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ATTRACTORS ASSOCIATED TO A FAMILY OF
HYPERBOLIC p-ADIC PLANE AUTOMORPHISMS

CLAYTON PETSCHE

Abstract. We consider a certain two-parameter family of automorphisms of the
affine plane over a complete, locally compact non-Archimedean field. Each of these
automorphisms admits a chaotic attractor on which it is topologically conjugate to
a full two-sided shift map, and the attractor supports a unit Borel measure which
describes the distribution of the forward orbit of Haar-almost all points in the basin
of attraction. We also compute the Hausdorff dimension of the attractor, which is
non-integral.

1. Introduction

Let K be a complete and locally compact field with respect to a nontrivial, non-
Archimedean absolute value | · |. Let

R = {x ∈ K | |x| ≤ 1}

be the ring of integers in K, and let π ∈ R be a uniformizing parameter; thus |π| is
maximal among all x ∈ R with |x| < 1, and

πR = {x ∈ R | |x| < 1}

is the unique maximal ideal of R. The most well-known examples are the fields K = Qp

of p-adic numbers for prime numbers p, or more generally any finite extensions of Qp.
Let F = R/πR denote the residue field of K, and let q = |F| denote its order. We

select the normalization of the absolute value | · | for which |π| = 1/q; this choice is not
strictly necessary but it simplifies many of our calculations.

In [1], Allen-DeMark-Petsche studied the Hénon map H : K2 → K2 given by
H(x, y) = (a + by − x2, x) in the case char(F) 6= 2. For certain parameters a, b ∈ K,
they found that H is topologically conjugate on its filled Julia set to the shift map on
the space of bisequences on two symbols, and for certain other choices of parameters,
H admits an attractor which appears in many cases to be uncountably infinite. In
[1] § 4.3, working with a particular family of examples over Q3, they proved that the
attractor is infinite and supports a measure which equidistributes the forward orbits
of all points in the basin of attraction. These attractors are thus similar in some ways
to the strange attractors associated to certain real Hénon maps; see [7], [3]. On the
other hand, unlike the real Hénon attractors, which are chaotic and have noninte-
gral Hausdorff dimension, the Hénon maps studied in [1] § 4 are non-expanding and
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hence nonchaotic on their attractors, and the 3-adic attractor described in [1] § 4.3 has
Hausdorff dimension 1; so the similarities to real strange attractors are limited.

In the present paper we study a family of hyperbolic non-Archimedean plane auto-
morphisms which admit chaotic attractors. Consider the family of automorphisms

(1) T : K2 → K2 T (x, y) = (ay + b(xq − x), x)

where a, b ∈ K satisfy

(2) 0 < |a| < 1 and |b| = q.

It follows from the assumptions (2) and the congruence tq ≡ t (mod π) for all t ∈ R that
T (R2) ⊆ R2. Moreover, the restriction T |R2 : R2 → R2 is nonsurjective; for example
T−1(1, 0) = (0, 1

a
) 6∈ R2 and hence (1, 0) /∈ T (R2). It follows that the (compact)

intersection

(3) AT =
⋂

n≥1

T n(R2)

is an attractor strictly contained in R2 and whose (open) basin of attraction

(4) BT =
⋃

n≥1

T−n(R2)

strictly contains R2.
One should expect T to have hyperbolic and chaotic dynamics on AT , as can be

seen by considering the characteristic polynomial of the Jacobian matrix of T at a
point (x, y) ∈ K2, which is p(λ) = λ2 − b(qxq−1 − 1)λ − a. Inspection of the Newton
polygon of this polynomial shows that, when (x, y) ∈ R2, the Jacobian has eigenvalues
λmin, λmax ∈ K with |λmin| = |a|/|b| < 1 and |λmax| = |b| > 1.

To describe our main results, we first review some basic ideas from symbolic dynam-
ics. Let FZ be the set of bisequences

(sk) = (. . . s−3s−2s−1.s0s1s2s3 . . . )

where each sk ∈ F. This is a compact topological space, and the shift map on FZ is
the homeomorphism σ : FZ → FZ defined by setting the k-th term of σ((sk)) equal to
sk+1; that is

(5) σ((. . . s−3s−2s−1.s0s1s2s3 . . . )) = (. . . s−2s−1s0.s1s2s3s4 . . . ).

Theorem 1. The automorphism T : K2 → K2 restricts to a map T : AT → AT which

is topologically conjugate to the shift map σ : FZ → FZ. More precisely, there exists a

homeomorphism ω : FZ → AT such that ω ◦ σ = T ◦ ω.

FZ σ
−−−→ FZ

ω





y





y

ω

AT
T

−−−→ AT

We prove Theorem 1 in § 3, using an argument related to the Smale horseshoe map
([4] §2.3) going back to the study by Devaney-Nitecki [5] of real Hénon maps, and which
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was developed further in the non-Archimedean context by Allen-DeMark-Petsche [1].
Woodcock-Smart [10] considered the automorphism of R2 corresponding to the case
R = Zp, a = 1, b = 1/p in (1); in this case AT = Z2

p is no longer an attractor, but
the topological conjugacy to the shift map still holds, and they use this map to create
a pseudo-random number generator. See also the related results of Benedetto-Briend-
Perdry [2] for (non-invertible) quadratic polynomial maps in one variable.

In § 4, we use Theorem 1 to obtain a unit Borel measure µT supported on AT

by pushing forward the uniform Bernoulli measure on FZ via the homeomorphism
ω : FZ → AT . It is then a simple matter to use the Birkhoff ergodic theorem to
show that µT -almost all points in AT have the property that their forward T -orbits
are µT -equidistributed. Going further, we adapt an argument using the idea of stable
manifolds in smooth dynamics to obtain the following result. Borrowing terminology
from dynamical systems on real manifolds, let us say that a T -invariant unit Borel
measure µ on K2 is a physical measure with respect to T if there exists a set G ⊆ K2

of positive Haar measure such that every point in G has µ-equidistributed forward
orbit.

