and the associated exponent es(n,R,Q) = − 1

n log(P ⋆
e, s(n,R,Q)).

The i.i.d source ρ⊗n
XB can be written as a convex combination of the states ρ

(Q)
XnBn , where Q ranges

over all possible types:

ρ⊗n
XB =

∑

Q

Pr(x has type Q) ρ
(Q)
XnBn . (1)

This is called the type decomposition of the i.i.d. source, and provides a fundamental relation between

ρ
(Q)
XnBn and ρ⊗n

XB .
The map x 7→ ρxB plays a central role in defining the above sources. In fact, the map W : X →

S(B), W(x) = ρxB is a c-q channel, sending classical letters to quantum states. This naturally leads
to the consideration of the transmission of classical information via n uses of this channel. Given a
set of messages, M, a message m ∈ M is encoded by a channel encoder Ec : M → X n, transmitted
through the channel W⊗n, and decoded by a channel decoder Dc which measures the output state
W

⊗n ◦ E(m) and yields a message m̂ ∈ M. An error occurs when m̂ 6= m. The pair (Ec,Dc) defines
an n-blocklength c-q channel code for W. The code has rate R when |M| = ⌊2nR⌋; that is, when
R messages can be sent per use of the channel. The average probability of error (assuming each
message m is sent uniformly at random) minimized over all c-q channel codes of rate R for the
channel W is denoted P ⋆

e, c(n,R), and the associated exponent by ec(n,R) = − 1
n log(P ⋆

e, c(n,R)).
Here, the subscript c denotes channel coding.

We consider a restricted class of code for a fixed type Q, called a constant composition code of type
Q, for which the encoder Ec : M → X n is required to only output sequences in X n of type Q. The
minimal probability of error over all constant composition codes of type Q and rate R for the channel
W is denoted P ⋆

e, c(n,R,Q), and the associated exponent ec(n,R,Q) = − 1
n log(P ⋆

e, c(n,R,Q)).
We show that for any type Q,

es(n,R,Q) ≈ ec(n,H(Q) −R,Q). (2)

This expression can be understood intuitively by considering a ‘combined’ figure. In the source
coding task with quantum side information at the decoder, the quantum side information can be
considered to be generated by sending a copy of the classical message x through the channel W⊗n

and supplying the result to the decoder. Since ρ
(Q)
XnBn outputs sequences of type Q with uniform

probability, its entropy is approximately nH(Q), and therefore has nH(Q) bits of information
associated to it. When compressing this information at a rate R, the source decoder receives nR bits
of information from the source encoder. The discrepancy, n(H(Q)−R), must therefore be supplied
by the side information, and the channel W must therefore be operated at a rate H(Q) − R. The
probability of error for this source protocol can therefore be bounded by the minimal probability of
error for operating W at a rate H(Q) −R. On the other hand, by the same logic any compression-

decompression scheme for the source ρQXnBn can be seen as implicitly operating the channel W at a
rate H(Q)−R, and therefore the probability of error for the channel coding task can be bounded by
the optimal probability of error for the source coding task. In order to relate the error exponents,

it is important that ρ
(Q)
XnBn is uniform over all sequences of type Q because the probability of error

for the c-q channel coding task is defined as an average of the probability of error for each message,
each sent with uniform probability.

3



Xn Es
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Figure 1. A protocol to compress classical data with quantum side information,
in which the quantum side information is realized as a c-q channel W : x 7→ ρxB,

for the source ρ
(Q)
XnBn . The source encoder Es compresses the classical messages x

to a set of size |Zn| = ⌈2nR⌉. The source decoder Ds receives the pair ρxBn and
Es(x) and attempts to recover x. The classical data Xn is uniform over T n

Q, and has

entropy approximately nH(Q). The source decoder receives nR bits from the source
encoder, and therefore needs to recover approximately n(H(Q)−R) bits from W

⊗n.
This intuition is reflected in the duality formula (2).

This duality can be raised to the level of i.i.d. sources ρ⊗n
XB and c-q channel codes with arbitrary

encoders using the type decomposition given in (1). It can be seen that Pr(x has type Q) ≈

e−nD(Q‖p), where p is the probability distribution of the source. Since asymptotically the smallest
exponent dominates the others, we find

es(n,R) ≈ min
Q

[ec(n,H(Q) −R,Q) + D(Q‖p)]

using the duality at the level of fixed types. In [33], the present authors determined upper and
lower bounds on the source coding exponent es(n,R) in terms of certain entropic quantities which
we collectively denote here as Es(R). In the present work, we determine entropic bounds on
ec(n,H(Q) − R,Q). The duality (2) therefore yields entropic bounds on es(n,R,Q) in terms of
certain entropic quantities we denote by Es(R,Q). Interestingly, we find the following exact rela-
tion

Es(R) = min
Q

[Es(R,Q) + D(Q‖p)]

for some of these quantities.
This paper is organized as following. We introduce the protocol and notation of c-q Slepian-Wolf

coding and channel coding in Section 2. We present our main results of the operational duality in
Section 3. In Section 4, we prove a new achievability bound for c-q channel coding and show the
entropic duality between exponent functions. Lastly, we conclude this paper in Section 5.

2. The information-theoretic tasks

This section introduces the two quantum information-processing tasks, the classical source com-
pression with quantum side information and the channel coding over classical-quantum channels.

2.1. Classical-Quantum Slepian-Wolf (CQSW) Source Coding. Consider a classical-quantum
(c-q) state

ρXnBn =
∑

x∈Xn

p(x)|x〉〈x| ⊗ ρxBn (3)

where X is a finite alphabet and ρxBn := ρx1
B ⊗ ρx2

B ⊗ · · · ⊗ ρxn

B for x = (x1, . . . , xn) is a product

quantum state; each ρ
xj

B ∈ S(B), where S(B) is the set of density matrices on a Hilbert space, HB.
We describe the task of compressing sequences x, which occur with probability p(x), from a classical
source such that the decoder has access to ρxBn . We consider a compressed space Z, which is either
a finite set or the set of all finite length binary sequences, {0, 1}∗; an encoding map E : X n → Z,
and a decoding map D : Z × S(Bn) → X n, where S(Bn) denotes the set of density matrices on

4



HBn = H⊗n
B . If we fix the first argument, the compressed classical message, as some z ∈ Z, then

the map D(z, ·) : S(Bn) → X n is given by a positive operator-valued measurement (POVM). Thus,

we can represent the decoding by a collection of POVMs {D(z)}z∈Z , where D(z) = {Π
(z)
x }x∈Xn with

Π
(z)
x ≥ 0 and

∑
x∈Xn Π

(z)
x = 1, for each z ∈ Z. That is, if Alice sends the message x, Bob receives

E(x), and measures the state ρxBn with the POVM {Π
(E(x))
x }x∈Xn .

We may embed source coding with classical side information in this framework. The side infor-
mation is classical when there is an orthonormal basis {|y〉} of HB such that for each x ∈ X ,

ρxB =
∑

y

p(y|x)|y〉〈y| (4)

for some probability distribution {p(y|x)}y. In this case, ρXB can equivalently be described by the
joint random variables (X,Y ) which have distribution Pr(X = x, Y = y) = p(x)p(y|x). Note that
in this case, dimHB is the size of the alphabet associated to the random variable Y .

A CQSW code C for the state ρXnBn is a tuple C = (E ,D) consisting of an encoding map and a
decoding map. For such a code, the average probability of error is given by

Pe(C) ≡ Pe
avg(ρXB , C) = 1 −

∑

x∈Xn

p(x) Tr[Π
(E(x))
x ρxBn ]. (5)

Similarly, the maximal probability of error is given by

Pe
max(ρXB , C) = max

x∈Xn
(1 − Tr[Π

(E(x))
x ρxBn ]).

We will only consider the average probability of error for source coding, however.
In the previous discussion, we have only considered deterministic encoding maps; in fact, this

is without loss of generality. Consider a random encoding which maps x to z ∈ Z with some
probability P (z|x). In this case, the probability of error is given by

Pe(C) = 1 −
∑

x∈Xn,
z∈Z

P (z|x)p(x) Tr[Π
(z)
x ρxBn ].

Alternatively, we can see the random encoding E as applying a deterministic encoding Ej with some
probability Qj . Then for a code C = (E ,D),

Pe((E ,D)) = 1 −
∑

j

Qj

∑

x∈Xn

p(x) Tr[Π
(Ej (x))
x ρxBn ] =

∑

j

QjPe((Ej ,D)).

Thus, the error probability for a random encoding is an average of error probabilities of deterministic
encodings. In particular, minj Pe((Ej ,D)) ≤ Pe((E ,D)), so the optimal error probability is achieved
for a deterministic code. Therefore, we will restrict to deterministic encodings in this work.

We consider fixed length coding in which each sequence x is mapped to a shorter sequence of
fixed length by the encoding map, i.e. |Z| = ⌈2nR⌉ for some R ∈ (0, log |X |) which is called the
rate. Without loss of generality we assume surjectivity of the encoding map, namely E(X n) = Z.

We consider the two following forms for the probability distribution p(x) on X n.

(i) The i.i.d. case: p(x) = p(x1) · · · p(xn) for some probability distribution p on X . Without
loss of generality, we assume p(x) > 0 for each x ∈ X . In this case, (3) becomes

ρXnBn = ρ⊗n
XB =

(
∑

x∈X

p(x)|x〉〈x| ⊗ ρxB

)⊗n

. (6)

A code C = (E ,D) for ρ⊗n
XB of rate R is called an (n,R)-code for ρXB . That is, we use the

notation of “(n,R)-code” for the i. i. d. case. We are interested in the optimal (minimal)
average probability of error at a fixed rate:

P ⋆
e,s(n,R) ≡ P ⋆

e,s(ρXB , n,R) := inf{Pe(C) : C is an (n,R)-code}

5



Here, the subscript s indicates source coding. The (average) probability of error Pe(C) for
a code C is defined in (5). These quantities are associated to the error exponents,

es(n,R) := −
1

n
log P ⋆

e,s(n,R), scs(n,R) := −
1

n
log(1 − P ⋆

e,s(n,R)).

Here e is the finite blocklength error exponent, while sc is the finite blocklength strong
converse exponent.

To describe the second form of p(x) on X n that we consider, we first recall the notion of types.
The set of types for sequences in X n is given by

Pn(X ) :=

{
P ∈ P(X )

∣∣∣∣P (x) ∈

{
0,

1

n
,

2

n
, . . . , 1

}
, ∀x ∈ X

}
.

Here, P(X ) is the set of probability distributions on X . A sequence x ∈ X n has type (or composition)
Q if

1

n

n∑

i=1

1{x=xi} = Q(x), ∀x ∈ X .

We denote by T n
Q the set of all such sequences in X n with type Q.

(ii) The constant type case: The other form for p(x) in (3) that we consider is that of
a uniform distribution over a type class. For some type Q, we consider the probability
distribution on X n given by

p(x) =

{
1

|Tn
Q
| if x ∈ T n

Q

0 else.

In this case, (3) becomes

ρXnBn = ρ
(Q)
XnBn :=

1

|T n
Q|

∑

x∈Tn
Q

|x〉〈x| ⊗ ρxBn . (7)

In this case, we define an (n,R,Q)-code for ρXB as a code C = (E ,D) of rate R for ρ
(Q)
XnBn .

As before, we consider the optimal probability of error over such codes, namely

P ⋆
e,s(n,R,Q) ≡ P ⋆

e,s(ρ
(Q)
XnBn , n,R,Q) := inf{Pe(C) : C is an (n,R,Q)-code}.

As before, we define the associated error exponents,

es(n,R,Q) := −
1

n
logP ⋆

e,s(n,R,Q),

scs(n,R,Q) := −
1

n
log(1 − P ⋆

e,s(n,R,Q)).

