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ON THE ULAM–HYERS STABILITIES OF THE SOLUTIONS OF

Ψ-HILFER FRACTIONAL DIFFERENTIAL EQUATION WITH

ABSTRACT VOLTERRA OPERATOR

1 J. VANTERLER DA C. SOUSA, 2 KISHOR D. KUCCHE,
AND 3 E. CAPELAS DE OLIVEIRA

Abstract. In this paper, we consider the new class of the fractional differen-
tial equation involving the abstract Volterra operator in the Banach space and
investigate existence, uniqueness and stabilities of Ulam–Hyers on the com-
pact interval ∆ = [a, b] and on the infinite interval I = [a,∞). Our analysis is
based on the application of the Banach fixed point theorem and the Gronwall
inequality involving generalized Ψ-fractional integral. At last, we performed
out an application to elucidate the outcomes got.

1. Introduction

The study of abstract Volterra equations has long been investigated by a number
of researchers such as Kai-Jaung Pei [1] and Corduneanu [2, 3, 4]. In 2004, Vath
[5] introduced more general versions of the linear and nonlinear abstract Volterra
operator and investigated the existence of local solutions and solution extensions.
In 2000, Bedivan and O’Regan [6] investigated the topological structure of the set
of solutions for abstract Volterra equations in the Banach and Fréchet spaces. In
2010, Serban, Rus and Petrusel [7] investigated the existence, data dependence
and comparison results for the solution, using the technique of the operator of
Picard. With the progression of time, studies related to the Volterra abstract
operator gained interest from a number of consultants, and with this, numerous
applications have emerged, such as: control theory, continuous mechanics, nuclear
reactor dynamics, linear viscoelastic, among others [8, 9, 10].

On the other hand, the stability investigation of differential and integral equa-
tions are important in applications. Hyers, Isac and Rassias [11] investigated the
stability of functional equations in several variables. Jung [12] carried out a work
involving fixed point for stability of integral equations of Volterra. Two interesting
and important works were investigated by Rassias [13] and Rus [14], in which they
dealt with the stability of a linear mappings in the Banach space and the Ulam sta-
bility of ordinary differential equations. It is also important to highlight the work
carried out by Otrocol [15] on Ulam stability of nonlinear differential equations
with the abstract Volterra operator in the Banach spaces.

In 2012, Wei, Li and Li [16] investigated new Ulam–Hyers stabilities of Volterra
integral equations by means of the fixed-point theorem. Kostic [17] has done a work
on abstract Volterra integro-differential equations by means of fractional derivative
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and integral. Other important and interesting works on existence, uniqueness and
Ulam–Hyers stabilities, we suggest the references [18, 19].

The fractional calculus over the time has been gaining increasing prominence
in the scientific community [20, 21, 22, 23]. With new definitions of fractional
derivatives and integrals [24, 25], there has arisen some applications in a few terri-
tories of learning [26, 27, 28, 29, 30, 31]. There has gained prominence interest in
the investigation of existence and Ulam–Hyers stabilities of differential equations
and fractional integrals, be they of the impulsive type, functional or of Volterra
[18, 32, 33, 34, 35]. Recently, Sousa et al. [36, 37, 38, 39, 40, 41, 42], investigated
the existence, uniqueness and stabilities of Ulam–Hyers of fractional differential
equations.

In this sense, by means of the Ψ-Hilfer fractional derivative, we introduced a class
of nonlinear fractional differential equation with the abstract Volterra operator, in
order to investigate a new class of Ulam–Hyers stabilities, contributing with new
results and consequently for the growth of the area.

Consider the fractional differential equation with abstract Volterra operator in
a Banach space given by

(1.1) HDµ,η,Ψ
a+ x(t) = f(t, x(t), W̃ (x) (t)]), t ∈ ∆ ⊂ R

where HDµ,η,Ψ
a+ (·) is the Ψ-Hilfer fractional derivative of order 0 < µ ≤ 1 and type

0 ≤ η ≤ 1, ∆ = [a, b] or I = [a,∞), W̃ ∈ C((C1−ξ;Ψ[a, b],R), (C1−ξ;Ψ[a, b],R)),
f ∈ (I × R

2,R), where (R, | · |) is a Banach space.
Proposing new results on existence, uniqueness, especially Ulam–Hyers stabili-

ties, is indeed very important and contributes significantly to mathematics, espe-
cially for fractional calculus. The fundamental inspiration for the elaboration of the
present work for Eq.(1.1) involving abstract Volterra operator originated in order to
investigate and propose existence, uniqueness and stability results of Ulam–Hyers
and Ulam–Hyers–Rassias.

