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A spectral sequence for spaces of maps between operads

Florian Göppl and Michael Weiss

Abstract. Under mild conditions on topologically enriched operads P and Q, the derived
mapping space RHom(P,Q) is the limit (sequential homotopy inverse limit) of a tower
whose n-th layer admits a description in terms of certain (small) diagrams Jn(P ) and
Jn(Q). More precisely Jn(P ) is a 3-term diagram of spaces with action of Σn, of the form

boundn(P ) → P (n) → coboundn(P )

where P (n) is the space of n-ary operations in P . The statement takes some inspiration
from manifold calculus, but the proof relies on the homotopical theory of dendroidal spaces
and the concept of dendroidal nerve of an operad.

1. Introduction

Operads are tools well-suited to describe and classify additional algebraic structures on
objects in symmetric monoidal categories. On the other hand they are a natural general-
ization of (enriched) categories allowing morphisms to have any finite number of sources.
Operads (in a more restrictive one-object setting) were first defined by Peter May in [22].
Closely related notions can be seen in the earlier book by Boardman-Vogt [7] and a spe-
cific operad emerged earlier still in the work of Stasheff [28] and Sugawara [29]. For a very
readable survey and exposition see [1, §2]. In his book, May proved the famous recognition
principle which gives an “operadic” characterization of based spaces which are homotopy
equivalent to some n-fold loop space. Operads have since appeared in various branches of
mathematics and mathematical physics. The principal aim of this investigation was to find a
way to understand spaces of maps between operads. The “little disk” operads are important
examples and test cases.
We will do this by translating the problem into the language of dendroidal spaces. These are
contravariant functors from a certain category Ω of trees to the category sSet of simplicial
sets. The theory of dendroidal sets and dendroidal spaces was introduced by Ieke Moerdijk
and Ittay Weiss in [24] (see also [31]) and further investigated by Cisinski and Moerdijk in
[11, 13, 12]. A simplicially enriched operad P determines a dendroidal space NdP , known
as the dendroidal nerve of P . There is a map of derived mapping spaces from RHom(P,Q)
to RHom(NdP,NdQ) which is a weak equivalence in the cases we are interested in.
Although derived mapping spaces have a standard description in the context of model cat-
egories, we will mostly avoid this description and rely on the description due to Dwyer-Kan
instead [16]. They construct derived mapping spaces for objects in any category C equipped
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with a wide subcategory W (whose morphisms play the role of weak equivalences). If W
happens to be the subcategory of weak equivalences in a model category, then these con-
structions yield weakly equivalent results. For our purposes a morphism of dendroidal spaces
is a weak equivalence if and only if it is a levelwise equivalence of simplicial sets. The goal,
then, is to understand the homotopy type of derived mapping spaces between dendroidal
nerves of (some) operads.
We approach this problem by mapping the space RHom(NdP,NdQ) to a tower of derived
mapping spaces obtained by restricting NdP and NdQ to certain subcategories Ω〈k〉, where
0 6 k < ∞. The subcategory Ω〈k〉 of Ω is the full subcategory on trees with vertices of
valence 6 k+1 only (to put it differently, trees in which no vertex has more than k incoming
edges). We note that these categories Ω〈k〉 are closed under grafting of trees. Contravariant
functors from Ω〈k〉 to the category of simplicial sets will be called k-truncated dendroidal
spaces. A morphism of truncated dendroidal spaces is a weak equivalence if it is a levelwise
weak equivalence of simplicial sets. With these definitions it is clear that the restriction
functor Uk from dendroidal spaces to k-truncated ones preserves all weak equivalences and
thus induces maps RHom(X,Y ) → RHom(UkX,UkY ) for all dendroidal spaces X and Y .
We arrange these maps in a tower

...

��

RHom(U3X,U3Y )

��

RHom(U2X,U2Y )

��

RHom(X,Y ) //

11

22

22

RHom(U1X,U1Y )

of derived mapping spaces.
In section 3.1 we set up a “dévissage” mechanism for proving homotopical statements in
categories of contravariant functors (with values in sSet) with levelwise weak equivalences.
We show that every functor admits a weak equivalence from a free CW-functor, a more
restrictive instance of the concept of CW-functor in Dror-Farjoun [14]. These are functors
admitting a CW-type decomposition into cells of the shape Hom(−, c)×∆[k]. We make use
of this approximation to prove certain homotopical properties for contravariant functors.
More precisely we show that we can verify such a property by showing that it holds for rep-
resentable functors and that it persists under formation of homotopy pushouts and disjoint
unions. Our first application of this principle is the following statement. (Admittedly this
is unsurprising, and it might have shorter proofs and might be regarded as obvious by some
readers.)

Lemma. (= Lemma 3.1.1, Corollary 3.1.7.) The above tower of derived mapping spaces
converges, i.e., for all dendroidal spaces X and Y the induced map

RHom(X,Y )→ holim
k

RHom(UkX,UkY )

is a weak homotopy equivalence.
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Under additional assumptions on our objects the homotopy fibers of this tower can be
simplified. A dendroidal Segal space is called 1-reduced if its values on the trivial tree and
the 0-corolla are points and its value on the 1-corolla is contractible. The most important
example is the dendroidal nerve of a 1-reduced simplicially enriched operad P . These are
operads P that only have one object and satisfy P (0) = ∗ and P (1) ≃ ∗. This notion still
captures our most important examples since all En operads and many more are 1-reduced.
In this setting we can, instead of working in the category sdSet of dendroidal spaces, restrict
attention to an easier category scdSet. This is based on a category of closed trees Ωcl ⊂ Ω.
Using this model we define operadic boundary and coboundary objects reminiscent of the
latching and matching objects, respectively, from the theory of Reedy categories. Let cck be
the closed k-corolla, an important object of Ωcl with a preferred action of Σk. Evaluating
objects in scdSet at cck gives a functor

X 7→ Xcck

from scdSet to the category of simplicial sets with Σk-action. (If X = NdP where P is a
1-reduced operad, then Xcck ≃ P (k).) We define two more functors boundk and coboundk
from scdSet to simplicial sets with Σk-action, and natural Σk-maps

boundkX → Xcck → coboundkX .

Let Jk(X) be the diagram just above, boundkX → Xcck → coboundkX, and let ∂Jk(X) be
the shorter diagram

boundkX → coboundkX

obtained by composing the two arrows in Jk(X). Both of these are understood to be
diagrams in the category of simplicial sets with an action of the symmetric group Σk. (For
the present purposes a morphism of simplicial sets with Σk-action will be regarded as a weak
equivalence if the underlying morphism in sSet is a weak equivalence.)

Theorem. (= Theorem 3.1.14.) Let X and Y be 1-reduced dendroidal Segal spaces, to
be viewed as objects of scdSet. Then the following square is a homotopy pullback square:

RHom(UkX,UkY ) RNat(JkX,JkY )

RHom(Uk−1X,Uk−1Y ) RNat(∂JkX, ∂JkY )

(See also remark 3.1.22 for a slightly different formulation.) This allows us to make some
homotopical computations with RHom(En, En+d).

Theorem. The homotopy fiber of

RNat(UkEn, UkEn+d)→ RNat(Uk−1En, Uk−1En+d)

is ((k − 1)(d − 2) + 1)-connected.

Combining this computation with the first result gives us the following estimate for the
connectivity of the space RHom(En, En+d).

Corollary. Assume d ≥ 2. The derived mapping space RHom(En, En+d) is (d − 1)-
connected. The spaces RHomk(UkEn, UkEn+d) are (d− 1)-connected as well, for all k ≥ 1.
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The above theorem and the corollaries are reminiscent of fundamental results in the
manifold calculus and can also be used in this context. A first application can be found in
[32, §3.4, §5].

The operadic boundary and coboundary objects have also been investigated and used in
[17] and [21] in slightly different settings. Similar constructions can be seen in [30].

Authorship. Apart from minor revisions, this is the PhD thesis of Florian Göppl (PhD
degree in 2019 at WWU Münster). The PhD supervisor at the time was M.Weiss. Florian
Göppl is no longer active in topology research, but his thesis was well received and as time
went by, the case for publishing it became stronger, not weaker. It fell to M.W. to revise
and submit the work and act as corresponding author, although he is hardly an author or
co-author of the article.

Acknowledgment. We are indebted to Thomas Nikolaus for some helpful suggestions.

2. Operads and dendroidal objects

The purpose of this first section is to explain and motivate the notion of an operad.
(The section is not a self-contained introduction to the homotopy theory of operads and
dendroidal objects.) In the first part of the section we will give a short exposition of the
basic definitions and theorems. The second part is devoted to some closely related notions
more approachable by homotopical methods. The theory of dendroidal sets was introduced
by Ieke Moerdijk and Ittay Weiss in [24]. A dendroidal object is a contravariant functor
on an indexing category of trees. An important subclass of trees are the linear ones and
contravariant functors on this subcategory are simplicial objects. Most of the homotopical
constructions for simplicial spaces generalize to the dendroidal setting. Our focus will be on
the dendroidal analogue of (complete) Segal spaces [26].
Throughout this article we will make some use of the theory of model categories. A model
structure on a bicomplete category C is defined by a triple (Co,W,Fi) of wide subcategories
of C. (A subcategory is called wide if it contains all identity morphisms.) These classes
have to satisfy certain lifting properties analogous to the cofibrations, weak equivalences
and fibrations of topological spaces. Although we are mostly interested in derived mapping
spaces and these only depend on a class of weak equivalences, the additional structure given
by fibrations and cofibrations provides useful tools for computations of mapping spaces and
derived functors.

