
ar
X

iv
:1

81
0.

02
88

2v
1 

 [
m

at
h.

C
O

] 
 5

 O
ct

 2
01

8

The Fractional Local Metric Dimension of Graphs

Hira Benish, Muhammad Murtaza, Imran Javaid*
Centre for Advanced Studies in Pure and Applied Mathematics,

Bahauddin Zakariya University Multan, Pakistan

Email: hira benish@yahoo.com, mahru830@gmail.com,
imran.javaid@bzu.edu.pk.

Abstract

The fractional versions of graph-theoretic invariants multiply the range
of applications in scheduling, assignment and operational research prob-
lems. In this paper, we introduce the fractional version of local metric
dimension of graphs. The local resolving neighborhood L(xy) of an edge
xy of a graph G is the set of those vertices in G which resolve the vertices
x and y. A function f : V (G) → [0, 1] is a local resolving function of G
if f(L(xy)) ≥ 1 for all edges xy in G. The minimum value of f(V (G))
among all local resolving functions f of G is the fractional local metric
dimension of G. We study the properties and bounds of fractional local
metric dimension of graphs and give some characterization results. We
determine the fractional local metric dimension of strong and cartesian
product of graphs.
Keywords: Local metric dimension; Fractional local metric dimension;
Strong product of graphs; Cartesian product of graphs.
2010 Mathematics Subject Classification. 05C12.

1 Introduction and Terminology

Resolving sets and metric dimension of a graph were introduced by Slater [18]
and Harary and Melter [12] independently. Currie et al. [7] initiated the con-
cept of fractional metric dimension and defined it as the optimal solution of
linear relaxation of the integer programming problem of the metric dimension
of graphs. The fractional metric dimension problem was further studied by Aru-
mugam and Mathew [1] in 2012. The authors provided a sufficient condition

for a connected graph G whose fractional metric dimension is |V (G)|
2 . The frac-

tional metric dimension of graphs and graph products has also been studied in
[1, 9, 10, 11, 14, 19].

Okamoto et al. [16] initiated the study of distinguishing adjacent vertices
in a graph G rather than all the vertices of G by distance. This motivated
the study of local resolving sets and local metric dimension in graphs. In this
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paper, we introduce the fractional version of local metric dimension of graph. We
study the local fractional metric dimension of some graphs and establish some
bounds on the fractional local metric dimension of graphs. We also determine
the fractional local metric dimension of strong and cartesian product of graphs.

Let G = (V (G), E(G)) be a finite, simple and connected graph with V (G)
and E(G) be the vertex set and the edge set of G, respectively. The edge
between two vertices u and v is denoted by uv. If two vertices u and v are
joined by an edge then they are called adjacent vertices, denoted by u ∼ v.
NG(u) = {v ∈ V (G) : vu ∈ E(G)} and NG[u] = N(u) ∪ {u} are called the
open neighborhoods and the closed neighborhoods of a vertex u, respectively. For
a subset U of V (G), NG(U) = {v ∈ V (G) : uv ∈ E(G);u ∈ U} is the open
neighborhood of U in G. The distance between any two vertices u and v of
G is the shortest length of a path between u and v, denoted by d(u, v). Two
distinct vertices u, v are adjacent twins if N [u] = N [v] and non-adjacent twins
if N(u) = N(v). Adjacent twins are called true twins and non-adjacent twins
are called false twins. For two distinct vertices u and v in G, R(u, v) = {x ∈
V (G) : d(x, u) 6= d(x, v)}. A vertex set W ⊆ V (G) is called a resolving set of
G if W ∩ R(u, v) 6= ∅ for any two distinct vertices u, v ∈ V (G). The minimum
cardinality of a resolving set of G is called the metric dimension of G. Let f
be a function such that f assigns a number between 0 and 1 to each vertex of
G i.e., f : V (G) → [0, 1]. The function f is called a resolving function of G if
f(R(u, v)) ≥ 1 for any two distinct vertices u and v in G. The minimum value
of f(V (G)) among all resolving functions f of G is called the fractional metric
dimension of G, denoted by dimf (G).

A vertex set W ⊂ V (G) is called a local resolving set of G if W ∩R(u, v) 6= ∅
for any two adjacent vertices u, v ∈ V (G). The minimum cardinality of a local
resolving set is called the local metric dimension of G and it is denoted by
ldim(G). A local resolving set of order ldim(G) is called a local metric basis
of G. For uv ∈ E(G), we define the local resolving neighborhood as L(uv) =
{x ∈ V (G); d(u, x) 6= d(v, x)}. L(uv) = V (G), for all uv ∈ E(G), if and only
if ldim(G) = 1. In [16], it was shown that ldim(G) = 1 if and only if G is a
bipartite graph. Hence, L(uv) = V (G) for all uv ∈ E(G) if and only if G is a
bipartite graph. Now, we define the fractional local metric dimension of a graph
as follows;

Definition 1.1 A function f : V → [0, 1] is a local resolving function LRF of G
if f(L(uv)) ≥ 1 for all uv ∈ E(G), where f(L(uv)) =

∑

x∈L(uv)

f(x). The weight

of local resolving function f is defined as |f | =
∑

v∈V (G)

f(v). The minimum

weight of a local resolving function of G is called the fractional local metric
dimension ldimf(G) of G.

