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Abstract Inverse eigenvalue and singular value problems have been widely dis-

cussed for decades. The well-known result is the Weyl-Horn condition, which presents

the relations between the eigenvalues and singular values of an arbitrary matrix. This

result by Weyl-Horn then leads to an interesting inverse problem, i.e., how to con-

struct a matrix with desired eigenvalues and singular values. In this work, we do

that and more. We propose an eclectic mix of techniques from differential geome-

try and the inexact Newton method for solving inverse eigenvalue and singular value

problems as well as additional desired characteristics such as nonnegative entries,

prescribed diagonal entries, and even predetermined entries. We show theoretically

that our method converges globally and quadratically, and we provide numerical ex-

amples to demonstrate the robustness and accuracy of our proposed method. Having

theoretical interest, we provide in the appendix a necessary and sufficient condition

for the existence of a 2×2 real matrix, or even a nonnegative matrix, with prescribed

eigenvalues, singular values, and main diagonal entries.

Mathematics Subject Classification (2010) 15A29 · 65H17.

Keywords Inverse eigenvalue and singular value problems, nonnegative matrices,

Riemannian inexact Newton method.

Center for General Education, National Formosa University, Huwei 632, Taiwan (chiang@nfu.edu.tw).

This research was supported in part by the Ministry of Science and Technology of Taiwan under grant

105-2115-M-150-001.

Corresponding author. Department of Mathematics, National Cheng Kung University, Tainan 701, Tai-

wan (mhlin@mail.ncku.edu.tw). This research was supported in part by the Ministry of Science and

Technology of Taiwan under grant 107-2115-M-006 -007 -MY2.

Department of Mathematics, University of Macau, Macao, China (xqjin@umac.mo). This research was

supported in part by the research grant MYRG2016-00077-FST from University of Macau.

Address(es) of author(s) should be given

http://arxiv.org/abs/1810.06775v1


2 Chun-Yueh Chiang et al.

1 Introduction

Let |λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0 and σ1 ≥ ·· · ≥ σn≥ 0 be the eigenvalues and singular

values of a given n× n matrix A. In [45] Weyl showed that sets of eigenvalues and

singular values satisfy the following necessary condition:

k

∏
j=1

|λ j| ≤
k

∏
j=1

σ j, k = 1, . . . ,n− 1, (1.1a)

n

∏
j=1

|λ j|=
n

∏
j=1

σ j. (1.1b)

Moreover, Horn [29] proved that condition (1.1), called the Weyl-Horn condition, is

also sufficient for constructing triangular matrices with prescribed eigenvalues and

singular values. Research interest in inverse eigenvalue and singular value problems

can be tracked back to the open problem raised by Higham in [28, Problem 26.3], as

follows:

Develop an efficient algorithm for computing a unit upper triangular n× n

matrix with the prescribed singular values σ1, . . . ,σn, where ∏n
j=1 σ j = 1.

This problem, which was solved by Kosowski and Smoktunowicz [32], leads to the

following interesting inverse eigenvalue and singular value problem (IESP):

(IESP) Given two sets of numbers λ = {λ1, . . . ,λn} and σ = {σ1, . . . ,σn}
satisfying (1.1), find a real n× n matrix with eigenvalues λ and singular

values σ .

The following factors make the IESP difficult to solve:

– Often the desired matrices are real. This problem was solved by the authors of [9]

with prescribed real eigenvalues and singular values. The method for finding a

general real-valued matrix with prescribed complex-conjugate eigenvalues and

singular values was also investigated in [33]. In this work, we take an alternative

approach to tackle this problem and add further constraints.

– Often the desired matrices are structured. Corresponding to physical applications,

the recovered matrices often preserve some common structure such as nonnega-

tive entries or predetermined diagonal entries [8,46]. In this paper, specifically,

we offer the condition of the existence of a nonnegative matrix provided that

eigenvalues, singular values, and diagonal entries are given. Furthermore, solving

the IESP with respect to the diagonal constraint is not enough because entries

of the recovered matrices should preserve certain patterns, for example, non-

negativity, which correspond to original observations. How to tackle this struc-

tured problem is the main thrust of this paper.

The IESP can be regarded as a natural generalization of the inverse eigenvalue

problems, which is known for its a wide variety of applications such as the pole as-

signment problem [6,34,20], applied mechanics [25,19,38,18,15], and inverse Sturm-

Liouville problem [26,3,24,37]. Thus applications of the IESP could be found in

wireless communication [39,17,43] and quantum information science [21,30,46].



Title Suppressed Due to Excessive Length 3

Research results advanced thus far for the IESP do not fully address the above sce-

narios. Often, given a set of data, the IESP is studied in parts. That is, there have

been extensive investigations of the conditions for the existence of a matrix when

the singular values and eigenvalues are provided (i.e., the Weyl-Horn condition [45,

29]), when the singular values and main diagonal entries are provided (i.e., the Sing-

Thompson condition [41,42]), or when the eigenvalues and main diagonal entries are

provided (i.e., the Mirsky condition [36]). Also, the above conditions have given rise

to numerical approaches, as found in [5,16,8,9,22,32,49].

Our significance in this work is to consider these conditions together. One rela-

tively close result is given in [46], where the authors consider a new type of IESP that

requires that all three constraints, i.e., eigenvalues, singular values, and diagonal en-

tries, be satisfied simultaneously. Theoretically, Wu and Chu generalize the classical

Mirsky, Sing-Thompson, and Weyl-Horn conditions and provide one sufficient con-

dition for the existence of a matrix with prescribed eigenvalues, singular values, and

diagonal entries when n ≥ 3. Numerically, Wu and Chu establish a dynamic system

for constructing such a matrix, in which real eigenvalues are given. In this work, we

solve an IESP with complex conjugate eigenvalues and with entries fixed at certain

locations. Also, we provide the necessary and sufficient condition of the existence of

a 2×2 nonnegative matrix with prescribed eigenvalues, singular values, and diagonal

elements. Note that, in general, the solution of the IESP is not unique or difficult to

find once structured requirements are added. To solve an IESP with some specific

feature, we combine techniques from differential geometry and for solving nonlinear

equations.