2.1. Operads.

Definition 2.1.1. An operad P consists of a set of objects {xi} and for every (n+ 1)-
tuple (x1, . . . , xn;x) of objects a set of morphisms P (x1, . . . , xn;x) subject to the following
axioms:

• A morphism idx ∈ P (x;x) called identity of x.
• An associative composition morphism

P (y1, . . . , yn; z)× P (x1,1, . . . , x1,k1 ; y1)× . . .× P (xn,1, . . . , xn,kn ; yn)

P (x1,1, . . . xn,kn ; z).
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• For every (n+ 1)-tuple (x1, . . . xn; y) and every σ ∈ Σn a bijection

σ∗ : P (x1, . . . xn; y)→ P (xσ(1), . . . xσ(n); y)

respecting the other structure.

A more complete definition is given in [5, p. 1.1].
A morphism of operads f : P → Q consists of a map between objects

ob(P )→ ob(Q)

and structure preserving maps

P (x1, . . . , xn;x)→ Q(f(x1), . . . , f(xn); f(x)).

An operad is called monochromatic if it has only one object.

The operadic (multi-)composition can be understood more easily by picturing the mul-
timorphisms as special (planar) trees (so called corollas) with several “input” edges and a
unique “output” edge. Names of objects (sources and target) should be attached to edges
and the name of the multimorphism can be attached to the unique vertex as a label. Graft-
ing leads to a more complicated tree with several labels. The following depicts the grafting
of a 2-morphism u with two 3-morphisms v and w in the monochromatic case, where the
labeling of edges with objects is unnecessary.

u v w

v

u

w

It is up to the operadic structure to “simplify” the complicated tree in the right-hand side of
the picture to a 6-corolla with a single label at the unique vertex. The simplification can be
thought of as something induced (contravariantly) by a morphism from the 6-corolla to the
complicated tree with three vertices and 9 edges. (In this context it is convenient to think of
trees as partially ordered sets of edges. A morphism of trees is given by an order preserving
map of edge sets, subject to additional conditions which will be spelled out below.)

For every symmetric monoidal category C it makes sense to speak of operads enriched
over C. These still have a (discrete) set of objects. A topological operad is an operad enriched
over the category of compactly generated weak Hausdorff spaces. We will more ambiguously
speak of operads enriched over spaces to mean either topological operads or operads enriched
over simplicial sets. The category of simplicially enriched operads will be denoted sSetOp.
For later use we say that a morphism between monochromatic topological operads is a weak
equivalence if it is a levelwise weak homotopy equivalence.
To compare the theories of topological operads and simplicially enriched operads we use
a fact similar to [6, Cor. 1.14] that a Quillen equivalence V → V’ between suitably nice
symmetric monoidal model categories induces a Quillen equivalence V-Op→ V’-Op between
the model structures on enriched operads. A (symmetric) monoidal category C equipped
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with a model structure is called a (symmetric) monoidal model category if it satisfies the
following two axioms.

• For every pair of cofibrations f : X → Y , f ′ : X ′ → Y ′ the map

(X ⊗ Y ′)
∐

(X⊗X′)

(Y ⊗X ′)→ Y ⊗ Y ′

is a cofibration. It is a weak equivalence if f or f ′ is.
• For every cofibrant X the morphism

QI ⊗X → I ⊗X → X

is a weak equivalence. Here QI → I denotes a cofibrant replacement of the tensor
unit I.

These axioms are called the pushout-product axiom and the unit axiom, respectively.
Examples include the usual model categories of simplicial sets, compactly generated weak
Hausdorff spaces and chain complexes.

Example 2.1.2. Let (C,⊗) be a closed symmetric monoidal category (a monoidal cate-
gory is closed if the tensor product has a right adjoint, the internal Hom) and X an object
of C. The endomorphism operad End(X) is the operad enriched in C on one object with
morphism objects

End(X)(n) = HomC(X
⊗n,X)

and the obvious multicomposition by insertion. The functor Hom denotes the internal Hom-
functor of C.

Endomorphism operads give a way for other operads to act on objects of C. In this way
operads classify additional algebraic structures.

Definition 2.1.3. An algebra A over a monochromatic C-operad P is an object A of C

together with a map of operads P → End(A).

Example 2.1.4. Let Com be the terminal topological operad. It has a single object and
every mapping space is a point. Let X be a topological space. Then any map f from Com to
End(X) turns X into an abelian topological monoid with operation f(∗2) ∈ Map(X×X,X).

We will now describe the operads central to this work. The little disk operads have been
studied in great detail. In [22] May proved his famous recognition principle that a connected
space is an algebra over the little n-disk operad if and only if it is weakly equivalent to an
n-fold loop space. A more precise statement will be given after we defined these operads.

Example 2.1.5 (The little disks operad). Let Dn(k) denote the topological space of
disjoint, rectilinear (i.e. respecting parallel lines) embeddings

∐

k I
n → In. Composition of

(multi-)morphisms is given by identifying the image of one morphism with a In in the domain
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of the next one. The following image shows a composition map D2(1)×D2(2)→ D2(2):

Any topological operad weakly equivalent to the operad of litte n-disks is called an En-
operad.

We describe another model of topological En-operads called Fulton-MacPherson operads.
This one is less intuitive but has properties more closely related to objects we will investigate
later on. It is built from a sequence of compactified euclidean configuration spaces. This
construction is due to Fulton-MacPherson [18] as an algebraic compactification of complex
varieties and was later built in a topological way by Axelrod-Singer and Sinha [2, 27].

Example 2.1.6 (The Fulton-MacPherson operad). [27, 19] For every n and k the sub-
group Gn of Aff(n), the group of affine automorphisms, generated by translations and scalar
multiplication, of Rn acts freely on the ordered configuration space Conf(k,Rn). The quo-
tient C[k, n] is a manifold of dimension n(k − 1) − 1 with an induced Σk-action. Consider
the collection (or symmetric sequence) Fn(k) given by these manifolds for k > 2 and set
Fn(0) = Fn(1) = ∅. The Fulton-MacPherson En-operad FMn has the same underlying set
as the free operad Free(Fn) together with a point in degree zero. (The definition of sym-
metric sequences and the free operad construction will be given in 2.1.9.) Its topology is
constructed in such a way that every level FMn(k) is a compact, connected manifold with
corners. The interior of this manifold is Fn(k), provided k ≥ 2. The spaces FMn(0) and
FMn(1) are one-point spaces.

We will now give an explicit construction. For all (i, j) ∈
(k
2

)

define the maps

a(i,j) : Conf(k,Rn)→ Sn−1

x 7→
xi − xj
‖xi − xj‖

Furthermore for all (i, j, k) ∈
(k
3

)

define the maps

b(i,j,k) : Conf(k,Rn)→ [0,∞]

x 7→
‖xi − xj‖

‖xi − xk‖
.

The configuration space Conf(k,Rn) embeds into R
nk × (Sn−1)(

k

2) × [0,∞](
k

3) via

x 7→ (x,
∏

i,j

ai,j(x),
∏

i,j,k

bi,j,k(x)).

The closure of the image of this map shall be denoted Ck[R
n]. The action of Gn on the

configuration space extends to an action on Ck[R
n]. The quotients of this action assemble to

the operad FMn, i.e. FMn(k) := Ck[R
n]/Gn. These quotient spaces are compact manifolds
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with corners. They have a natural stratification we can use to understand the operad
structure on the collection FMn.
The stratification is indexed over the category Ψk of rooted, labeled trees with k leaves (non-
root outer edges) and no vertices of valence one or two. The set of leaves shall be labeled
by the set {1, 2, . . . , k}. The morphisms in Ψk are given by contraction of inner edges. So
there is a map S → T if S can be turned into T by a sequence of contractions of inner
edges. The stratum corresponding to a tree T with vertices v1, . . . , vl of valence k1, . . . , kl is
homeomorphic to

∏

C[ki − 1, n]. Its closure is the union of all the strata indexed by trees
mapping to T . In particular the interior of FMn(k) is diffeomorphic to C[k, n].
We try to illustrate this with some examples. The stratifications of the first three spaces
(FMn(0), FMn(1) and FMn(2)) are trivial. There is no non-corolla tree with fewer than
three inputs and no vertex of valence one or two. The first non-trivial stratification arises
at level 3. There are 4 different trees in Ψ3.

1 2

3

1 3

2

2 3

1 1 2 3

We see that there are 3 strata homeomorphic to Sn−1 × Sn−1 and the corolla stratum
corresponding to the interior of FMn(3). (In the case n = 1 the configurations in R

n have
a canonical ordering and by using this we obtain FM1(k) = Σk × SP (k), where SP (k) is
a polytope found by Stasheff long before the work of Fulton-MacPherson.) The number of
strata grows quickly with the level. There are already 26 trees in Ψ4.
This stratification is compatible with the operadic structure. So for example the composition

FMn(2)× (FMn(2)× FMn(2))→ FMn(4)

is an embedding whose image is the union of the strata corresponding to trees of the shape

Theorem 2.1.7 (May’s recognition principle [22] ). Every n-fold loop space is an En-
algebra in a canonical way. Conversely let X be a group-like En-algebra. Then there exists
another space Y and a zig-zag of weak homotopy equivalences X ← Z → ΩnY of En-algebras.

The levelwise weak equivalences of simplicially enriched operads are the weak equiva-
lences of a model structure on the category of monochromatic operads.