Theorem 2. There exists a subset G ⊆ BT of full Haar measure in BT such that, for

all (x, y) ∈ G, the forward orbit {T n(x, y)}∞n=0 is µT -equidistributed. In particular, µT

is a physical measure.

Theorem 2 suggests that µT is a non-Archimedean analogue of the SRB measures
(Sinai-Ruelle-Bowen) in smooth dynamics [11]. We point out that there are plenty of
points in BT whose forward orbits are not µT -equidistributed; for example, Theorem 1
implies that T -periodic points are dense in AT , and any of the uncountably many points
in the stable manifold associated to such a point cannot have a µT -equidistributed
forward orbit. See § 4 for more details on these assertions.

Finally, a close analysis of the proof of Theorem 1, along with a regularity property
of the measure µT , allow us give a precise calculation of the Hausdorff dimension of
the attractor AT .

Theorem 3. The attractor AT has Hausdorff dimension

dimAT = 1 +
1

1 + logq(1/|a|)
.

In particular, we point out that logq(1/|a|) > 0 because of the assumption (2), and
therefore 1 < dimAT < 2.

It is interesting to note that one of our preliminary results, Lemma 7, implies that T
maps R2 bijectively onto a disjoint union of q thin neighborhoods of graphs of functions
g : R → R in R2. Iterating this lemma, we see that AT is reminiscent of the well-known
Smale-Williams solenoid attractor A = ∩n≥0T

n(X) associated to a map T : X → X
on a solid torus X in R3 which embeds X injectively into itself and wraps around itself
q ≥ 2 times ([8] § I.9).

We thank Rob Benedetto for helpful suggestions leading to simplifications of the
proofs of the results of § 3.
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2. Notation and preliminaries

Recall that the absolute value on K is normalized so that |π| = 1/q, and therefore
|K×| = qZ is the value group of K. We define the non-Archimedean norm ‖ · ‖ on K2

by setting ‖(x0, y0)‖ = max(|x0|, |y0|), and for each r ∈ qZ, we define

Dr(x0) = {x ∈ K | |x− x0| ≤ r}

Br(x0, y0) = {(x, y) ∈ K2 | ‖(x, y)− (x0, y0)‖ ≤ r},

the disc in K centered at x0 of radius r, and ball in K2 centered at (x0, y0) of radius
r, respectively.

Let f : R → R be a function. We say f is C-Lipschitz for some C > 0 if |f(t1) −
f(t2)| ≤ C|t1 − t2| for all t1, t2 ∈ R. Denote by

H(f) = {(t, f(t)) ∈ R2 | t ∈ R}

V (f) = {(f(t), t) ∈ R2 | t ∈ R}

the horizontal curve and vertical curve in R2 associated to f , and for each 0 < δ ≤ 1,
define δ-neighborhoods of H(f) and V (f) by

Hδ(f) = {(t, f(t) + θ) ∈ R2 | t ∈ R, |θ| ≤ δ}

Vδ(f) = {(f(t) + θ, t) ∈ R2 | t ∈ R, |θ| ≤ δ}

Lemma 4. Let f, g : R → R be (1/q)-Lipschitz functions and let 0 < δ ≤ 1 with

δ ∈ qZ.

(a) If r ≤ δ and (x0, y0) ∈ Hδ(f), then Br(x0, y0) ⊆ Hδ(f); similarly for Vδ(f).
(b) Hδ(f) is a union of 1/δ balls of radius δ; similarly for Vδ(f).
(c) V (f) ∩H(g) contains exactly one point.

(d) Vδ(f) ∩Hδ(g) is a ball of radius δ.

Proof. (a) Since (x0, y0) ∈ Hδ(f), we have |f(x0)−y0| ≤ δ. Given (x1, y1) ∈ Br(x0, y0),
we have |x1 − x0| ≤ r and |y1 − y0| ≤ r, so

|f(x1)− y1| = |f(x1)− f(x0) + f(x0)− y0 + y0 − y1|

≤ max(|f(x1)− f(x0)|, |f(x0)− y0|, |y0 − y1|)

≤ max((1/q)|x1 − x0|, |f(x0)− y0|, |y0 − y1|)

= max(r, δ) = δ

and thus (x1, y1) ∈ Hδ(f).
(b) Writing δ = 1/qr, partition R into qr discs Dδ(xj) with centers x1, . . . , xqr and

radius δ. We will show that

Hδ(f) =
⋃

1≤j≤qr

Bδ(xj , f(xj)).

That each Bδ(xj , f(xj)) ⊆ Hδ(f) follows from part (a). Given a point (x0, y0) ∈ Hδ(f),
we have |y0 − f(x0)| ≤ δ. Since the Dδ(xj) partition R, we have x0 ∈ Dδ(xj0) for some
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1 ≤ j0 ≤ qr. Thus |x0 − xj0 | ≤ δ, and

|y0 − f(xj0)| = |y0 − f(x0) + f(x0)− f(xj0)|

≤ max(|y0 − f(x0)|, |f(x0)− f(xj0))

≤ max(|y0 − f(x0)|, (1/q)|x0 − xj0|) ≤ δ

verifying that (x0, y0) ∈ Bδ(xj0, f(xj0)).
(c) This follows as in [1] Lemma 23. Briefly, the maps f◦g : R → R and g◦f : R → R

are contractions and therefore have unique fixed points x0 and y0 in R, respectively.
Thus y0 = g(x0) and x0 = f(y0), and V (f) ∩H(g) = {(x0, y0)}.