This paper is organized as follows. In section 2 we present the space of the
weighted functions and their respective norm. In addition, we present the concepts
of Ψ-Riemann-Liouville fractional integral, Ψ-Hilfer fractional derivative, the funda-
mental results in this regard and the Gronwall theorems. The stability concepts of
Ulam–Hyers, Ulam–Hyers–Rassias and some important observations conclude the
section. In section 3, we investigated the existence, uniqueness and Ulam–Hyers
stability of the fractional differential equation Eq.(1.1) on the compact interval
∆ = [a, b]. Section 4 is intended to investigate the uniqueness and Ulam-Hyers-
Rassias stability on the infinite interval I = [a,∞). In section 5, as an application
of the results we obtained, we will discuss existence and Ulam–Hyers stability of
solution for fractional Cauchy problem involving the Hadamard derivative. The
concluding remarks close the paper.

2. Preliminaries

In this section, we introduce the space of weighted functions and their respective
norm. We introduce the concepts of Ψ-Riemann-Liouville fractional integral, Ψ-
Hilfer fractional derivative and the fixed-point theorem of Banach. In addition, we
present the generalized Gronwall theorems to investigate the stabilities of Ulam–
Hyers and Ulam–Hyers–Rassias. Some important remarks close the section.
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Let ∆ = [a, b] or I = [a,∞) and C(∆,R) the space of continuous functions with
norm [24, 36]

(2.1) ‖x‖ = sup
t∈∆

|x (t)| .

The weighted space C1−ξ,Ψ(I,R) of functions x is defined by [24, 36]

(2.2) C1−ξ,Ψ(∆,R) =
{
x ∈ C(I2,R), (Ψ(t)−Ψ(a))1−ξx(t) ∈ C(∆,R)

}
,

where 0 ≤ ξ ≤ 1 with norm

(2.3) ‖x‖C1−ξ,Ψ
= sup

t∈∆

∣∣(Ψ(t)−Ψ(a))1−ξx(t)
∣∣ .

Obviously, the space C1−ξ;Ψ(∆,R) is a Banach space. The weighted space
Cn

1−ξ;Ψ(∆,R) of functions x is defined by

(2.4)

Cn
1−ξ,Ψ(∆,R) = {x : (a, b] → R; x(t) ∈ Cn−1(∆,R;x(n)(t) ∈ C1−ξ,Ψ(∆,R)},

where 0 ≤ ξ ≤ 1, with norm

(2.5) ‖x‖Cn
1−ξ,Ψ

(∆,R) =

n−1∑

k=0

∥∥∥x(k)
∥∥∥
C(∆,R)

+
∥∥∥x(n)

∥∥∥
C1−ξ,Ψ(∆,R)

.

Let I2 = (a, b) (−∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real line
R and let µ > 0. Also, let Ψ(t) be an increasing and positive monotone function
on I3 = (a, b], having a continuous derivative Ψ′(t) on I1. The left-sided fractional
integral of a function f with respect to function Ψ on [a, b] is defined by [24]

(2.6) Iµ,Ψ
a+ x(t) =

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s)x(s) ds,

where Qµ
Ψ (t, s) := Ψ′ (s) (Ψ (t)−Ψ(s))

µ−1
. The right-sided fractional integral is

defined in an analogous form.
On the other hand, let n − 1 < µ ≤ n with n ∈ N, ∆ = [a, b] an interval such

that (−∞ ≤ a < b ≤ ∞) and let f,Ψ ∈ Cn(∆,R) be two functions such that Ψ is
increasing and Ψ′(t) 6= 0, for all t ∈ ∆. The left-sided Ψ-Hilfer fractional derivative
HDµ,η,Ψ

a+ (·) of a function f , of order µ (0 < µ ≤ 1) and type η (0 ≤ η ≤ 1), is
defined by [24]

HDµ,η,Ψ
a+ x(t) = I

η(n−µ),Ψ
a+

(
1

Ψ′(t)

d

dt

)n

I
(1−η)(n−µ),Ψ
a+ x(t).

The right-sided Ψ-Hilfer fractional derivative is defined in an analogous form.

Theorem 1. [24] If x ∈ C1
1−ξ,Ψ(∆,R), 0 < µ ≤ 1 and 0 ≤ η ≤ 1, then

Iµ,Ψ
a+

HDµ,η,Ψ
a+ x(t) = x(t)−MΨ

ξ (t, a)I
(1−η)(1−µ),Ψ
a+ x(a),

where MΨ
ξ (t, a) :=

(Ψ(t)−Ψ(a))ξ−1

Γ(ξ)
.