Theorem 2.1.8. [13, Thm 1.7] The category sSetOp∗ of monochromatic simplicially en-
riched operads carries a proper cofibrantly generated model structure such that the fibrations
and weak equivalences are the levelwise fibrations and weak equivalences.
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Definition 2.1.9. Let C be a symmetric monoidal category. A collection (also known
as symmetric sequence) in C is a sequence of objects Xn (where n ≥ 0) with actions of the
symmetric group Σn. More formally the category of collections in C is the product of functor
categories

Coll(C) :=
∏

n∈N

CΣn

where the groups are regarded as groupoids with one object. The forgetful functor taking
a monochromatic C-operad to its underlying collection has a left adjoint, called the free
operad functor. It is described at length in [3, Chapter 5.8]. In each level k a free operad
is indexed by rooted trees with k leaves. Let T be the groupoid of finite rooted trees and
isomorphisms. More precisely T is the maximal subgroupoid of the dendrex category Ω
defined in section 2.2. Similarly let TΛ be the groupoid of finite, rooted trees together with
a total order λ on their set of leaves. For every collection X we can define a functor

X : Top → C

by setting X(η) = I, the tensor unit of C. Every tree T ∈ T can inductively be written as
a grafting cn ◦ (T1, . . . , Tn). (The tree cn is the n-corolla, the tree with a single vertex of
valence n+ 1. These corollas will be introduced in 2.2.2.) We set

X(T ) := X(n)⊗X(T1)⊗ . . .⊗X(Tn).

The free operad on a collection X has the n-th space

free(X)(n) ∼=
∐

[(T,λ)]∈π0TΛ
T has n inputs

X(T )/Aut(T, λ).

Note that objects of TΛ can have non-trivial automorphisms. There is an understanding that
we choose a representative (T, λ) in each element of π0TΛ. The action of Σn on free(X)(n)
comes from the action of Σn on the total orderings of the leaves. The permutation σ ∈ Σn
sends (T, λ) to the chosen representative (T ′, λ′) in the class of (T, σ(λ)). We need to choose
an isomorphism from (T, σ(λ)) to the representative (T ′, λ′) in order to get an isomorphism
from X(T ) to X(T ′). Consequently that isomorphism is well defined only modulo the action
of Aut(T, λ) on X(T ). — The operadic composition in a free operad is induced by grafting
of trees in the obvious way.

Remark 2.1.10. [20, Thm. 5.1] Let

F : C ⇆ D : G

be an adjunction of categories. Let (Co,W,Fi) be a cofibrantly generated model structure
on C. A morphism f : a→ b in D shall be called a fibration or weak equivalence if its image
under G is. If

• G preserves filtered colimits
• every morphism of D with the left lifting property with respect to all fibrations is

a weak equivalence

then there exists a cofibrantly generated model structure on D with the above fibrations and
weak equivalences. Furthermore if I is the set of generating cofibrations of C and J the set of
generating trivial cofibrations then F (I) and F (J) are the sets of generating cofibrations and
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trivial cofibrations, respectively, of D. This model structure is called the (left) transferred
model structure along the adjunction (F ⊣ G).

Since the model structure of 2.1.8 is transferred from the category of collections we
immediately see that any free operad on a cofibrant collection is cofibrant.

A functorial cofibrant replacement of monochromatic topological operads has been con-
structed by Boardman and Vogt in [8] and generalized by Berger and Moerdijk to the case
of operads enriched in suitable model categories in [4] and to the multi-object case in [5]. To
avoid unnecessary complexity only the version for monochromatic topological operads will
be presented here.

Definition 2.1.11 (The Boardman-Vogt construction). Let P be a topological operad.
The Boardman-Vogt W construction is a factorization

free(P ) →֒ WP
∼
−→ P

of the counit free(P ) → P into a cofibration followed by a weak equivalence. The operad
WP itself is also often called the Boardman-Vogt W -construction. Under a small hypothesis
on P the BV construction WP is a functorial cofibrant replacement of P .
To build this factorization we start with the free operad free(P ). Recall that its n-ary
operations are the labellings of certain trees with n leaves. Each vertex in these trees (of
valence k + 1) is colored by an element of P (k). To get WP we furthermore equip the
internal edges with a length le ∈ [0, 1]. If some edge e has length 0 then this point in WP
is identified with the one given by contracting the edge and composing the two adjacent
operations.

Lemma 2.1.12. [8, 4] If the underlying collection of P is Σ-cofibrant (every space of the
collection is cofibrant and the action of Σk on the k-th space of the collection is free for all
k), then the operad WP is cofibrant.

2.2. Dendroidal sets and spaces. The concept of dendroidal set was introduced by
Ieke Moerdijk and Ittay Weiss in [24] as a generalization of simplicial sets suited to describe
and investigate the homotopy theory of operads. The homotopy theory of dendroidal sets
and spaces was developed by Cisinski and Moerdijk in a series of papers [11, 13, 12]. Den-
droidal sets correspond to (higher) operads in exactly the same way simplicial sets do to
(higher) categories. Many constructions for simplicial objects have dendroidal analogues. A
major tool in this article will be the notion of dendroidal complete Segal spaces.
In this section we will give a short introduction to these notions and quote the most impor-
tant results for our further work.

Definition 2.2.1. A tree (or dendrex ) T consists of a tuple (T,≤, L) such that (T,≤)
is a partially ordered finite set (the set of edges) with a unique minimal element (called the
root) and the property that for each element x ∈ T the set of elements smaller than x is
linearly ordered. The set L is a subset of the set of maximal elements of T . The elements of
T are called edges and the elements of L are called leaves. An edge is inner if it is neither a
leaf nor the root. For any edge x ∈ T rL the set in(x) of elements y > x such that there is
no z with y > z > x is called the set of incoming edges (or inputs) of x. For any x ∈ T r L
the set vx := {x} ∪ in(x) is a vertex of T . (The set of vertices is in obvious bijection to
T r L.)
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These trees can be arranged into a category Ω. To define the morphisms of Ω we note
that every tree T determines an operad Ω(T ) whose set of objects is the set of edges of T .
Every vertex vx contributes a generating operation whose input set is the set of incoming
edges in(x) and whose output is x. For example the operad generated by

a

b

c

d e

f

vd

vb

vf

has 6 objects, morphisms vd ∈ Ω(T )(b; d), vb ∈ Ω(T )(a, c; b), vf ∈ Ω(T )(d, e; f) and their
compositions vd ◦ vb ∈ Ω(T )(a, c; d), vf ◦ vd ∈ Ω(T )(b, e; f) and vf ◦ vd ◦ vb ∈ Ω(T )(a, c, e; f).
The set of morphisms in Ω between two trees is defined to be set of morphisms between
their corresponding operads.

HomΩ(T, T
′) := HomOp(Ω(T ),Ω(T

′)).

Note that the morphisms do not have to preserve the root.

Example 2.2.2. The trees with exactly one vertex are of particular importance and are
called corollas. The following figure shows the 3-corolla, the 1-corolla and the 0-corolla:

A presheaf on Ω is called a dendroidal set. More generally for any symmetric monoidal
category C the objects of Fun(Ωop,C) are called dendroidal objects in C. The category of
dendroidal objects in C will be denoted by dC. For every object T in Ω there is the dendroidal
set represented by T ; it is denoted by Ω[T ].
The simplex category ∆ embeds into Ω as a full subcategory by sending [n] to the linear tree
with n vertices and n + 1 edges. The operads Ω(T ) for T in the image of this embedding
have no morphisms of higher degree and are thus equivalent to categories. They are easily
seen to be the linear categories [n]. There is a tree η in Ω with exactly one edge; it is also
the image of [0] in ∆. Every operad which admits a morphism to Ω(η) cannot have higher
morphisms and thus Op/Ω(η) = Cat and Ω/η ∼= ∆ and dSet/Ω[η] = sSet.
Several constructions on the category of simplicial sets can be generalized to the dendroidal
setting and recovered by the description of sSet as the overcategory dSet/Ω[η]. One of the
most important is the nerve construction. For an operad P the dendroidal nerve NdP is the
dendroidal set given by

NdP (T ) = HomOp(Ω(T ), P ).



12 FLORIAN GÖPPL AND MICHAEL WEISS

The nerve functor has a left adjoint τd. It can be described as the unique colimit preserving
functor that sends the represented presheaf Ω[T ] to the operad Ω(T ).
For any category regarded as an operad the dendroidal nerve reduces to the ordinary nerve
of a category. Hence the following square of functors

Cat sSet

Op dSet

commutes.

Remark 2.2.3. For every T in Ω there is an isomorphism of dendroidal sets

Ω[T ] ∼= NdΩ(T ).

We will now examine the category Ω more closely and describe the homotopy theory of
dendroidal objects.

Definition 2.2.4. Morphisms (in Ω) of the following kind are called inner face maps:

a

b

c

z

α

α(a) α(b)

α(c)y

α(z)

They (contravariantly) correspond to operadic composition. Morphisms of the following
kind

a

b

c

z

α

x y

α(a)

α(b)

α(c)

α(z)

are called outer face maps. The degeneracies are morphisms given by deleting an inner
vertex of valence 2.

a

c

b

d e

z

α
α(a) α(b)

α(c) = α(d) α(e)

α(z)
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On the operads associated to these trees this induces the map identifying the two adjacent
objects and sending the unary morphism between them to the identity on the new object.
By [24, Lemma 3.1] every morphism in Ω factors up to isomorphism as a composition of
degeneracies followed by a sequence of face maps.

The theory of Segal spaces was developed by Rezk in [26]. These Segal spaces are simpli-
cial spaces behaving like an up-to-homotopy version of the nerve of a topological category.
Its dendroidal generalization was constructed in [12]. This model has the merit of being less
rigid than enriched operads in a sense that their composition law is only defined up to a
contractible choice.
More exactly our model will be based on simplicial dendroidal sets. As a category of simpli-
cial presheaves it is canonically tensored, cotensored and enriched over simplicial sets. The
tensoring is given by taking a dendrexwise product of simplicial sets.