We organize this paper as follows. In section 2, we propose the use of the Rie-

mannian inexact Newton method for solving an IESP with complex conjugate eigen-

values. In section 3, we show that the convergence is quadratic. In section 4, we

demonstrate the application of our technique to an IESP with a specific structure that

includes nonnegative or predetermined entries to show the robustness and efficiency

of our proposed approaches. The concluding remarks and the solvability of the IESP

of a 2× 2 matrix are given in section 5 and the appendix, respectively.

2 Riemannian inexact Newton method

In this section, we explain how the Riemannian inexact Newton method can be ap-

plied to the IESP. The problem of optimizing a function on a matrix manifold has

received much attention in the scientific and engineering fields due to its peculiarity

and capacity. Its applications include, but are not limited to, the study of eigenvalue

problems [12,13,7,1,2,14,10,50,52,48,46,51], matrix low rank approximation [4,

27], and nonlinear matrix equations [44,11]. Numerical methods for solving prob-

lems involving matrix manifolds rely on interdisciplinary inputs from differential ge-

ometry, optimization theory, and gradient flows.

To begin, let O(n)⊂R
n×n be the group of n×n real orthogonal matrices, and let

λ = {λ1, . . . ,λn} and σ = {σ1, . . . ,σn} be the eigenvalues and singular values of an

n× n matrix. We assume without loss of generality that:

λ2i−1 =αi+βi

√
−1, λ2i =αi−βi

√
−1, i= 1, . . . ,k; λi ∈R, i= 2k+1, . . . ,n,
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where αi,βi ∈ R with βi 6= 0 for i = 1, . . . ,k, and we define the corresponding block

diagonal matrix

Λ =diag

{[
α1 β1

−β1 α1

]
, . . . ,

[
αk βk

−βk αk

]
,λ2k+1, . . . ,λ2n

}

and the diagonal matrix

Σ =diag{σ1, . . . ,σn} .

Then the IESP is equivalent to finding matrices U,V, Q ∈O(n), and

W ∈W (n) := {W ∈ R
n×n |Wi, j = 0 if Λi, j 6= 0 or i≥ j, for 1≤ i, j ≤ n},

which satisfy the following equation:

F(U,V,Q,W ) =UΣV⊤−Q(Λ +W )Q⊤ = 0. (2.1)

Here, we may assume without loss of generality that Q is an identity matrix and

simplify Eq. (2.1) as follows:

F(U,V,W ) =UΣV⊤− (Λ +W) = 0. (2.2)

Let X = (U,V,W) ∈O(n)×O(n)×W (n). Upon using Eq. (2.2), we can see that

we might solve the IESP by

finding X ∈ O(n)×O(n)×W (n) such that F(X) = 0, (2.3)

where F : O(n)×O(n)×W (n)→R
n×n is continuously differentiable. By making an

initial guess, X0, one immediate way to solve Eq. (2.3) is to apply the Newton method

and generate a sequence of iterates by solving

DF(Xk)[∆Xk] =−F(Xk), (2.4)

for ∆Xk ∈ TXk
(O(n)×O(n)×W (n)) and set

Xk+1 = RXk
(∆Xk),

where DF(Xk) represents the differential of F at Xk and R is a retraction on O(n)×
O(n)×W (n). Since Eq. (2.4) is an underdetermined system, it may have more than

one solution. Let DF(Xk)
∗ be the adjoint operator of DF(Xk). In our calculation, we

choose the solution ∆Xk with the minimum norm by letting [35, Chap. 6]

∆Xk = DF(Xk)
∗[∆Zk], (2.5)

where ∆Zk ∈ TF(Xk)(R
n×n) is a solution for

(DF(Xk)◦DF(Xk)
∗) [∆Zk] =−F(Xk). (2.6)

Note that the notation ◦ represents the composition of two operators DF(Xk) and

DF(Xk)
∗. This implies that the operator DF(Xk)◦DF(Xk)

∗ is symmetric and positive

semidefinite. If, as is the general case, the operator DF(Xk)◦DF(Xk)
∗ : TF(Xk)

(Rn×n)→
R

n×n is invertible, we can compute the optimal solution in (2.5).
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Note that solving for the root of Eq. (2.6) could be unnecessary and computa-

tionally time-consuming, and that the linear model given by Eq. (2.6) is large-scale

or the resulting iteration Xk is far from the root of condition (2.3) [40]. By analogy

with the classical Newton method [23], we adopt the “inexact” Newton method on

Riemannian manifolds, i.e., without solving Eq. (2.6) exactly, we repeatedly apply

the conjugate gradient (CG) method to find ∆Zk ∈ TF(Xk)(R
n×n), such that:

‖(DF(Xk)◦DF(Xk)
∗)[∆Zk]+F(Xk)‖ ≤ ηk‖F(Xk)‖, (2.7)

for some constant ηk ∈ [0,1), is satisfied. Then, we update Xk corresponding to ∆Zk

until the stopping criterion is satisfied. Here, the notation ‖ ·‖ is the Frobenius norm.

Note that in our calculation, the elements in the product space R
n×n×R

n×n×R
n×n

are computed using the standard Frobenius inner product:

〈(A1,A2,A3),(B1,B2,B3)〉F := 〈A1,B1〉+ 〈A2,B2〉+ 〈A3,B3〉 , (2.8)

where 〈A,B〉 := trace(AB⊤) for any A,B ∈ R
n×n and the induced norm ‖X‖F =√

〈X ,X〉F (or, simply, 〈X ,X〉 and ‖X‖ without the risk of confusion) for any X ∈
R

n×n×R
n×n×R

n×n.

Then, the linear mapping DF(Xk) at ∆Xk =(∆Uk,∆Vk,∆Wk)∈TXk
(O(n)×O(n)×

W (n)) is given by:

DF(Xk)[∆Xk] = ∆UkΣV⊤k +UkΣ∆V⊤k −∆Wk.