Theorem 2. [24] Let x ∈ C1
1−ξ,Ψ(∆,R), µ > 0 and 0 ≤ η ≤ 1, then we have

Dµ,η,Ψ
a+ I

(1−η)(1−µ),Ψ

a+ x(t) = x(t).
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Theorem 3. [39] Let (X, d) be a generalized complete metric space. Assume that
Ω : X → X is a strictly contractive operator with the Lipschitz constant L < 1. If
there exists a nonnegative integer k such that d

(
Ωk+1,Ωk

)
< ∞ for some x ∈ X ,

then the following are true:

(1) The sequence
{
Ωkx

}
converges to a point x∗ of Ω;

(2) x∗ is the unique fixed point of Ω in Ω∗ =
{
y ∈ X/d

(
Ωkx, y

)
< ∞

}
;

(3) If y ∈ X∗, then d (y, x∗) ≤
1

1− L
d (Ωy, y).

Theorem 4. [43] (Gronwall theorem). Let u, v be two integrable functions
and g a continuous function, it domain [a, b]. Let Ψ ∈ C1(∆,R) an increasing
function such that Ψ′(t) 6= 0, ∀t ∈ ∆. Assume that:

(1) u and v are nonnegative;
(2) y is nonnegative and nondecreasing.

If

u(t) ≤ v(t) + g(t)

∫ b

a

Qµ
Ψ (t, s)u(s) ds,

then

u(t) ≤ v(t) +

∫ b

a

∞∑

k=1

[g(t)ξ(µ)]k

Γ(µk)
Qkµ

Ψ (t, s) v(s) ds,

∀t ∈ ∆ and Qkµ
Ψ (t, s) := Ψ′ (s) (Ψ (t)−Ψ(s))kµ−1 .

Lemma 1. [43] (Gronwall lemma) Under the hypotheses of Theorem 4, let v
be a non-decreasing function on ∆. Then, we have

u(t) ≤ v(t)Eµ (g(t)Γ(µ)[(Ψ(t) −Ψ(a))µ])

t ∈ ∆, where Eµ(·) is the Mittag-Leffler function with one parameter.

Let (R, |·|) be a Banach space and W̃ : (C1−ξ;Ψ∆,R) → (C1−ξ;Ψ∆,R) an abstract
Volterra operator.

For f ∈ C1−ξ;Ψ(∆ × R
2,R), ε > 0 and ϕ ∈ C1−ξ,Ψ(∆,R+) we consider the

following fractional Cauchy problem

HDµ,η,Ψ
a+ x(t) = f(t, x(t), W̃ (x) (t))(2.7)

I1−ξ,Ψ
a+ x(a) = δ, δ ∈ R(2.8)

and the inequalities given below

(2.9)
∣∣∣HDµ,η,Ψ

a+ y(t)− f(t, y(t), W̃ (y) (t)
∣∣∣ ≤ ε, t ∈ ∆,

(2.10)
∣∣∣HDµ,η,Ψ

a+ y(t)− f(t, y(t), W̃y(t)
∣∣∣ ≤ ϕ(t), t ∈ ∆.

To deal with different kinds of Ulam types stabilities of Eq.(2.7) we adopt the
definitions of [15].

Definition 2.1. The Eq.(2.7) is Ulam–Hyers stable if there exist a real number
c > 0 such that for each ε > 0 and for each solution y ∈ C1

1−ξ,Ψ(∆,R) of inequality

(2.9) there exist a solution x ∈ C1
1−ξ,Ψ(∆,R) of Eq.( 2.7) with

‖y − x‖C1−ξ;Ψ(∆,R) ≤ c ε.
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Definition 2.2. The Eq.(2.7) is generalized Ulam-Hyers-Rassias stable with re-
spect to ϕ, if there exist cϕ > 0 such that for each solution y ∈ C1

1−ξ,Ψ(∆,R) of

inequality (2.10) with

(Ψ(t)−Ψ(a))1−ξ|y(t)− x(t)| ≤ cϕϕ(t), t ∈ I.

Remark 2.3. A function y ∈ C1
1−ξ,Ψ(∆,R) satisfies inequality (2.9) if and only if

there exists a function g ∈ C1−ξ,Ψ(∆,R) such that

(1) |g(t)| ≤ ε, t ∈ ∆;

(2) HDµ,η,Ψ
a+ y(t) = f

(
t, y(t), W̃ (y) (t)

)
+ g(t), t ∈ ∆.

Remark 2.4. A function y ∈ C1
1−ξ,Ψ(∆,R) satisfies inequality (2.10) if and only if

there exists a function g̃ ∈ C(∆,R) (which depends on y) such that

(1) |g̃(t)| ≤ ϕ(t), t ∈ ∆;

(2) HDµ,η,Ψ
a+ y(t) = f

(
t, y(t), W̃ (y) (t)

)
+ g̃(t), t ∈ ∆.