Definition 2.2.5. Let X and Y be dendroidal spaces. A morphism f : X → Y is called
a weak equivalence if for every tree T in Ω the map XT → YT is a weak equivalences of
simplicial sets.

There are three standard choices for the classes of fibrations and cofibrations on the
category of simplicial dendroidal sets if we fix the class of dendrexwise weak equivalences as
our choice for the weak equivalences. The projective model structure is uniquely determined
by defining a morphism to be a fibration if and only if it is a dendrexwise Kan fibration.
Dually the injective model structure is uniquely determined by the choice of dendrexwise
cofibrations as its class of cofibrations.
There is an intermediate model structure taking into account the Reedy structure of Ω.
Theorem 2.2.6 describes this in more detail. This model structure is a central starting point
in [12]. Since we are flexible in our choice of model structure we will not need to use this
result.

Theorem 2.2.6. [13, Prop. 5.2] The category sdSet of simplicial dendroidal sets can
be equipped with a generalized Reedy model structure using the Reedy structure of Ω. It
is cofibrantly generated and proper. The weak equivalences are the dendrexwise simplicial
weak equivalences. A map of simplicial dendroidal sets X → Y is a fibration, resp. trivial
fibration, if the relative matching maps

XΩ[T ] → X∂Ω[T ] ×Y ∂Ω[T ] Y Ω[T ]

are fibrations, resp. trivial fibrations, for all T . (See [13, §2.1] for the meaning of ∂Ω[T ].)

Definition 2.2.7. Let T ∈ Ω be a tree. If T has at least one vertex the spine or Segal
core Sc[T ] of T is defined as a dendroidal subset of Ω[T ] given by the union of all Ω[S] for
subcorollas S of T . (There is one subcorolla for each vertex of T .) For the trivial tree η
without vertices we set Sc[η] = Ω[η]. Note that we recover the definition of a spine of a
simplex by applying this definition to linear trees.

These Segal cores have a close connection to operads. Remember that a simplicial set
X is the nerve of a category if and only if all maps

Xn → X1 ×X0 X1 ×X0 . . .×X0 X1
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induced by the spine inclusions are bijections. The following lemma is the generalization of
this fact to the dendroidal setting.

Lemma 2.2.8. A dendroidal set X is the nerve of an operad if and only if the map

HomdSet(Ω[T ],X)→ HomdSet(Sc[T ],X)

induced by the Segal core inclusion is a bijection for all trees T .
Similarly a dendroidal space X is the nerve of a simplicially enriched operad if and only if
the map of simplicial sets

XΩ[T ] → XSc[T ]

is an isomorphism for all T .

For dendroidal spaces to model topological operads we still want this equivalence to hold
up to homotopy. The resulting notion will extend the classical definition of a complete Segal
space as a model for (∞, 1)-categories.

Definition 2.2.9. A dendroidal space X is called a dendroidal Segal space if for all trees
T the map

XT = Hom(Ω[T ],X) = XΩ[T ] −→ RHom(Sc[T ],X)

is a weak equivalence of simplicial sets.

Remark 2.2.10. In [12] Cisinski-Moerdijk define the model structure for dendroidal Segal
spaces as the left Bousfield localization of the generalized Reedy structure on sdSet at the
set of Segal core inclusions.

(The definition 2.2.9 is not in full agreement with [12] because Cisinski-Moerdijk write
Hom(Sc[T ],X) instead of RHom(Sc[T ],X) and insist that dendroidal Segal spaces be Reedy-
fibrant to make up for that. Namely, the Segal core Sc[T ] is Reedy-cofibrant. Therefore
Hom(Sc[T ],X) is weakly equivalent to RHom(Sc[T ],X) if X is Reedy fibrant.)

Lemma 2.2.11. [10, Thm 7.8]; [9, Thm 4.3] Let P be a monochromatic simplicial operad.
The dendroidal space NdP given by

(NdP )T := P (T ),

using the notation of 2.1.9, satisfies the Segal property. The assignment P 7→ NdP is
functorial and preserves all weak equivalences. Moreover for any two operads P and Q the
morphism

RHom(P,Q)→ RHom(NdP,NdQ)

is a weak equivalence.

Remark 2.2.12. In both [10] and [9], this result is attributed to Cisinski and Moerdijk,
but it is not stated exactly in this form by Cisinski and Moerdijk. A small adjustment is
required and [9] explain this in detail. Throughout this article we will only use the statement
for 1-reduced operads. This implies that NdP is complete (and Segal). In general NdP is
not complete.
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3. A tower of derived mapping spaces

3.1. Construction of the tower. In section 1 we have introduced the notion of den-
droidal Segal spaces as a model for the homotopy theory of topological operads. We want
to use this model to describe the derived mapping spaces between two topological operads.
For any two objects X and Y in any model category C this derived mapping space can be
defined as the space of maps HomC(X

c, Y f ) from a cofibrant replacement of X to a fibrant
replacement of Y . Although it is a slick definition, actual computations can be cumbersome
because these objects tend to be unwieldy. Moreover, although this definition inherently de-
pends on the choice of a model structure, the homotopy type of the derived mapping space
only depends on the class of weak equivalences. There is another more general definition
of a derived mapping space due to the work [16] of Dwyer and Kan. For every category C

together with a subcategory W of weak equivalences they define derived mapping spaces
in terms of zig-zags of morphisms. If W happens to be the class of weak equivalences of a
model structure on C, then both definitions yield weakly equivalent derived mapping spaces.
We start this section with a general investigation of derived mapping spaces in categories of
space-valued functors with levelwise weak equivalences under the assumption that the in-
dexing category C can be written as a sequential colimit of full subcategories Ci. We prove a
lemma that the derived space of natural transformations in Fun(Cop, sSet) can be recovered
up to homotopy from the mapping spaces between the restrictions of these functors to the
subcategories Ci.

Lemma 3.1.1. Let F and G be contravariant functors from C to sSet. We call a natural
transformation F → G a weak equivalence if it is an objectwise weak equivalence of simplicial
sets in the sense of Kan-Quillen. Let Ui denote the restriction functor from Fun(Cop, sSet)
to Fun(Cop

i , sSet). Then the natural morphism

RHom(F,G)→ holim
i

RHom(UiF,UiG)

is a weak equivalence.

We will prove this lemma in two steps. First we show that every contravariant functor
admits a weak equivalence from a functor satisfying a cellularity property. These free CW-
functors are a subclass of the CW-functors of Dror-Farjoun [14, p. 1.16]. We then prove the
statement 3.1.1 for all free CW-functors F .

Definition 3.1.2. Let C be a category. A functor F : Cop → sSet is called a free CW-
functor if there is a sequence

∅ = F−1 ⊂ F0 ⊂ F1 ⊂ . . . ⊂ Fi−1 ⊂ Fi ⊂ . . .

of subfunctors of F such that the following properties are satisfied.

(1) F (x) = colimi Fi(x) for all objects x of C.
(2) For all i ≥ 0 there exists a pushout diagram

Ki × ∂∆[i] Fi−1

Ki ×∆[i] Fi
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where Ki is a disjoint union of representable functors.

Example 3.1.3. Let G be a group regarded as a category with one object. Then free
CW-functor F is nothing but a simplicial set F (∗) with a free G-action. The subfunctors
Fi of F can be the skeletons of F (∗).

Lemma 3.1.4. For every functor G : Cop → sSet there is a free CW-functor F together
with a natural equivalence F → G.

Proof. Fix some n ≥ 0 and suppose, for an induction argument, that we have already
constructed a free CW-functor D together with a natural transformation u : D → G such
that for each c in C the morphism uc : D(c)→ G(c) is (n−1)-connected. We want to get rid
of the relative homotopy groups πn(G(c),D(c)) for all c ∈ C. (Strictly speaking we should
write πn(Z(c),D(c)) where Z(c) is the mapping cylinder of uc.) Let x ∈ πn(G(c),D(c)) be
a non-trivial element of this homotopy group and let

vc,x : (Kc,x, Lc,x)→ G(c)

denote a representative of x, where (Kc,x, Lc,x) is a (possibly iterated) barycentric subdivi-
sion of the pair (∆[n], ∂∆[n]). Let Dc,x be the pushout of

Hom(−, c)×Kc,x ←֓ Hom(−, c)× Lc,x → F

(where the right-hand arrow extends, and is determined by, vc,x restricted to Lc,x). Let E
be the union along the common subfunctor D of the Dc,x where c ranges over all objects
of C and x ranges over all all non-trivial elements of the homotopy groups πn(G(c), E(c)).
The choices vc,x together with u uniquely define a new natural transformation v : E → G.
By construction this specializes to an n-connected map E(c) → G(c) for every c in C. It
remains to be shown that the functor E is again a free CW-functor. To do so we show that
the pairs (Kc,x, Lc,x) are pairs of cell complexes. Each non-degenerate simplex in Kc,xrLc,x
contributes a free cell to Dc,x which is not in D. It follows that Dc,x is free CW. Since
different choices of (c, x) lead to disjointly attached cells, the union E is free CW as well
(and what is more important, we have shown that it is free CW relative to D).

The functor F can now be constructed as the union (sequential colimit) of an increasing
sequence

F−1 ⊂ F 0 ⊂ F 1 ⊂ F 2 ⊂ . . .

of functors C → sSet, each equipped with a morphism wn : Fn → G, such that wn extends
wn−1. Define F−1 = ∅ and define Fn and wn inductively so that Fn is to Fn−1 as E is to
D above, and wn is to wn−1 as v is to u. The union of the wn is a morphism w : F → G
and it is a weak equivalence by construction. �

Proposition 3.1.5. Suppose we have some property P for contravariant functors from
C to sSet. Assume the property P is preserved under levelwise weak equivalence, disjoint
unions over arbitrary indexing sets and homotopy pushouts and holds for all representable
functors. Then P holds for every contravariant functor F from C to sSet.