Remark 2.1. The c-q state ρ
(Q)
XnBn can be seen as the Choi-Jamio lkowski state of the c-q

channel W
⊗n defined on the set of sequences of type Q. In contrast, in general ρ⊗n

XB is
not the Choi-Jamio lkowski state of any c-q channel. This is evident from the fact that
the Choi-Jamio lkowski state associated to any c-q channel is a c-q state with a uniform
distribution.

The states ρ⊗n
XB and ρ

(Q)
XnBn are related by the type decomposition,

ρ⊗n
XB =

∑

Q∈Pn(X )

Pr[x ∈ T n
Q] ρ

(Q)
XnBn ,

where Pr[x ∈ T n
Q] :=

∑
x∈Tn

Q
p(x), and p(x) = p(x1)p(x2) · · · p(xn) is the i.i.d. probability distribu-

tion from (6).
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It will be useful to collect some elementary results from the theory of types. It is well-known
that [21]

|Pn(X )| ≤ (n + 1)|X , ∀n ∈ N. (8)

Additionally, given an i.i.d. source X with distribution P ∈ P(X ), the probability of X emitting a
sequence x with type Q can be bounded as [21]

(n + 1)−|X | exp{−nD(Q‖P )} ≤ Pr
[
x ∈ T n

Q

]
≤ exp{−nD(Q‖P )}. (9)

Further, the size of T n
Q satisfies the bounds [21]

(n + 1)−|X | exp {nH(Q)} ≤ |T n
Q| ≤ exp {nH(Q)} . (10)

2.2. Classical-Quantum Channel Coding. A classical-quantum (c-q) channel is a map W from
a set X to the set S(B) of density matrices on a Hilbert space HB . An n-blocklength code C = (E ,D)
for a c-q channel consists of an encoder E , which is a map from a message set M to X n, and a
decoder D, which is a POVM {Λm̂}m̂∈M on S(Bn) with outcomes in M.

The channel W is classical when it has the form

W : x 7→
∑

y

p(y|x)|y〉〈y| (11)

where {|y〉}y is an orthonormal basis of HB and {p(y|x)}y is a (conditional) probability distribution.
In this case, W is equivalently described by {p(y|x)}x,y .

An n-blocklength code defines a procedure to pass messages m ∈ M through the c-q channel.
The encoder maps m to a codeword E(m) = (x1, . . . , xn) ∈ X n. The set of all such codewords,
{E(m) : m ∈ M}, is referred to as the codebook. The c-q channel W is used n times, yielding the
quantum state

W⊗n(x) = W (x1) ⊗ . . .⊗W (xn) ∈ S(Bn).

This n-partite state is measured using the POVM given by the decoder, which gives the outcome
m̂ with probability

Tr[Λm̂W (x1) ⊗ . . .⊗W (xn)].

The probability Pe(C,m) of an error on message m is the probability that m̂ 6= m, which can be
written

Pe(C,m) = 1 − Tr[ΛmW⊗n(E(m))].

This yields quantities describing the probability of error for a code C: the average probability of
error,

Pe(C) ≡ Pe
avg(C) :=

1

|M|

∑

m∈M

Pe(C,m)

and the maximal probability of error,

Pe
max(C) := max

m∈M
Pe(C,m).

The rate of the code is the number of bits of message which can be sent per use of the channel:

rate(C) =
log(|M|)

n
.

An (n,R)-channel code is a n-blocklength code with rate R.
A standard technique to construct codes with small maximal error given a code with small average

error called expurgation (see, e.g. [12, Eq. (4.41)]) yields the following lemma.

Lemma 2.2 (Expurgation). Let C be an n-blocklength c-q channel code with message set M of size
M := |M| and average probability of error Pe

avg(C). Then there exists an n-blocklength c-q channel

code C̃ with message set M̃ of size ⌊M2 ⌋ and maximal probability of error

Pe
max(C̃) ≤ 2Pe

avg(C).

7



There is a particular class of encoding maps for c-q channels which will play a distinguished role
in this work. A constant composition code of type Q is an n-blocklength c-q channel code C = (E ,D)
with the property that each codeword is of type Q: E(m) ∈ T n

Q for each m ∈ M. We note the

expurgation lemma applied to a constant composition code C of type Q yields a code C̃ which is
still constant composition and of type Q.

The optimal (average) error probability over constant composition codes of type Q is given by

P ⋆
e,c(n,R,Q) := inf{Pe(C) : C is an (n,R)-channel constant composition code of type Q}.

Similarly, the finite blocklength error exponent and strong converse exponent are

ec(n,R,Q) := −
1

n
log P ⋆

e,c(n,R,Q), scc(n,R,Q) := −
1

n
log(1 − P ⋆

e,c(n,R,Q)).

3. Operational Duality

First, let us write the classical operational duality result of Ahlswede and Dueck given by Theo-
rem 1 of [23] in the “quantum notation” of Section 2.

Theorem [Ahlswede and Dueck, [23]]. An i.i.d. classical source with classical side information
is described the joint state

ρXB =
∑

x∈X

p(x)|x〉〈x| ⊗ ρxB

where ρxB satisfies (4). Then the map W defined by

W : x 7→ ρxB =
∑

y

p(y|x) |y〉〈y|

is a classical channel (i.e. satisfies (11)). The optimal error exponent es(n,R) for the source coding
of ρXB at a rate R, and the optimal error exponent ec(n,R

′, Q) for the channel coding of W at a
rate R′ (using constant composition codes of type Q), can be related as follows. For any δ > 0 there
exists N0 ≡ N0(δ, |X |,dimHB) ∈ N such that for all n ≥ N0,

es(n,R + δ) ≥ min
Q∈Pn

[D(Q‖P ) + ec(n,H(P ) −R,Q)] − δ

es(n,R) ≤ min
Q∈Pn

[D(Q‖P ) + ec(n,H(P ) −R− δ,Q)] + δ

where P denotes the distribution {p(x)}x∈X .

The following result is a generalization of the above theorem to the case when the classical
source has quantum side information (i.e. (4) need not hold), and consequently the induced channel
W : x 7→ ρxB is a (general) c-q channel, along with an explicit determination of the dependence of δ
on n.

Theorem 3.1 (Operational duality of the error exponents). An i.i.d. classical source with quantum
side information is described by the joint state

ρXB =
∑

x∈X

p(x)|x〉〈x| ⊗ ρxB

where ρxB ∈ S(B). Then the map from X → S(B) defined by W : x 7→ ρxB is a c-q channel. The
optimal error exponent es(n,R) for the source coding of ρXB at a rate R, and the optimal error
exponent ec(n,R

′, Q) for the channel coding of W at a rate R′ (using constant composition codes of
type Q), can be related as follows. For any n ∈ N,

es(n,R + δ′n + δn) ≥ min
Q∈Pn(X )

[D(Q‖P ) + ec(n,H(Q) −R,Q)] − δ′n. (12)

es(n,R) ≤ min
Q∈Pn(X )

[
D(Q‖P ) + ec(n,H(Q) −R− δ′n, Q)

]
+ δ′n. (13)
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where P denotes the distribution {p(x)}x∈X , and

δn :=
1

n
log (2n log(|X |) + 1) , δ′n := (|X | + 1)

log(n + 1)

n
. (14)

The above theorem builds on a type-dependent duality given by the following result.

Theorem 3.2 (Operational duality of the error exponents at fixed type Q). For any n ∈ N, and
type Q ∈ Pn(X ), and R ≥ δn,

ec(n,H(Q) −R + δn, Q) −
1

n
≤ es(n,R,Q) ≤ ec(n,H(Q) −R− δ′n, Q) +

1

n
log(1 +

1

n
) (15)

where δn and δ′n are defined in (14).

Remark 3.3. If the families of functions {R 7→ ec(n,R,Q)}n∈N and {R 7→ es(n,R,Q)}n∈N are each
equicontinuous, then Theorem 3.2 implies the asymptotic error exponents satisfy

es(R,Q) = ec(H(Q) −R,Q).

We prove the lower bounds on es(n,R) and es(n,R,Q) in Theorems 3.1 and 3.2 in Section 3.1,
and the corresponding upper bounds in Section 3.2.

3.1. Building source codes from channel codes. We will establish the lower bound on es(n,R)
given in (12) and the lower bound on es(n,R,Q) given in (15) by constructing CQSW source codes
from c-q channel codes for the side information. The main tool for building source codes from
channel codes will be the following type covering lemma, which is a simple strengthening of the one
due to Ahlswede [34, Section 5.6.1].

Before starting the proof, let us first outline the construction in the constant-type case. We
are given a constant-composition channel code, which has a message set M, an encoder Ec, a
resulting codebook Ec(M) ⊂ T n

Q, and a decoder, which aims to discriminate between the states

{ρxB : x ∈ Ec(M)}. From this, we aim to construct a source code, which has an encoder Es : T n
Q → Z

for some compressed set Z, and a decoder, which given z ∈ Z aims to discriminate between the
states in the set Sz := {ρxB : x ∈ E−1

s ({z})}. The set Sz constitutes the possibilities for the
QSI when the message is compressed as z. The channel decoder only knows how to discriminate
between states in one subset, i.e. those corresponding to elements of the codebook, while the source
decoder has to discriminate between states in many such sets, namely between states in Sz for
each compressed message z ∈ Z, and moreover these sets must cover all of {ρxB : x ∈ T n

Q}, a strict
superset of the codebook. So how does one define the source decoder from the more limited channel
decoder? Recall that all elements of T n

Q can be related to each other by permutations. We will
essentially choose the sets Sz to be a permutation πz of the codebook. Since the source decoder
knows the value of z, it can invert the permutation and apply the channel decoder to the resulting
element of the codebook. Thus, the number of permutations of the codebook required to cover all
of {ρxB : x ∈ T n

Q} determines the size of the compressed space Z. We will first discuss the type
covering lemma used to bound the number of required permutations, then proceed to the formal
proof.

Given a type Q and a subset U ⊂ T n
Q, we are interested in sets of permutations of the numbers

{1, . . . , n} which induce a cover of T n
Q: that is, sets of permutations {π1, . . . , πL} for L ∈ N, such

that
L⋃

i=1

πi U = T n
Q,

using the notation πiU := {πiu : u ∈ U}. We note if |U| = 1, then L = |T n
Q| is necessary and

sufficient. The following type covering lemma provides a more useful bound on L when |U| > 1.

9



Lemma 3.4 (Type covering lemma). For any type Q, integer n, and nonempty subset U ⊂ T n
Q,

there exists a set of LQ := ⌈|U|−1|T n
Q| log |T n

Q|⌉ permutations π1, . . . , πLQ
of the integers {1, . . . , n}

which induce a cover of T n
Q:

LQ⋃

i=1

πi U = T n
Q.

Moreover, if one draws 2LQ permutations independently and uniformly at random from the set
of all permutations of {1, . . . , n}, the resulting collection {π1, . . . , π2LQ

} will induce a cover T n
Q with

probability at least 1− 1
|Tn

Q
| . In particular, the expected number of draws of 2LQ permutations required

to find a cover of T n
Q is less than 2 for any type Q, and any n ≥ 2.

Remark 3.5. This lemma provides a more constructive version of the original covering lemma by
Ahlswede (which is an existence result). Note, in the sequel, we will be interested in rates of the
form 1

n log(LQ), which remain unaffected by the replacement LQ → 2LQ in the asymptotic limit
n → ∞. The proof is a simple adaptation of Ahlswede’s proof, and is included in Appendix A.1 for
completeness.

With this result in hand, we proceed to first prove the lower bound of Eq. (15) for a fixed type-
dependent source, and then Eq. (12) for an i.i.d. source. This argument follows the of the proof of
Theorem 1 of Ahlswede and Dueck [23], and Eq. (18) below plays the main role in employing the
type covering lemma in the quantum case.