Remark 2.5. If y ∈ C1
1−ξ,Ψ(∆,R) satisfies inequality (2.9), then y is a solution of

the following integral equation
∣∣∣∣y(t)− y(a)MΨ

ξ (t, a)Γ(ξ) −
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f(s, y(s), W̃ (y) (s) ds

∣∣∣∣

≤
(Ψ(t)−Ψ(a))µ

Γ(µ+ 1)
ε, t ∈ ∆.

Remark 2.6. If y ∈ C1
1−ξ,Ψ(∆,R) satisfies inequality (2.10), then y is a solution of

the following integral equation
∣∣∣∣y(t)− y(a)MΨ

ξ (t, a)−
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f(s, y(s), W̃ (y) (s) ds

∣∣∣∣

≤
1

Γ(µ)

∫ b

a

Qµ
Ψ (t, s)ϕ(s) ds, t ∈ ∆.

3. Ulam–Hyers stability

In this section, our main results investigate the existence, uniqueness and sta-
bility of Ulam–Hyers of the Cauchy fractional problem (2.7)–(2.8) on the compact
interval ∆ = [a, b].

Theorem 5. Consider the following;

(a) f ∈ C1−ξ,Ψ(∆× R
2,R), W̃ ∈ C((C1−ξ,Ψ∆,R), (C1−ξ,Ψ∆,R));

(b) There exist Lf > 0 such that

|f(t, u1, u2)− f(t, v1, v2)| ≤ Lf

2∑

k=1

|ui − vi| , t ∈ [a, b],

with ui, vi ∈ R, i = 1, 2;
(c) There exists L

W̃
> 0 such that

∣∣∣W̃ (x) (t)− W̃ (y) (t)
∣∣∣ ≤ L

W̃
|x(t) − y(t)| , x, y ∈ C1−ξ,Ψ[a, b], t ∈ ∆;

(d) The inequality Lf

{
1 + L

W̃

} Γ(ξ)(Ψ(b)−Ψ(a))µ

Γ(ξ + µ)
< 1 is true.

Then, we have
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(i) The fractional problem Eq.(2.7) and Eq.(2.8) has a unique solution in C1−ξ,Ψ(∆,R);
(ii) The solution of Eq.(2.7) is Ulam–Hyers stable.

Proof. (i). Under condition (a), Eq.(2.7) and Eq.(2.8) are equivalent to the integral
equation

(3.1) x(t) = MΨ
ξ (t, a)δ +

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
s, x(s), W̃ (x) (s)

)
ds.

In fact, applying the integral operator Iµ,Ψa+
(·) on both sides of Eq.(2.7), using

the relation I1−ξ,Ψ
a+

x(a) = δ and Theorem 1, we have

x(t) −MΨ
ξ (t, a)I

(1−η)(1−µ),Ψ
a+

x(a) = Iµ,Ψa+ f
(
t, x(t), W̃ (y) (t)

)

which implies that

(3.2) x(t) = MΨ
ξ (t, a)δ + Iµ,Ψa+

f
(
t, x(t), W̃ (y) (t)

)
.

On the other hand, applying the Ψ-Hilfer fractional derivative HDµ,η,Ψ
a+

(·) on

both sides of Eq.(3.2) and using Theorem 2, we have

HDµ,η,Ψ
a+

x(t) = HDµ,η,Ψ
a+

[
MΨ

ξ (t, a)δ + Iµ,Ψa+ f
(
t, x(t), W̃ (y) (t)

)]

= f
(
t, x(t), W̃ (y) (t)

)
(3.3)

where
HDµ,η,Ψ

a+

[
MΨ

ξ (t, a)δ
]
= 0

with 0 < ξ < 1.
Now, consider X = C1−ξ,Ψ (∆,R) and the operator Bf : X → X given by

Bfx(t) = MΨ
ξ (t, a)δ +

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
s, x(s), W̃ (y) (s)

)
ds.

The main purpose here is to prove that Bf is a contraction on X with respect to
the norm ‖·‖C1−ξ,Ψ

.