Proof. Without loss of generality we assume F to be a free CW-functor. We will prove
this in two steps. First we show by induction that all skeleta Fi have the desired property and
then deduce the statement for the homotopy colimit. The 0-skeleton is just a disjoint union
of representable functors and as such has the property P. To prove the induction step we
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have to show that Fi+1 is a homotopy pushout of functors satisfying P. Note that because of
the homotopy invariance of P every cell Hom(−, c)×∆[i] has property P. Since we assumed
the property to be preserved under disjoint union the coproduct

∐

Hom(−, c) × ∆[i] still
has the property. To conclude the induction step we need to show our desired property for
every functor of the form Hom(−, c) × ∂∆[i]. But this is already covered by the induction
assumption because Hom(−, c) × ∂∆[i] is a free CW-functor built from cells of dimension
(i− 1) and less. — Next, we have to show that the pushout diagram

Ki × ∂∆[i] Fi−1

Ki ×∆[i] Fi

is actually a homotopy pushout square. But the left hand vertical morphism is levelwise
injective and so the pushout square is levelwise a homotopy pushout.
So far we have shown the property P for all k-skeleta Fk. We now show that the homotopy
colimit F can be written as a homotopy pushout. The argument has already been presented
by Milnor in [23]. Let

tF := F0 × [0, 1] ∪ F1 × [1, 2] ∪ F2 × [2, 3] . . .

understood as a subfunctor of F × [0,∞). (The intervals can be taken as copies of ∆[1].)
This construction is also known as the telescope associated to the skeletal filtration of F .
Note that the inclusion of tF into F × [0,∞) is a weak equivalence and thus tF has property
P if and only if F does. We want to show that tF decomposes as a homotopy pushout of
functors with property P. To do so we define the subfunctors L1 and L2 of tF by setting

L1 := F0 × [0, 1] ∪ F2 × [2, 3] ∪ . . .

and

L2 := F1 × [1, 2] ∪ F3 × [3, 4] ∪ . . .

as the even and odd parts of tF , respectively. Their intersection L1 ∩ L2 is the functor

L1 ∩ L2
∼= F0 × {1} ∪ F1 × {2} ∪ . . .

We can write tF as the pushout of L1 ← L1∩L2 → L2. The functors Li and L1∩L2 are all
weakly equivalent to disjoint unions of skeleta Fj und thus have property P by the previous
discussion. The pushout is also a homotopy pushout because both maps L1 ∩ L2 → Li are
cofibrations. �

Using this principle we can prove our lemma 3.1.1.

Proof of 3.1.1. We need to verify the three assumptions of the previous lemma. We
fix a levelwise fibrant functor G ∈ Fun(Cop, sSet) throughout this investigation.
First assume F to be representable by some object c and let Ck be the first subcategory of the
sequence C• to contain c. Because we assumed all subcategories Ci to be full subcategories
the restriction of F to Ck is isomorphic to the functor on Ck represented by c. The same
holds for all Cn with n > k. It follows that

RHom(UnF,UnG) ≃ UnG(c) = G(c)
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for all n > k. It is immediate that the homotopy limit of the tower of derived mapping
spaces is weakly equivalent to RHom(F,G).
Now assume F is a disjoint union of functors Fi for which the tower converges. Since disjoint
unions are certainly preserved under restrictions we have UnF =

∐

UnFi. It follows that

RHom(UnF,UnG) =
∏

RHom(UnFi, UnG)

for all n. We get a commutative square

RHom(F,G)
∏

RHom(Fi, G)

holimRHom(UnF,UnG) holim
∏

RHom(UnFi, UnG).

The two horizontal morphism are weak equivalences by assumption, the right hand vertical
morphism is a weak equivalence because we can commute the homotopy limit with the
product. It follows that the morphism

RHom(F,G)→ holimRHom(UnF,UnG)

is a weak equivalence.
For the last step assume F is the homotopy pushout of F1 ← F0 → F2 and the tower
converges for all Fi. We can arrange the derived mapping spaces in a commutative cube.

RHom(F,G) RHom(F2, G)

RHom(F1, G) RHom(F0, G)

holimnRHom(UnF,UnG) holimnRHom(UnF2, UnG)

holimnRHom(UnF1, UnG) holimnRHom(UnF0, UnG)

Since the contravariant RHom-functor turns homotopy pushouts into homotopy pullbacks
the upper horizontal square is a homotopy pullback. The lower horizontal square is a
homotopy pullback because the truncation Un preserves homotopy pushouts (and hence
UnF is the homotopy pushout of UnF1 ← UnF0 → UnF2) and homotopy limits preserve
homotopy pullbacks. We can thus regard this cube as a morphism between homotopy
pullback squares. This morphism induces a weak equivalence in three columns

RHom(Fi, G)→ holim
n

RHom(UnFi, UnG)

and thus in the fourth column as well. �

We want to apply this machinery to the setting of dendroidal spaces. To do so we need
to write the indexing category Ω of trees as an increasing union of full subcategories

Ω〈0〉 ⊂ Ω〈1〉 ⊂ Ω〈2〉 ⊂ Ω〈3〉 . . . ⊂ Ω.
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A natural choice for a filtration of Ω comes from the observation that every finite tree has a
unique maximal valence among all its vertices. We will thus filter Ω by the maximal valence
of the vertices.

Definition 3.1.6. For n ≥ 0 let Ω〈n〉 denote the full subcategory of Ω on trees without
vertices of valence n+2 or higher. An n-truncated dendroidal space is a contravariant functor
from Ω〈n〉 to the category sSet of simplicial sets. The restriction functor along the inclusion
Ω〈n〉 →֒ Ω will be denoted Un.

The categories Ω〈n〉 have the property that their direct limit is the entire category Ω.
We can map the derived mapping space RHom(X,Y ) between two dendroidal spaces to a
tower:

...

��

RHom(U3X,U3Y )

��

RHom(U2X,U2Y )

��

RHom(X,Y ) //

11

33

33

RHom(U1X,U1Y )

of derived mapping spaces between their truncations. The previous discussion implies the
convergence of this tower.

Corollary 3.1.7. For every pair X and Y of dendroidal spaces this tower converges,
i.e., the map RHom(X,Y )→ holimnRHom(UnX,UnY ) is a weak homotopy equivalence.

Of special interest will be the mapping space between the little disk operads introduced
in 2.1.5. Here X and Y are dendroidal spaces weakly equivalent to nerves of operads of type
En and Em respectively.

We look for a description of the layers in the tower, i.e., the homotopy fibers of the
forgetful map(s) RHom(UnX,UnY )→ RHom(Un−1X,Un−1Y ). There is such a description
in the setting of 1-reduced dendroidal spaces. A dendroidal space X is 1-reduced if X(η),
X(c0) and X(c1) are contractible spaces. These correspond to monochromatic operads
having contractible spaces in degrees 0 and 1.

Definition 3.1.8. Let Ωcl ⊂ Ω be the full subcategory whose objects are the trees
without any leaves, and let ι : Ωcl →֒ Ω be the inclusion functor. Objects of Ωcl will be
called closed trees. We abbreviate cdSet := Fun(Ωcl,Set) and scdSet := Fun(Ωcl, sSet).
Objects of these categories will be called closed dendroidal sets and closed dendroidal spaces,
respectively.
The full subcategory Ωcl ∩Ω〈n〉 of Ωcl will be denoted Ω〈n〉cl. Its simplicial presheaves will
be called n-truncated closed dendroidal spaces and their category denoted scdSet〈n〉.

Remark 3.1.9. Morphisms in Ωcl are much easier to understand than morphisms in Ω.
Recall that an object of Ωcl is a finite partially ordered set T (whose elements can be called
edges) subject to some conditions. There is no need to specify a set of leaves, subset L of T ,
because we are assuming that it is empty. A morphism from T0 to T1 in Ωcl was defined to
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be a morphism of operads Ω(T0)→ Ω(T1). But this boils down to a map f : T0 → T1 which
preserves the partial order relation ≤ and which preserves independence. That is to say, if
x, y ∈ T0 are distinct and neither x ≤ y nor y ≤ x takes place, then none of f(x) ≤ f(y),
f(y) ≤ f(x) takes place.
It does not follow that such an f is injective. But it does follow that for every z ∈ T1 the
preimage f−1(z) is a linearly ordered subset of T0. Moreover, if x ∈ T0 r f−1(z) satisfies
x ≥ y0 for some y0 ∈ f−1(z), then it satisfies x ≥ y for all y ∈ f−1(z). (Suppose not;
then there is y1 ∈ f

−1(z) such that x and y1 are independent; but f(x) > f(y0) = f(y1),
contradiction since f preserves independence.)

Definition 3.1.10. The closed n-corolla ccn is the unique tree in Ωcl with one vertex
of valence n+ 1 and n vertices of valence 1. (Just below: an artist’s impression of cc5.)

•

❋❋
❋❋

❋❋
•

✹✹
✹✹
• •

✡✡
✡✡

•

①①
①①
①①

•

Lemma 3.1.11. [10, Lem 7.12] For all 1-reduced monochromatic topological operads P and
Q the restriction map RHom(NdP,NdQ)→ RHom(ι∗NdP, ι

∗NdQ) is a weak equivalence.

In this restricted setting we can define levelwise boundaries and coboundaries general-
izing the levelwise boundaries in the description of the Fulton-MacPherson operad of 2.1.6.

Definition 3.1.12. Let X ∈ sdSet be a 1-reduced dendroidal Segal space. In this
definition we only use the restriction of X to scdSet. The n-th operadic boundary object is
the homotopy colimit

boundnX := hocolim
(S,f)∈ccn/Ω〈n−1〉cl

XS .