(d) By part (c), V (f) ∩ H(g) = {(x0, y0)}, and thus f(y0) = x0 and g(x0) = y0.
We will show that Vδ(f)∩Hδ(g) = Bδ(x0, y0). That Bδ(x0, y0) ⊆ Vδ(f)∩Hδ(g) follows
from part (a). Converesly, if (x, y) ∈ Vδ(f) ∩Hδ(g), then we have |f(y)− x| ≤ δ and
|g(x)− y| ≤ δ, and so

|x0 − x| = |f(y0)− f(y) + f(y)− x| ≤ max((1/q)|y0 − y|, δ)

and

|y0 − y| = |g(x0)− g(x) + g(x)− y| ≤ max((1/q)|x0 − x|, δ)

In particular,

|x0 − x| ≤ max((1/q)2|x0 − x|, (1/q)δ, δ) = δ.

The evaluation of this maximum follows from the fact that the alternatives lead to the
absurdities |x0 − x| ≤ (1/q)2|x0 − x| and (1/q)δ > δ. By a symmetrical argument, we
also have |y0 − y| ≤ δ and we have checked that Vδ(f) ∩Hδ(g) ⊆ Bδ(x0, y0). �

3. The topological conjugacy to the shift map

In this section we prove Theorem 1. Our approach follows a close parallel with the
proof of Theorem 28 of Allen-DeMark-Petsche [1], and in particular, Lemmas 6, 7, 8,
and 9 are suitably modified versions of Lemmas 24, 25, 26, and 27 of [1]. However, in
the current paper the condition T (R2) ⊆ R2 gives AT the structure of an attractor and
leads to an asymmetry in the forward and backward dynamics of T that is not present
in Theorem 28 of [1].

Given b ∈ K satisfying |b| = q, it is useful to define the function

(6) φ : K → K φ(t) = b(tq − t).

We may then simplify the expressions for T and T−1 as

(7) T (x, y) = (ay + φ(x), x) T−1(x, y) = (y, 1
a
(x− φ(y))).

Lemma 5. We have φ(R) ⊆ R, and in particular T (R2) ⊆ R2. If t1, t2 ∈ R satisfy

|t1 − t2| ≤ 1/q, then |φ(t1)− φ(t2)| = q|t1 − t2|.

Proof. Since the multiplicative group F× has order q − 1, we have the congruence
tq−1 ≡ 1 (mod π) for all t 6≡ 0 (mod π) in R, and hence tq ≡ t (mod π) for all t ∈ R.
It follows that |tp − t| ≤ 1/q, and hence |φ(t)| = |b(tq − t)| ≤ 1 for all t ∈ R, verifying
that φ(R) ⊆ R.
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Since F = R/πR has order q, we have

(8) q ≡ 0 (mod π).

Given t1, t2 ∈ R with |t1 − t2| ≤ 1/q we have t1 ≡ t2 (mod π) and therefore

tq−1
1 + tq−2

1 t2 + tq−3
1 t22 + · · ·+ tq−1

2 ≡ qtq−1
1 ≡ 0 (mod π),

and we conclude

|φ(t1)− φ(t2)| = |b||tq1 − tq2 − (t1 − t2)|

= q|tq−1
1 + tq−2

1 t2 + tq−3
1 t22 + · · ·+ tq−1

2 − 1||t1 − t2|

= q|t1 − t2|.

�

In a slight abuse of notation, we use F to denote both the residue field R/πR as well
as a complete set of coset representatives in R for this quotient. Since |π| = 1/q, the
congruence classes modulo π in R are the same as discs of radius 1/q in R, and so for
each s ∈ F the disc D1/q(s) = {x ∈ R | |x − s| ≤ 1/q} does not depend on the choice
of coset representative.

The following lemma states that the inverse image under T of a δ-neighborhood of a
vertical curve meets R2 at a union of thinner neighborhoods of vertical curves. Then,
Lemma 7 gives an analogous result but for the T -image of neighborhoods of horizontal
curves.

Lemma 6. Let f : R → R be a (1/q)-Lipschitz function and let 0 < δ ≤ 1. Then for

each s ∈ F there exists a (1/q)-Lipschitz function f s : R → R such that f s(t) ∈ D1/q(s)
for all t ∈ R and

(9) T−1(Vδ(f)) ∩ R2 =
⋃

s∈F

V(1/q)δ(f
s).

Proof. Fix t ∈ R and s ∈ F, and define a (1/q)-Lipschitz function

F s
t : D1/q(s) → D1/q(s)

F s
t (x) = x+

at+ φ(x)− f(x)

b
.

If x ∈ D1/q(s), then |F s
t (x)−s| = |x−s+at+φ(x)−f(x)

b
| ≤ 1/q, verifying that F s

t (D1/q(s)) ⊆
D1/q(s). To check the Lipschitz condition, note that for distinct x1, x2 ∈ D1/q(s), using
(8) we have

1

b

φ(x1)− φ(x2)

x1 − x2

=
(xq

1 − x1)− (xq
2 − x2)

x1 − x2

= xq−1
1 + xq−2

1 x2 + · · ·+ xq−1
2 − 1

≡ qsq−1 − 1 ≡ −1 (mod πR)

and therefore since |b| = q we have
∣

∣

∣

∣

b+
φ(x1)− φ(x2)

x1 − x2

∣

∣

∣

∣

≤ 1.(10)
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We conclude, using the Lipschitz assumption on f , that
∣

∣

∣

∣

F s
t (x1)− F s

t (x2)

x1 − x2

∣

∣

∣

∣

=
1

|b|

∣

∣

∣

∣

b+
φ(x1)− φ(x2)

x1 − x2
−

f(x1)− f(x2)

x1 − x2

∣

∣

∣

∣

≤
1

|b|
=

1

q
,

and thus F s
t is (1/q)-Lipschitz.