This paper is organized as follows: in Section 2, we characterize the graphs
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G with the fractional local metric dimension |V (G)|
2 and give bounds on the

fractional local metric dimension of graphs. We study the fractional local metric
dimension of some families of graphs and also discuss the differences between the
fractional metric dimension and the fractional local metric dimension of some
families of graph. In Section 3, we study the fractional local metric dimension of
strong and cartesian product of graphs. We establish bounds on the fractional
local metric dimension of these graph products.

2 Characterization Results and Bounds on

ldimf(G)

In a connected graphG, since every resolving set is a local resolving set, therefore
every resolving function is also a local resolving function but every local resolving
function is not a resolving function. Thus

ldimf(G) ≤ dimf (G)

Since, the characteristic function of a minimal local resolving set is an LRF of
G, therefore

1 ≤ ldimf(G) ≤ ldim(G) ≤ n− 1.

Thus, if a graph G has ldim(G) = 1, then ldimf(G) = 1. We have the following
result:

Lemma 2.1 Let G be a graph of order n ≥ 2, then ldimf (G) = 1 if and only
if G is a bipartite graph.

Proof: The sufficiency is immediate using the bounds given above. Conversely,
let G be a graph with ldimf(G) = 1, then |L(uv)| = n for all uv ∈ E(G).
Suppose G is not a bipartite graph and G contains an odd cycle Cs = {vi : vi ∼
vi+1, 1 ≤ i ≤ s, vs+1 = v1}, where s ≤ n is odd. Note that |L(vivi+1)| = s − 1
for all vivi+1 ∈ E(Cs), i ∈ {1, 2, ..., s}, a contradiction. Hence, G is a bipartite
graph.

Although there is a striking difference between fractional metric dimension and
fractional local metric dimension of graphs, however the same results hold for
the local metric dimension of graph when graph has true twin vertices. Let G
be a graph and uv ∈ E(G), then d(u, x) = d(v, x) for all x ∈ V (G) − {u, v} if
and only if u and v are true twins. We have the following result about the local
resolving neighborhood of true twin vertices:

Lemma 2.2 Let G be a graph and uv ∈ E(G). Then {u, v} ⊆ L(uv). Moreover,
we have L(uv) = {u, v} if and only if u and v are true twins.
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Proof: The proof simply follows from the fact that L(uv) = {u, v} if and only
if d(u, x) = d(v, x) for all x ∈ V (G) \ {u, v}.

Given a graph H and a family of graphs I = {Iv}v∈V (H), indexed by V (H),
their generalized lexicographic product, denoted by H [I], is defined as the graph
with the vertex set V (H [I]) = {(v, w) : v ∈ V (H) and w ∈ V (Iv)} and the edge
set E(H [I]) = {(v1, w1)(v2, w2) : v1v2 ∈ E(H), or v1 = v2 and w1w2 ∈ E(Iv1)}.
We state the result as follows:

Theorem 2.3 Let G be a connected graph of order n ≥ 2. Then the following
statements are pairwise equivalent.

(i) ldimf(G) = n
2 .

(ii) Each vertex in G has a true twin.
(iii) There exist a graph H and a family of graphs I = {Iv}v∈V (H), where Iv

is a non-trivial complete graph, such that G is isomorphic to H [I].

Proof: (i) ⇒ (ii) Suppose (i) holds. If there exists a vertex u in G such that u
does not have a true twin, then the following function f : V (G) → [0, 1],

f(x) =

{

0, if x = u,
1
2 , if x 6= u,

is a local resolving function of G by Lemma 2.2, which implies that ldimf (G) ≤
n−1
2 , a contradiction.

(ii) ⇒ (iii) Suppose (ii) holds. For x, y ∈ V (G), define x ≡ y if and only if
x = y or x, y are true twins. It is clear that ≡ is an equivalence relation.
Suppose O1, . . . , Om where m ≤ n the equivalence classes. Then the induced
subgraph on each Oi, where i ∈ 1, ...,m denoted also by IOi

, is a non-trivial null
graph or a non-trivial complete graph. Let H be the graph with the vertex set
{O1, . . . , Om}, where two distinct vertices Oi and Oj are adjacent if there exist
x ∈ Oi and y ∈ Oj such that x and y are adjacent in G. It is routine to verify
that G is isomorphic to H [I], where I = {IOi

: i = 1, . . . ,m}.
(iii) ⇒ (i) Suppose (iii) holds. For v ∈ V (H), write

V (Iv) = {w1
v, . . . , w

s(v)
v }.

Where |Iv| = s(v). Then s(v) ≥ 2, and (v, wi
v) and (v, wj

v) are true twins in
H [I], where 1 ≤ i < j ≤ s(v). Let h be a local resolving function of H [I] with
|h| = ldimf (H [I]). By Lemma 2.2, we get

h((v, wi
v)) + h((v, wj

v)) ≥ 1 for 1 ≤ i < j ≤ s(v),

which implies that
∑s(v)

k=1 h(v, w
k
v ) ≥ s(v)

2 , and so ldimf(G) = ldimf(H [I]) =

|h| =
∑

v∈V (H)

∑s(v)
k=1 h((v, w

k
v )) ≥

∑

v∈V (H)
s(v)
2 = |V (H[I])|

2 = n
2 .
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The join graph G1 +G2 is the graph obtained from G1 and G2 by joining each
vertex of G with every vertex of H . Note that, if each vertex in Gi has a true
twin for i ∈ {1, 2}, then each vertex in G1 +G2 has a true twin. We have the
following result:

Corollary 2.4 Let Θ denotes the collection of all connected graphs G with

ldimf(G) = |V (G)|
2 . If G1, G2 ∈ Θ, then G1 +G2 ∈ Θ.