For any x, y ∈ C1−ξ,Ψ(∆,R) and t ∈ ∆ = [a, b], we have

|Bf (x(t)) − Bf (y(t))|

≤
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s)

∣∣∣f(s, x(s), W̃ (x) (s)− f(s, y(s), W̃ (y) (s)
∣∣∣ ds

≤
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s)Lf

{
|x(s)− y(s)|+

∣∣∣W̃ (x) (s)− W̃ (y) (s)
∣∣∣
}
ds

≤ Lf

{
1 + L

W̃

} 1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) |x(s) − y(s)| ds

≤ Lf

{
1 + L

W̃

}
‖x− y‖C1−ξ;Ψ(∆,R)

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) (Ψ (s)−Ψ(a))

ξ−1
ds

= Lf

{
1 + L

W̃

}
‖x− y‖C1−ξ;Ψ(∆,R) I

µ;Ψ
a+ (Ψ (t)−Ψ(a))

ξ−1

= Lf

{
1 + L

W̃

}
‖x− y‖C1−ξ;Ψ(∆,R)

Γ (ξ) (Ψ (t)−Ψ(a))
µ+ξ−1

Γ (µ+ ξ)
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Therefore, we get

‖Bfx− Bfy‖C1−ξ;Ψ

= sup
t∈I

∣∣(Ψ(t)−Ψ(a))1−ξ
Bfx(t)− Bfy(t)

∣∣

≤ Lf

{
1 + L

W̃

}
‖x− y‖C1−ξ;Ψ(∆,R)

Γ (ξ)

Γ (µ+ ξ)
sup
t∈I

(Ψ (t)−Ψ(a))
µ

≤ Lf

{
1 + L

W̃

} Γ (ξ)

Γ (µ+ ξ)
(Ψ (b)−Ψ(a))

µ
‖x− y‖C1−ξ;Ψ(∆,R) .(3.4)

Condition (d) ensures that Bf is a contraction with the norm ‖·‖C1−ξ,Ψ(∆,R) on

C1−ξ,Ψ(∆,R). Thus, by means of Banach fixed point (Theorem 3) the problem
Eq.(2.7) and Eq.(2.8) has a unique solution in C1−ξ,Ψ(∆,R). This concludes the
first part of the proof.

(ii) Now, we consider the y ∈ C1
1−ξ,Ψ (∆,R) satisfying the fractional inequality

Eq.(2.9) and we denote by x ∈ C1
1−ξ,Ψ(∆,R) the unique solution to the fractional

Cauchy problem

(3.5)

{
HDµ,η;Ψ

a+ x(t) = f
(
t, x(t), W̃ (x) (t)

)
, t ∈ ∆

I1−ξ;Ψ
a+ x(a) = y(a).

Using the condition (a), we obtain

(3.6) x(t) = MΨ
ξ (t, a)y(a) +

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
x, x(s), W̃ (x) (s)

)
ds,

for t ∈ ∆. Since y ∈ C1
1−ξ,Ψ (∆,R) satisfies inequality Eq.(2.9), by means of the

Remark 2.5, we have
∣∣∣∣y(t)− y(a)MΨ

ξ (t, a)−
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
s, y(s), W̃ (y) (s)

)
ds

∣∣∣∣

≤
(Ψ(t)−Ψ(a))µ

Γ(µ+ 1)
ε.

Therefore for t ∈ [a, b], we can write

|y(t)− x(t)|

=

∣∣∣∣y(t)−MΨ
ξ (t, a)y(a)−

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
s, x(s), W̃ (x) (s)

)
ds

∣∣∣∣

≤

∣∣∣∣y(t)−MΨ
ξ (t, a)y(a)−

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
s, y(s), W̃ (y) (s)

)
ds

∣∣∣∣+

+
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s)

∣∣∣f
(
s, y(s), W̃ (y) (s)

)
− f

(
s, x(s), W̃ (x) (s)

)∣∣∣ ds

≤
(Ψ(t)−Ψ(a))µ

Γ(µ+ 1)
ε+

Lf

Γ(µ)

∫ t

a

Qµ
Ψ (t, s)

{
|y(s)− x(s)| + L

W̃
|y(s)− x(s)|

}
ds

=
(Ψ(t)−Ψ(a))µ

Γ(µ+ 1)
ε+

Lf (1 + L
W̃
)

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) |y(s)− x(s)| ds.(3.7)

Using the Gronwall lemma (Lemma 1) we get, for ∆,

(3.8) |y(t)− x(t)| ≤
(Ψ(t)−Ψ(a))µ

Γ(µ+ 1)
εEµ

[
Lf(1 + L

W̃
)