Since F s
t is contracting, it has a unique fixed point in D1/q(s); call this point f

s(t).
We have constructed the function f s : R → D1/q(s), and this function satisfies

(11) at+ φ(f s(t))− f(f s(t)) = 0.

It is straightforward to check that f s is Lipschitz using Lemma 5 and the Lipschitz
assumption on f .

Elementary calculations using (11) show that for each s ∈ F, we have

(12) {(x, y) ∈ R2 | x ∈ D1/q(s), |ay + φ(x)− f(x)| ≤ δ} = V(1/q)δ(f
s),

and it follows from (12) that

T−1(Vδ(f)) ∩ R2 = {(x, y) ∈ R2 | T (x, y) ∈ Vδ(f)}

= {(x, y) ∈ R2 | |ay + φ(x)− f(x)| ≤ δ}

=
⋃

s∈F

{(x, y) ∈ R2 | x ∈ D1/q(s), |ay + φ(x)− f(x)| ≤ δ}

=
⋃

s∈F

V(1/q)δ(f
s).

�

Lemma 7. Let g : R → R be a (1/q)-Lipschitz function and let 0 < ǫ ≤ 1. Then for

each s ∈ F there exists a (1/q)-Lipschitz function gs : R → R such that gs(t) ∈ D1/q(s)
for all t ∈ R and

T (Hǫ(g)) =
⋃

s∈F

H(|a|/q)ǫ(g
s).

Proof. Fix t ∈ R and s ∈ F, and define a (1/q)-Lipschitz function

Gs
t : D1/q(s) → D1/q(s)

Gs
t (y) = y −

t− φ(y)− ag(y)

b
.

That Gs
t (D1/q(s)) ⊆ D1/q(s) and that Gs

t is (1/q)-Lipschitz follows from arguments
similar to those in the proof of Lemma 6. Since Gs

t is contracting, it has a unique fixed
point in D1/q(s); call this point gs(t). We have constructed the function gs : R →
D1/q(s), and it satisfies

(13) t− φ(gs(t))− ag(gs(t)) = 0.

It is straightforward to check that gs is Lipschitz using Lemma 5 and the Lipschitz
assumption on g.

Elementary calculations using (13) show that for each s ∈ F, we have

(14) {(x, y) ∈ R2 | y ∈ D1/q(s), |x− φ(y)− ag(y)| ≤ |a|ǫ} = H(|a|/q)ǫ(g
s).
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Using (14) and the fact that T (Hǫ(g)) ⊆ T (R2) ⊆ R2 we conclude the desired identity

T (Hǫ(g)) = {(x, y) ∈ R2 | T−1(x, y) ∈ Hǫ(g)}

= {(x, y) ∈ R2 | |x− φ(y)− ag(y)| ≤ |a|ǫ}

=
⋃

s∈F

{(x, y) ∈ R2 | y ∈ D1/q(s), |x− φ(y)− ag(y)| ≤ |a|ǫ}

=
⋃

s∈F

H(|a|/q)ǫ(g
s).

�

Observe that the collection of q sets

(15) {D1/q(s)×R | s ∈ F}

forms a partition of R2. Since T (R2) ⊆ R2, the forward T -orbit of each point of R2

follows a trajectory through the q sets in the partition (15). The following lemma
shows that all possible trajectories occur, and the set of points with a given trajectory
is a vertical curve in R2. Then, Lemma 9 gives an analogous statement for backward
orbits of points in AT in terms of horizontal curves.

Lemma 8. There exists a family of (1/q)-Lipschitz functions f (s0s1s2... ) : R → R,

indexed by the set of all sequences (s0s1s2 . . . ), where each sk ∈ F, such that

(16) V (f (s0s1s2... )) = {(x, y) ∈ R2 | T k(x, y) ∈ D1/q(sk)×R for all k ≥ 0}.

Moreover,

(17) R2 =
⋃

s0,s1,s2,···∈F

V (f (s0s1s2... )).

Proof. We first construct a family of (1/q)-Lipschitz functions f
(s0s1s2... )
n : R → R,

indexed by sequences (s0s1s2 . . . ) in F and integers n ≥ 0. When n = 0, we define

f
(s0s1s2... )
0 ≡ s0, and thus in this case

(18) V1/q(f
(s0s1s2... )
0 ) = D1/q(s0)× R.

To ease notation, set δn = 1/qn+1. Fix n ≥ 0 and assume that the functions

f
(s0s1s2... )
n : R → R have been constructed for all sequences (s0s1s2 . . . ) in F. Given a

sequence (s0s1s2 . . . ), we apply Lemma 6 with f = f
(s1s2s3... )
n and δ = δn. We obtain

(1/q)-Lipschitz functions f s : R → D1/q(s), and we define f
(s0s1s2... )
n+1 = f s0. We then

have, for each fixed choice of s1, s2, . . . in F, the identity

(19) T−1(Vδn(f
(s1s2s3... )
n )) ∩R2 =

⋃

s0∈F

Vδn+1(f
(s0s1s2... )
n+1 ).