The next result is a generalization of Theorem 2.3. The clique of a graph G is
a complete subgraph in G.

Theorem 2.5 Let G be a connected graph of order n and W1,W2, ....,Wk be
independent cliques in G with |Wi| ≥ 3 for all i, (1 ≤ i ≤ k). Then ldimf (G) =
k
∑

i=1

|V (Wi)|
2 if and only if for all uv ∈ E(G) \ E(Wi), L(xy) ⊆ L(uv) for some

xy ∈ E(Wi) for some i, (1 ≤ i ≤ k).

Proof: Let G be a graph with ldimf (G) =
k
∑

i=1

|V (Wi)|
2 , then there exists a local

resolving function f : V (G) → [0, 1] defined as:

f(v) =

{

1
2 if v ∈ V (Wi), 1 ≤ i ≤ k,
0 otherwise.

f(L(uv)) ≥ 1 for all uv ∈ E(G) \ E(Wi), for all i, 1 ≤ i ≤ k is possible only
when L(xy) ⊆ L(uv) for some xy ∈ E(Wi), for some i, (1 ≤ i ≤ k), since f
assigns 0 to the vertices of V (G) \ V (Wi) for all i, 1 ≤ i ≤ k.
Conversely, suppose that for all uv ∈ E(G) \ E(Wi), L(xy) ⊆ L(uv) for some
xy ∈ E(Wi), for some i, (1 ≤ i ≤ k). Let f : V (G) → [0, 1] be the function
defined as:

f(v) =

{

1/2 if v ∈ V (Wi), 1 ≤ i ≤ k,
0 otherwise.

It is clear that f(L(uv)) ≥ 1 for all uv ∈ E(G), since L(xy) ⊆ L(uv). Hence

f is a local resolving function of G and ldimf (G) ≤
k
∑

i=1

|V (Wi)|
2 . To show that

k
∑

i=1

|V (Wi)|
2 ≤ ldimf(G), suppose that f is local resolving function of Wi and

not a local resolving function of G. Then there exist uv ∈ E(G) such that
f(L(uv)) < 1. This leads to a contradiction to our supposition that L(xy) ⊆

L(uv). Hence, ldimf(G) =
k
∑

i=1

|V (Wi)|
2 .

A lollipop graph Lm,n is a graph obtained by joining a complete graph Km to
a path Pn with an edge.
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Corollary 2.6 Let Lm,n be a lollipop graph with m ≥ 3 and n ≥ 2. Then
ldimf(Lm,n) =

m
2 .

Proof: Since for all uv ∈ E(Pn), L(xy) ⊆ L(uv) for some xy ∈ E(Km), hence
by Theorem 2.5 and Theorem 2.3, ldimf(Lm,n) =

m
2 .

Let G be a graph of order n, we define l(G) = min{|L(uv)| : uv ∈ E(G)}.

Remark 2.7 Let r(G) = min{|R(u, v)| : u, v ∈ V (G)} as defined in [9]. Note
that for any graph G, r(G) ≤ l(G).

In the following result, we express the fractional local metric dimension of G in
terms of l(G).

Proposition 2.8 Let G be a graph, then ldimf(G) ≤ |V (G)|
l(G) .

Proof: Let f : V (G) → [0, 1], defined by f(x) = 1
l(G) . For any two adjacent

vertices x and y, we have f(L(xy)) = |L(xy)|
l(G) ≥ 1. Clearly, f is a local resolving

function of G. Hence, ldimf(G) ≤ |f | = |V (G)|
l(G) .

By Lemma 2.2, {u, v} ∈ L(u, v) so it is clear that |L(uv)| ≥ 2 for all uv ∈ E(G).
We have the following corollary of Proposition 2.8.

Corollary 2.9 For a graph G of order n, ldimf(G) ≤ n
2 .

Lemma 2.10 Let G be a graph and U be a subset of V (G) with cardinality
|V (G)| − ldim(G) + 1, there exists an edge xy ∈ E(G) such that L(xy) ⊆ U.

Proof: Suppose there exists a subset U with cardinality |V (G)| − ldim(G) + 1
such that L(xy) * U, for all xy ∈ E(G). Then L(xy) ∩ {V (G)\U} 6= ∅. So
V (G)\U is a local resolving set of G. Therefore, ldim(G) − 1 = |V (G)\U | <
ldim(G), a contradiction.

Theorem 2.11 Let G be a graph. Then l(G) = |V (G)| − 1 if and only if G is
isomorphic to an odd cycle.