Fix R > 0, n ∈ N, and an arbitrary type Q ∈ Pn(X ). We will consider an n-blocklength c-q
channel code Cc = (Ec,Dc) which is constant composition of type Q, and has rate H(Q) − R. By
the expurgation method (Lemma 2.2), there is a message set M with size

M := |M| ≥
1

2
exp{n(H(Q) −R)}, (16)

such that the codewords U := Ec(M) = {u1, . . . ,uM} ⊂ T n
Q and a decoder, i.e. POVM, (Λm)m∈M,

such that the maximal error probability for these codewords can be upper bounded by the average
error probability of Cc:

max
m∈M

(
1 − Tr

[
W⊗n(Ec(m))Λm

])
≤ 2Pe(Cc). (17)

From this channel code, we construct a Slepian-Wolf code Cs = (Es,Ds), for the n-blocklength source

ρ
(n)
XnBn associated to the constant composition ensemble of type Q (see (7)), as follows.

We apply Ahlswede’s covering lemma, Lemma 3.4, with U := Ec(M) ⊂ T n
Q, yielding a set of

permutations {π1, . . . , πLQ
} for

LQ⋃

i=1

πiU = T n
Q, LQ = ⌈M−1|T n

Q| log |T n
Q|⌉.

Note that every permutation πi will induce a unique unitary Vi on S(Bn) which permutes the
Hilbert spaces, i.e.

W⊗n(πiu) = ViW
⊗n(u)V †

i , ∀u ∈ U , ∀ i ∈ [LQ]. (18)

We partition the set |T n
Q| by defining S1,Q = π1U , and sequentially defining

Si,Q := πiU −

i−1⋃

ι=1

πιU .

We use this partition to define the source encoder Es by

Es : T n
Q → Z := [LQ]

x 7→ i, if x ∈ Si,Q,

10



where [LQ] = {1, . . . , LQ}. We define the source decoder by Ds = {D
(i)
s }i∈[LQ] where D

(i)
s is a

POVM defined as follows. For each i ∈ [LQ] and x ∈ T n
Q, we set

Π
(i)
x :=

{
ViΛmV †

i if x = πiEc(m) ∈ Si,Q

0 if x 6∈ Si,Q.

Note that ∑

x∈Tn
Q

Π
(i)
x =

∑

m:πiEc(m)∈Si,Q

ViΛmV †
i ≤

∑

m∈M

ViΛmV †
i = Vi 1V †

i = 1

using that Si,Q ⊂ πiU in the inequality. Then we can recover a true POVM {Π̃
(i)
x }x∈Tn

Q
, i.e. such

that
∑

x∈Tn
Q

Π̃
(i)
x = 1, by choosing any x0 ∈ X n and defining

Π̃
(i)
x =

{
Π

(i)
x x 6= x0

1−
∑

x∈Si,Q
Π

(i)
x x = x0.

We therefore define D
(i)
s = {Π̃

(i)
x }x∈Xn . The operator inequality Π̃

(i)
x ≥ Π

(i)
x for x ∈ T n

Q shows

that the probability of error under {Π̃
(i)
x }x∈Tn

Q
is not greater than the probability of error under

{Π(i)}x∈Tn
Q

, so we may simply consider decoding with the subnormalized set {Π
(i)
x }x∈Tn

Q
.

Now, we compute the rate and the error probability of the code Cs. Equations (16) and (10)
imply that

|Es(X
n)| = LQ

≤ 2 exp{−n(H(Q) −R) + nH(Q)} · nH(Q) + 1

≤ exp{n(R + δn)}

using H(Q) ≤ log |X | and e−nR ≤ 1, and setting δn = 1
n log (2n log |X | + 1). Next, we bound the

probability of error of the source code by relating it to the maximal probability of error of the
channel code, and using the expurgated error bound (17). By definition,

Pe(Cs) = 1 −
1

|T n
Q|

∑

x∈Tn
Q

Tr[ρB
n

x
Π

(Es(x))
x ]

= 1 −
1

|T n
Q|

LQ∑

i=1

∑

x∈Si,Q

Tr[ρB
n

x
Π

(Es(x))
x ]

using that
⊔LQ

i=1 Si,Q = T n
Q. If x ∈ Si,Q then x = πiEc(m) for exactly one message m ∈ M, which we

will denote as mx. Then ρB
n

x
= W⊗n(πiEc(mx)) = ViW

⊗n(Ec(mx))V †
i , since W⊗n : X n → S(Bn)

maps x to the side information associated to x, namely ρB
n

x
. Additionally, x ∈ Si,Q is equivalent to

Es(x) = i, so Π
(Es(x))
x = ViΛmx

V †
i , and

Pe(Cs) = 1 −
1

|T n
Q|

LQ∑

i=1

∑

x∈Si,Q

Tr[ViW
⊗n(Ec(mx))V †

i ViΛmx
V †
i ]

= 1 −
1

|T n
Q|

LQ∑

i=1

∑

x∈Si,Q

Tr[W⊗n(Ec(mx))Λmx
]
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by cyclicity of the trace and that V †
i Vi = V †

i Vi = 1. Then, bounding the error of the message mx

by the maximal error,

Pe(Cs) =
1

|T n
Q|

LQ∑

i=1

∑

x∈Si,Q

(
1 − Tr[W⊗n(Ec(mx))Λmx

]
)

≤
1

|T n
Q|

LQ∑

i=1

∑

x∈Si,Q

max
m∈M

(
1 − Tr[W⊗n(Ec(m))Λm]

)

= max
m∈M

(
1 − Tr[W⊗n(Ec(m))Λm]

)
(19)

≤ 2Pe(Cc) (20)

using in (19) that {Si,Q}
LQ

i=1 is a partition of T n
Q and using the expurgated bound (17) in (20). Thus,

since the optimal source code probability of error is at most the the probability of error of this code,
we have

P ⋆
e, s(n,R + δn, Q) ≤ 2Pe(Cc).

Since this holds for any channel code of rate H(Q) − R and of constant composition Q, we may
minimize over Cc to find

P ⋆
e, s(n,R + δn, Q) ≤ 2P ⋆

e, c(n,H(Q) −R,Q).

This yields the lower bound Eq. (15):

es(n,R + δn, Q) ≥ ec(n,H(Q) −R,Q) −
1

n
log 2.

Next, we move on to prove the second claim, Eq. (12). The task is to construct a source code for
an i.i.d. CQSW source ρ⊗n

XB with distribution P . For each type Q ∈ Pn, we consider an arbitrary

channel code C
(Q)
c = (E

(Q)
c ,D

(Q)
c ) of constant composition Q, with rate H(Q) − R and message set

M(Q). Then we construct a corresponding source code C
(Q)
s = (E

(Q)
s ,D

(Q)
s ) as before, with

Pe(C
(Q)
s ) ≤ 2Pe(C

(Q)
c ) (21)

by Eq. (20). We define the i.i.d. source encoder as

Es : X n → Z := {(i,Q) : i ∈ [LQ], Q ∈ Pn(X )}

x 7→ (E(Px)
s (x), Px)

where Px denotes the type of the sequence x. The type-dependent source decoder D
(Q)
s is given by

a collection of POVMs, D
(Q)
s = {D(i,Q)}i∈[LQ], and we define the type-independent source decoder

by

Ds =
⋃

Q∈Pn

D(Q)
s = {D(i,Q) : i ∈ [LQ], Q ∈ Pn(X )}, D(i,Q) = {Π

(i,Q)
x }x∈Xn .

Then we have the cardinality bound

|Es(X
n)| ≤ |Pn(X )| max

Q∈Pn(X )
LQ

≤ (n + 1)|X | max
Q∈Pn(X )

[2 exp{−n(H(Q) −R) + nH(Q)} · nH(Q) + 1]

≤ exp{n(R + δn + δ′n)}
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for δ′n = |X |+1
n log(n + 1), where we recall Eq. (8) in the first inequality. This yields rate(Cs) ≤

R + δn + δ′n. Additionally,

Pe(Cs) = 1 −
∑

x∈Xn

p(x) Tr[Π
(Es(x))
x ρB

n

x
]

= 1 −
∑

Q∈Pn(Xn)

∑

x∈Tn
Q

p(x) Tr[Π
(E

(Q)
s (x),Q)

x ρB
n

x
].

Any sequence x of type Q has the same probability p(x), since the source is i.i.d.. Then writing
Pr(y ∈ T n

Q) =
∑

y∈Tn
Q
p(y) = |T n

Q|p(x), we have

p(x) =
1

|T n
Q|

Pr(y ∈ T n
Q), ∀x ∈ T n

Q. (22)

Thus,

Pe(Cs) = 1 −
∑

Q∈Pn(Xn)

Pr(x ∈ T n
Q)

1

|T n
Q|

∑

x∈Tn
Q

Tr[Π
(E

(Q)
s (x),Q)

x ρB
n

x
]

=
∑

Q∈Pn(Xn)

Pr(x ∈ T n
Q)Pe(C

(Q)
s )

≤ 2
∑

Q∈Pn(Xn)

Pr(x ∈ T n
Q)Pe(C

(Q)
c )

≤ 2
∑

Q∈Pn(Xn)

Pr(x ∈ T n
Q)P ⋆

e, c(n,H(Q) −R,Q)

using (21) and minimizing over the channel codes {C
(Q)
c }Q∈Pn(Xn). Then

Pe(Cs) ≤ 2|Pn(X n)| max
Q∈Pn(Xn)

Pr(x ∈ T n
Q)P ⋆

e, c(n,H(Q) −R,Q).

Since the optimal source code has probability of error at most that of Cs, we have

P ⋆
e, s(n,R + δn + δ′n) ≤ 2|Pn(X n)| max

Q∈Pn(Xn)
Pr(x ∈ T n

Q)P ⋆
e, c(n,H(Q) −R,Q)

≤ 2|Pn(X n)| max
Q∈Pn(Xn)

exp
(
− n(D(Q‖P ) + ec(n,H(Q) −R,Q))

)

using (9) and the definition of ec(n,H(Q) −R,Q). Then by the definition of es(n,R),

es(n,R + δn + δ′n) ≥ −
1

n
log(2) −

1

n
log |Pn(X n)| + min

Q∈Pn(Xn)
[D(Q‖P ) + ec(n,H(Q) −R,Q)]

≥ −
|X | + 1

n
log(n + 1) + min

Q∈Pn(Xn)
[D(Q‖P ) + ec(n,H(Q) −R,Q)]

using (8). This proves Eq. (12).

3.2. Building channel codes from source codes. We will first prove the upper bound of (15),
then use the constant type codes we develop in that proof to establish (13). Let us first outline
the construction in the constant-type case. We are given a source code Cs consisting of an encoder
Es : T n

Q → Z, and decoder, which, given z ∈ Z, discriminates between {ρxB : x ∈ E−1
s ({z})}. Given

a message set M, we aim to construct a channel code Cc consisting of an encoder Ec : M → T n
Q,

and decoder Dc which must discriminate between states in the set {ρxB : x ∈ Ec(M)}.
For any z ∈ Z, the source decoder can discriminate between the states of {ρxB : x ∈ E−1

s ({z})}.

Thus, each choice of z ∈ Z yields a candidate code C
(z)
c , with codebook E−1

s ({z}), and decoder
given by the source decoder conditioned on z. But which z do we choose? There are two main
constraints:
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• We aim to bound Pe(C
(z)
c ) in terms of Pe(Cs), which is the probability of error averaged over

the source distribution. If a particular z is unlikely, according to the source distribution and

source encoder, then Pe(C
(z)
c ) could be much higher than Pe(Cs). So we need to choose an

element z such that Pe(C
(z)
c ) can be suitably bounded.