An induction argument using (18) and (19) shows that for each sequence (s0s1s2 . . . ),
we have

(20) Vδn(f
(s0s1s2... )
n ) = {(x, y) ∈ R2 | T k(x, y) ∈ D1/q(sk)× R for all 0 ≤ k ≤ n}.
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In other words, (20) says that Vδn(f
(s0s1s2... )
n ) is the set of points in R2 whose partial T -

orbit {T k(x, y)}nk=0 follows a particular trajectory through the q disjoint setsD1/q(s)×R
for s ∈ F.

From (20) it is clear that

Vδn+1(f
(s0s1s2... )
n+1 ) ⊆ Vδn(f

(s0s1s2... )
n ),

from which it follows that the limit f (s0s1s2... )(t) := limn→+∞ f
(s0s1s2... )
n (t) exists, and a

standard argument shows that a limit of (1/q)-Lipschitz functions is (1/q)-Lipschitz.

We conclude using (20) that V (f (s0s1s2... )) =
⋂

n≥0 Vδn(f
(s0s1s2... )
n ), obtaining (16).

Since T (R2) ⊆ R2, it follows that every point in R2 has some forward trajectory
through the q sets in the partition {D1/q(s) × R | s ∈ F} of R2, and (17) follows
immediately. �

Lemma 9. There exists a family of (1/q)-Lipschitz functions g(...s−3s−2s−1) : R → R,

indexed by the set of all sequences (. . . s−3s−2s−1), where each sk ∈ F, such that

(21) H(g(...s−3s−2s−1)) = {(x, y) ∈ R2 | T k+1(x, y) ∈ R×D1/q(sk) for all k ≤ −1}.

Moreover,

(22) AT =
⋃

...,s−3,s−2,s−1∈F

H(g(...s−3s−2s−1)).

Proof. We first construct a family of (1/q)-Lipschitz functions g
(...s−3s−2s−1)
n : R → R,

indexed by the set of sequences (. . . s−3s−2s−1) in F and integers n ≥ 0. When n = 0,

we define g
(...s−3s−2s−1)
0 ≡ s−1, and thus in this case

(23) H1/q(g
(...s−3s−2s−1)
0 ) = R×D1/q(s−1).

To ease notation, set ǫn = |a|n/qn+1. Fix n ≥ 0 and assume that the functions

g
(...s−3s−2s−1)
n : R → R have been constructed for all sequences (. . . s−3s−2s−1) in F.

Given a sequence (. . . s−3s−2s−1), we apply Lemma 7 with g = g
(...s−4s−3s−2)
n and ǫ = ǫn,

and we obtain (1/q)-Lipschitz functions gs : R → D1/q(s). Setting g
(...s−3s−2s−1)
n+1 = gs−1,

for each fixed choice of . . . , s−4, s−3, s−2 in F we have

(24) T (Hǫn(g
(...s−4s−3s−2)
n )) =

⋃

s−1∈F

Hǫn+1(g
(...s−3s−2s−1)
n+1 ).

An induction argument using (23) and (24) shows that for a sequence (. . . s−3s−2s−1),
we have
(25)
Hǫn(g

(...s−3s−2s−1)
n ) = {(x, y) ∈ R2 | T k+1(x, y) ∈ R×D1/q(sk) for all −n−1 ≤ k ≤ −1},

from which it follows that Hǫn+1(g
(...s−3s−2s−1)
n+1 ) ⊆ Hǫn(g

(...s−3s−2s−1)
n ). The limit

g(...s−3s−2s−1)(t) = lim
n→+∞

g(...s−3s−2s−1)
n (t)

exists and is (1/q)-Lipschitz, and since H(g(...s−3s−2s−1)) =
⋂

n≥0Hǫn(g
(...s−3s−2s−1)
n ) we

obtain (21).
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Since AT = ∩n≥0T
n(R2) is the set of all points in R2 whose entire (backward) orbit

is contained in R2, and since each such point must have some backward trajectory
through the q sets in the partition {R×D1/q(s) | s ∈ F} of R2, we obtain (22). �

Proof of Theorem 1. Fix a bisequence s = (. . . s−2s−1.s0s1s2 . . . ) ∈ FZ. Then the func-
tions f (s0s1s2... ) : R → R and g(...s−3s−2s−1) : R → R constructed in Lemmas 8 and 9
are (1/q)-Lipschitz. It follows from Lemma 4 (c) that the curves H(g(...s−3s−2s−1)) and
V (f (s0s1s2... )) intersect at a single point in R2. Denoting this point of intersection by
ω(s), we obtain a function ω : FZ → AT .

Given a point (x, y) ∈ AT , it follows from the fact that T (R2) ⊆ R2 and (3) that
every point in its T -orbit is contained in R2; hence every point in its orbit is contained
in one of the q sets R × D1/q(s) for s ∈ F, and similarly every point in its orbit
is contained in one of the q sets D1/q(s) × R for s ∈ F. Define s = (sk) ∈ FZ by
T k(x, y) ∈ D1/q(sk) × R for k ≥ 0, and T k+1(x, y) ∈ R × D1/q(sk) for k ≤ −1. The
function (x, y) 7→ s defines an inverse ω−1 : AT → FZ by Lemma 8 and Lemma 9, and
so ω is bijective.

That ω and ω−1 are continuous follows as in [1] Theorem 28. To summarize this
argument, recall that the cylinder sets

Σt−N ,...,tN = {s = (sk) ∈ FZ | sk = tk for all |k| ≤ N}.

form a neighborhood base for the topology on FZ. It follows from (20) and (25) that
ω(Σt−N ,...,tN ) is Vδ(f)∩Hǫ(g) for certain functions f, g : R → R and certain radii δ, ǫ > 0.
As Vδ(f) and Hǫ(g) are topologically open, this shows that ω−1 is continuous. It is
a standard exercise in basic topology to show that a continuous bijection of compact
sets has a continuous inverse, and thus ω is a homeomorphism.