Γ(µ)
Γ(µ)(Ψ(t)−Ψ(a))µ

]
.
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Therefore

‖y − x‖C1−ξ;Ψ
= sup

t∈I

∣∣(Ψ(t)−Ψ(a))1−ξy(t)− x(t)
∣∣

≤
(Ψ(b)−Ψ(a))µ+1−ξ

Γ(µ+ 1)
Eµ
[
Lf (1 + L

W̃
)(Ψ(b)−Ψ(a))µ

]
ε

= c ε,

where

c :=
(Ψ(b)−Ψ(a))µ+1−ξ

Γ(µ+ 1)
Eµ
[
Lf(1 + L

W̃
)(Ψ(b)−Ψ(a))µ

]

with Eµ(·) a Mittag-Leffler function. This proves the solution of the problem
Eq.(2.7) and Eq.(2.8) is Ulam–Hyers stable. �

4. Generalized Ulam-Hyers-Rassias stability

In this section, another our main result investigate the uniqueness and stability
of Ulam-Hyers-Rassias of the Cauchy fractional problem Eq.(2.7)–Eq.(2.8) on the
infinite interval I = [a,∞).

Theorem 6. Consider the following:

(ã) f ∈ C1−ξ,Ψ([a,∞)× R
2,R); W̃ ∈ C((C1−ξ,Ψ∆,R), (C1−ξ,Ψ(∆,R)));

(b̃) There exists non-decreasing function L̃f ∈ C([a,∞),R+) such that

|f(t, u1, u2)− f(t, v1, v2)| ≤ L̃f (t) (|u1 − v1|+ |u2 − v2|) ,

for t ∈ [a,∞), and ui, vi ∈ R with i = 1, 2;

(c̃) There exists non-decreasing function L̃
W̃

∈ C([a,∞),R+) such that

|W̃ (x) (t)− W̃ (y) (t)| ≤ L̃
W̃
(t)|x(t) − y(t)|

for x, y ∈ C1−ξ,Ψ[a,∞) and t ∈ [a,∞);

(d̃) The function ϕ ∈ C1−ξ,Ψ[a,∞) is increasing;
(ẽ) There exists λ > 0 such that

(4.1)
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s)ϕ(s) ds ≤ λϕ(t)

with t ∈ [a,∞).
Then,
(1) the fractional problem Eq.(2.7)–Eq.(2.8) has a unique solution in C1−ξ,Ψ([a,∞),R);
(2) the solution of the fractional problem Eq.(2.7)–Eq.(2.8) is generalized Ulam-

Hyers-Rassias stable with respect to ϕ.

Proof. With the conditions (ã), (b̃) and (c̃) and following the steps in the proof of
Theorem 5, one can easily prove that the problem Eq.(2.7)–Eq.(2.8), has a unique
solution in C1

1−ξ,Ψ([a,∞),R).

Let y ∈ C1
1−ξ,Ψ([a,∞),R) satisfying the inequality (2.10). Let x ∈ C1

1−ξ,Ψ([a,∞),R)
is a unique solution of the following fractional Cauchy problem

{
HDµ,η,Ψ

a+ x(t) = f
(
t, x(t), W̃ (x) (t)

)
, t ∈ [a,∞)

I1−ξ,Ψ
a+ x(a) = y(a).
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Then, its equivalent to the Volterra integral equation is

(4.2) x(t) = MΨ
ξ (t, a)y(a) +

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
s, x(s), W̃ (x) (s)

)
ds,

with t ∈ [a,∞).
Since y ∈ C1

1−ξ,Ψ(∆,R) satisfies inequality (2.10), by means of the Remark 2.6,
y satisfies the following fractional integral inequality

∣∣∣∣y(t)−MΨ
ξ (t, a)y(a)−

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
s, x(s), W̃ (x) (s)

)
ds

∣∣∣∣

≤
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s)ϕ(s) ds ≤ λϕ(t)(4.3)

with t ∈ [a,∞).
From Eq.(4.2) and Eq.(4.3), we obtain

|y(t)− x(t)|

=

∣∣∣∣y(t)−MΨ
ξ (t, a)y(a)−

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
s, x(s), W̃ (x) (s)

)
ds

∣∣∣∣

≤

∣∣∣∣y(t)−MΨ
ξ (t, a)y(a)−

1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) f

(
s, y(s), W̃ (y) (s)

)
ds

∣∣∣∣+

+
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s)

∣∣∣f
(
s, y(s), W̃ (y) (s)

)
− f

(
s, x(s), W̃ (x) (s)

)∣∣∣ ds

≤ λϕ(t) +
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) L̃f(s)

{
|y(s)− x(s)|+ W̃ (y) (s)− W̃ (x) (s)

}
ds

≤ λϕ(t) +
1

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) L̃f(s)(1 + L̃

W̃
(s))|y(s)− x(s)| ds

≤ λϕ(t) +
L̃f (t)(1 + L̃

W̃
(t))

Γ(µ)

∫ t

a

Qµ
Ψ (t, s) |y(s)− x(s)| ds.