Proof: It is easy to verify that l(G) = |V (G)| − 1 when G is an odd cycle.
Conversely, let G be a graph of order n ≥ 4 and l(G) = |V (G)| − 1. We further
suppose that G is not a bipartite graph, since l(G) = n for a bipartite graph of
order n. Thus G contains an odd cycle. Let Cp : x1, x2, ..., xp are the vertices
of odd cycle, where p ≤ n is odd. Let ∆(G) be the maximum degree of G. We
claim that ∆(G) = 2. Suppose to the contrary that ∆ ≥ 3, then odd cycle
Cp must be a proper subgraph of G. Since G is connected, therefore there
exists a vertex y ∈ V (G) \ V (Cp) such that y is adjacent to any vertex, say
xp of Cp. Since Cp is an odd cycle, therefore d(xp, x p−1

2

) = d(xp, x p+1

2

). Thus

xp, y /∈ L(x p−1

2

x p+1

2

). Hence |L(x p−1

2

x p+1

2

)| ≤ n − 2 which is a contradiction.

Hence ∆(G) = 2 and G is isomorphic to an odd cycle.
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Using Lemma 2.11, we have the following result:

Theorem 2.12 Let G be a graph of order n. Then

ldimf (G) ≥
n

n− ldim(G) + 1
.

Proof: Write s = n − ldim(G) + 1. Suppose f is a local resolving function of
G with |f | = ldimf(G). Let τ = {T : T ⊂ V (G), |T | = n − ldim(G) + 1} and

|τ | =
(

|V (G)|
s

)

. For each U ∈ τ , f(U) ≥ 1 by Lemma 2.10. Hence,
∑

U∈τ

f(U) ≥
(

n
s

)

. Since
∑

U∈τ

f(U) =
(

n−1
s−1

)

|f |, so we accomplish our result.

Theorem 2.13 For every integer ǫ, δ, there exist graphs G and H such that
dimf(G) − ldimf(G) ≥ δ and dimf (H)− ldimf(H) ≤ ǫ.

Proof: For the first inequality, we consider complete bipartite graph Kn,n, for
which dimf(Kn,n) = n [1] and ldimf(Kn,n) = 1. The difference between frac-
tional metric dimension and fractional local metric dimension is n − 1 > δ,
where δ can be as large as we like. For the second inequality, we consider cyclic
graph Cn of even order for which dimf (Cn) = n

n−2 [1], and ldimf(Cn) = 1.
The difference between fractional metric dimension and fractional local metric
dimension is 2

n−2 < ǫ, where ǫ can be as small as we like.

Let G be the complete k-partite graphKa1,a2,...,ak
, for k > 2, of order n =

k
∑

i=1

ai.

Let V (G) be partitioned into k-partite sets V1, V2, ..., Vk, where |Vi| = ai for
1 ≤ i ≤ k. Okamoto et al. proved that ldim(Ka1,a2,...,ak

) = k − 1 [16].

Lemma 2.14 Let G be the complete k-partite graph Ka1,a2,...,ak
, for k > 2, of

order n =
k
∑

i=1

ai. Then ldimf(Ka1,a2,...,ak
) = k − 1.

Proof: Firstly, we show that ldimf(G) ≤ k − 1. It is clear that all xy ∈
E(Ka1,a2,...,ak

) if and only if x ∈ Vi and y ∈ Vj , i 6= j and i, j ∈ {1, 2, ..., k}.
Note that for all xy ∈ E(Ka1,a2,...,ak

), L(xy) = Vi ∪ Vj . One of the possible
choices of local resolving function f of G is that f is defined as: f assigns 1 to
only one vertex of Vi ∪ Vj and 0 to all other vertices of Vi ∪ Vj . This implies
f(L(xy)) ≥ 1 for all xy ∈ E(G) and |f | = k − 1. Thus ldimf (G) ≤ k − 1.

To prove k−1 ≤ ldimf (G), suppose on contrary that ldimf (G) = k−2. The
minimum weight k − 2 of a function f among all the local resolving functions
of G will be possible only when f assigns 0 to all vertices of Vr ∪ Vs, for some
r, s ∈ {1, 2, ..., k}. This implies f(L(xy)) < 1 for xy ∈ E(G) where x ∈ Vr and
y ∈ Vs, which is a contradiction. Hence ldimf(G) = k − 1.
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The automorphism group of a graphG is the set of all permutations of the vertex
set of G that preserve adjacencies and non-adjacencies of vertices in G and it
is denoted by Γ(G). A graph G is vertex-transitive if its automorphism group
Γ(G) acts transitively on the vertex set. The stabilizer of a vertex v ∈ V (G),
denoted by Γv, is defined as Γv = {π ∈ Γ : π(v) = v}. The index of a subgroup
is defined as the number of distinct cosets of the subgroup in that group. In
a vertex-transitive graph G, for any two vertices v and w in V (G), Γv and Γw

are isomorphic and the index of Γv in Γ(G) is equal to the order of V (G). For
a vertex-transitive graphs, if l(G) = r(G), then ldimf(G) = dimf (G). For
example, an odd cycle of order n is a vertex-transitive graph and l(Cn) = r(Cn)
for odd n. Petersen graph is a vertex-transitive graph and l(G) = 6 = r(G).
Therefore, ldimf(P ) = 5

3 = dimf (G). But in general, ldimf(G) 6= dimf (G)
for vertex-transitive graphs. For instance, hypercube Qn is a vertex-transitive
graph with dimf(Qn) = 2 6= 1 = ldimf(Qn). In the following result, we give
the fractional local metric dimension of a vertex-transitive graph G in terms of
the parameter l(G).