To see that ω ◦ σ = T ◦ ω, fix s = (sk) ∈ FZ and let t = (tk) = σ(s); thus tk = sk+1.
By Lemma 8 and Lemma 9, we have

T k(ω(s)) ∈ D1/q(sk)× R for all k ≥ 0

T k+1(ω(s)) ∈ R×D1/q(sk) for all k ≤ −1.

It follows immediately that

T k(T (ω(s))) ∈ D1/q(tk)× R for all k ≥ 0

T k+1(T (ω(s))) ∈ R ×D1/q(tk) for all k ≤ −2.

It is clear from (1) and the fact that T (R2) ⊆ R2 that T (D1/q(s)× R) ⊆ R ×D1/q(s)
for all s ∈ F, and therefore

T (ω(s)) ∈ T (D1/q(s0)×R) ⊆ R×D1/q(s0) = R×D1/q(t−1).

We conclude that

T (ω(s)) ∈ H(g(...t−3t−2t−1)) ∩ V (f (t0t1t2... ))

and therefore using Lemma 8 and Lemma 9 we find that T (ω(s)) = ω(t); in other
words, T (ω(s)) = ω(σ(s)). �
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4. The Bernoulli measure and equidistribution of forward orbits

4.1. Symbolic dynamics and the Bernoulli measure on FZ. Recall that FZ de-
notes the set of bisequences

(sk) = (. . . s−3s−2s−1.s0s1s2s3 . . . )

where each sk ∈ F. The cylinder sets

(26) {(sk) ∈ FZ | sk = tk for all |k| ≤ M} (M ≥ 0, t−M , . . . , tM ∈ F)

are a base of open sets for a compact topology on FZ, and the shift map σ : FZ → FZ

defined in (5) is a homeomorphism.
Let µσ be the σ-invariant uniform Bernoulli measure on the Borel σ-algebra M(FZ)

of FZ. Thus FZ has µσ-measure 1, and µσ assigns measure 1/q2M+1 to each cylinder
set described in (26). More generally, given any Borel subset E ∈ M(FZ) we have
µσ(E) = inf

∑

j µσ(Uj), the infimum over all countable covers of E by cylinder sets Uj

of the form (26).
Now let M≥0(F

Z) be the sub-σ-algebra of M(FZ) consisting of those Borel subsets
E ⊆ FZ with the property that

(. . . s−3s−2s−1.s0s1s2s3 . . . ) ∈ E ⇒ (. . . s′−3s
′
−2s

′
−1.s0s1s2s3 . . . ) ∈ E

for any choice of . . . , s′−3, s
′
−2, s

′
−1 ∈ F. In other words, M≥0(F

Z) consists of those Borel
subsets of FZ which are closed under changing any of the negatively indexed terms of
its elements.

Lemma 10. Let E ∈ M≥0(F
Z) have µσ-measure zero. Then for any ǫ > 0, E is

covered by a countable collection of cylinder sets of the form

(27) {(sk) ∈ FZ | sk = tk for all 0 ≤ k ≤ M} (M ≥ 0, t0, . . . , tM ∈ F)

in M≥0(F
Z), the sum of whose µσ-measures is ≤ ǫ.

Proof. Letting FZ≥0 denote the space of sequences (s0s1s2 . . . ) with each sk ∈ F, define
a forgetful map P : FZ → FZ≥0 by P (. . . s−3s−2s−1.s0s1s2s3 . . . ) = (s0s1s2s3 . . . ). The
map E 7→ P (E) is a measure-preserving bijection fromM≥0(F

Z) to the Borel σ-algebra
M(FZ≥0) of FZ≥0. Thus the statement of the lemma follows at once from the definition
of the uniform Bernoulli measure defined on the Borel σ-algebra of FZ≥0 . �

4.2. The equidistriubtion of forward orbits. Define µT to be unit Borel measure
onK2 obtained as the pushforward of the Bernoulli measure µσ via the homeomorphism
ω : FZ → AT described in Theorem 1. In other words, µT (A) = µσ(ω

−1(A)) for all
Borel subsets A of K2. The measure µT is supported on AT , and it is T -invariant by
Theorem 1 and the fact that µσ is σ-invariant.

We say a point (x, y) ∈ K2 is µT -generic if its forward orbit {T n(x, y)}+∞
n=0 is µT -

equidistributed, in the sense that for all continuous functions F : K2 → R, we have

(28) lim
N→+∞

1

N

N−1
∑

n=0

F (T n(x, y)) =

∫

FdµT .

Lemma 11. µT -almost all points in AT are µT -generic.
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Proof. Let {Bj} be the (countable) collection of all balls in R2. Let A be the space of
all finite real linear combinations of the characteristic functions χBj

of these balls. As
χBj

χBj′
= χBj∩Bj′

and Bj ∩Bj′ is either the empty set or itself a ball, the space A is a

point-separating subalgebra of the space C(R2) of all continuous real-valued functions
on R2, and therefore A is dense in C(R2) by the Stone-Weierstrass theorem.