Using the Gronwall lemma (Lemma 1), we have for t ∈ [a,∞)

|y(t)− x(t)| ≤ λϕ(t)Eµ

[
L̃f(t)(1 + L̃

W̃
(t))(Ψ(t)− Ψ(a))µ

]

Therefore

(4.4) (Ψ(t)−Ψ(a))1−ξ|y(t)− x(t)| ≤ cϕϕ(t), t ∈ [a,∞)

where cϕ = λ Ψ̃ Eµ

(
K̃
)
, Ψ̃ = sup

t∈[a,∞)

∣∣(Ψ(t)−Ψ(a))1−ξ
∣∣ < ∞ and

K̃ = sup
t∈[a,∞)

∣∣∣L̃f (t)(1 + L̃
W̃
(t)) (Ψ(t) −Ψ(a))µ

∣∣∣ < ∞.

So, by Eq.(4.4), the solution of the problem Eq.(2.7)–Eq.(2.8) is generalized Ulam-
Hyers-Rassias stable with respect to ϕ. �

We can conclude that the investigation that was carried out by means of Theorem
5 and Theorem 6 enabled a new class of Ulam–Hyers and Ulam-Hyers-Rassias
stabilities on the compact interval ∆ = [a, b] and on I = [a,∞). In this sense,
the new results presented here are indeed important for the fractional calculus, in
particular, for fractional analysis, enabling a growth in the area. In the following
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section, we present a brief application of this new class of Ulam–Hyers stability, as
particular cases of Theorem 5 and Theorem 6.

5. Application

In this section as application, we will discuss a fractional Cauchy problem in-
volving the Hadamard derivative and the stability of its solution, in both cases,
Ulam–Hyers and generalized Ulam–Hyers–Rassias. The results are presented as
theorems.

Consider the following fractional Cauchy problem

HDDµ
a+

x(t) = f

(
t, x(t),

1

Γ(µ)

∫ t

a

ln

(
t

s

)µ−1

K(t, s, x(s)) ds

)
, t ∈ I

where I = [0, 1] or [0,∞), HDDµ
a+

(·) is the Hadamard fractional derivative and the
inequalities∣∣∣∣∣

HDDµ
a+

y(t)− f

(
t, y(t),

1

Γ(µ)

∫ t

a

ln

(
t

s

)µ−1

K(t, s, y(s)) ds

)∣∣∣∣∣ ≤ ε,

∣∣∣∣∣
HDDµ

a+
y(t)− f

(
t, y(t),

1

Γ(µ)

∫ t

a

ln

(
t

s

)µ−1

K(t, s, y(s)) ds

)∣∣∣∣∣ ≤ ϕ(t)

for t ∈ I.
In this case, Theorem 5 and Theorem 6 become

Theorem 7. Suppose that

(A1) f ∈ C1−ξ,Ψ([0, 1]× R
2,R); W̃ ∈ C1−ξ,Ψ((C1−ξ,Ψ[a, b],R), (C1−ξ,Ψ[a, b],R));

(A2) There exists Lf > 0 such that, for all t ∈ [0, 1],

|f(t, u1, u2)− f(t, v1, v2)| ≤ Lf

2∑

i=1

|ui − vi|

with ui, vi ∈ R and i = 1, 2;
0(A3) There exists LK > 0 such that

|K(t, s, x(s))−K(t, s, y(s))| ≤ LK |x(t) − y(t)|

with x, y ∈ C1−ξ,Ψ[0, 1] and t ∈ [0, 1].

(A4)

(
ln

(
b

a

))µ

Γ(2µ)
Γ(µ)Lf (1 + LK) < 1.

Then
(i) The problem Eq.(2.7)–Eq.(2.8) has a unique solution in C1−ξ,Ψ([0, 1],R).
(ii) The solution of Eq.(2.7) is Ulam–Hyers stable.

Proof. The proof follows the same steps as in Theorem 5. �

Theorem 8. We assume that
(B1) f ∈ C1−ξ,Ψ([0,∞)× R

2,R); W̃ ∈ C((C1−ξ,Ψ[0, 1],R), (C1−ξ,Ψ[0, 1],R));

(B2) There exists non-decreasing function L̃f ∈ C([0,∞),R+) such that, for all
t ∈ [0,∞],

|f(t, u1, u2)− f(t, v1, v2)| ≤ L̃f (t)(|u1 − v1|+ |u2 − v2|)

with ui, vi ∈ R and i = 1, 2;
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(B3) There exists non-decreasing function L̃K ∈ C([0,∞),R) such that

|K(t, s, u))−K(t, s, v)| ≤ L̃K(t)|x(t) − y(t)|

with x, y ∈ C1−ξ,Ψ[0,∞) and t ∈ [0,∞).
(B4) The function ϕ ∈ C1−ξ,Ψ[0,∞) is increasing;
(B5) There exists λ > 0 such that

1

Γ(µ)

∫ t

a

ln

(
t

s

)µ−1

ϕ(s) ds ≤ λϕ(t), t ∈ [0,∞).