• The rate of the code C
(z)
c is determined by the size of the message set, which in turn is

governed by the size of the codebook. We thus need to choose z with |E−1
s ({z})| large

enough.

Therefore, we employ a sequence of pigeonhole arguments to find a suitable element z ∈ Z.
Let us begin the proof. Consider a CQSW code Cs = (Es,Ds) for the source of constant type Q,

of rate R. The encoder is a map Es : T n
Q → Z, with |Z| = 2nR. Let Si = E−1

s ({i}) for i ∈ Z. We will
proceed in three steps; first, two pigeonhole arguments identify a set of good codewords, followed
by the construction and analysis of the channel code.

(1) We assert that for any m > 1, there exists an non-empty set Z̃ ⊆ Z satisfying

∀j ∈ Z̃, |Sj | ≥
1

m
|T n

Q| · |Z|−1; (23)

∑

j∈Z̃

|Sj | ≥
m− 1

m
|T n

Q|. (24)

To see this, let us assume there is no subset of Z satisfying Eq. (23). Then since even

singleton sets Z̃ = {j} cannot satisfy Eq. (23), we must have |Sj | <
1
m |T n

Q| · |Z|−1 for each

j ∈ Z. Summing over j ∈ Z yields |T n
Q| =

∑
j∈Z |Sj| <

1
m |T n

Q|, which is a contradiction.

Thus, there must exist a nonempty Z̃ ⊆ Z which satisfies Eq. (23). Choose

Z̃ =

{
j ∈ Z : |Sj | ≥

1

m
|T n

Q| · |Z|−1

}

so that |Sj| <
1
m |T n

Q| · |Z|−1 for all j ∈ Z\Z̃. This implies

∑

j∈Z\Z̃

|Sj | <
1

m
|T n

Q| · |Z|−1 · |Z\W̃ | ≤
1

m
|T n

Q|.

If Eq. (24) is violated, i.e.
∑

j∈Z̃
|Sj | <

m−1
m |T n

Q|, then

∑

j∈Z

|Sj| <
m− 1

m
|T n

Q| +
1

m
|T n

Q| = |T n
Q|,

which also leads to a contradiction. We have thus shown the existence of an non-empty

Z̃ ⊆ Z satisfying Eqs. (23) and (24). This argument appears in the case m = 2 in [23].
(2) Next, we define

qx =
1 − Tr[Π

E(x)
x ρxBn ]

∑
y∈Tn

Q
(1 − Tr[Π

E(y)
y ρyBn ])

as the fraction of the total error incurred by source output x. Note {qx}x∈Tn
Q

forms a

probability distribution. Define

Qi :=
∑

x∈Si

qx.

We assert there exists j ∈ Z̃ such that

Qj ≤
m

m− 1

|Sj|

|T n
Q|

.
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Otherwise, for each i ∈ Z̃, Qj >
m

m−1
|Sj |
|Tn

Q
| . In that case,

∑

j∈Z̃

Qj >
m

m− 1

1

|T n
Q|

∑

j∈Z̃

|Sj | ≥
1

|T n
Q|

m

m− 1

m− 1

m
|T n

Q| = 1

which is impossible since
∑

j∈Z̃

Qj ≤
∑

j∈Z

Qj =
∑

x∈Tn
Q

qx = 1.

(3) Call this particular set Sj by M. Therefore, we’ve identified a set M ⊂ T n
Q such that:

|M| ≥
1

m

|T n
Q|

|Z|

and

∑

x∈M

(1 − Tr[Πxρ
x

Bn ]) ≤
m

m− 1

|M|

|T n
Q|

∑

y∈Tn
Q

(1 − Tr[Π
E(y)
y ρyBn ]) =

m

m− 1
|M|Pe(C)

for Πx := Π
(j)
x . We therefore define a constant-composition channel code Cc of type Q with

message set M and decoder {Πx}x∈M. The average probability of error is

Pe(Cc) =
1

M

∑

x∈M

(1 − Tr[Πxρ
x

Bn ]) ≤
m

m− 1
Pe(Cs)

and the rate is

rate(Cc) =
log(|M|)

n
≥ −

log(m)

n
+

log(|T n
Q|)

n
−

log(|Z|)

n

≥ H(Q) −R−
log(m)

n
− |X |

log(n + 1)

n
.

Taking m = n + 1, we have

rate(Cc) ≥ H(Q) −R− (|X | + 1)
log(n + 1)

n
,

Pe(Cc) ≤

(
1 +

1

n

)
Pe(Cs).

Thus, for any source code Cs for a source of constant type Q and rate R, we can construct a

constant-composition channel code Cc of type Q and rate H(Q)−R− δn, for δn = (|X |+ 1) log(n+1)
n .

Thus, we have

P ⋆
e, c(n,H(Q) −R− δn, Q) ≤ Pe(Cc) ≤

(
1 +

1

n

)
Pe(Cs) (25)

since the optimal probability of error is at most Pe(Cc). Since this is true for any code Cs, we have

P ⋆
e, c(n,H(Q) −R− δn, Q) ≤

(
1 +

1

n

)
P ⋆
e, s(n,R,Q).

Thus,

ec(n,H(Q) −R− δn, Q) ≥ −
1

n
log

(
1 +

1

n

)
+ es(n,R,Q).

This proves the upper bound of (15).
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Next, consider a CQSW code Cs = (Es,Ds) of rate R for an i.i.d. source

ρXnBn = (ρXB)⊗n =
∑

x∈Xn

p(x)|x〉〈x| ⊗ ρB
n

x

=
∑

Q∈Pn(Xn)

Pr(y ∈ T n
Q)

1

|T n
Q|

∑

x∈Tn
Q

|x〉〈x| ⊗ ρB
n

x

=
∑

Q∈Pn(Xn)

Pr(y ∈ T n
Q) ρQXnBn

using (22) and introducing ρQXnBn = 1
|Tn

Q
|

∑
x∈Tn

Q
|x〉〈x| ⊗ ρB

n

x
as the source of constant type Q

induced by ρ⊗n
XB . Note Pr(y ∈ T n

Q) > 0 for each Q ∈ Pn(X n) since p(x) > 0 for each x ∈ X n. From

the code Cs we will define codes C
(Q)
s = (E

(Q)
s ,D

(Q)
s ) for each ρ

(Q)
XnBn . We may define the encoder

simply by restriction: E(Q) = E
∣∣
Tn
Q

. This encoder has rate at most R.

The i.i.d. source decoder is given by a family of POVMs, Ds = {{Π
(z)
x }x∈Xn}z∈Z . We define the

type Q source decoder by restricting the POVMs:

D(Q)
s = {{Π

(z)
x }x∈Tn

Q
}z∈Z .

Then

Pe(C
(Q)
s ) = 1 −

1

|TQ|n

∑

x∈Tn
Q

Tr[Π
(E

(Q)
s )

x ρB
n

x
].

and
∑

Q∈Pn(Xn) Pr(y ∈ T n
Q)Pe(C

(Q)
s ) = Pe(Cs). By (25) we have that for each Q ∈ Pn(X n),

P ⋆
e, c(n,H(Q) −R− δn, Q) ≤

(
1 +

1

n

)
Pe(C

(Q)
s )

so in particular,

P ⋆
e, c(n,H(Q) −R− δn, Q) Pr(y ∈ T n

Q) ≤

(
1 +

1

n

)
Pr(y ∈ T n

Q)Pe(C
(Q)
s )

≤

(
1 +

1

n

) ∑

Q∈Pn(Xn)

Pr(y ∈ T n
Q)Pe(C

(Q)
s )

=

(
1 +

1

n

)
Pe(Cs).

Since the right-hand side no longer depends on Q, we may maximize over Q to find

max
Q∈Pn(Xn)

P ⋆
e, c(n,H(Q) −R− δn, Q) Pr(y ∈ T n

Q) ≤

(
1 +

1

n

)
Pe(Cs).

Since this holds for any source code Cs of rate R, we may minimize over such codes yielding

max
Q∈Pn(Xn)

P ⋆
e, c(n,H(Q) −R− δn, Q) Pr(y ∈ T n

Q) ≤

(
1 +

1

n

)
P ⋆
e, s(n,R).

Thus,

min
Q∈Pn(Xn)

[
−

1

n
log(Pr(y ∈ T n

Q)) + ec(n,H(Q) −R− δn, Q)

]
≥ es(n,R) −

1

n
log(1 +

1

n
).

Using (9),

|X |

n
log(n + 1) + min

Q∈Pn(Xn)
[D(Q‖P ) + ec(n,H(Q) −R− δn, Q)] ≥ es(n,R) −

1

n
log(1 +

1

n
).

which yields (13).
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4. Entropic duality

Theorems 3.2 and 3.1 show the duality between the type-dependent CQSW and the i.i.d. CQSW
with the classical-quantum channel coding with fixed composition on the operational level, i.e., in
terms of the operational exponents ec(n,R,Q), es(n,R,Q), ec(n,R), and es(n,R). One main focus
of information theory is to bound operational quantities in terms of entropic quantities, which are
entropic error exponents in this case. These are closed-form expressions which appear in bounds on
the operational exponents. This naturally leads to the question of whether or not the relationships
between es and ec investigated in Section 3 persist at the level of the entropic quantities which
bound them, i.e. if so-called “entropic dualities” hold. That is the main focus of this section.

In Section 4.1, we recall some necessary definitions before discussing entropic duality on the level
of types in Section 4.2, in the i.i.d. case in Section 4.3, and in the strong converse case in Section 4.4.
In Section 4.5, we prove the main results entropic duality results.

4.1. Definitions. For any pair of density operators ρ and σ, we define the quantum relative entropy
is given by

D(ρ‖σ) := Tr [ρ (log ρ− log σ)] .

Given a bipartite density operator ρAB, its conditional entropy is defined by

H(A|B)ρ := −D(ρAB‖1A ⊗ρB).

In this work, families of divergences which generalize the quantum relative entropy play an important
role: Petz’s quantum Rényi divergence [35], given by

Dα(ρ‖σ) :=
1

α− 1
logKα(ρ‖σ), Kα(ρ‖σ) := Tr

[
ρασ1−α

]

and the sandwiched Rényi divergence [36], [37], given by

D∗
α(ρ‖σ) :=

1

α− 1
logK∗

α(ρ‖σ), K∗
α(ρ‖σ) := Tr

[(
ρ

1
2σ

1−α
α ρ

1
2

)α ]
.

Both quantities reduce to the quantum relative entropy in the limit α → 1. We use the notation
Dt

α(ρ‖σ) to stand for either of the two entropies: t = {} designates Petz’s quantum Rényi divergence,
while t = {∗} designates the sandwiched Rényi divergence.

Given a c-q channel W : X → S(B) and a prior probability Q ∈ P(X ), we define

I0(Q,W) := − sup
τB∈S(B)

∑

x∈X

Q(x) log Tr [ΠWxτB] ,

I(Q,W) :=
∑

x∈X

Q(x)D (Wx ‖QW) ,

where ΠWx is the projection onto the support of Wx := W(x), and QW :=
∑

x∈X Q(x)Wx. Similarly,
given a set of states {ρxB}x∈X and a prior probability Q ∈ P(X ), we define

Ĥ0(Q|B)ρ := H(Q) + sup
τB∈S(B)

∑

x∈X

Q(x) log Tr
[
ΠρxB

τB
]
,

H(Q|B)ρ := H(Q) −
∑

x∈X

Q(x)D
(
ρxB

∥∥∥ρQB
)
.

where ρQB :=
∑

x∈X Q(x)ρxB .