Theorem 2.15 Let G be a vertex-transitive graph. Then ldimf(G) = |V (G)|
l(G) .

Proof: Let l(G) = p, then there exists an edge uv ∈ E(G) such that
|L(uv)| = p. Suppose L(uv) = {r1, r2..., rp}. Let α ∈ Γ(G), L(α(u)α(v)) =
{α(r1), α(r2), ..., α(rp)}. Let f be a local resolving function of G with
ldimf(G) = |f |. Then

f(α(r1)) + f(α(r2)) + ...+ f(α(rp)) = f(L(α(u)α(v))) ≥ 1,

which implies that

∑

α∈Γ(G)

(f(α(r1)) + f(α(r2)) + ...+ f(α(rp))) ≥ |Γ(G)|.

Since G is vertex-transitive, we have

|Γr1 |.|f |+ |Γr2 |.|f |+ ...+ |Γrp |.|f | ≥ |Γ(G)|

which implies that ldimf(G) ≥ |V (G)|
p

. By Proposition 2.8, we have the required
result.

Let G be a connected graph, for v ∈ V (G), G−v is known as the vertex deletion
subgraph of G obtained by deleting v from the vertex set of G along with its
incident edges.

Proposition 2.16 Let G be a graph and v ∈ V (G), then ldimf(G) − 1 ≤
ldimf(G− v).
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Proof: Let f : V (G − v) → [0, 1] be a local resolving function of G − v such
that ldimf(G− v) = |f |. Consider a function f ′ : V (G) → [0, 1] defined as:

f ′(u) =

{

f(u), if u 6= v,
1, if u = v.

is a local resolving function of G and ldimf(G) ≤ |f ′|. Thus ldimf(G − v) =
|f | = |f ′| − 1 ≥ ldimf(G)− 1.

The fan graph F1,n of order n + 1 is defined as the join graph K1 + Pn. Let
V (K1) = {u} and V (Pn) = {u1, u2, ..., un}.

Lemma 2.17 Let F1,n be a fan graph with n ≥ 3, then

ldimf(F1,n) =

{

2, if n = 3,
n
3 , if n ≥ 4.

Proof: Since l(F1,3) = 2, therefore ldimf(F1,3) ≤ 2 by Proposition 2.8. Now,
we show that 2 ≤ ldimf(F1,3). Since l(F1,3) = 2 and |L(xy)| 6= 4 for any
xy ∈ E(F1,3). Thus a function f : V (F1,3) → [0, 1] is a local resolving function
for F1,3 if it assign 1/2 to each vertex of F1,3. Otherwise there exists an edge
xy ∈ E(F1,3) such that L(xy) < 1. Hence ldimf (F1,3) = 2.
Let F1,n be a fan graph with n ≥ 4. Note that {u} = V (K1) does not locally
resolve any xy ∈ E(F1,n) for x, y 6= u. Let f ;V (F1,n) → [0, 1] is a local resolving
function defined as:

f(v) =

{

1/3, if v 6= u,
0, if v = u.

f(L(xy)) ≥ 1 for all xy ∈ E(F1,n). Thus |f | =
n
3 . Hence ldimf (F1,n) ≤

n
3 .

Now we show that n
3 ≤ ldimf(F1,n). Note that l(F1,n) = 3 for n ≥ 4. f is

a local resolving function as defined above. If f assigns 0 to any vertex from
V (Pn), then there exists an edge xy ∈ E(F1,n) such that f(L(xy)) < 1. Hence
ldimf(F1,n) =

n
3 for n ≥ 4.

3 The Fractional Local Metric Dimension of

Strong and Cartesian Product of Graphs

The strong product of two graphs G and H , denoted by G⊠H , is a graph with
the vertex set V (G⊠H) = {(u, v) : u ∈ V (G) and v ∈ V (H)} and two vertices
(u1, v1) and (u2, v2) in G⊠H are adjacent if and only if

• u1u2 ∈ E(G) and v1 = v2 or

• u1 = u2 and v1v2 ∈ E(H) or
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• u1u2 ∈ E(G) and v1v2 ∈ E(H).

For a vertex u ∈ V (G), the set of vertices {(u, v) : v ∈ V (H)} is called an
H-layer and is denoted by Hu. Similarly, for a vertex v ∈ V (H), the set
of vertices {(u, v) : u ∈ V (G)} is called a G−layer and is denoted by Gv.
Let dG⊠H((u1, v1), (u2, v2)) denotes the distance between (u1, v1) and (u2, v2).
For (u1, v1)(u2, v2) ∈ E(G ⊠ H), the local resolving neighborhood of edge
(u1, v1)(u2, v2) is denoted by LG⊠H((u1, v1)(u2, v2)) and LG(u1u2) denotes the
local resolving neighborhood of u1u2 ∈ E(G). The following result gives the re-
lationship between the distance of vertices in G⊠H and the distance of vertices
in graphs G or H .

Remark 3.1 [13] Let G and H be two connected graphs. Then

dG⊠H((u1, v1), (u2, v2)) = max{dG(u1, u2), dH(v1, v2)}.

Lemma 3.2 Let G and H be two graphs of order n1 ≥ 2 and n2 ≥ 2, respec-
tively. Then

LG⊠H((ui, vj)(uk, vl)) ⊆







V (G)× LH(vjvl), if i = k,
LG(uiuk)× V (H), if j = l,
{V (G)× LH(vjvl)} ∪ {LG(uiuk)× V (H)} otherwise.