Let DF(Xk)
∗ : TF(Xk)

(Rn×n)→ TXk
(O(n)×O(n)×W (n)) be the adjoint of the map-

ping DF(Xk). The adjoint DF(Xk)
∗ is determined by the following:

〈∆Zk,DF(Xk)[∆Xk]〉= 〈DF(Xk)
∗[∆Zk],∆Xk〉

and can be expressed as follows:

DF(Xk)
∗[∆Zk]= (∆Uk,∆Vk,∆Wk),

where

∆Uk =
1

2
(∆ZkVkΣ⊤−UkΣV⊤k ∆Z⊤k Uk),

∆Vk =
1

2
(∆Z⊤k UkΣ −VkΣ⊤U⊤k ∆ZkVk),

∆Wk = −H⊙∆Zk,

with the notation ⊙ representing the Hadamard product (see [12,51] for a similar

discussion).

There is definitely no guarantee that the application of the inexact Newton method

can achieve a sufficient decrease in the size of the nonlinear residual ‖F(Xk)‖. This

provides motivation for deriving an iterate for which the size of the nonlinear residual

is decreased. One way to do this is to update the Newton step ∆Xk obtained from

Eq. (2.5) by choosing θ ∈ [θmin,θmax], with 0 < θmin < θmax < 1, and setting

∆̂X k = ∆Xk, η̂k =
‖F(Xk)+DF(Xk)∆X k‖

‖F(Xk)‖
, (2.9)
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and ηk = η̂k. Then, we update

ηk← 1−θ (1−ηk) and ∆Xk←
1−ηk

1− η̂k

∆̂X k, (2.10)

while

‖F(Xk)‖−‖F(RXk
(∆Xk))‖> t(1−ηk)‖F(Xk)‖,

or, equivalently,

‖F(RXk
(∆Xk))‖ < [1− t(1−ηk)]‖F(Xk)‖, (2.11)

for some t ∈ [0,1) [23]. Let q f (·) denote the mapping that sends a matrix to the Q

factor of its QR decomposition with its R factor having strictly positive diagonal ele-

ments [1, Example 4.1.3]. Then, for all (ξU ,ξV ,ξW )∈T(U,V,W ) (O(n)×O(n)×W (n)),
we can compute the retraction R using the following formula:

R(U,V,W)(ξU ,ξV ,ξW ) = (RU(ξU),RV (ξV ),RW (ξW )),

where

RU(ξU) = q f (U + ξU), RV (ξV ) = q f (V + ξV ), RW (ξW ) =W + ξW .

We call this the Riemannian inexact Newton backtracking method (RINB) and for-

malize this method in Algorithm 1. To choose the parameter θ ∈ [θmin,θmax], we

apply a two-point parabolic model [31,51] to achieve a sufficient decrease among

steps 6 to 9. That is, we use the iteration history to model an approximate minimizer

of the following scalar function:

f (λ ) := ‖F(RXk
(λ ∆Xk))‖2

by defining a parabolic model, as follows:

p(λ ) = f (0)+ f ′(0)λ +( f (1)− f (0)− f ′(0))λ 2,

where f (0)= ‖F(Xk)‖2, f ′(0)= 2〈DF(Xk)[∆Xk],F(Xk)〉, and f (1)= ‖F(RXk
(∆Xk))‖2.

From (2.7), it can be shown that the function evaluation f ′(0) should be negative.

Since f ′(0)< 0, if p′′(λ ) = 2( f (1)− f (0)− f ′(0))> 0, then p(λ ) has its minimum

at:

θ =
− f ′(0)

2( f (1)− f (0)− f ′(0))
> 0;

otherwise, if p′′(λ )< 0, we choose θ = θmax. By incorporating two types of selection,

we can choose the following:

θ = min

{
max

{
θmin,

− f ′(0)
2( f (1)− f (0)− f ′(0))

}
,θmax

}
.

as the parameter θ in Algorithm 1 [31,51]. In the next section, we mathematically

investigate the convergence analysis of Algorithm 1.
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Algorithm 1: The Riemannian inexact Newton backtracking method [X ] = RINB(σ ,X0)
Input: An initial value X0

Output: A numerical solution X satisfying F(X) = 0

1 begin

2 Let ηmax ∈ [0.1), η0 = min{ηmax,‖F(X0)‖}, and t ∈ [0,1), and 0 < θmin < θmax < 1 be given.

3 repeat

4 Determine ∆ Zk by using the CG method to (2.6) until (2.7) holds.

5 Set ∆ Xk = (DF(Xk))
∗∆ Zk, η̂k =

‖F(Xk)+DF(Xk)∆X k‖
‖F(Xk)‖ , ∆̂ Xk = ∆ Xk, and ηk = η̂k.

6 repeat

7 Choose θ ∈ [θmin,θmax].

8 Update ηk ← 1−θ (1−ηk) and ∆ Xk ← 1−ηk
1−η̂k

∆̂ Xk.

9 until (2.11) holds;

10 Set Xk+1 = RXk
(∆ Xk) and ηk+1 = min{ηk,ηmax,‖F(Xk+1)‖}.

11 Replace k by k+1.

12 until ‖F(Xk)‖< ε ;

13 X = Xk.

14 end

3 Convergence Analysis

By combining the classical inexact Newton method [23] with optimization techniques

on matrix manifolds, Algorithm 1 provides a way to solve the IESP. However, we

have yet to theoretically discuss the convergence analysis of Algorithm 1. In this sec-

tion, we provide a theoretical foundation for the RINB method, and show that this

RINB method converges globally and finally converges quadratically when Algo-

rithm 1 does not terminate prematurely. We address this phenomenon in the follow-

ing:

Lemma 3.1 Algorithm 1 does not break down at some Xk if and only if F(Xk) 6= 0

and the inverse of DF(Xk)◦DF(Xk)
∗ exists.

Next, we provide an upper bound for the approximate solution ∆̂X k in Algo-

rithm 1.

Theorem 3.1 Let ∆Zk ∈ TF(Xk)(R
n×n) be a solution that satisfies condition (2.7) and

∆̂X k = DF(Xk)
∗[∆Zk].