By the topological conjugacy ω : FZ → AT and the fact that the shift map on FZ

is ergodic ([9] Thm 1.12) with respect to µσ, we know that the map T : AT → AT

is ergodic with respect to µT . It follows from the Birkhoff ergodic theorem ([9] Thm
1.14) that for each ball Bj in R2, the limit (28) holds for F = χBj

and for all (x, y) in a
set Sj ⊆ AT of full µT -measure in AT . Thus S = ∩jSj has full µT -measure in AT and
(28) holds for all F = χBj

and for all (x, y) ∈ S. That (28) holds for all continuous
F : K2 → R and all points (x, y) ∈ S follows from a standard argument approximating
F uniformly in R2 by a real linear combination of the χBj

, which we omit. �

In order to deduce Theorem 2 from Lemma 11, we introduce a certain collection of
subsets of R2 which play a role analogous to the stable manifolds in smooth dynamics.
Recall from the proof of Theorem 1 that, because T (R2) ⊆ R2, the forward orbit of each
point in R2 traverses some trajectory through the q sets in the partition {D1/q(s)×R |
s ∈ F} of R2. Thus each point (x, y) ∈ R2 determines a sequence (s0s1s2 . . . ) with
sk ∈ F by

(29) T k(x, y) ∈ D1/q(sk)×R for all k ≥ 0.

Define an equivalence relation on R2 in which two points (x, y), (x′, y′) ∈ R2 are equiv-
alent if and only if (in an obvious notation) sk = s′k for all k ≥ 0. Denote by Wx,y the
equivalence class of the point (x, y) ∈ R2. From Lemma 8 we recall that if the point
(x, y) ∈ R2 and the sequence (s0s1s2 . . . ) are related by (29), we have

Wx,y = V (f (s0s1s2... )).

In other words, Wx,y may also be described as the vertical curve associated to the
(1/q)-Lipschitz function f (s0s1s2... ) : R → R constructed in Lemma 8.

The following lemma states that each equivalence class Wx,y consists either entirely
of µT -generic points or entirely of non-µT -generic points. The proof is based on the
principle that any two points in Wx,y have asymptotically the same forward orbit.

Lemma 12. If (x, y) ∈ R2 is µT -generic, then every point in Wx,y is µT -generic.

Proof. Assume that (x, y) ∈ R2 is µT -generic and let (x′, y′) ∈ Wx,y. We will show that

(30) ‖T n(x, y)− T n(x′, y′)‖ → 0 as n → +∞.

By hypothesis, there exists a sequence (s0s1s2 . . . ) in F such that both T k(x, y) and
T k(x′, y′) are in D1/q(sk) × R for all k ≥ 0. Fixing n ≥ 1, we deduce that both
T k(T n(x, y)) and T k(T n(x′, y′)) are in D1/q(tk) × R for all k ≥ −n, where tk = sk+n.
Thus whenever k ≥ −n, we have

T k+1(T n(x, y)) ∈ T (D1/q(tk)×R) ⊆ R×D1/q(tk)
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and likewise for T k+1(T n(x′, y′)). We deduce using (20) and (25) that both T n(x, y)
and T n(x′, y′) are elements of

V (f (t0t1t2... )) ∩Hǫn−1(g
(...t−3t−2t−1)
n−1 ),

which by Lemma 4 (d) is contained in a ball of radius ǫn−1. As ǫn−1 → 0, we conclude
(30).

Given a continuous function F : K2 → R, it must be uniformly continuous on R2 by
compactness, and so a standard argument shows that (30) implies

(31) |F (T n(x, y))− F (T n(x′, y′))| → 0 as n → +∞.

We then have

∣

∣

∣

∣

1

N

N−1
∑

n=0

F (T n(x′, y′))−

∫

FdµT

∣

∣

∣

∣

≤
1

N

N−1
∑

n=0

|F (T n(x′, y′))− F (T n(x, y))|

+

∣

∣

∣

∣

1

N

N−1
∑

n=0

F (T n(x, y))−

∫

FdµT

∣

∣

∣

∣

and therefore

∣

∣

∣

∣

1

N

N−1
∑

n=0

F (T n(x′, y′))−

∫

FdµT

∣

∣

∣

∣

→ 0 as N → +∞,

completing the proof that (x′, y′) is µT -generic. �

Proof of Theorem 2. Let λ denote Haar measure on the Borel σ-algebra of K2, nor-
malized so that λ(R2) = 1. We first show that the set

E = {(x, y) ∈ R2 | (x, y) is not µT -generic}

has Haar measure zero. By Lemma 11, E∩AT has µT -measure zero, and by Lemma 12,
E ∩AT is the image under ω : FZ → AT of a set in the sub-σ-algebra M≥0(F

Z) of the
Borel σ-algebra M(FZ). Fixing ǫ > 0, it follows from Lemma 10 that there exists a
countable collection {Uj} of subsets of AT satisfying the following properties:

• E ∩AT ⊆ ∪jUj

• each Uj is the image under ω : FZ → AT of a cylinder set of the form (27)
•
∑

j µT (Uj) ≤ ǫ.

Note that for every (x, y) ∈ R2, the set Wx,y contains (uncountably many) points
of AT . Indeed, if the sequence (s0s1s2 . . . ) is defined by (29), then we may select
. . . , s−3, s−2, s−1 in F arbitrarily and take (x′, y′) = ω((. . . s−3s−2s−1.s0s1s2 . . . )) ∈
AT ∩Wx,y. Using Lemma 12 along with the facts that each Wx,y meets AT and that
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the Uj cover E ∩ AT , we have

E =
⋃

(x,y)∈E

Wx,y

=
⋃

(x,y)∈E∩AT

Wx,y

⊆
⋃

j

⋃

(x,y)∈Uj

Wx,y

(32)

Now, for each j, the set Uj is the image under ω of a cylinder set of the form (27), and
using (20) we therefore have

⋃

(x,y)∈Uj

Wx,y = {(x, y) ∈ R2 | T k(x, y) ∈ D1/q(tk)× R for all 0 ≤ k ≤ M}

= VδM (f (t0t1t2... )).