(This is a homotopy colimit of a contravariant functor, the functor which takes (f : ccn → S)
to XS .) The n-th operadic coboundary object is the homotopy limit

coboundnX := holim
(S,f)∈Ω〈n−1〉cl/ccn

XS .

Both spaces come with an obvious Σn-action. There is a natural Σn-map from boundnX to
Xccn induced by the various f in pairs (S, f), and similarly there is a natural Σn-map from
Xccn to coboundnX induced by the various f in pairs (S, f). The functor

Jn : sdSet→ Fun(Σn × [2], sSet)

X 7→ (boundnX → Xccn → coboundnX)

sends a reduced dendroidal Segal space to the diagram consisting of these two maps. By
composing the two maps we obtain

∂Jn : sdSet→ Fun(Σn × [1], sSet)

X 7→ (boundnX → coboundnX)

In other words, ∂Jn = Jn ◦ ρ where ρ : Σn × [1] → Σn × [2] is induced by the order-
preserving injection [1]→ [2] which does not take the value 1.
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Example 3.1.13. Recall the Fulton-MacPherson operad FMk which was briefly in-
troduced in 2.1.6. Then the space boundnNdFMk has the homotopy type of the bound-
ary of the compact manifold-with-boundary FMk(n). Informally this can be seen because
all the embeddings of substrata in the stratification of FMk(n) are cofibrations and thus
the homotopy colimit in the definition of the operadic boundary object is weakly equiv-
alent to the colimit which is exactly the boundary ∂FMk(n). It follows that we can
model the map boundnNdEk → Ek(n) (for the little k-disk operad Ek) by the inclusion
∂FMk(n) →֒ FMk(n). In the following paragraph we give a more detailed argument.

Proof. In this proof we will use the notation of 3.1.17 and 3.1.18. To show this claim we
first want to reduce the indexing category ccn/Ω〈n− 1〉cl to a smaller one. Every morphism
f : ccn → T for T ∈ Ω〈n − 1〉cl factors uniquely through a maximal subtree T0 of T with
exactly n outermost edges and all of them (as well as the root of T0) in the image of f . (By
subtree we mean something connected, so that if x, z ∈ T0 and y ∈ T satisfies x ≤ y ≤ z,
then also y ∈ T0.) Let I denote the subcategory of ccn/Ω〈n − 1〉cl on all pairs (S, g) such
that S has exactly n outermost edges and all of them as well as the root are in the image
of g. We have just seen that the inclusion functor for this subcategory has a right adjoint.
Therefore the inclusion

hocolim
(S,f)∈I

FMk(S) −→ boundnNdFMk

(where FMk(S) is short for (NdFMk)S) is a weak equivalence by [15, Thm.6.7]. Note in
passing that the information provided by the f : ccn → S in a pair (S, f) amounts to nothing
more than a labeling of the outermost edges of S with labels 1, 2, . . . , n. We take this as
an excuse for writing S instead of (S, f), but the labeling of the outermost edges remains
important and must be remembered.
Let Is denote the full subcategory of I on those objects S which have no vertices of valence
2. The inclusion Is → I has a left adjoint sh : I → Is and the unit morphisms for this
adjunction induce isomorphisms FMk(sh(S))→ FMk(S), for (S, f) in I. By [15, Thm.6.16.]
the inclusion

hocolim
S∈Is

FMk(S) −→ hocolim
S∈I

FMk(S)

is a weak equivalence. — Recall the category Ψn from the definition 2.1.6 of the Fulton-
MacPherson operad and let Ψ−

n denote the full subcategory of Ψn on all trees not equal to
the n-corolla. This category Ψ−

n is equivalent to Ish. We can therefore view S 7→ FMk(S)
as a functor on Ψ−

n . It remains only to show that the map

hocolim
S∈Ψ−

n

FMk(S)→ ∂FMk(n)

from the homotopy colimit to the actual colimit of this functor is a homotopy equivalence.
The plan is to show that this functor FMk : Ψ

−
n → sSet/FMk(n) is projectively cofibrant.

The category Ψ−
n is directed in the sense that there is a faithful functor Ψ−

n → N. This
is trivial since Ψ−

n is a finite poset, but here we have a preferred choice: the map which
to every tree in Ψn associates the number of its vertices. Hence Ψ−

n becomes a Reedy
category by defining the degree of a tree to be the negative of its number of vertices. Then
every non-identity morphism in Ψ−

n raises this degree. Let M be some model category.
A diagram D : Ψ−

n → M is Reedy cofibrant if all its latching maps are cofibrations. But
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by [15, Thm 13.12] the Reedy model structure and the projective model structure agree
on upwards-directed Reedy categories and thus D is Reedy cofibrant if and only if it is
projectively cofibrant. For every projectively cofibrant diagram its homotopy colimit is
weakly equivalent to the actual colimit. We thus want to show that FMk is Reedy cofibrant
as a functor on Ψ−

n . Let T ∈ Ψ−
n be a labelled tree. The latching object LatT (FMk) is the

colimit over all maps FMk(S) → FMk(T ) with S 6= T . But using the description of the
stratification of FMk(n) given in 2.1.6 we see that this map is just the inclusion of a union
of substrata of the (closure of the) stratum corresponding to T and thus a cofibration. �

Theorem 3.1.14. Let X and Y be 1-reduced dendroidal Segal spaces. Then the following
square of specialization or restriction maps is a homotopy pullback square:

RHom(X|Ω〈n〉cl , Y |Ω〈n〉cl) RNat(JnX,JnY )

RHom(X|Ω〈n−1〉cl , Y |Ω〈n−1〉cl) RNat(∂JnX, ∂JnY )

In the remainder of this section we will make a reduction (by means of proposition 3.1.16)
of this theorem to an easier statement. The idea is to factor the inclusion Ω〈n−1〉cl → Ω〈n〉cl
through certain intermediate subcategories Vn and Wn.

Definition 3.1.15. Let Vn be the full subcategory of Ωcl on Ω〈n− 1〉cl and the closed
n-corolla ccn . Let Wn be the (slightly larger) full subcategory of Ω〈n〉cl on all objects of
Ω〈n − 1〉cl and all extended (closed) n-corollas. These are the objects of Ωcl which are
connected to ccn by a sequence of degeneracies. For n 6= 1 they have a unique vertex of
valence n+ 1 and only vertices of valence 2 and 1 otherwise.

Proposition 3.1.16. Let X,Y ∈ scdSet be restrictions of 1-reduced dendroidal Segal
spaces. Then the restriction map

RHom(X|Ω〈n〉cl , Y |Ω〈n〉cl)→ RHom(X|Vn
, Y |Vn

)

is a weak equivalence.

In the following proofs we will also need the notion of subtree of a given tree T . This
has already been used in 3.1.13.

Definition 3.1.17. Let T be a tree in Ωcl. A subtree S of T consists of a subset of edges
of T such that the resulting graph is connected. In this case S should be understood as an
object of Ωcl such that the inclusion S ⊂ T is a morphism in Ωcl.

For example the closed k-corolla cck can be realized as a subtree of the closed n-corolla
ccn (in

(n
k

)

different ways, assuming k 6= 0).

Remark 3.1.18. [15, Chapter 6] Let α : I → J be a functor between small categories.
For any j ∈ J let (j ↓ α) denote the category whose objects are pairs (i, f : j → α(i)) and
morphisms (i, f)→ (i′, f ′) are given by commutative triangles

j α(i)

α(i′).

f

f ′
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The functor α is called homotopy terminal if for every j the category (j ↓ α) has a con-
tractible classifying space. Homotopy terminal functors can be used to simplify homotopy
colimits. More precisely for any homotopy terminal α and any diagram X : J → sSet there
is a natural weak equivalence

hocolim
I

α∗X → hocolim
J

X.

There is a dual notion of a homotopy initial functor β : I → J . It has the property that
all overcategories (β ↓ j), defined dually to the undercategories above, are non-empty and
contractible. In this case there is a natural weak equivalence

holim
I

β∗Y ← holim
J

Y

for all diagrams Y : J → sSet.

In the following we write RRanF and RLanF respectively for derived right and left Kan
extensions along a functor F .

Lemma 3.1.19. Let X in scdSet be a 1-reduced dendroidal Segal space. Let φ denote the
inclusion of Wn in Ω〈n〉cl. Then the derived unit morphism

X|Ω〈n〉cl → RRanφ φ
∗
(

X|Ω〈n〉cl

)

is a weak equivalence.

Proof. We allow ourselves to write RRanφ φ
∗X instead of the more complicated ex-

pression in the statement. By definition we have

(RRanφ φ
∗X)T ≃ holim

(f : S→T )∈Wn/T
XS .