4.2. Entropic duality on the level of types. For t = {} or t = {∗}, s > −1, we define the
auxiliary function with type Q associated to a finite set {ρxB}x∈X ⊂ S(B) as

Et
0(s,Q) ≡ Et

0(s,Q, {ρxB}x∈X ) := s
[

inf
τB∈S(B)

∑

x∈X

Q(x)Dt
1

1+s

(ρxB‖τB) −H(Q)
]
. (26)
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We also need another version of this quantity which does not have the minimization over τB:

E↓
0(s,Q) ≡ E↓

0(s,Q, {ρxB}x∈X ) := s
[∑

x∈X

Q(x)D1−s

(
ρxB
∥∥ρQB

)
−H(Q)

]
.

These auxiliary functions are used to define entropic exponents for the source coding of ρ
(Q)
XnBn

(defined in (7)), and the constant-composition channel coding of the map W : x 7→ ρxB . We define
the type-dependent entropic random coding1 exponents for R ≥ 0 by

E↓
r,s(R,Q) := max

0≤s≤1

{
E↓

0(s,Q) + sR
}
, E↓

r,c(R,P ) := max
0≤s≤1

{
E↓

0(s, P ) + s(H(P ) −R)
}
,

where the subscript “s” denotes source and the subscript “c” denotes channel. Next, the type-
dependent sphere-packing exponents2 are defined for R ≥ 0 as

Esp,s(R,Q) := sup
s≥0

{E0(s,Q) + sR} , Esp,c(R,P ) := sup
s≥0

{E0(s, P ) + s(H(P ) −R)} .

From the definitions given above and a joint continuity result in [38, Theorem 6], we characterize
the properties of the entropic quantities in the following Proposition 4.1.

Proposition 4.1 (Properties of the entropic error exponent functions). Assume |X | < ∞. Given
a c-q channel W : X → S(B) with and a set of states {ρxB}x∈X , the following hold.

(1) The maps E↓
r,c(·, ·) and Esp,c(·, ·) are jointly continuous on [0,∞]×P(X ) and (I0(P,W),∞]×

P(X ). Given every P ∈ P(X ), both E↓
r,c(·, P ) Esp,c(·, P ) are convex and non-increasing on

[0,∞]. In particular, for P ∈ P(X ) with I(P,W) > I0(P,W) > 0,

E↓
r,c(R,P ) ∈

{
(0,∞) R < I(P,W)

{0}, R ≥ I(P,W)
; Esp,c(R,P ) ∈





{∞} R < I0(P,W)

(0,∞) R ∈ (I0(P,W), I(P,W))

{0}, R ≥ I(P,W)

.

(2) The maps E↓
r,s(·, ·) and Esp,s(·, ·) are jointly continuous on [0,∞]×P(X ) and [0, Ĥ0(Q|B)ρ)×

P(X ). Given every Q ∈ P(X ), both E↓
r,s(·, Q) Esp,s(·, Q) are convex and non-decreasing on

[0,∞]. In particular, for Q ∈ P(X ) with Ĥ0(Q|B)ρ > H(Q|B)ρ > 0,

E↓
r,s(R,Q) ∈

{
{0} R ≤ H(Q|B)ρ

(0,∞], R > H(Q|B)ρ
; Esp,s(R,Q) ∈





{0} R ≤ H(Q|B)ρ

(0,∞) R ∈ (H(Q|B)ρ, Ĥ0(Q|B)ρ)

∞, R > Ĥ0(Q|B)ρ

.

These quantities bound the operational error exponents, as shown by the following result.

Theorem 4.2 (Constant composition channel coding bounds. Upper: [39], [40]. Lower: Appen-
dix A.2). Given a c-q channel W : X → S(B) and a type Q ∈ Pn(X ), we have the following bounds
on the exponent characterizing the optimal probability of error using codes of constant composition
Q, ec(n,R,Q): there exists positive constants K1,K2 and N0 depending on W, |X |, and R such that

E↓
r,c(R,Q) −

K1 log n

n
≤ ec(n,R,Q) ≤ Esp,c(R,Q) +

K2 log n

n

where the lower bound holds for all R > 0 and n ∈ N, and the upper bound holds for R ∈
(I0(Q,W), I(Q,W)) and all n ≥ N0.

1These are used for achievability bounds proven by constructing random codes, which is where these quantities get
their name.
2In the classical case, Shannon, Gallager, and Berlekamp [12] used a sphere-packing technique to bound error exponents
using these quantities, which is where these quantities get their name.
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Remark 4.3. The upper bound in Theorem 4.2 was proven in the asymptotic regime by Dalai and
Winter [39], i.e. limn→∞ ec(n,R,Q) ≤ Esp,c(R,Q), and for finite blocklength by Ref. [40]. The
lower bound is novel to our best knowledge, and is proven in Appendix A.2. We note that Hayashi
[41] also proved an achievability lower bound for random codes with an i.i.d. ensemble. Setting
Q ∈ Pn(X ) as the distribution of the i.i.d. ensemble and the composition of the codes, we remark
that our result, the lower bound of Theorem 4.2, is tighter than that of [41] by Jensen’s inequality,
i.e.

E↓
r,c(Q,R) = max

0≤s≤1

{
E↓

0(s, P ) + s(H(P ) −R)
}

= max
0≤s≤1

{
s
∑

x∈X

Q(x)D1−s

(
ρxB

∥∥∥ρQB
)
− sR

}

= max
0≤s≤1

{
−
∑

x∈X

Q(x) log
[
K1−s

(
ρxB

∥∥∥ρQB
)]

− sR

}

≥ max
0≤s≤1

{
− log

[
∑

x∈X

Q(x)K1−s

(
ρxB

∥∥∥ρQB
)]

− sR

}
,

where the last line is the exponent obtained by Hayashi [41]. We refer the reader to Ref. [42] for
the discussion of the achievability of i.i.d. random codes and constant composition codes.

The operational duality on the level of types given in Theorem 3.2 therefore implies the following
bounds on the source coding error exponents es(n,R) and es(n,R,Q).

Theorem 4.4 (Error exponents for source coding of constant type). We have the following bounds
on the exponent characterizing the optimal probability of error in the source coding of the source

of constant type ρ
(Q)
XnBn , es(n,R,Q): there exists positive constants K1,K2 and N0 depending on

{ρxB}x∈X , |X |, R such that

es(n,R + δ′n, Q) ≥ E↓
r,s(R,Q) −

K1 log n

n
−

1

n
,

es(n,R,Q) ≤ Esp,s(R + δ′n, Q) +
K2 log n

n
+

1

n
log(1 +

1

n
),

where the lower bound holds for R ∈ (0,H(Q)) and all n ∈ N; the upper bound holds for R ∈

(H(Q|B)ρ, Ĥ0(Q|B)ρ) and all n ≥ N0; δn and δ′n are defined in (14).

The proof follows immediately from Theorem 4.2 and Theorem 3.2. Together, Theorems 4.2 and

4.4 give E↓
r,s, Esp,s and E↓

r,c, Esp,c operational motivations. In light of that, the relations

E↓
r,s(R,Q) = E↓

r,c(R,H(Q) −R), Esp,s(R,Q) = Esp,c(R,H(Q) −R),

which are immediate from the definitions, earn the designation of “entropic duality on the level of
types.”

4.3. Entropic duality for i.i.d. sources. In this case, we define the type-independent auxiliary
function associated to a c-q state ρXB by

Et
0(s) ≡ Et

0(s, ρXB) := s inf
τB∈S(B)

Dt
1

1+s

(ρXB‖1A⊗τB) , (27)

and the corresponding “downarrow” version by

E↓
0(s) ≡ E↓

0(s, ρXB) := sD1−s(ρXB‖1X ⊗ρB).

Then we define the type-independent random coding exponent,

E↓
r,s(R) := max

0≤s≤1

{
E↓

0(s) + sR
}
,
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and sphere-packing exponent,

Esp,s(R) := sup
s≥0

{E0(s) + sR} .

In [33], the present authors established the source coding bounds

es(n,R) ≥ E↓
r,s(R) −

2

n
, ∀R > H(X|B)ρ

es(n,R) ≤ Esp,s(R) + K̃
log n

n
+ K ′ 1

n
, ∀R ∈ (H(X|B)ρ,H

↑
0 (X|B)ρ)

where K̃ and K ′ are constants which depend on {ρxB}x∈X , |X |, and R, and

H↑
0 (X|B)ρ = sup

τB∈S(B)
log Tr[ΠρXB

1X ⊗τB]

where ΠρXB
is the projection onto the support of ρXB .

On the other hand, Theorem 3.1 relates es(n,R) to ec(n,R, P ). Thus, Theorem 4.2, which bounds
the constant-type quantity ec(n,R,Q), can be used along with Theorem 3.1 to establish an entropic
bound on the i.i.d. source coding error exponent es(n,R). We find the following result.

Theorem 4.5. The exponent characterizing the optimal probability of error of an i.i.d. source ρ⊗n
XB,

es(n,R), satisfies: for some positive constants K1,K2 and N0 depending on {ρxB}x∈X , |X |, R,

es(n,R + δ′n + δn) ≥ min
Q∈Pn(X )

[D(Q‖P ) + E↓
r,s(R,Q)] −

K1 log n

n
− δ′n, (28)

es(n,R) ≤ min
Q∈Pn(X )

[D(Q‖P ) + Esp,s(R + δ′n, Q)] +
K2 log n

n
+ δ′n, (29)

where P is the source distribution, namely {p(x)}x∈X for ρ⊗n
XB as in (6), and δn and δ′n are defined

in (14). Note that the lower bound holds for all R > 0 and n ∈ N, and the upper bound holds for

R ∈ (H(X|B)ρ,H
↑
0 (X|B)ρ) and all n ≥ N0.

This result motivates the definition of the entropic quantities

Ê↓
r,s(R) := min

Q∈P(X )
[D(Q‖P ) + E↓

r,s(R,Q)] = min
Q∈P(X )

[D(Q‖P ) + E↓
r,c(H(Q) −R,Q)]

and

Êsp,s(R) := min
Q∈P(X )

[D(Q‖P ) + Esp,s(R,Q)] = min
Q∈P(X )

[D(Q‖P ) + Esp,c(H(Q) −R,Q)]. (30)

Note that these quantities are defined with a minimization over probability distributions Q instead
of over types. Since

Ê↓
r,s(R) ≤ min

Q∈Pn(X )
[D(Q‖P ) + E↓

r,s(R,Q)]

the quantity Ê↓
r,s(R) can be used for a lower bound on es(n,R) via (28). For the sphere-packing

exponent, however, Êsp,s(R) does not immediately bound es(n,R) at finite n via (29); while we have

lim supn→∞ es(n,R) ≤ Êsp,s(R) using the continuity results3 of Proposition 4.1, for a finite n result
one requires an explicit continuity bound for Q 7→ Esp,s(R,Q), which is an open problem.

This naturally leads to the question of comparison between Ê↓
r,s(R) and E↓

r,s(R), and between

Êsp,s(R) and Esp,s(R), which is partially resolved by the following result.

3Note Qn(x) =
1
n
⌊Q(x)n⌋ ∈ Pn(X ) gives an approximation of any distribution Q in which the error ‖Q−Qn‖∞ ≤ 1

n

can be bounded independently of Q.
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Theorem 4.6. We have for R ≥ 0,

Êsp,s(R) = Esp,s(R),

and moreover, for s ≥ 0,

E0(s) = min
Q∈P(X )

{D(Q‖P ) + E0(s,Q)}

where P = {p(x)}x∈X is the distribution of the i.i.d. source.

We defer the proof to Section 4.5. Theorem 4.6 shows that for R ≥ 0,

Esp,s(R) = min
Q∈P(X )

[D(Q‖P ) + Esp,c(H(Q) −R,Q)] (31)

by (30). By analogy to Theorem 3.1, Equation (31) can be regarded as a statement of entropic
duality.