Then,

(a)‖∆̂Xk‖ ≤ (1+ η̂k)‖DF(Xk)
†‖‖F(Xk)‖, (3.1a)

(b)‖σk(η)‖ ≤
1+ηmax

1−ηmax
(1−η)‖DF(Xk)

†‖d‖F(Xk)‖, (3.1b)

where η̂k is defined in Eq. (2.9), and σk is the backtracking curve used in Algorithm 1,

which is defined by the following:

σk(η) =
1−η

1− η̂k

∆̂X k
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with η̂k ≤ η ≤ 1, and

‖DF(Xk)
†‖ := max

‖∆Z‖=1
‖DF(Xk)

†[∆Z]‖

represents the norm of the pseudoinverse of DF(Xk).

Proof Let rk = (DF(Xk)◦DF(Xk)
∗)[∆Zk]+F(Xk). We see that

‖∆̂X k‖ ≤ ‖DF(Xk)
∗ ◦ [DF(Xk)◦DF(Xk)

∗]−1‖‖rk−F(Xk)‖
≤ (1+ η̂k)‖DF(Xk)

†‖‖F(Xk)‖
and

‖σk(η)‖ =
1−η

1− η̂k

‖DF(Xk)
†(rk−F(Xk))‖ ≤

1+ η̂k

1− η̂k

(1−η)‖DF(Xk)
†‖‖F(Xk)‖

≤ 1+ηmax

1−ηmax
(1−η)‖DF(Xk)

†‖‖F(Xk)‖.

⊓⊔
In our subsequent discussion, we assume that Algorithm 1 does not break down

and there is a unique limit point X∗ of {Xk}. Since F is continuously differentiable,

we have the following:

‖DF(X)†‖ ≤ 2‖DF(X∗)
†‖ (3.2)

whenever X ∈ Bδ (X∗) for a sufficiently small constant δ > 0. Here, the notation

Bδ (X∗) represents a neighborhood of X∗ consisting of all points X such that ‖X −
X∗‖< δ . By condition (3.1), we can show without any difficulty that whenever Xk is

sufficiently close to X∗,

‖∆̂Xk‖ ≤ (1+ηmax)‖DF(X∗)†‖‖F(Xk)‖, (3.3)

‖σk(η)‖ ≤ Γ (1−η)‖F(Xk)‖, η̂k ≤ η ≤ 1,

where Γ is a constant independent of k defined by

Γ = 2
1+ηmax

1−ηmax
‖DF(X∗)†‖.

New, we show that the sequence of {F(Xk)} eventually converges to zero.

Theorem 3.2 Assume that Algorithm 1 does not break down. If {Xk} is the sequence

generated in Algorithm 1, then

lim
k→∞

F(Xk) = 0.

Proof Observe that

‖F(Xk)‖ = ‖F(RXk−1
(∆Xk−1))‖ ≤ (1− t(1−ηk−1))‖F(Xk−1)‖

≤ ‖F(X0)‖
k−1

∏
j=0

(1− t(1−η j))≤ ‖F(X0)‖e
−t

k−1

∑
j=0

(1−η j)

.

Since t > 0 and lim
k→∞

k−1

∑
j=0

(1−η j) = ∞, we have lim
k→∞

F(Xk) = 0. ⊓⊔
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In our iteration, we implement the repeat loop among steps 6 to 9 by selecting a

sequence {θ j}, with θ j ∈ [θmin,θmax]. For each loop, correspondingly, we let η
(1)
k =

η̂k and ∆X (1) = ∆̂Xk, and for j = 2, . . . , we let

η
( j)
k = 1−θ j−1(1−η

( j−1)
k ),

∆X
( j)
k =

1−η
( j)
k

1− η̂k

∆̂X k. (3.4)

By induction, then, we can easily show that:

∆X
( j)
k = Θ j−1∆̂X k, 1−η

( j)
k =Θ j−1(1− η̂k),

where

Θ j−1 =
j−1

∏
ℓ=1

θℓ, j ≥ 2. (3.5)

That is, the sequence {∆X
( j)
k } j is a strictly decreasing sequence satisfying lim

j→∞
∆X

( j)
k =

0, and {η( j)
k } j is a sequence satisfying η

( j)
k ≥ η̂k for j ≥ 1, and lim

j→∞
η
( j)
k = 1. Based

on these observations, next, we show that the repeat loop terminates after a finite

number of steps.

Theorem 3.3 Let {∆̂Xk} be the sequence generated from Algorithm 1, i.e.,

‖(DF(Xk)[∆̂X k]+F(Xk)‖ ≤ ηk‖F(Xk)‖.

Then, once j is large enough, the sequence {η( j)
k } j satisfies the following:

‖F(Xk)+DF(Xk)[∆X
( j)
k ]‖ ≤ η

( j)
k ‖F(Xk)‖,

‖F(RXk
(∆X

( j)
k ))‖ ≤ (1− t(1−η

( j)
k ))‖F(Xk)‖. (3.6)

Proof Let η̂k be defined in Eq. (2.9) with ∆Xk = ∆̂Xk, and εk =
(1−t)(1−η̂k)‖F(Xk)‖

‖∆̂Xk‖
.

Since F is continuously differentiable, for εk > 0, there exists a sufficiently small

δ > 0 such that ‖∆X‖< δ implies that:

‖F(RXk
(∆X))−F(RXk

(0Xk
))−DF(RXk

(0Xk
))[∆X ]‖ ≤ εk‖∆X‖,

where 0Xk
is the origin of TXk

(O(n)×O(n)×W (n)).
For δ > 0, we let

ηmin = max

{
η̂k,1−

(1− η̂k)δ

‖∆̂X k‖

}
.

Note that once j is sufficiently large,

η
( j)
k −ηmin ≥

(
δ

‖∆̂Xk‖
−Θ j−1

)
(1− η̂k)≥0. (3.7)
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For sufficiently large j, we consider the sequence {∆X
( j)
k } j in Eq. (3.4) with η

( j)
k ∈

[ηmin,1). We can see that:

‖∆X
( j)
k ‖= ‖

1−η
( j)
k

1− η̂k

∆̂Xk‖ ≤
1−ηmin

1− η̂k

‖∆̂Xk‖ ≤ δ .