Proof: Let (ui, vj)(uk, vl) ∈ E(G⊠H). If i = k, then vjvl ∈ E(H). Let (ui, b) ∈
LG⊠H((ui, vj)(ui, vl)), then dG⊠H((ui, b), (ui, vj)) 6= dG⊠H((ui, b), (ui, vl)).
By Remark 3.1, we have dH(b, vj) 6= dH(b, vl), therefore b ∈ LH(vjvl).
Thus (ui, b) ∈ {V (G) × LH(vjvl)}. Analogously, if j = l, then uiuk ∈
E(G). Let (a, vj) ∈ LG⊠H((ui, vj)(uk, vj)), then dG⊠H((a, vj), (ui, vj)) 6=
dG⊠H((a, vj), (uk, vl)). By Remark 3.1, we have dG(a, ui) 6= dG(a, uk), therefore
a ∈ LG(uiuk). Thus (a, vj) ∈ {LG(uiuk)× V (H)}. Finally, if uiuk ∈ E(G) and
vjvl ∈ E(H), then two vertices (ui, vj) and (uk, vl) are locally resolved by either
(a, vj) or (ui, b) or both. Let (a, vj) ∈ LG⊠H((ui, vj)(uk, vl)), we have

dG⊠H((ui, vj), (a, vj)) = dG(ui, a) 6= dG(uk, a)

= max{dG(uk, a), 1} = dG⊠H((a, vj), (uk, vl)).

Thus, (a, vj) ∈ {LG(uiuk) × V (H)}. Similar arguments hold for (ui, b) ∈
LG⊠H((ui, vj)(uk, vl)). Hence, (a, vj), (ui, b) ∈ {V (G)×LH(vjvl)}∪{LG(uiuk)×
V (H)} and we have the desired result.

Now, we discuss some results involving the diameter or the radius of G. For any
two vertices x and y in a connected graph G, the collection of all vertices which
lie on an x−y path of the shortest length is known as the interval I[x, y] between
x and y. Given a non-negative integer k, we say that G is adjacency k−resolved
if for every two adjacent vertices x, y ∈ V (G), there exists w ∈ V (G) such that
dG(y, w) ≥ k and x ∈ I[y, w], or dG(x,w) ≥ k and y ∈ I[x,w]. For example,
path graphs and cyclic graphs of order n ≥ 2 are adjacency ⌈n

2 ⌉−resolved.
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Lemma 3.3 Let G be a non-trivial graph of diameter diam(G) < k and let H
be an adjacency k−resolved graph of order n2 and let (ui, vj)(ur, vl) ∈ E(G⊠H).
Then

LG⊠H((ui, vj)(ur, vl)) ⊆ {LG(uiur)× V (H)}.

Proof: Let LG⊠H((ui, vj)(ur, vl)) be the local resolving neighborhood of
(ui, vj)(ur, vl) ∈ E(G⊠H). We differentiate the following two cases.
Case 1: If j = l, then uiur ∈ E(G). Let (u, vj) ∈ LG⊠H((ui, vj)(ur, vj))
then dG.⊠H((ui, vj), (u, vj)) 6= dG⊠H((ur, vj), (u, vj)). By Remark 3.1, we have
dG(ui, u) 6= dG(ur, u), thus u ∈ LG(uiur).
Case 2: If vjvl ∈ E(H). Since H is adjacency k−resolved, there
exists v ∈ V (H) such that (dH(v, vl) ≥ k and vj ∈ I[v, vl]) or
(dH(v, vj) ≥ k and vl ∈ I[v, vj ]). Say dH(v, vl) ≥ k and vj ∈
I[v, vl]. In such a case, as diam(G) < k, for every u ∈ LG(uiur)
we have dG⊠H((ui, vj), (u, v)) = max{dG(ui, u), dH(vj , v)} < dH(v, vl) =
maxdG(u, ur), dH(v, vl) = dG⊠H((ur, vl), (u, v)).
Hence, LG⊠H((ui, vj)(ur, vl)) ⊆ {LG(uiuk)× V (H)}.

Theorem 3.4 Let G be a non-trivial graph of diameter diam(G) < k and let
H be an adjacency k−resolved graph of order n2. Then

ldimf(G⊠H) ≤ n2.ldimf(G)

Proof: Let (x, y) ∈ E(G ⊠ H). Let g : V (G) → [0, 1] be a local resolving
function of G with |g| = ldimf(G). We define a function h : V (G⊠H) → [0, 1],

(x, y) 7→

{

g(x), if (x, y) ∈ Gy,
0, otherwise.

Note that h is a local resolving function of G ⊠ H . Since G has n2 copies in
G⊠H , therefore |h| ≤ n2.ldimf (G). Hence, ldimf(G⊠H) ≤ n2.ldimf(G).

Theorem 3.5 Let G and H be two graphs of order n1 ≥ 2 and n2 ≥ 2, respec-
tively. Then

2 ≤ ldimf(G⊠H) ≤ n1.ldimf(H) + n2.ldimf(G) − 2ldimf(G).ldimf (H).