Then
(i) The problem Eq.(2.7)–Eq.(2.8) has a unique solution in C1−ξ,Ψ([0,∞),R).
(ii) The solution of Eq.(2.7) is Ulam-Hyers-Rassias stable with respect to ϕ.

Proof. The proof follows the same steps as in Theorem 6. �

6. Concluding Remarks

The investigation of Ulam–Hyers stabilities of solutions of several types of frac-
tional differential equations is a major motivation for researchers. Here we investi-
gated a new class of Ulam–Hyers stabilities of the differential equation with abstract
Volterra operator introduced by means of the Ψ-Hilfer fractional derivative on the
compact interval ∆ = [a, b] and on the infinite interval I = [a,∞), making use of
Banach’s fixed point theorem and Gronwall inequality. In this paper, the results
were obtained in the Banach space. It will be whether there is a possibility of
investigating such results in other spaces, such as Fréchet and fractional Sobolev
spaces. Researches in this follow-up are being worked on and future works will be
published.
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Math. (54) (2009) 125–133.

15. D. Otrocol, Ulam stabilities of differential equation with abstract Volterra operator in a
Banach space, Nonlinear Funct. Anal. Appl. 15 (4) (2010) 613–619.

16. W. Wei, X. Li, X. Li, New stability results for fractional integral equation, Comput. & Math.
Appl. 64 (10) (2012) 3468–3476.

17. M. Kostic, Abstract Volterra integro-differential equations, Taylor and Francis Group/CRC
Press, 2015.

18. K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation
and Integration to Arbitrary Order, Vol. 111, Elsevier, Academic Press, New York, 1974.

19. Z. Yong, W. Jinrong, Z. Lu, Basic theory of fractional differential equations, World Scientific
Publishing Company, Singapore, New Jersey, London and Hong Kong, 2014.

20. R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific Publishing

Company, Singapore, 2011.
21. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Aca-

demic Press, San Diego, Vol. 198, 1999.
22. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and

Applications, Gordon and Breach, New York, 1993.
23. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differ-

ential Equations, Vol. 204, Elsevier, Amsterdam, 2006.
24. J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Com-

mun. Nonlinear Sci. Numer. Simulat. 60 (2018) 72–91.
25. J. Vanterler da C. Sousa, E. Capelas de Oliveira, On a new operator in fractional calculus

and applications, arXiv:1710.03712, (2018).
26. J. A. David, D. D. Quintino, C. M. C. Inacio Jr, J. A. T. Machado, Fractional dynamic

behavior in ethanol prices series, J. Comput. and Appl. Math. 339 (2018) 85–93.
27. A. Dabiri, B. P. Moghaddam, J. A. T. Machado, Optimal variable-order fractional PID con-

trollers for dynamical systems, J. Comput. and Appl. Math. 339 (2018) 40–48.
28. S. Jahanshahi, E. Babolian, D. F. M. Torres, A. R. Vahidi, A fractional Gauss–Jacobi quad-

rature rule for approximating fractional integrals and derivatives, Chaos, Solitons & Fractals
102 (2017) 295–304.

29. D. Tavares, R. Almeida, D. F. M. Torres, Combined fractional variational problems of variable
order and some computational aspects, J. Comput. and Appl. Math. 339 (2018) 374–388.

30. A. B. Salati, M. Shamsi, D. F. M. Torres, Direct transcription methods based on fractional
integral approximation formulas for solving nonlinear fractional optimal control problems,
Commun. Nonlinear Sci. Numer. Simulat. 67 (2019) 334–350.

31. J. Vanterler da C. Sousa, M. N. N. dos Santos, L. A. Magna, E. Capelas de Oliveira, Vali-
dation of a fractional model for erythrocyte sedimentation rate, Comp. Appl. Math. (2018).
https://doi.org/10.1007/s40314-018-0717-0.

32. S. Abbas, M. Benchohra, J. E. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for
fractional differential equations of Hilfer-Hadamard type, Adv. Diff. Equa. 2017 (1) (2017)
180.

33. S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit Fractional Differential and
Integral Equations: Existence and Stability, Vol. 26, Walter de Gruyter GmbH & Co KG,
Berlin, Germany, 2018.
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