(We may also write (S, f) instead of (f : S → T ).) It suffices to show that RRanφ φ
∗X has

the Segal property. Indeed the unit maps XT → (RRanφ φ
∗X)T are weak equivalences for

all (closed) corollas T in Ω〈n〉cl. This follows from the fact that all these corollas are already
in Wn. We can furthermore assume RRanφ φ∗X to be projectively fibrant by choosing a
fibrant model for a homotopy limit of Kan complexes.
We want to replace the indexing category Wn/T by an easier subcategory C such that its
inclusion functor is homotopy terminal. The set of objects of C is the set of subtrees as
defined in 3.1.17 of T understood as pairs (A, a) of subtrees A (which are objects of Wn

in their own right) with fixed inclusions a : A → T . Maps τ : (A, a) → (B, b) are given by
commutative triangles

T A

B.

a

τb

The inclusion of C in Wn/T has a left adjoint. (This works only because we are using Wn

instead of the smaller Vn.) Consequently the inclusion of C into Wn/T is indeed homotopy
terminal. It follows from the contravariant version of [15, Thm. 6.12] that the forgetful
projection

holim
(S,f)∈Wn/T

XS −→ holim
(A,a)∈C

XA
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is a weak equivalence.
Let X ′ denote the induced functor C → sSet. We want to prove that the decompositions
of the X ′

S given by the Segal property of X are natural in this reduced setting, i.e. every
morphism S → S′ in C induces a map X ′

S′ → X ′
S which respects the product decomposition

and can be defined factorwise. Let g : S → S′ be any morphism in C. It is an inclusion of a
subtree. Let {v1, . . . , vk} be the set of vertices of T . Let |vj|S denote the number of inputs
of S at vj . Since we assumed X to be 1-reduced and to satisfy the Segal property we know
that the morphism

XS → XSc[S] ∼= Xcc|v1|S
× . . . ×Xcc|vk|S

induced by the Segal core inclusion Sc[S]→ Ωcl[S] is a trivial Kan fibration. By functoriality
of X the square

XS′ XS

XSc[S′] XSc[S]

commutes. We only have to show that the maps XSc[S′] → XSc[S] can be defined factorwise.
But this is immediate because the map Sc[S] → Sc[S′] is induced by a morphism S → S′

over T . Let X ′′ denote the functor C→ sSet defined by the composition X ′ ◦ Sc. We have
a natural transformation X ′ → X ′′ which is a levelwise trivial fibration. Hence

holim
S∈C

XS ≃ holim
S∈C

X ′′
S .

�

Lemma 3.1.20. Let X ∈ scdSet be a 1-reduced dendroidal Segal space. Write ψ for the
inclusion ψ : Vn →Wn. The derived counit map

RLanψ ψ
∗(X|Wn

)→ X|Wn

is a weak equivalence.

Proof. We have to show that this morphism induces a weak equivalence of simplicial
sets at any tree T . For trees in Vn there is nothing to show. So let T be an extended (closed)
n-corolla. The space (RLanψ ψ

∗(X|Wn
))T is the homotopy colimit

hocolim
(S,f)∈(T/Vn)

XS .

Here (S, f) is short for f : T → S. We want to find an easier category C and a homotopy
initial functor C → T/Vn. Let the set of objects of C be the set of all pairs (S, f) such
that S is a tree in Vn with exactly n vertices of valence 1 and f : T → S is a morphism
such every outermost edge (including the root) of S is in the image of f . A morphism
τ : (S0, f)→ (S1, g) is given by a commutative triangle

T S0

S1

f

g

τ
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in Wn. The category C is a full subcategory of T/Vn. The inclusion functor C→ T/Vn has
a right adjoint. This implies that the inclusion is homotopy initial. By the contravariant
version of [15, Thm 6.7.] we get a weak equivalence

hocolim
(S,f) in C

φ∗XS
≃
−−→ RLanψψ

∗φ∗XT

In a second step we replace the indexing category C by another even easier one. Let Csh be
the full subcategory of C on the pairs (S, f) such that S has no vertices of valence 2. The

inclusion α : Csh → C has a left adjoint β. Clearly βα = Id and the counit transformation
for this adjunction is the identity. Let τ : IdC → αβ denote the unit transformation for
this adjunction. Because X has the Segal property and is 1-reduced the induced map
τ∗S : Xβ(S) → XS is a weak equivalence for every (S, f) in C. The contravariant version of
[15, Prop 6.16] thus implies that the canonical morphism

hocolim
(S,f) in Csh

XS → hocolim
(S,f) in C

XS

is a weak equivalence. The category Csh has an initial object given by the closed n-corolla
ccn together with the unit map T → ccn. Thus

Xccn ≃ hocolim
(S,f) in Csh

XS .

By our assumptions on X this concludes the proof. �

Thus theorem 3.1.14 reduces to:

Theorem 3.1.21. Let X and Y be 1-reduced dendroidal Segal spaces. The following
square of specialization maps is a homotopy pullback:

RHom(X|Vn
, Y |Vn

) RNat(JnX,JnY )

RHom(X|Ω〈n−1〉cl , Y |Ω〈n−1〉cl) RNat(∂JnX, ∂JnY )

This now follows from 4.1.2. We note that the maps in the square need careful definitions.
They will be given in section 4. The right hand column of this homotopy pullback square
can be modified as explained in the following remark.

Remark 3.1.22. The following square is a homotopy pullback square (and we switch
from n to k):

RNat(JkX,JkY ) RMapΣk
(Xcck , Ycck)

RNat(∂JkX, ∂JkY ) RMapΣk
(boundkX → Xcck , Ycck → coboundkY )
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The horizontal maps are the obvious forgetful maps. The right hand vertical arrow is
explained by the following diagram:

boundkX

Xcck Ycck

coboundkY

(A short argument for the homotopy pullback property: compare the horizontal homotopy
fibers.) Therefore the main theorem as stated in the introduction is equivalent to the
statement that the square

RHom(UkX,UkY ) RMapΣk
(Xcck , Ycck)

RHom(Uk−1X,Uk−1Y ) RMapΣk
(boundkX → Xcck , Ycck → coboundkY )

is a homotopy pullback square. Note that UkX can be read as X|Ω〈k〉cl etc. The interesting
“news” here is that for a homotopical description of k-th layer in the tower, we need to
know only the diagrams boundkX → Xcck (for the source) and Ycck → coboundkY (for the
target). As before, they are diagrams of spaces with an action of Σk .

4. Excision in categories

Let I be a small category. In this section we will investigate how spaces of natural trans-
formations between two I-shaped diagrams of simplicial sets change if we remove or add a
new object (with morphisms) from or to I. Throughout this section all model categories (of
I-diagrams) are equipped with the projective model structure. We choose functorial fibrant
and cofibrant replacements. (Their existence follows from the small object argument.) As
a model for derived mapping spaces RNat(F,G) we choose the simplicial mapping space
between the cofibrant and fibrant replacements Map(F c, Gf ).

4.1. Boundaries and coboundaries revisited. From now on we assume the indexing
category I to be skeletal (distinct objects are not isomorphic). Let x be an object of I such
that no object i (distinct from x) which admits a morphism to x receives a morphism from
x. We also require that every endomorphism of x be an automorphism. This is for example
the case if I is a direct category. The most important example for us is the case where
I = (Vn)

op and x = ccn.
The functor Jn of definition 3.1.12 generalizes in an obvious way to a functor Jx for

arbitrary I-shaped diagrams of spaces.

Definition 4.1.1. Let I and x be as above. For any diagram F ∈ Fun(I, sSet) we define

boundx(F ) := hocolim
(f : y→x) in I/x

F (y)



A SPECTRAL SEQUENCE FOR SPACES OF MAPS BETWEEN OPERADS 27

and

coboundx(F ) := holim
(g : x→y) in x/I

F (y).

These spaces serve as a replacement for the operadic boundary and coboundary space,
respectively. They come with a natural action of the automorphism group of x. The functor

Jx : Fun(I, sSet)→ sSetAut(x)×[2]

is now defined by sending a diagram F to the sequence

boundx(F )→ F (x)→ coboundx(F ).

We note this is to be viewed as a functor from Aut(x) × [2] to simplicial sets. Then ∂Jx is
defined by sending F to the subsequence

boundx(F )→ coboundx(F )

with the same equivariance properties. Both functors respect levelwise weak equivalences.
There is a functor ρ from sSetAut(x)×[2] to sSetAut(x)×[1] given by omitting the middle object
and composing the two morphisms; we can write ρ(Jx) instead of ∂Jx.

We obtain a commutative diagram of mapping spaces, where the superscripts c, f and r
have the following meaning: c is for cofibrant replacement, f is for fibrant replacement and
r is for restriction from I to I r x, full subcategory of I.

Map(F c, Gf ) Map(JxF
c, JxG

f ) Map((JxF
c)c, (JxG

f )f )

Map((F c)r, (Gf )r) Map(∂JxF
c, ∂JxG

f ) Map((∂JxF
c)c, (∂JxG

f )f )

Map(((F c)r)c, ((Gf )r)f ) Map(∂Jx(((F
c)r)c), ∂Jx(((G

f )r)f )) Map((∂Jx(F
c)c)c, (∂Jx(G

f )f )f ).

We will informally abbreviate the outer square to

RNat(F,G) RNat(JxF, JxG)

RNat(F r, Gr) RNat(∂JxF, ∂JxG).

Justification: There are natural weak equivalences

RNat(F r, Gr) −→Map(((F c)r)c, ((Gf )r)f )

RNat(JxF, JxG) −→Map((JxF
c)c, (JxG

f )f )

RNat(∂JxF, ∂JxG) −→Map((∂Jx(F
c)c)c, (∂Jx(G

f )f )f )

given by suitable pre- and postcompositions.

Theorem 4.1.2. Let I and x ∈ I be as above. Let F and G be functors from I to sSet

and let F r and Gr be their restrictions to I r x. Then the following square is a homotopy
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pullback:

RNat(F,G) RNat(JxF, JxG)

RNat(F r, Gr) RNat(∂JxF, ∂JxG).

4.2. Dévissage. We will prove theorem 4.1.2 in three steps using the principle we
developed in 3.1.5. Thoughout these steps we will keep the notation of 4.1.2.

Lemma 4.2.1. Let F the homotopy pushout of F1 ← F0 → F2. If the statement 4.1.2
holds for the Fi then it holds for F .

Proof. We observe that the two terms on the left hand side turn homotopy pushouts
into homotopy pullbacks. It follows that each vertical homotopy fiber in the left hand column
for F becomes a homotopy pullback of the respective fibers for the Fi.
To understand the right hand homotopy fibers we note that we can arrange the resulting
spaces into a cube.