Proof: Since P2⊠P2 = K4 and ldimf(P2⊠P2) = 2. So, the lower bound follows.
Let (u, v) ∈ V (G⊠H). Let g1 : V (G) → [0, 1] be a local resolving function of G
with |g1| = ldimf(G) and g2 : V (H) → [0, 1] be a local resolving function of H
with |g2| = ldimf(H). We define a function h : V (G⊠H) → [0, 1],with h(u, v) =
g1(u) + g2(v). Note that h is a local resolving function of G⊠H . Since G has
n2 and H has n1 copies in G⊠H , therefore |h| = n1.ldimf(H) + n2.ldimf(G).
Hence, ldimf(G⊠H) ≤ n1.ldimf(H) + n2.ldimf(G)− 2ldimf(G).ldimf (H).
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For the sharpness of upper bound in Theorem 3.5, let G = Kn and H = Km.
Since Kn ⊠Km

∼= Knm, therefore

ldimf(Kn⊠Km) =
nm

2
= n.ldimf(Km)+m.ldimf(Kn)−2ldimf(Kn).ldimf(Km).

Now, we discuss general bounds for the fractional local metric dimension
of cartesian product of graphs. The cartesian product of two graphs G and
H , denoted by G�H , is a graph with the vertex set V (G�H) = {(u, v) : u ∈
V (G) and v ∈ V (H)} and two vertices (u1, v1) and (u2, v2) in G�H are adjacent
if and only if

• u1u2 ∈ E(G) and v1 = v2 in H or

• u1 = u2 in G and v1v2 ∈ E(H).

Remark 3.6 [13] Let G and H be two connected graphs. Then

dG�H((u1, v1), (u2, v2)) = dG(u1, u2) + dH(v1, v2).

Lemma 3.7 Let G and H be two graphs, then

LG�H((ui, vj)(uk, vl)) =











⋃

v∈LH(vjvl)

⋃

u∈V (G)

{uv}, if i = k,

⋃

u∈LG(uiuk)

⋃

v∈V (H)

{uv}, if j = l.

Proof: For (ui, vj)(uk, vl) ∈ E(G�H) if i = k, then vjvl ∈ E(H). Let (ui, v) ∈
LG�H((ui, vj)(ui, vl)), then dG�H((ui, v), (ui, vj)) 6= dG�H((ui, v), (ui, vl)). By
Remark 3.6, we have dH(v, vj) 6= dH(v, vl), therefore v ∈ LH(vjvl). Thus
(ui, v) ∈

⋃

v∈LH(vjvl)

⋃

u∈V (G)

{uv}. Now let (ui, v) ∈
⋃

v∈LH(vjvl)

⋃

u∈V (G)

{uv}, then

dH(v, vj) 6= dH(v, vl). By Remark 3.6, we have dG�H((ui, v), (ui, vj)) 6=
dG�H((ui, v), (ui, vl)). Thus (ui, v) ∈ LG�H((ui, vj)(ui, vl)). Similar arguments
hold for j = l. Hence, we have the desired result.

Theorem 3.8 Let G and H be two graphs. Then ldimf(G�H) ≥ ldimf(G).

Proof: Let f be a local resolving function ofG�H with |f | = ldimf (G�H). We
define a function fG : V (G) → [0, 1] such that fG(u) = min{1,

∑

v∈V (H)

f(u, v)}.

For u1u2 ∈ E(G), we show that fG(LG(u1u2)) ≥ 1. If there exists an x ∈
LG(u1u2) with fG(x) = 1, then fG(LG(u1u2)) ≥ 1. Now, let for any u ∈ V (G),
fG(u) =

∑

v∈V (H)

f(u, v). Then

fG(LG(u1u2)) =
∑

u∈LG(u1u2)

∑

v∈V (H)

f(u, v)
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By Lemma 3.7,
= f(L((u1, v0)(u2, v0)) ≥ 1,

Thus fG is a local resolving function of G. Since

|fG| ≤
∑

u∈V (G)

∑

v∈V (H)

f(u, v) = |f |,

hence ldimf (G�H) ≥ ldimf (G).

Since grid graph Pn�Pt is a bipartite graph and by Lemma 2.1, we deduce
ldimf(Pn�Pt) = 1.

Lemma 3.9 Let G be a graph of order n, then ldimf(K2�G) ≤ ldimf(G).

Proof: Let V (K2) = {x, y}, V (G) = {u1, u2, ..., un} and H = K2�G. Then
V (H) = {(x, ui), (y, ui) : i = 1, 2, ..., n}. Let f be a local resolving function
of G with |f | = ldimf(G). Now we define g : V (H) → [0, 1] by g((x, ui)) =

g((y, ui)) =
f(ui)

2 , i = 1, 2, ..., n. We claim that g is a local resolving function for
H . Let uv ∈ E(H), if u = (x, ui) and v = (x, uj), then {{x} × LG(uiuj)} ⊆
LH(uv) and hence g(LH(uv)) ≥ f(LG(uiuj)) ≥ 1. If u = (x, ui) and v = (y, ui),
then LH(uv) = V (H) and hence g(LH(uv)) ≥ 1. Thus, g is a local resolving
function of H with |g| = |f |. Hence, ldimf(H) ≤ |f | = ldimf(G).