This implies that:

‖F(Xk)+DF(Xk)[∆X
( j)
k ]‖ ≤

∥∥∥∥∥F(Xk)+DF(Xk)

(
1−η

( j)
k

1− η̂k

∆̂Xk

)∥∥∥∥∥

≤
∥∥∥∥∥

η
( j)
k − η̂k

1− η̂k

F(Xk)+
1−η

( j)
k

1− η̂k

(
DF(Xk)[∆̂X k]+F(Xk)

)∥∥∥∥∥

≤ η
( j)
k − η̂k

1− η̂k

‖F(Xk)‖+
1−η

( j)
k

1− η̂k

η̂k‖F(Xk)‖

= η
( j)
k ‖F(Xk)‖,

and

F(RXk
(∆X

( j)
k ))‖ = ‖F(RXk

(∆X
( j)
k )−F(RXk

(0Xk
))−DF(RXk

(0Xk
))[∆X

( j)
k ]‖

+‖F(Xk)+DF(Xk)[∆X
( j)
k ]‖

= εk‖∆X
( j)
k ‖+η

( j)
k ‖F(Xk)‖

=
(1− t)(1− η̂k)‖F(Xk)‖

‖∆̂Xk‖

∥∥∥∥∥
1−η

( j)
k

1− η̂k

∆̂X k

∥∥∥∥∥+η
( j)
k ‖F(Xk)‖

= (1− t(1−η
( j)
k ))‖F(Xk)‖.

⊓⊔
From the proof of Theorem 3.3, we can see that for each k, the repeat loop for the

backtracking line search will terminate in a finite number of steps once condition (3.7)

is satisfied. Moreover, Theorem 3.2 and condition (3.3) imply the following:

lim
k→∞
‖∆̂X k‖= 0.

That is, if k is sufficient large, i.e., ‖∆̂Xk‖ is small enough, then from the proof of

Theorem 3.3 we see that condition (2.11) is always satisfied, i.e., ηk = η̂k for all

sufficient large k.

To show that Algorithm 1 is a globally convergent algorithm, we have one ad-

ditional requirement for the retraction RX , i.e., there exist ν > 0 and δν > 0 such

that:

ν‖∆X‖ ≥ dist(RX(∆X),X), (3.8)

for all X ∈ O(n)×O(n)×W (n) and for all ∆X ∈ TX (O(n)×O(n)×W (n)) with

‖∆X‖≤ δν [1]. Here “dist(·, ·)” represents the Riemannian distance on O(n)×O(n)×
W (n). Under this assumption, our next theorem shows the global convergence prop-

erty of Algorithm 1. We have borrowed the strategy for this proof from that used

in [23, Theorem 3.5] to prove the nonlinear matrix equation.
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Theorem 3.4 Assume that Algorithm 1 does not break down. Let X∗ be a limit point

of {Xk}. Then Xk converges to X∗ and F(X∗) = 0. Moreover, Xk converges to X∗
quadratically whenever Xk is sufficiently close to X∗.

Proof Suppose Xk does not converge to X∗. This implies that there exist two se-

quences of numbers {k j} and {ℓ j} for which:

Xk j
∈ Nδ/ j(X∗),

Xk j+ℓ j
6∈ Nδ (X∗),

Xk j+i ∈ Nδ (X∗), if i = 1, . . . , ℓ j−1

k j + ℓ j ≤ k j+1.

From Theorem 3.3, we see that the repeat loop among steps 6 to 9 of Algorithm 1

terminates in finite steps. For each k, let mk be the smallest number such that condi-

tion (3.6) is satisfied, i.e., ∆Xk =Θmk
∆̂X k and ηk = 1−Θmk

(1− η̂k) with Θmk
being

defined in Eq. (3.5). It follows from condition (3.1b) that:

‖∆Xk‖ ≤ 2Θmk

(
1+ηmax

1−ηmax

)
(1−ηk)‖DF(X∗)

†‖‖F(Xk)‖, (3.9)

for a sufficiently small δ and Xk ∈ Bδ (X∗), so that condition (3.2) is satisfied. Let

Γmk
= 2Θmk

(
1+ηmax

1−ηmax

)
‖DF(X∗)†‖.

According to condition (3.8), there exist ν > 0 and δν > 0 such that:

ν‖∆X‖ ≥ dist(RX(∆X),X) ,

when ‖∆X‖ ≤ δν . Since F(Xk) approaches zero as k approaches infinity, for δν , con-

dition (3.9) implies that there exists a sufficiently large k such that:

ν‖∆Xk‖ ≥ dist
(
RXk

(∆Xk),Xk

)
(3.10)

is satisfied whenever ‖∆Xk‖ ≤ δν .

Then for a sufficiently large j, we can see from conditions (3.9) and (3.10) that:

δ

2
≤ dist(Xk j+ℓ j

,Xk j
)≤

k j+ℓ j−1

∑
k=k j

dist(Xk+1,Xk)

=
k j+ℓ j−1

∑
k=k j

dist(RXk
(∆Xk),Xk)≤

k j+ℓ j−1

∑
k=k j

ν‖∆Xk‖

≤
k j+ℓ j−1

∑
k=k j

νΓmk
(1−ηk)‖F(Xk)‖ ≤

k j+ℓ j−1

∑
k=k j

νΓmk

t
(‖F(Xk)‖−‖F(Xk+1)‖)

≤ νΓmk

t

(
‖F(Xk j

)‖−‖F(Xk j+1
)‖
)
.
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This is a contraction, since Theorem 3.2 implies that F(Xk j
) converges to zero as j

approaches infinity and Γmk
is bounded. Thus, Xk converges to X∗, and immediately,

we have F(X∗) = 0. This completes the proof of the first part.