RHom(JxF, JxG) RHom(JxF1, JxG)

RHom(JxF2, JxG) RHom(JxF0, JxG)

RHom(∂JxF, ∂JxG) RHom(∂JxF1, ∂JxG)

RHom(∂JxF2, ∂JxG) RHom(∂JxF0, ∂JxG)

We want to prove that this cube is homotopy cartesian. To do so we pick a point in the
initial term RHom(∂JxF, ∂JxG) of the lower square and thus in each term of the lower
square. Then we obtain a square of vertical homotopy fibers and we want to show this
square is homotopy cartesian.
One of these vertical homotopy fibers, the homotopy fiber of

RHom(JxF, JxG)→ RHom(∂JxF, ∂JxG)

consists of Aut(x)-equivariant lifts

boundxF F (x) coboundxF

boundxG G(x) coboundxG.

Thus a lift consists of an equivariant morphism F (x) → G(x), compatible homotopies
boundxF × ∆[1] → G(x) and F (x) × ∆[1] → coboundxG and a homotopy of homotopies
boundxF × (∆[1] × ∆[1]) → coboundxG. More formally the space of lifts is the total
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homotopy fiber of the square

RHom(F (x), G(x)) RHom(F (x), coboundxG)

RHom(boundxF,G(x)) RHom(boundxF, coboundxG)

over the (three) basepoints determined by the basepoint in RHom(∂JxF, ∂JxG) which we
selected. We obtain similar results for the other three vertical homotopy fibers by replacing F
with Fi. From these descriptions it is clear that the square formed by the vertical homotopy
fibers is homotopy cartesian. Therefore the cube is homotopy cartesian.
To conclude the statement we note that there is a morphism of homotopy cartesian cubes
from

RHom(F,G) RHom(F1, G)

RHom(F2, G) RHom(F0, G)

RHom(F r, Gr) RHom(F r1 , G
r)

RHom(F r2 , G
r) RHom(F r0 , G

r)

to

RHom(JxF, JxG) RHom(JxF1, JxG)

RHom(JxF2, JxG) RHom(JxF0, JxG)

RHom(∂JxF, ∂JxG) RHom(∂JxF1, ∂JxG)

RHom(∂JxF2, ∂JxG) RHom(∂JxF0, ∂JxG),

which we can view as a (homotopy cartesian) 4-cube, or better, as a square of squares. By
assumption the three squares

RNat(Fi, G) RHom(JxFi, JxG)

RNat(F ri , G
r) RHom(∂JxFi, ∂JxG)
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are homotopy cartesian. It follows that the square

RNat(F,G) RHom(JxF, JxG)

RNat(F r, Gr) RHom(∂JxF, ∂JxG)

is homotopy cartesian as well. �

Lemma 4.2.2. Let F the levelwise disjoint union of functors Fα. If the statement 4.1.2
holds for the Fα then it holds for F .

Proof. The left hand side of the square is easy to understand. If F =
∐

α Fα then
RNat(F,G) =

∏

αRNat(Fα, G) and similarly, since restriction preserves disjoint unions,
F r =

∐

α F
r
α and RNat(F r, Gr) =

∏

αRNat(F
r
α, G

r).
On the right hand side we have boundxF =

∐

α boundxFα. The proof follows like the pre-
vious one by comparison of the vertical homotopy fibers. Each left hand vertical homotopy
fiber for F decomposes as a product of the corresponding left hand vertical homotopy fibers
for the Fα.
As we have seen in the proof of the previous lemma each right hand vertical homotopy fiber
is the total homotopy fiber of

RHom(F (x), G(x)) RHom(boundxF,G(x))

RHom(F (x), coboundxG) RHom(boundxF, coboundxG)

over a compatible selection of three base points which we obtained by choosing a point in
RNat(∂JxF, ∂JxG). Both terms F (x) and boundxF preserve disjoint unions and thus each
right hand vertical homotopy fiber splits as a product. By assumption the squares

RNat(Fα, G) RHom(JxFα, JxG)

RNat(F rα, G
r) RHom(∂JxFα, ∂JxG)

are homotopy cartesian. �

Lemma 4.2.3. The statement 4.1.2 holds for F representable.

Proof. Let F = Hom(y,−), in other words F is (co-)represented by y. We will dis-
tinguish three different cases. First assume y = x. Then RHom(F,G) ≃ G(x) and the left
hand vertical arrow becomes

G(x)

holimx→zG(z) = coboundxG.
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On the right hand side we have JxF = (∅ → Hom(x, x) → coboundxF ) and consequently
∂JxF = (∅ → coboundxF ). Thus a point in the right hand vertical homotopy fiber consists
of a choice of an Aut(x)-equivariant lift

Hom(x, x) G(x)

coboundxF coboundxG.

But since Hom(x, x) is the free Aut(x)-space on a point (by assumption) these lifts are in a
1-to-1 correspondence to non-equivariant lifts of points in coboundxG to G(x). This space
is homotopy equivalent to the left hand homotopy fiber and the induced map between the
two is a weak equivalence. Thus the square of 4.1.2 is a homotopy pullback.
As a second case we assume that there is a morphism y → x but y 6= x. In this case the left
hand vertical morphism is homotopic to the identity

G(y)

Gr(y) = G(y).

On the right hand side we see that

boundxF = hocolim
z→x

Hom(y, z) ≃ Hom(y, x).

This is because we can write hocolimz→xHom(y, z) as the classifying space of the category
of diagrams of the form y → z → x with fixed y and x. That category of diagrams has a
subcategory consisting of the diagrams

y
Id
−→ y → x.

The inclusion of this subcategory has a right adjoint given by

(y
f
−→ z

g
−→ x) 7→ (y

Id
−→ y

gf
−→ x).

Thus the morphism boundxF → F (x) = Hom(y, x) is a weak equivalence. We are thus
looking for (equivariant) solutions of

Hom(y, x) boundxG

Hom(y, x) G(x)

coboundxF coboundxG

=

(the broken arrow, two primary homotopies and a secondary homotopy). But the middle
morphism is already determined to be the composition

RHom(y, x)→ boundxG→ G(x)
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and hence the right hand homotopy fiber is contractible as well.
Now assume there is no morphism y → x. Then boundxF as well as F (x) are empty sets. In
this case both vertical morphisms are isomorphisms and the square is a homotopy pullback
square. Thus the statement holds for all representable functors. �

Remark 4.2.4. In the case Iop = Vn and x = ccn the object boundxF is naturally
weakly equivalent to hocolimccn→S F (S), where we think of F as contravariant and we only
allow morphisms ccn → S in Vn satisfying two conditions: The outer edges of S (including
the root) are in the image and S has no vertices of valence 2. This was essentially proved
in 3.1.13. Similarily we can restrict the homotopy limit holimS→ccn F (S) to the category of
subtrees (as defined in 3.1.17) of ccn. Therefore the coboundary object is equivalent to a
homotopy limit over a punctured n-cube.

5. Application

In theorem 3.1.14 we have constructed a new and easier model for the homotopy fibers
of our tower. We still have to show that it is possible to obtain any information about the
homotopy type of these layers from the new description.

5.1. The derived mapping spaces of little cube operads. In this section we will
finally apply the machinery we developed to a concrete case. We will compute the connec-
tivity of the layers of the tower for RHom(NdEn, NdEn+d). Beware that the d in Nd means
dendroidal and everywhere else the d is used to denote the codimension. Rational versions of
the results of this section were obtained by Fresse, Turchin and Willwacher in [17, Chapter
10].

Remark 5.1.1. The derived mapping space RHom(NdEn|Ω〈1〉cl , NdEn+d|Ω〈1〉cl) is con-
tractible.

Lemma 5.1.2. The pair (En(k),boundkEn) is homotopy equivalent to a CW pair (X,Y )
with no relative cells of dimension above n(k − 1)− 1.

Proof. Follows from the construction of the Fulton-MacPherson operad. Notably the
inclusion of the boundary ∂FMn(k) → FMn(k) is a model for the operadic boundary
inclusion map and the smooth manifold FMn(k) has dimension n(k − 1) − 1. We have
shown this in 3.1.13. �

Lemma 5.1.3. The map En(k)→ coboundk(En) is ((k − 1)(n − 2) + 1) connected.

Proof. In [25, Ex 6.2.9] Munson and Volic show that the k-cube of ordered configu-
ration spaces defined by S 7→ Conf(S,M) for S ⊂ {1, 2, . . . , k} and a fixed n-dimensional
manifold M is ((k − 1)(n − 2) + 1)-cartesian. �

Theorem 5.1.4. Each homotopy fiber of

RNat(JkEn, JkEn+d)→ RNat(∂JkEn, ∂JkEn+d)

is ((k − 1)(d − 2) + 1)-connected.
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Proof. By remark 3.1.22 the homotopy fiber is equivalent to a total homotopy fiber of
the square

Map(En(k), En+d(k)) Map(En(k), coboundkEn+d)

Map(boundkEn, En+d(k)) Map(boundkEn, coboundkEn+d)

By general principles the connectivity of such a total homotopy fiber is not less than the
connectivity of hofib(En+d(k)→ coboundkEn+d) minus the relative homotopical dimension
of the inclusion boundkEn →֒ En(k). By 5.1.2 the first number is at least (k− 1)(n+ d− 2)
and the second number is n(k − 1) − 1 by 5.1.3. The difference of these numbers turns out
to be (k − 1)(d− 2) + 1. �

Thus we get:

Corollary 5.1.5. Assume d ≥ 2. The derived mapping space RHom(En, En+d) is
(d − 1)-connected. Furthermore all spaces of derived maps between their truncations are
(d− 1)-connected as well.
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