Note that by Lemma 4 (b), VδM (f (t0t1t2... )) is a union of 1/δM balls of radius δM , and
so its Haar measure is (1/δM)δ2M = δM = 1/qM+1 = µT (Uj). We have shown that

λ(
⋃

(x,y)∈Uj

Wx,y) = µT (Uj)

and we obtain

λ(E) ≤
∑

j

λ(
⋃

(x,y)∈Uj

Wx,y) =
∑

j

µT (Uj) ≤ ǫ.

As ǫ > 0 was arbitrary, we conclude that E has Haar measure zero.
Using the fact that any two points in the same orbit have (eventually) the same

forward orbit, it is not hard to see that if a point (x, y) ∈ K2 is µT -generic, then every
point in its orbit {T n(x, y)}+∞

n=−∞ is µT -generic. Also, a straightforward argument using
the fact that polynomial maps are Lipschitz on bounded sets implies that if E ⊆ K2

has Haar measure zero, then so does T−1(E). We conclude from these facts and (4)
that

{(x, y) ∈ BT | (x, y) is not µT -generic} =
⋃

n≥1

T−n(E)

has Haar measure zero. �

5. The Hausdorff dimension of AT

We follow the notation and definitions in [6] §11.2-11.3 for our discussion of Hausdorff
dimension. Given a subset A ⊆ K2, let

diam(A) = sup{‖(x, y)− (x′, y′)‖ | (x, y), (x′, y′) ∈ A}

denote its diameter, and note that by the strong triangle inequality, the diameter of a
ball in K2 is the same as its radius.
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For parameters p ≥ 0 and δ ∈ qZ, set

Hp,δ(A) = inf
∑

j

diam(Bj)
p,

the infimum over all countable covers {Bj} of A with diam(Bj) ≤ δ. The p-dimensional

Hausdorff outer measure of A is defined by

(33) Hp(A) = lim
δ→0

Hp,δ(A).

The Hausdorff dimension of A is the unique nonnegative real number dimA satisfying

Hp(A) = 0 for all p > dimA, and

Hp(A) = +∞ for all p < dimA.
(34)

For the existence of the limit (33) and of such a unique real number satisfying (34),
see [6] §11.2.

Lemma 13. There exists a constant C > 0 such that µT (A) ≤ C · diam(A)α for all

Borel measurable subsets A of K2, where α = 1 + 1/(1 + logq(1/|a|)).

Proof. If µT (A) = 0, there is nothing to prove, so assume µT (A) > 0. Since µT is
supported on AT , there exists a point (x0, y0) ∈ A∩AT . Letting r = diam(A), we have
A ⊆ Br(x0, y0), and using Theorem 1, we have ω(t) = (x0, y0) for some t = (tk) ∈ FZ.

In the notation of Lemmas 8 and 9, we let n and m be the positive integers for which
δn+1 < r ≤ δn and ǫm+1 < r ≤ ǫm, and we have

(x0, y0) = ω(t) ∈ V (f (t0t1t2... )) ∩H(g(...t−3t−2t−1))

⊆ Vδn(f
(t0t1t2... )
n ) ∩Hǫm(g

(...t−3t−2t−1)
m )

and so using Lemma 4 (a) we have

Br(x0, y0) ⊆ Vδn(f
(t0t1t2... )
n ) ∩Hǫm(g

(...t−3t−2t−1)
m ).

If a point s = (sk) ∈ FZ satisies ω(s) ∈ Vδn(f
(t0t1t2... )
n )∩Hǫm(g

(...t−3t−2t−1)
m ), then (20),

(25), and Theorem 1 imply that sk = tk for all −(m + 1) ≤ k ≤ n. It follows from

the definition of µT as the pushforward of µσ that the µT -measure of Vδn(f
(t0t1t2... )
n ) ∩

Hǫm(g
(...t−3t−2t−1)
m ) is bounded above by 1/qm+n+2.

Recall that r > δn+1 = 1/qn+2 and r > ǫm+1 = |a|m+1/qm+2 > (|a|/q)m+2. We

therefore have −(m+ 2) <
logq r

1+logq(1/|a|)
, and so

1/qm+2 < r
1

1+logq(1/|a|) .

We conclude
µT (A) ≤ µT (Br(x0, y0))

≤ µT (Vδn(f
(t0t1t2... )
n ) ∩Hǫm(g

(...t−3t−2t−1)
m ))

≤ 1/qm+n+2

< q2r
1+ 1

1+logq(1/|a|) .

�
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Proof of Theorem 3. Let α = 1+1/(1+logq(1/|a|)). The following standard argument
(the mass distribution principle) uses Lemma 13 to show that the Hausdorff dimension
of AT is at least α. Assuming that {Bj} is a countable cover of AT , we may assume
without loss of generality that each Bj is closed since diam(Bj) = diam(Bj). We have

1 = µT (AT ) ≤ µT (∪jBj) ≤
∑

j

µT (Bj) ≤ C
∑

j

diam(Bj)
α

and therefore Hα(A) ≥ 1/C > 0. We conclude that dimAT ≥ α.
To prove the opposite inequality, let n ≥ 1 and set ǫn = |a|n/qn+1. Recall from the

proof of Lemma 9 that AT is covered by qn sets of the form Hǫn(g). By Lemma 4 (b),
each set Hǫn(g) is covered by 1/ǫn balls of radius ǫn. Thus AT is covered by qn/ǫn balls
of radius ǫn, and so

Hα,ǫn(AT ) ≤ (qn/ǫn)ǫ
α
n

= qn(|a|n/qn+1)α−1

= qn+(α−1)(n logq |a|−n−1)

= q1−α

Letting n → +∞ we find Hα(AT ) ≤ q1−α < +∞ and hence dimAT ≤ α. �
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