To show that Xk converges to X∗ quadratically once Xk is sufficiently close to X∗,
we let C1 and C2 be two numbers satisfying the following:

‖F(Xk+1)−F(Xk)−DF(Xk)[∆Xk]‖ ≤ C1‖∆Xk‖2,

‖F(Xk)‖ ≤ C2dist(Xk,X∗),

for a sufficiently large k. The above assumptions are true since F is second differen-

tiable and F(X∗) = 0. We can also observe that:

‖F(Xk+1)‖ ≤ ‖F(Xk+1)−F(Xk)−DF(Xk)[∆Xk]‖+ ‖F(Xk)+DF(Xk)[∆Xk]‖
≤ C1‖∆Xk‖2 + η̂k‖F(Xk)‖ ≤C1(Γmk

‖F(Xk)‖)2 + ‖F(Xk)‖2

≤
(
C1Γ 2C2

2 +C2
2

)
dist(Xk,X∗)

2, (3.11)

where Γ = 2

(
1+ηmax

1−ηmax

)
‖DF(X∗)†‖.

Since Xk converges to X∗ as k converges to infinity, for a sufficiently large k, it

follows from conditions (3.9), (3.10), (3.6), and (3.11) that:

dist(Xk+1,X∗) = lim
p→∞

dist(Xk+1,Xp)≤
∞

∑
s=k

dist
(
Xs+1,RXs+1

(∆Xs+1)
)

≤
∞

∑
s=k

ν‖∆Xs+1‖ ≤
∞

∑
s=k

νΓms+1
(1+ηmax)‖F(Xs+1)‖

≤ νΓ (1+ηmax)
∞

∑
j=0

(1− t(1−ηmax))
j‖F(Xk+1)‖

≤ Cdist(Xk,X∗)
2,

for some constant C =
νΓ (1+ηmax)

(
C1Γ 2C2

2 +C2
2

)

t(1−ηmax)
. ⊓⊔

It is true that we might assume without loss of generality that the inverse of

DF(Xk) ◦DF(Xk)
∗ always exists numerically. However, once DF(Xk) ◦DF(Xk)

∗ is

ill-conditioned or (nearly) singular, we choose an operator Ek = σkidTF(Xk )
, where σk

is a constant and idTF(Xk)
is an identity operator on TF(Xk)(R

n×n) to make DF(Xk) ◦
DF(Xk)

∗+σkidTF(Xk )
well-conditioned or nonsingular. In the calculation, this replaces

the calculation in Eq. (2.6) with the following equation:

(DF(Xk)◦DF(Xk)
∗+σkidTF(Xk )

)[∆Zk] =−F(Xk).

That is, Algorithm 1 can be modified to fit in this case by replacing the satisfaction

of condition (2.7) with the following two conditions:

‖(DF(Xk)◦DF(Xk)
∗+σkidTF(Xk)

)[∆Zk]‖ ≤ ηk‖F(Xk)‖, (3.12a)

‖(DF(Xk)◦DF(Xk)
∗)[∆Zk]+F(Xk)‖ ≤ ηmax‖F(Xk)‖, (3.12b)
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where σk :=min{σmax,‖F(Xk)‖} is a selected perturbation determined by the param-

eter σmax and ‖F(Xk)‖. Of course, we can provide the proof of the quadratic conver-

gence under condition (3.12) without any difficulty (see [51] for a similar discussion).

Thus, we ignore the proof here. However, we note that even if a selected perturba-

tion is applied to an ill-conditioned problem, the linear operator DF(Xk)◦DF(Xk)
∗+

σkidTF(Xk )
in condition (3.12a) might become nearly singular or ill-conditioned once

σk is small enough. This will prevent the iteration in the CG method from converging

in fewer than n2 steps, and cause the value of f ′(0) to not be negative. This possibility

suggests that we apply Algorithm 1 without performing any perturbation in our nu-

merical experiments. If the CG method cannot terminate within n2 iterations, it may

be necessary to compute a new approximated solution ∆Zk by selecting a new initial

value for X0.

4 Numerical Experiments

Note that the iteration of Algorithm 1 will be trapped without convergence to a solu-

tion if the IESP is unsolvable. As such, in our numerical experiments, we assume the

existence of a solution of an IESP solution beforehand by generating sets of eigen-

values and singular values from a series of randomly generated matrices. For a 2× 2

case, it is certain that Theorem A.3 in the appendix provides an alternative way to

generate testing matrices. However, for general n× n matrices, the condition of the

solvability of the IESP with some particular structure remains unknown and mer-

its further investigation. In this section, we show how Algorithm 1 can be applied

to solve an IESP with a particular structure. We note that we performed all of the

computations in this work in MATLAB version 2016a on a desktop with a 4.2 GHZ

Intel Core i7 processor and 32 GB of main memory. For our tests, we set ηmax = 0.9,

θmin = 0.1, θmax = 0.9, t = 10−4, and ε = 10−10. Also, in our computation, we em-

phasize two things. First, once the CG method computed in Algorithm 1 cannot be

terminated within n2 iterations, restart Algorithm 1 with a different initial value X0.

Second, due to the rounding errors in numerical computation, care must be taken in

the selection of ηk so that the upper bound ηk‖F(Xk)‖ in condition (2.7) is not too

small to cause the CG method abnormal. To this end, in our experiments, we use the

condition

max{ηk‖F(Xk)‖,10−12},

instead of ηk‖F(Xk)‖. The implementations of the Algorithm 1 are available online,

say, http://myweb.ncku.edu.tw/~mhlin/Bitcodes.zip.

Example 4.1 To demonstrate the capacity of our approach for solving problems that

are relatively large, we randomly generate a set of eigenvalues and a set of singular

values of different size, say, n = 20, 60, 100, 150, 200, 500, and 700 from matrices

given by the MATLAB command:

A = randn(n).

http://myweb.ncku.edu.tw/~mhlin/Bitcodes.zip
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For each size, we perform 10 experiments. To illustrate the elasticity of our approach,

we randomly generate the initial value X0 = (U0,V0,W0) in the following way:

W0 = triu(randn(n)),W0(find(Λ)) = 0, and [U0, tmp,V0] = svd(Λ +W0).