Remark 3.10 When G is a bipartite graph and an odd cyclic graph, the bound
given in Lemma 3.9 is sharp. If G is bipartite graph, then ldimf(K2�G) = 1 =
ldimf(G). If n is an odd integer with n ≥ 3, then ldimf(K2�Cn) =

n
n−1 .

Let G and H be graphs with V (H) = n, Arumugam et al. proved that the
fractional metric dimension of G�H ≥ n

2 if dimf (H) = n
2 [2]. Similar result

holds for the fractional local metric dimension with an alternative proof as
follows:

Theorem 3.11 Let G and H be two connected graphs with order m, n respec-
tively and ldimf(H) = n

2 . Then ldimf(G�H) ≥ n
2 .

Proof: Since ldimf(H) = n
2 , by Theorem 2.3, every vertex of H has a true

twin. Let v has a true twin w in H then LH(vw) = {v, w}. By Lemma 3.7, it
follows that LG�H((u, v)(u,w)) = {(x, v) : x ∈ V (G)} ∪ {(x,w) : x ∈ V (G)}.
Now, let f be a local resolving function of G�H . Then f(LG�H((u, v)(u,w))) ≥
1 for all (u, v)(u,w) ∈ E(G�H). Hence

∑

x∈V (G)

f((x, v)) +
∑

x∈V (G)

f((x,w)) ≥ 1

for all vw ∈ E(H). Adding these n inequalities, we get
∑

x∈V (H)

∑

x∈V (G)

f((x, v)) +
∑

x∈V (G)

f((x,w)) ≥ n.

This implies 2|f | ≥ n. Hence ldimf(G�H) ≥ n
2 .
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Corollary 3.12 Let G and H be two connected graphs with order m, n re-
spectively and ldimf(G) = m

2 and ldimf(H) = n
2 . Then ldimf(G�H) ≥

max{ldimf(G), ldimf (H)}.

The bound given in Theorem 3.11 is sharp for H = Kn as follows:

Theorem 3.13 Let G be any graph with |V (G)| < n, for all n ≥ 3. Then
ldimf(G�Kn) =

n
2 .

Proof: Let |V (G)| = m with m < n. Let V (G) = {u1, u2, ..., um} and
V (Kn) = {v1, v2, ..., vn}. Since by Theorem 2.3, ldimf(Kn) = n

2 , then by
Theorem 3.11, ldimf(G�Kn) ≥

n
2 . We claim that |LG�Kn

((ui, vr)(uj , vs))| ≥
2m for all (ui, vr)(uj , vs) ∈ E(G�Kn). For (ui, vr)(uj , vs) ∈ E(G�Kn),
we have two cases. If i = j, then r 6= s and by Lemma 3.7, we have
LG�Kn

((ui, vr)(ui, vs)) = {(ut, vr) : 1 ≤ t ≤ m} ∪ {(ut, vs) : 1 ≤ t ≤ m}.
So |LG�Kn

((ui, vr)(ui, vs))| = 2m. If r = s, then i 6= j and by Lemma 3.7, we
have {(ui, vt) : 1 ≤ t ≤ n} ∪ {(uj, vt) : 1 ≤ t ≤ n} ⊆ LG�Kn

((ui, vr)(uj , vr)). So
|LG�Kn

((ui, vr)(uj , vr))| ≥ 2n > 2m.
Now the function f : V (G�Kn) → [0, 1] defined by f((u, v)) = 1

2m for all

(u, v) ∈ V (G�Kn) is a local resolving function of G�Kn with |f | = |V (G�Kn)|
2m =

n
2 and ldimf(G�Kn) ≤

n
2 . Hence, ldimf(G�Kn) =

n
2 .

From Corollary 3.12, we have the following result.

Theorem 3.14 For 2 ≤ k ≤ n, n ≥ 3, ldimf(Kk�Kn) =
n
2 .

Proof: The result follows from Theorem 3.13, when k < n. Consider
the case when k = n. Since by Theorem 2.3, ldimf(Kn) = n

2 , then by
Theorem 3.11, ldimf(Kk�Kn) ≥ n

2 . Let V (Kk) = {u1, u2, ..., uk} and
V (Kn) = {v1, v2, ..., vn}. We claim that |LKk�Kn

((ui, vr)(uj , vs))| ≥ 2n for all
(ui, vr)(uj , vs) ∈ E(Kk�Kn). For (ui, vr)(uj , vs) ∈ E(G�Kn), we have similar
cases as in the proof of Theorem 3.13 and we have |LKk�Kn

((ui, vr)(uj , vs))| ≥
2n.

Now the function f : V (Kk�Kn) → [0, 1] defined by f((u, v)) = 1
2n for all

(u, v) ∈ V (Kk�Kn) is a local resolving function of kk�Kn with |f | = n
2 and

ldimf(Kk�Kn) ≤
n
2 . Hence, ldimf(Kk�Kn) =

n
2 .

4 Summary and Conclusion

In this paper, the concept of fractional local metric dimension of graphs has

been introduced. Graphs with ldimf(G) = |V (G)|
2 have been characterized.

The fractional local metric dimension of some families of graphs have been
studied. Differences between the fractional metric dimension and the fractional
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local metric dimension of graphs have also been investigated. The fractional
local metric dimension of strong and cartesian product of graphs have been
studied and established some bounds on their fractional local metric dimension.
However, it remains to determine the fractional local metric dimension of several
other graph products.
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