4.4. Strong converse entropic duality. We define the type-dependent entropic strong converse
exponents by

E∗
sc,s(R,Q) := sup

−1<s<0
{E∗

0(s,Q) + sR} , E∗
sc,c(R,P ) := sup

−1<s<0
{E∗

0(s, P ) + s(H(P ) −R)} .

(32)
We also define the type-independent strong-converse entropic exponent for source coding by

E∗
sc,s(R) := sup

−1<s<0
{E∗

0(s) + sR} . (33)

In the absence of an operational duality of the strong converse exponents, we cannot follow the
same path as in the previous sections. Nonetheless, we can bound scs(n,R,Q) using E∗

sc,s(R,Q)
and scc(n,R,Q) using E∗

sc,c(R,Q) independently, as well as bound scs(R) using E∗
sc,s(R), giving

each of the entropic quantities defined in (32) and (33) operational motivation. This is done in
Appendix B, yielding the following result.

Proposition 4.7 (Entropic bounds on the strong converse exponents). For all R > 0 and n ∈ N:

scs(n,R,Q) ≥ E∗
sc,s(R,Q) − |X |

log(n + 1)

n
, (34)

scc(n,R,Q) ≥ E∗
sc,c(R,Q), (35)

scs(n,R) ≥ E∗
sc,s(R) − 2|X |

log(n + 1)

n
. (36)

In particular, E∗
sc,s(R,Q) > 0 for R < H(Q|B)ρ, E

∗
sc,c(R,Q) > 0 for R > I(Q,W), and E∗

sc,s(R) > 0
for R < H(X|B)ρ.

Remark 4.8. In [33], the present authors established a tighter bound on scs(n,R): for all R <
H(X|B)ρ and n ∈ N,

scs(n,R) ≥ E∗
sc,s(R)

along with an asymptotically matching upper bound, using different techniques. We include (36)
to show how the type-dependent bound (35) can quickly yield type-independent results.

In light of these bounds, the mathematical identity

E∗
sc,s(R,Q) = E∗

sc,c(H(Q) −R,Q) (37)

is an “entropic duality for the strong converse exponents” on the level of types. In fact, E∗
sc,s(R)

and E∗
sc,s(R,Q) are related in the same manner as Esp,s(R) and Esp,s(R,Q).
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Theorem 4.9. For R ≥ 0, we have the identity

E∗
sc,s(R) = min

Q∈P(X )

{
D(Q‖P ) + E∗

sc,s(R,Q)
}

and in fact, for s ∈ (−1, 0)

E∗
0(s) = min

Q∈P(X )
{D(Q‖P ) + E∗

0(s,Q)}

where P = {p(x)}x∈X is the distribution of the i.i.d. source.

We defer the proof to the following section. Using (37), Theorem 4.9 yields

E∗
sc,s(R) = min

Q∈P(X )

{
D(Q‖P ) + E∗

sc,c(H(Q) −R,Q)
}
,

where E∗
sc,s is defined with respect to the c-q channel X ∋ x 7→ ρxB, which can be regarded as a

strong converse entropic duality between i.i.d. source coding and constant composition c-q channel
coding, similar to (31).

4.5. Proof of Theorems 4.6 and 4.9. The proofs of Theorems 4.6 and 4.9 rely heavily on the
following classical minimax theorem.

Lemma 4.10 (Ky Fan [43]). If X is a compact convex set in a topological vector space V , Y is a
convex subset of a vector space W , and f : X × Y → R has the properties that

(1) y 7→ f(x, y) is concave and upper-semicontinuous on Y for each x ∈ X,
(2) x 7→ f(x, y) is convex and lower-semicontinuous on X for each y ∈ Y

then
min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y)

where the supremum may be replaced by a maximum in the case that Y is compact.

We also use the following lemma to establish the concavity of the auxiliary functions.

Lemma 4.11 (Concavity of the auxiliary functions [38], [44]). Let {ρxB}x∈X be a set of density
operators in S(B). For any Q ∈ P(X ), the maps

(−1, 0) ∋ s 7→ E∗
0(s,Q) (38)

[0,∞) ∋ s 7→ E0(s,Q) (39)

are concave.

Remark 4.12. Equation (38) is due to [38], while Equation (39) is Cor. B.2 of [44].

Lastly, we employ the following variational formula characterizing the classical Renyi relative
entropy as a tradeoff between two relative entropy terms.

Lemma 4.13 ([45, Theorem 30]). Let P and Q be probability distributions on X . For all s > −1,
it follows that

min
R∈P(X )

D(R‖P ) + sD(R‖Q) = sD 1
1+s

(P‖Q).

Remark 4.14. See [44, Theorem III.5] for a quantum generalization of this result.

For the convenience of the reader, we summarize Theorems 4.6 and 4.9 as the following proposi-
tion.

Proposition 4.15 (Entropic duality). Let ρXB =
∑

x∈X p(x)|x〉〈x| ⊗ ρxB be a c-q state, and P =
{p(x)}x∈X . For R ≥ 0, we have

Esp,s(R) = min
Q∈P(X )

{D(Q‖P ) + Esp,s(R,Q)} . (40)

E∗
sc,s(R) = min

Q∈P(X )

{
D(Q‖P ) + E∗

sc,s(R,Q)
}
. (41)
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In fact, the auxiliary functions exhibit a duality as well. For s ≥ 0,

E0(s) = min
Q∈P(X )

{D(Q‖P ) + E0(s,Q)} , (42)

and for s ∈ (−1, 0),
E∗

0(s) = min
Q∈P(X )

{D(Q‖P ) + E∗
0(s,Q)} , (43)

where for t = {}, {∗}, the quantity Et
0(s,Q) is introduced in Eq. (26) and Et

0(s) is defined by (27).

Remark 4.16. It is worth emphasizing that the entropic duality established in Proposition 4.15 is
even new in the classical case. As R ∈ [H(X|Y ),H1/2(X|Y )] (here the side information is denoted
by the classical system Y ), the error exponents of the i.i.d. sources and the constant composition
channel coding are determined respectively by Esp,s(R) and Esp,c(R,Q) [11], [18]–[21], [46], [47].
Via the classical operational duality proved by Ahlswede and Dueck [23], Eq. (40) can be shown
for R ∈ [H(X|Y ),H1/2(X|Y )]. On the other hand, since the operational duality is unknown for
R ∈ [0,H(X|Y )], Eq. (41) is new in the classical case.

The proof of Proposition 4.15 employs the following properties of entropic quantities, proven in
[44]:

(1) For ρ, σ ∈ S(B), the map α 7→ Dt
α(ρ‖σ) is continuous on [0,∞], for t = {} and for t = {∗}.

(Cor. III.14)
(2) For ρ ∈ S(B) and s > −1, the map σ 7→ D∗

1
1+s

(ρ‖σ) is convex on S(B). (Prop. III.17)

(3) For s ≥ 0, τB → K 1
1+s

(ρxB‖τB) is concave on S(B) (Prop. III.17).

(4) For s ∈ (−1, 0) and ρ ∈ S(B), σ 7→ Dt
1

1+s

(ρ‖σ) is lower semicontinuous on S(B). (Cor.

III.26)

Proof. Define

Gt(s,Q, τ) := (1 + s)D(Q‖{P (x)
1

1+sKt
1

1+s

(ρxB‖τB)}). (44)

Since the relative entropy is lower semicontinuous and jointly convex, we see that for s > −1, the
map Q 7→ Gt(s,Q, τ) is lower semicontinuous and convex. We may rewrite this quantity in terms
of

P (s,τ)(x) := P (x)Kt
1

1+s

(ρxB‖τB)1+s

yielding

Gt(s,Q, τ) = D(Q‖P (s,τ)) + sD(Q‖1). (45)

Then

Gt(s,Q, τ) = −
∑

x∈X

Q(x) log
(
Kt

1
1+s

(ρxB‖τB)1+s
)

+ D(Q‖P ) + sD (Q‖1)

= s
∑

x∈X

Q(x)Dt
1

1+s

(ρxB‖τB) − sH(Q) + D(Q‖P ).

From this expression, we see s 7→ Gt(s,Q, τ) is continuous for all s > −1, using Property 1, and
that for s ∈ (−1, 0), the map τ 7→ G∗(s,Q, τ) is concave by Property 2, and upper semicontiuous
by Property 4. From this expression, we also find

Et
0(s,Q) + D(Q‖P ) =

{
minτ∈S(B) G

t(s,Q, τ) s ≥ 0

maxτ∈S(B)G
t(s,Q, τ) s ∈ (−1, 0)

(46)

so the right-hand side of (42) is given by
{

minQ∈P(X ) minτ∈S(B) G
t(s,Q, τ) s ≥ 0

minQ∈P(X ) maxτ∈S(B)G
t(s,Q, τ) s ∈ (−1, 0)

(47)
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On the other hand, we may use the form (45) to optimize Gt over Q using Lemma 4.13. We find

min
Q∈P(X )

Gt(s,Q, τ) = min
Q∈P(X )

{
D
(
Q‖P (s,τ)

)
+ sD (Q‖1)

}

= sD 1
1+s

(
P (s,τ)‖1

)

= −(1 + s) log
∑

x∈X

(P (s,τ))
1

1+s (x)

= −(1 + s) log
∑

x∈X

P
1

1+s (x)Kt
1

1+s

(ρxB‖τB)

= sDt
1

1+s

(ρXB‖1⊗ τB) .

Thus,

Et
0(s) =

{
minτB∈S(B) minQGt(s,Q, τ) s ≥ 0

maxτB∈S(B) minQGt(s,Q, τ) s ∈ (0,−1).
(48)

Therefore, since we can exchange minima, (48) and (47) with t = {} and s ≥ 0 yield (42). On the
other hand, for s ∈ (0,−1) and t = {∗} we have established τ 7→ G∗(s,Q, τ) is concave and upper
semicontinuous, and Q 7→ G∗(s,Q, τ) is convex and lower semicontinuous. Thus, the minimax result
of Lemma 4.10 allows the interchange the minimum and maximum in (48) s ∈ (0,−1) and t = {∗}.
Comparison with (47) then yields (43).

Next, for R ≥ 0 define

Ht(s,Q) =

{
minτB∈S(B)G

t(s,Q, τ) + sR s ≥ 0

maxτB∈S(B)G
t(s,Q, τ) + sR s ∈ (−1, 0).

(49)

then we have

Et
0(s,Q) + D(Q‖P ) + sR = Ht(s,Q) (50)

by (46). In particular, (40) is equivalent to

sup
s≥0

min
Q∈P(X )

H(s,Q) = min
Q∈P(X )

sup
s≥0

H(s,Q) (51)

while (41) is equivalent to

sup
s∈(−1,0)

min
Q∈P(X )

H∗(s,Q) = min
Q∈P(X )

sup
s∈(−1,0)

H∗(s,Q). (52)

It remains to check the assumptions of Lemma 4.10 in each case. We have that on the domain
s ∈ (−1, 0) and on the domain s ≥ 0, the map s 7→ Ht(s,Q) is continuous, as shown by the
following argument. Recall s 7→ G(s,Q, τ) is continuous. Then, since the set of density matrices is
compact, s 7→ minτB∈S(B)G(s,Q, τ) and s 7→ maxτB∈S(B) G(s,Q, τ) are continuous, by Cor. 3.1.22

of [48]. Similarly, Q 7→ Ht(s,Q) is lower semicontinuous on the domain s ∈ (−1, 0) and on s ≥ 0,
using that Q 7→ G(s,Q, τ) is lower semicontinuous, and Cor. 3.1.22 of [48] again. Additionally,
Lemma 4.11 gives that s 7→ H∗(s,Q) is concave for s ∈ (−1, 0) and s 7→ H(s,Q) is concave for
s ≥ 0, using (50).