In Table 4.1, we show the average residual value (Residual), the average final

error (Error), as defined by:

final error = ‖λ(Anew)−λ‖2 + ‖σ(Anew)−σ‖2,

the average number of iterations within the CG method (CGIt)♯, the average number

of iterations within the inexact Newton method (INMIt)♯, and the average elapsed

time (Time), as performed by our algorithm. In Table 4.1, we can see that the elapsed

time and the average number of iterations within the CG method increase dramat-

ically as the size of the matrices increases. This can be explained by the fact that

the number of degrees of freedom of the problem increases significantly. Thus, the

number of the iterations required by the CG method and the required computed time

increase correspondingly. However, it is interesting to see that the required number

of iterations within the inexact Newton method remains almost the same for matrices

of different sizes. One way to speed up the entire process of iterations is to transform

the problem (2.6) into a form that is more suitable for the CG method, for example,

apply the CG method with a preselected preconditioner. Still, this selection of the

preconditioner requires further investigation.

Table 4.1 Comparison of the required CGIt♯, INMIt♯, Residual, Error values, and Time for solving the

IESP by Algorithm 1.

n CGIt♯ INMIt♯ Residual Error Time

20 208 9.4 5.54×10−12 9.65×10−13 2.47×10−2

60 740 10 8.13×10−12 7.23×10−13 4.11×10−1

100 1231 10.4 1.06×10−12 9.74×10−14 2.22

150 1773 10.1 1.01×10−12 1.06×10−13 6.82

200 1939 10.5 1.20×10−12 1.49×10−13 19.3
500 6070 10.6 1.47×10−12 4.12×10−13 665

700 8905 10.6 5.42×10−12 7.24×10−13 2465

Example 4.2 In this example, we use Algorithm 1 to construct a nonnegative matrix

with prescribed eigenvalues and singular values and a specific structure. We specify

this IESP and call it the IESP with desired entries (DIESP). The DIESP can be defined

as follows.

(DIESP) Given a subset I = {(it , jt)}ℓt=1 with double subscripts, a set of

real numbers K = {kt}ℓt=1, a set of n complex numbers {λi}n
i=1, satisfy-

ing {λi}n
i=1 = {λ̄i}n

i=1, and a set of n nonnegative numbers {σi}n
i=1, find a

nonnegative n× n matrix A that has eigenvalues λ1, . . . ,λn, singular values

σ1, . . . ,σn and Ait , jt = kt for t = 1, . . . , ℓ.
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Note that once it = jt = t for t = 1, . . . ,n, we investigate a numerical approach for

solving the IESP with prescribed diagonal entries. As far as we know, the research

result close to this problem is only available in [46]. However, for a general structure,

no research has been conducted to implement this investigation. To solve the DIESP,

our first step is to obtain a real matrix A with prescribed eigenvalues and singular

values. Our second step is to derive entries of Q⊤AQ, where Q ∈ O(n), that satisfy

the nonnegative property and desired values determined by the sets I and K . We

solve the first step in the same manner as in Example 4.1, but for the second step, we

consider the following two sets L1 and L2, which are defined by:

L1 = {A ∈ R
m×n |Ait , jt = kt , for 1≤ t ≤ ℓ;otherwise Ai, j = 0},

L2 = {A ∈ R
m×n |Ai, j = 0, for 1≤ i, j ≤ n and (i, j) ∈I },

and then solve the following problem:

find P ∈L2 and Q ∈O(n) such that H(P,Q) = Â+P⊙P−QAQ⊤ = 0, (4.1)

with Â ∈L1. Let [A,B] := AB−BA denote the Lie bracket notation. It follows from

direct computation that the corresponding differential DH and its adjoint DH∗ have

the following form [51]:

DH(P,Q)[(∆P,∆Q)] = 2P⊙∆P+[QAQ⊤,∆QQ⊤],

DH(P,Q)∗[∆Z] =

(
2P⊙∆Z,

1

2
([QAQ⊤,∆Z⊤]+ [QA⊤Q⊤,∆Z])Q

)
,

and, for all (ξP,ξQ) ∈ T(P,Q)(L2×O(n)), we can compute the retraction R using the

following formula:

R(P,Q) = (RP(ξP),RQ(ξQ)),

where

RP(ξP) = P+ ξP, RQ(ξQ) = q f (Q+ ξQ).

For these experiments, we randomly generate nonnegative matrices 20× 20 in

size by the MATLAB command “A = rand(20)” to provide the desired eigenvalues,

singular values, and diagonal entries, i.e., to solve the DIESP with the specified diag-

onal entries. We record the final error, as given by the following formula:

final error = ‖λ(Anew)−λ‖2 + ‖σ(Anew)−σ‖2 + ‖(Anew)it , jt − kt‖2.

After randomly choosing 10 different matrices, Table 4.2 shows our results with the

intervals (Interval) containing all of the residual values and final errors, and their

corresponding average values (Average). These results provide sufficient evidence

that Algorithm 1 can be applied to solve the DIESP with high accuracy.

Although Example 4.2 considers examples with a nonnegative structure, we em-

phasize that Algorithm 1 can work with entries that are not limited to being non-

negative. That is, to solve the IESP without nonnegative constraints but with another

specific structure, Algorithm 1 can fit perfectly well by replacing H(P,Q) in prob-

lem (4.1) with

G(S,Q) := Â+ S−QAQ⊤,

where Â ∈L1, S ∈L2 and Q ∈ O(n).
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Table 4.2 Records of final errors and residual values for solving the DIESP by Algorithm 1.

Interval Average

final errors [7.27×10−13 ,1.21×10−11 ] 2.91×10−12

residual values [7.77×10−13 ,4.93×10−12 ] 1.85×10−12

5 Conclusions

In this paper, we apply the Riemannian inexact Newton method to solve an initially

complicated and challenging IESP. We provide a thorough analysis of the entire iter-

ative processes and show that this algorithm converges globally and quadratically to

the desired solution. We must emphasize that our theoretical discussion and numeri-

cal implementations can also be extended to solve an IESP with a particular structure

such as desired diagonal entries and a matrix whose entries are nonnegative. This

capacity can be observed in our numerical experiments. It should be emphasized that

this research is the first to provide a unified and effective means to solve the IESP

with or without a particular structure.

However, the numerical stability for extremely ill-conditioned problems is a case

that we should pay attention to, though reselecting the initial values could be a strat-

egy to get rid of this difficulty. Another way to tackle this difficulty is to select a

good preconditioner. But, the operator encountered in our algorithm is nonlinear and

high-dimensional. Thus, the selection of the preconditioner could involve the study

of tensor analysis, where further research is needed.

Theoretically determining the sufficient and necessary condition for solving IESPs

of any specific structure, including a stochastic, Toeplitz, or Hankel structure, is chal-

lenging and interesting. In the appendix, we provide the solvability condition of the

IESP with real or nonnegative matrices of size 2×2 real/nonnegative matrices, while

the desired eigenvalues, singular values, and main diagonal entries are given. We

hope that this discussion can motivate a further discussion shortly.

A Appendix

A.1 The solvability of the IESP of a 2× 2 matrix

For the IESP, the authors in [46] use a geometric argument to investigate a necessary and sufficient condi-

tion for the existence of a 2×2 real matrix with prescribed diagonal entries. This argument also leads to a

sufficient algebraic but not necessary condition for the construction of a 2×2 real matrix. In this appendix,

the algebraic condition under which a 2× 2 real matrix or even nonnegative matrix can be constructed

in closed form, given its eigenvalue, singular values, and main diagonal entries. To do so, we must have

the following results. The first result, the so-called Mirsky condition, provides the classical relationship

between the eigenvalues λ = {λ1, . . . ,λn} and the diagonal entries d = {d1, . . . ,dn}.

Theorem A.1 [[36], Mirsky condition]. There exists a real matrix A ∈ R
n×n having eigenvalues λ =

{λ1, . . . ,λn} and main diagonal entries d = {d1, . . . ,dn}, that are possibly in different order, if and only if

n

∑
i=1

λi =
n

∑
i=1

di. (A.1)
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The second result provides the relationship between the singular values σ and main diagonal entries

d of a 2×2 nonnegative matrix.

Theorem A.2 [[47], Theorem 2.1]. There exists a nonnegative matrix A =

[
d1 b

c d2

]
∈ R

2×2 having the

singular values σ1 ≥ σ2 and main diagonal entries d1 ≥ d2, with renumbering if necessary, if and only if

σ1 +σ2 ≥ d1 +d2, σ1−σ2 ≥ d1−d2, if bc−d1d2 ≤ 0, (A.2a)

σ1−σ2 ≥ d1 +d2, if bc−d1d2 > 0. (A.2b)

In particular, entries from matrix A can be relaxed to real numbers, and condition (A.2) is also true for

the construction of a 2×2 real matrix. The proof is almost identical to that in [47, Lemma 2.1]. The major

change is the substitution of nonnegative entries for real entries. Thus, we skip its proof here.

Theorem A.3 There exists a real matrix A =

[
d1 b

c d2

]
∈ R

2×2 having singular values σ1 ≥ σ2 and main

diagonal entries d1 ≥ d2, with renumbering if necessary, if and only if

σ1 +σ2 ≥ d1 +d2, σ1−σ2 ≥ d1−d2, if bc−d1d2 ≤ 0,

σ1−σ2 ≥ d1 +d2, if bc−d1d2 > 0.

Now we have the condition of the existence of a 2× 2 matrix provided with eigenvalues and main

diagonal entries, or singular values and main diagonal entries. The next theorem, unsolved in [47], deals

with the case in which the three constraints—eigenvalues, singular values, and main diagonal entries—are

of simultaneous concern.

Theorem A.4 There exists a real matrix A =

[
d1 b

c d2

]
∈ R

2×2 having eigenvalues |λ1| ≥ |λ2|, singular

values σ1 ≥ σ2, and main diagonal entries d1 ≥ d2 , with renumbering if necessary, if and only if

λ1 +λ2 = d1 +d2, σ1 ≥ |λ1|, |λ1λ2|= σ1σ2, (A.4)

and

σ1 +σ2 ≥ d1 +d2, σ1−σ2 ≥ d1−d2, if bc−d1d2 ≤ 0, (A.5a)

σ1−σ2 ≥ d1 +d2, if bc−d1d2 > 0. (A.5b)

Proof Assume that conditions (A.4) and (A.5) are satisfied. Following from the Weyl-Horn and Mirsky

conditions, we know that for any 2× 2 matrix, its eigenvalues, singular values, and diagonal entries must

satisfy condition (A.4). Thus, Theorem A.3 implies that once condition (A.5) is satisfied, it suffices to say

that there exists a 2×2 real matrix.

On the other hand, the sufficient condition follows directly from the Weyl-Horn condition (1.1), the

Mirsky condition (A.1), and Theorem A.3. This completes the proof. ⊓⊔
Since the solvability conditions of Theorem A.2 and Theorem A.3 are equivalent, we can see that the

solvability condition in Theorem A.4 can be confined to be the necessary and sufficient condition for the

existence of a nonnegative 2×2 matrix. We summarize this result as follows.

Corollary A.1 There exists a nonnegative matrix A =

[
d1 b

c d2

]
∈ R

2×2 having eigenvalues |λ1| ≥ |λ2|,
singular values σ1 ≥ σ2, and main diagonal entries d1 ≥ d2 , with renumbering if necessary, if and only if

λ1 +λ2 = d1 +d2, σ1 ≥ |λ1|, |λ1λ2|= σ1σ2,

and

σ1 +σ2 ≥ d1 +d2, σ1−σ2 ≥ d1−d2, if bc−d1d2 ≤ 0,

σ1−σ2 ≥ d1 +d2, if bc−d1d2 > 0.

Note that conditions (A.4) and (A.5) cannot be directly generalized to higher dimensional cases. The

authors in [47] present the necessary and sufficient condition of the existence of a real matrix with a size

greater than 2 and having prescribed eigenvalues, singular values, and main diagonal entries. However,

given eigenvalues, singular values, and main diagonal entries, no study has yet demonstrated the construc-

tion of a nonnegative matrix with a size greater than 2×2. This difficulty can be tackled by the use of our

numerical computations.
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