It remains to establish that Q 7→ H(s,Q) convex on s ∈ [0,∞), and Q 7→ H∗(s,Q) is convex
on s ∈ (−1, 0). For the latter, we note that G∗(s,Q, τ) is again convex in Q ∈ P(X ) by Eq. (44)
and the convexity of the relative entropy in its first argument. Then, from Eq. (49), we see that
H∗(s,Q) is convex in Q ∈ P(X ) because pointwise supremum of convex functions is convex. This
completes the proof of (52).

Lastly, we show Q 7→ H(s,Q) is convex by establishing the joint convexity of (Q, τ) 7→ G(s,Q, τ)
for s ≥ 0. Let Q0, Q1 ∈ P(X ), τ0, τ1 ∈ S(B), θ ∈ [0, 1], Q = (1−θ)Q0+θQ1, and τ = (1−θ)τ0 +θτ1.
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Then it follows that

G(s,Q, τ) = (1 + s)
∑

x

Q(x) log
Q(x)

P (x)
1

1+sK 1
1+s

(ρxB‖τ)

≤ (1 + s)
∑

x

Q(x) log
Q(x)

(1 − θ)P (x)
1

1+sK 1
1+s

(ρxB‖τ0) + θP (x)
1

1+sK 1
1+s

(ρxB‖τ1)
(53)

≤ (1 − θ)(1 + s)
∑

x

Q0(x) log
Q0(x)

P (x)
1

1+sK 1
1+s

(ρxB‖τ0)

+ θ(1 + s)
∑

x

Q1(x) log
Q1(x)

P (x)
1

1+sK 1
1+s

(ρxB‖τ1)
(54)

= (1 − θ)G(s,Q0, τ0) + θG(s,Q1, τ1),

where inequality (53) follows from the concavity of K 1
1+s

(ρxB‖ · ), namely Property 3 above, and the

monotonicity of the logarithm; and inequality (54) is due to the joint convexity of the relative en-
tropy. Lastly, since (Q, τB) 7→ G(s,Q, τB) is jointly convex, it holds that Q 7→ minτB∈S(B)G(s,Q, τB)
is convex, which completes the proof of (51). �

5. Discussions

We consider the task of classical source coding with quantum side information (QSI), and the
task of c-q channel coding. The QSI can be considered to result from the action of a c-q channel
on a copy of the output of the source. This naturally associates a c-q channel to the source coding
task. We generalize the work of Ahlswede and Dueck [23] to show that these two tasks exhibit a
duality: good codes for one task can be used to make good codes for the other. This duality exists
at the level of the error exponents: the exponential rates of decay of the probability of error in n,
which denotes the number of uses of the channel or source.

In information theory, one typically finds expressions (or bounds) on operational quantities (e.g.
optimal rates or error exponents) of an information-theoretic task in terms of entropic quantities.
Error exponents for both classical source coding with QSI and c-q channel coding admit entropic
upper bounds in terms of the so-called sphere-packing exponents, and entropic lower bounds in
terms of the so-called random coding exponents. We show that the sphere-packing exponents for
these two tasks satisfy an exact duality relation. Such a duality does not seem to be satisfied by
the entropic random coding exponents, however, according to numerical results and preliminary
analytic analysis. The apparent failure of duality in this case could indicate that the random
coding exponents considered here are not optimal. In fact, in the case of source coding with QSI, it
is believed that a tighter lower bound (achievability bound) on the error exponent may be possible;
in [33], the present authors conjectured that a quantity denoted in that paper as Er(R) also yields
an achievability bound for this task. Moreover, this quantity and its c-q channel analog satisfy an
exact duality relation4.

A natural question to ask is whether the duality between classical source coding with QSI and c-q
channel coding also manifests itself when considering the exponents associated to the probability
of success (the strong converse exponents) instead of the probability of error. The strong converse
exponents for both c-q channel coding and classical coding with QSI have exact entropic expressions
in the asymptotic limit [33], [44]. We showed that these expressions, termed entropic strong converse
exponents, satisfy an exact duality relation. This shows that a mathematical duality holds for
the asymptotic operational strong converse exponents, and may be suggestive of an underlying
operational strong converse duality, i.e. one based on the construction of codes with finite n. The

4The proof follows exactly as the proof in the sphere-packing case
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existence of such an operational duality is an interesting open question which likely requires new
techniques.

Appendix A. Remaining proofs

A.1. Proof of Lemma 3.4. The first statement, that there exist a set of LQ permutations which
induces a cover of T n

Q, is the type covering lemma of Ahlswede, [34, Section 5.6.1], which follows

directly from the Covering Lemma of [49, Section 2.3], which deals with a more general setting
using the language of hypergraphs. We restate that proof, in the case of permutations and type
classes, with a slight strengthening to yield both statements5.

Let x ∈ T n
Q be fixed and let π be a permutation of {1, . . . , n} taken uniformly at random. Then

for a fixed u ∈ U , the probability that π(u) = x is 1
|Tn

Q
| (since it has uniform probability of mapping

u to any sequence in T n
Q). Then, since π(u) = x implies x = π−1(u), we cannot have both π(u) = x

and π(u′) = x for u 6= u′ ∈ U . This mutual exclusivity implies equality in the union bound, namely

Pr(x ∈ πU) =
∑

u∈U

Pr(x = π(u)) = |U| · |T n
Q|

−1,

so Pr(x 6∈ πU) = 1 − |U| · |T n
Q|

−1.

Next, choose k permutations π1, . . . , πk of {1, . . . , n} independently and uniformly at random.
Then, using independence,

Pr

[
x 6∈

k⋃

i=1

πiU

]
=

k∏

i=1

Pr(x 6∈ πiU) = (1 − |U|T n
Q|

−1)k.

Thus, summing over x ∈ T n
Q, the probability that there exists x ∈ T n

Q which is not covered is

Pr

[
∃x ∈ T n

Q s.t. x 6∈
k⋃

i=1

πiU

]
≤ |T n

Q| · (1 − |U|T n
Q|

−1)k

using a union bound.
Let δ ≥ 0. Then we have the equivalences

|T n
Q| · (1 − |U|T n

Q|
−1)k < 1 − δ

k log[1 − |U| · |T n
Q|

−1] < log[|T n
Q|

−1(1 − δ)]

k >
log[|T n

Q|
−1(1 − δ)]

log[1 − |U| · |T n
Q|

−1]
. (55)

Then, the inequality log(1 +x) < x, valid for all x ∈ (−1, 0)∪ (0,∞), applied to x = −|U| · |T n
Q|

−1 ∈

(−1, 0) yields

− log[1 − |U| · |T n
Q|

−1] > |U| · |T n
Q|

−1.

Therefore, the inequality

k ≥
−|T n

Q| log[|T n
Q|

−1(1 − δ)]

|U|
=

|T n
Q|(log[|T n

Q|] − log(1 − δ))

|U|
(56)

implies (55). At this stage, we see if δ = 0, then for k = LQ := ⌈|T n
Q| log[|T n

Q|]|U|
−1⌉ we recover

Pr

[
∃x ∈ T n

Q s.t. x 6∈

k⋃

i=1

πiU

]
≤ |T n

Q| · (1 − |U|T n
Q|

−1)k < 1

implying there must exist a set of LQ permutations which induce a cover of T n
Q.

5We note that the same reasoning we use to strengthen the result in our setting holds in the general setting as well.
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To prove the second statement, we consider k = 2LQ, and solve for δ in (56). We wish to find δ
such that

2LQ − |T n
Q| log[|T n

Q|]|U|
−1 ≥ −|T n

Q| · |U|
−1 log(1 − δ).

This is implied by

|T n
Q| log[|T n

Q|]|U|
−1 ≥ −|T n

Q| · |U|
−1 log(1 − δ)

using the bound LQ ≥ |T n
Q| log[|T n

Q|]|U|
−1 for each LQ. Therefore, if

|T n
Q| =

1

1 − δ
⇐⇒ 1 − δ =

1

|T n
Q|

,

then (56) holds for k = 2LQ. Thus,

Pr


∃x ∈ T n

Q s.t. x 6∈

2LQ⋃

i=1

πiU


 <

1

|T n
Q|

and so the probability of π1, . . . , π2LQ
inducing a cover of T n

Q is at least 1 − 1
|Tn

Q
| .

Next, we wish to find the expected number of trials (of independent draws of 2LQ permutations)
until we find a cover. This is governed by a geometric distribution with success probability p =
1− 1

|Tn
Q
| , and the expected number of trials up to and including the first success is given by 1

p . This

can be bounded simply by
1

p
=

1

1 − 1
|Tn

Q
|

≤
1

1 − 1
n

=
n

n− 1
≤ 2

for any n ≥ 2, using |T n
Q| ≥ n.

A.2. Proof of Theorem 4.2 (lower bound). To the best of our knowledge, the achievability of
such classical-quantum channel coding with fixed composition is unknown.

Proposition A.1 (Achievability of Classical-Quantum Channel Coding with Fixed Composition).
For any n ∈ N, W : X → S(B), P ∈ Pn(X ), there exist an n-blocklength channel code C with fixed
composition P and rate R such that the average error probability Pe(C) can be bounded by

logPe(C) ≤ −nE↓
r,c(R,P ) + K log n,

where K is a constant depending on P and R, and the entropic exponent function is defined by

E↓
r,c(R,P ) := sup

1
2
≤α≤1

1 − α

α

(
∑

x∈X

P (x)D2− 1
α

(Wx‖PW) −R

)
.

In particular,

ec(n,R, P ) ≥ E↓
r,c(R,P ) −

K log n

n
.

To prove it, we will first prove a one-shot version given by the following proposition.

Proposition A.2 (One-shot Achievability of Classical-Quantum Channel Coding). For any W :
X → S(B), P ∈ P(X ), B ⊂ X , and α ≤ [1/2, 1], there exists a channel code C with codewords in B
and |C| = M such that the average error probability Pe(C) can be bounded by

logPe(C) ≤
α− 1

α

[
Γ − log(M − 1) + log

P (B)

6

]
(57)

where Γ := infx∈B D2− 1
α

(Wx‖PW), and PW =
∑

x P (x)Wx.
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Proof of Proposition A.2. We prove the existence of the channel codes satisfying Eq. (57) by using
a random coding argument. For any P ∈ P(X ) and B ⊂ X with P (B) > 0, let PB ∈ P(X ) be

PB(x) :=
1x∈BP (x)

P (B)
.

We consider the ensemble of codes satisfying the following: the assignments of the messages m to
the code E(m) = x are jointly independent with probability PB(x) for all m in the message set M.
The decoder is characterized by the POVM F = (Πm)m∈M:

Πm :=

(
∑

i∈M

Λi

)−1/2

Λm

(
∑

i∈M

Λi

)−1/2

,

Λm :=
{
WE(m) − γPW > 0

}
,

where γ > 0 will be chosen later. Then, the average error probability of the code C = (E ,F) is

Pe(C) =
1

M

∑

m∈M

Tr
[
WE(m) (1− Πm)

]
.

Invoking the Hayashi-Nagaoka inequality [50, Lemma 2]:

1− Πm ≤ 2 (1− Λm) + 4
∑

i 6=m

Λi,

we obtain

Pe(C) ≤
2

M

∑

m∈M

Tr
[
WE(m)

{
WE(m) − γPW ≤ 0

}]
+

4

M

∑

m∈M

∑

i 6=m

Tr
[
WE(m)

{
WE(i) − γPW > 0

}]
.

The expected value of Pe(C) over the ensemble is then

E [Pe(C)] ≤ 2
∑

x

PB(x) Tr [Wx {Wx − γPW ≤ 0}] + 4(M − 1)
∑

x

PB(x) Tr [PBW {Wx − γPW > 0}] .

(58)

Next, we apply Audenaert et al.’s inequality [51], [52]: for every A,B ≥ 0 and t ∈ [0, 1],

Tr [{A−B ≥ 0}B + {B −A ≤ 0}A] ≤ Tr
[
AtB1−t

]
.

Letting A = Wx and B = γPW, the first term on the right-hand side of Eq. (58) can be upper
bounded by

2
∑

x

PB(x) Tr [Wx {Wx − γPW ≤ 0}] ≤ 2
∑

x

PB(x)γ1−t Tr
[
W t

x(PW)1−t
]

≤ 2γ1−t exp

{
(t− 1) inf

x∈B
Dt(Wx‖PW)

}
(59)

for all t ∈ [0, 1]. Similarly, the second term on the right-hand side of Eq. (58) can be upper bounded
by

4(M − 1)
∑

x

PB(x) Tr [PBW {Wx − γPW > 0}]

≤ 4(M − 1)
∑

x

PB(x) Tr [PW {Wx − γPW > 0}] (60)

≤ 4(M − 1)
∑

x

PB(x)
1

γP (B)
Tr
[
W t

x(PW)1−t
]

≤ 4(M − 1)
1

γP (B)
exp

{
(t− 1) inf

x∈B
Dt(Wx‖PW)

}
, (61)
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where Eq. (60) follows from below

PBW =
∑

x

1x∈BP (x)Wx

P (B)
≤
∑

x

P (x)Wx

P (B)
= PW.

By setting γ = M−1
P (B) , Eqs. (58), (59), and (61) together yield

E [Pe(C)] ≤
6

P (B)
exp

{
(t− 1)

[
inf
x∈B

Dt(Wx‖PW) − log(M − 1)

]}

≤
α− 1

α

[
Γ − log(M − 1) + log

P (B)

6

]

for all α ∈ [1/2, 1].
Sine there exists a channel coding with the average error probability less than or equal to E [Pe(C)],

our claim is thus proven.
�

By applying Proposition A.2 with the type class T n
P as the codeword space, we immediately arrive

at the following achievability result for constant composition coding.

Proof of Proposition A.1. First note that

P⊗n
W

⊗n = (PW)⊗n.

The additivity of Rényi relative entropy implies that for all x ∈ T n
P and α ∈ [1/2, 1],

D2− 1
α

(
Wx‖P

⊗n
W

⊗n
)

= D2− 1
α

(
Wx‖(PW)⊗n

)

= n
∑

x∈X

P (x)D2− 1
α

(Wx‖PW).

Let B = T n
P in Proposition A.2. By [21, p. 26], the probability of the set of all sequences with

composition P under the i.i.d. distribution P is

P⊗n (T n
P ) = e

−ξ |supp(P )|
12 log 2 (2πn)−

|supp(P )|−1
2

√√√√
∏

x:P (x)>0

1

P (x)

for some ξ ∈ [0, 1]. Hence, Proposition A.2 ensures that there exists an n-blocklength channel code

C with fixed composition P and rate R = log |C|
n such that

log Pe(C) ≤ −nE↓
r,c(R,P ) +

1 − α⋆

α⋆


 |supp(P )|

12 log 2

|supp(P )| − 1

2
log(2πn) +

1

2

∏

x:P (x)>0

1

P (x)


 (62)

for some α⋆ ∈ [1/2, 1] satisfying

R =
∑

x∈X

P (x)D2− 1
α⋆

(Wx‖PW).

Define

K := 2


 |supp(P )|

12 log 2

|supp(P )| − 1

2
(1 + log(2π)) +

1

2

∏

x:P (x)>0

1

P (x)


 .
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Then for n ≥ 2, log n ≥ 1, so

K log n ≥ 2


 |supp(P )|

12 log 2

|supp(P )| − 1

2
(log n + log(2π)) +

1

2

∏

x:P (x)>0

1

P (x)




≥
1 − α⋆

α⋆


 |supp(P )|

12 log 2

|supp(P )| − 1

2
log(2πn) +

1

2

∏

x:P (x)>0

1

P (x)




showing that the second term in the right-hand side of Eq. (62) can be upper bounded K log n for
all n > 2, which completes the proof. �

Appendix B. Strong Converse proofs with fixed type

B.1. Proof of (34). To show (34), it suffices to restrict to deterministic encoders. Let T n := T n
Q.

Fix a code C = (E ,D) with encoder E : T n → Wn, decoder D = (Dw)w∈Z where Dw = {Π
(w)
x }x∈Tn

is a POVM, and where |Z| = 2nR. An n-shot code at rate R in this context is a 1-shot code of the

state ρ
(n)
TnBn at a rate nR. We can thus apply the one-shot strong converse result given in the proof

of Theorem 3 of [CHDH18] with a source alphabet of T n: for any α > 1 and any state σBn ∈ S(Bn),

(1 − Pe(C))α
(

|Z|

|T n|

)1−α

≤ Q∗
α (ρTnBn ‖τTn ⊗ σBn ) ,

where τTn = 1Tn

|Tn| . Since this holds for any state σBn ∈ S(Bn), it holds in particular for any product

state σBn = σ⊗n
B . Then by the joint convexity Q∗

α for α > 1 we have

Q∗
α

(
ρTnBn

∥∥τTn ⊗ σ⊗n
B

)
≤

1

|T n|

∑

x∈Tn

Q∗
α

(
|x〉〈x| ⊗ ρxBn

∥∥|x〉〈x| ⊗ σ⊗n
B

)

=
1

|T n|

∑

x∈Tn

Q∗
α

(
ρxBn

∥∥σ⊗n
B

)
.

Thus,

(1 − Pe(C))α
(

|Z|

|T n|

)1−α

≤
1

|T n|

∑

x∈Tn

Q∗
α

(
ρxBn

∥∥σ⊗n
B

)
.

By multiplicativity of Q∗
α under tensor products,

1

|T n|

∑

x∈Tn

Q∗
α

(
ρxBn

∥∥σ⊗n
B

)
=

1

|T n|

∑

x∈Tn

∏

xi:x=(x1,...,xn)

Q∗
α(ρxi

B ‖σB) =
1

|T n|

∑

x∈Tn

∏

x∈X

Q∗
α(ρxB‖σB)nx

where on the far-right side we have regrouped the factors by counting the occurrences of each symbol
x ∈ X , and nx is the number of occurrences of x in the sequence x, i.e. nx = nQ(x). Since each
x ∈ T n has the same type Q, we have

(1 − Pe(C))α
(

|Z|

|T n|

)1−α

≤
∏

x∈X

Q∗
α(ρxB‖σB)nQ(x).
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Taking the logarithm and dividing by nα,

1

n
log(1 − Pe(C)) −

1

n

1 − α

α
log

|Z|

|T n|
≤
∑

x∈X

Q(x)
1

α
logQ∗

α(ρxB‖σB)

1

n
log(1 − Pe(C)) +

1

n

1 − α

α
log |T n| −

1 − α

α
R ≤

∑

x∈X

Q(x)
α− 1

α
D∗

α(ρxB‖σB)

1

n
log(1 − Pe(C)) ≤

α− 1

α

[
∑

x∈X

Q(x)D∗
α(ρxB‖σB) + R−

1

n
log |T n|

]

−
1

n
log(1 − Pe(C)) ≥

1 − α

α

[
∑

x∈X

Q(x)D∗
α(ρxB‖σB) + R−

1

n
log |T n|

]
.

Since we have

(n + 1)−|X | exp {nH(Q)} ≤ |T n
Q| ≤ exp {nH(Q)} ,

−
1

n
log(1 − Pe(C)) ≥

1 − α

α

[
∑

x∈X

Q(x)D∗
α(ρxB‖σB) + R−H(Q) +

|X |

n
log(n + 1)

]

>
1 − α

α

[
∑

x∈X

Q(x)D∗
α(ρxB‖σB) + R−H(Q)

]
−

|X |

n
log(n + 1)

since 1−α > −α =⇒ 1−α
α > −1. Since the left-hand side does not depend on σB or α > 1 we can

maximize both, and minimize over codes C, yielding

sc(n,R,Q) ≥ sup
α>1

1 − α

α

[
inf

σB∈S(B)

∑

x∈X

Q(x)D∗
α(ρxB‖σB) + R−H(Q)

]
−

|X |

n
log(n + 1).

Equivalently, setting s = α−1
α ,

sc(n,R,Q) ≥ sup
−1<s<0

s

[
inf

σB∈S(B)

∑

x∈X

Q(x)D∗
1

1+s

(ρxB‖σB) + R−H(Q)

]
−

|X |

n
log(n + 1)

= E∗
sc,s(R,Q) −

|X |

n
log(n + 1) (63)

as desired.

B.2. Proof of (35). To show (35), it suffices to restrict to deterministic encoders. Fix a code
C = (E ,D) with encoder E : M → T n

P , decoder D = {Πm}m∈M is a POVM, and where |M| = 2nR.
Let σ ∈ S(B) be arbitrary and let

X :=
1

|M|

|M|⊕

m=1

W⊗n
E(m), Y :=

1

|M|

|M|⊕

m=1

σ⊗n, Λ :=

|M|⊕

m=1

Πm.

Then, by the data processing inequality of Q∗
α(·‖·) for all α > 1,

(1 − Pe(C))α
1

|M|1−α
= Tr [XΛ]α Tr [Y Λ]1−α

≤ Tr [XΛ]α Tr [Y Λ]1−α + Tr [X(1 − Λ)]α Tr [Y (1 − Λ)]1−α

≤ Q∗
α(X‖Y )

=
1

|M|

|M|∑

m=1

Q∗
α(W⊗n

E(m)‖σ
⊗n).
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By multiplicitivity of Q∗
α under tensor products,

1

|M|

|M|∑

m=1

Q∗
α(W⊗n

E(m)‖σ
⊗n) =

1

|M|

∑

m∈M

∏

xi:E(m)=(x1,...,xn)

Q∗
α(Wxi

‖σ) =
1

|M|

∑

m∈M

∏

x∈X

Q∗
α(Wx‖σ)nx

where on the far-right side we have regrouped the factors by counting the occurences of each symbol
x ∈ X , and nx is the number of occurences of x in the sequence x, i.e. nx = nP (x). Since each
x ∈ T n

P has the same type P , we have

(1 − Pe(C))α
1

|M|1−α
≤
∏

x∈X

Q∗
α(Wx‖σ)nP (x).

Taking the logarithm and dividing by −nα,

−
1

n
log(1 − Pe(C)) ≥

1 − α

α

[
∑

x∈X

P (x)D∗
α(Wx‖σ) −R

]
.

Since this holds for every σ ∈ S(B) and α > 1, we can maximize both,

−
1

n
log(1 − Pe(C)) ≥

∑

α>1

1 − α

α

[
inf

σ∈S(B)

∑

x∈X

P (x)D∗
α(Wx‖σ) −R

]

= E∗
sc,c(R,P ).

as desired.

B.3. Proof of (36). Recalling Eq. (9), we have

1 − Pe(C) =
∑

Q∈Pn(X )

PXn

[
xn ∈ T n

Q

]
(1 − Pe(C, Q))

≤
∑

Q∈Pn(X )

exp{−nD(Q‖P )}(1 − Pe(C, Q))

≤ (n + 1)|X | max
Q∈P(X )

exp{−nD(Q‖P )}(1 − Pe(C, Q)). (64)

Combining Eqs. (63), (64), and Theorem 4.9, we obtain the desired result:

sc(n,R) ≥ min
Q∈P(X )

sup
s∈(−1,0)

{E∗
0(s,Q) + sR + D(Q‖P )} − 2|X |

log(n + 1)

n

= sup
s∈(−1,0)

min
Q∈P(X )

{E∗
0(s,Q) + sR + D(Q‖P )} − 2|X |

log(n + 1)

n

= sup
s∈(−1,0)

{E∗
0(s) + sR} − 2|X |

log(n + 1)

n

= E∗
sc,s(R) − 2|X |

log(n + 1)

n
.
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