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ABSTRACT. In this paper, we study stochastic homogenization of a coupled diffusion-reaction
system. The diffusion-reaction system is coupled to stochastic differential equations, which
govern the changes in the media properties. Though homogenization with changing media
properties has been studied in previous findings, there is little research on homogenization
when the media properties change due to stochastic differential equations. Such processes
occur in many applications, where the changes in media properties are due to particle depo-
sition. In the paper, we investigate the well-posedness of the nonlinear fine-grid (resolved)
problem and derive limiting equations. We formulate the cell problems and derive the limit-
ing equations, which are deterministic with nonlinear reaction terms. The limiting equations
involve the invariant measures corresponding to stochastic differential equations. These ob-
tained results can play an important role for modeling in porous media and allow the use of
simplified and deterministic limiting equations.
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1. INTRODUCTION AND FORMULATION OF THE PROBLEM

Fluid flow through a porous media is a subject of wide interest that has been widely studied
in the past years. It has many applications in real life problems like energy, biology and ma-
terial sciences to quote just a few. These models typically contain many different spatial and
temporal scales. Various phenomena are modeled by partial differential equations that include
coefficients describing the porosity, permeability and diffusion processes. Though many static
problems are well studied for these applications, the problems with dynamically changing me-
dia properties are much less studied research area. Many research in this direction includes
smoothly and deterministically changing permeability fields; however, in many real-world ap-
plications, the permeability changes occur due to particle deposition. This is a challenging
problem as the stochastic differential equations are tightly coupled to porous media equations
and govern the permeability changes.
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In this paper, we consider the following system:

%(t,x) = div (A (g) Vue(t,a:)) + (g,ve(t,x)> us(t,z) + f(t,z) in [0,7] x D,
dve(t,x) = —é(va(t,x) —us(t,x))dt + gdW(t,iﬂ) in [0,7] x D,
us(t,z) =0 on [0,7] x 0D,
u®(0,z) =ug(z) in D,
v°(0,2) =vj(z) in D,

(1.1)
where D is a bounded domain of R? with a smooth boundary 0D, u° is the fluid velocity
and and v° is the particle velocity. Moreover, W (t) is an L?(D)-valued standard Brownian
motion defined on a complete probability basis (2, F, (F;):, P) with expectation E, and @ is a
bounded linear operator on L?(D) of trace class. u§ and v§ are the initial conditions and f is
an external force.

Our model describes an equation with a diffusion A(y) that has heterogeneous properties and
such that the heterogeneous reaction a(y,-) is affected by particle deposition in the medium.
These particles have a faster motion than the motion of the fluid flow and are driven by a
stochastic perturbation of Brownian type. A simpler version of this model has been studied
in [2], where the diffusion A was considered to be constant and equal to 1. The heterogeneous
diffusion brings an additional difficulty and makes this problem more realistic since one deals
with heterogeneous permeability fields in most porous media problems.

Our main goal in this paper is to study the asymptotic behavior of the solutions of system
(LI) when ¢ — 0. Notice that u® is random through the function « that depends on the
stochastic process v° solution of a stochastic differential equation. Moreover, the function
a and the matrix A = (a;;), <ij<g Are multiscale. Here, u® is the slow component and v*
is the fast one. We will prove that u° converges to an averaged velocity @ solution of the
averaged equation (6.3 where the averaged operators A and @ are given by (&4]) and (6.2).
Here, the averages are taken with respect to the periodic variable y and the invariant measure
associated to the process v¢ for a frozen u® and the averaged operator A is defined in terms of
x the solution of the cell problem given in Section 4.

For ¢ > 0 fixed, the well posedness of system (LT]) does not follow from classical results and
has to be studied accordingly. In this paper, we assume that «(y,-) is bounded and Lipschitz
uniformly with respect to the variable y. In particular, the uniqueness of solutions is proved
by using successive estimates in order to get to apply Gronwall Lemma, see Section 3.1. for
more details.

We prove the existence of weak solutions by using a Galerkin approximation (uj,,v;,) that
is a solution of a well posed system and then pass to the limit on n after performing some
uniform estimates in n. These estimates are also uniform in €. By using our assumption on «
and the special form of our system, we are able to prove the uniqueness of the weak solution
(uf,v%). We prove that our weak solution is also strong, and get better uniform estimates in

e for the solution u® in the Sobolev space W12(0,T; L?(D)).

We define the associated cell problem. Then, we study the asymptotic behavior of the fast
motion variable v° for a frozen slow motion variable . Indeed, we consider the SDE (G.1]) for
a given £. It has a mild solution which is also a strong solution. Its transition semigroup Pf
is well defined and has a unique invariant measure p¢ which is ergodic and strongly mixing.
The operator af is defined in Section 3 while the operator of is defined in Section 5 and refers
to the average of a° wrt to the invariant measure pé. The main difficulty in showing the
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convergence stands in passing to the limit on the term
/ (@ (v (8))u” (t) — a(u(t))u(t)) pdx (1.2)
D

for ¢ € H}(D), where @ is defined in ([6.2).

There is a quite large number of papers dealing with averaging principles for finite dimen-
sional systems in both deterministic and stochastic systems. Less has been done in the infinite
dimensional setting, we refer to [4 5] and the references therein. There is not much in the liter-
ature dealing with averaging systems for porous media when spatial heterogeneities are present.
We refer to our previous paper [2], where to our knowledge, it was the first paper where time
and spatial scales have been considered for porous media in a stochastic setting. In [5], the
authors prove an averaging principle for a very general class of stochastic PDEs. Our system
looks similar to theirs with a very important difference. Our function (u,v) — «(-,v)u is not
Lipchitz and it contains the variable z/e that describes the heterogeneities of the medium.
Hence, their results, although very general, could not be used in [2] nor in the current paper.

Our model () is a generalization of the model considered in [2] since it contains a diffusion
coefficient A(Z) that is heterogeneous in space. It was equal to 1 in the previous paper [2].
The presence of this coefficient does not affect the regularity of the solution (u®,v®) but it
does affect the uniform estimates that we can obtain. This is the main reason, we are not
able to use the method previously used in [2] that consisted in applying the It6 formula on the
Ue (uf,v®), where

w6 = [T | [ @) - @) ot ar,

Isolating the term (L2]), a uniform estimate in H%(D)? was needed to be able to pass to the
limit. Unfortunately, while the random variable «¢ in [2] was uniformly bounded in the Sobolev
space H2(D)3, in the current paper it is only uniformly bounded in the Sobolev space H!(D)3.

Instead, the limit in the term (2] will be performed by using a Khasminskii type argument,
following an idea already introduced in [4] where as mentioned earlier, our term (-, v*)u® does
not satisfy the same assumptions. Hence, their method can’t be adapted as is for the model
(). In particular, we need to apply the semigroup PE to a function of the form

F(s,n) = /Dof(n)ua (es)dx

and use the asymptotic properties of the semigroup, that is summarized in Lemma 5.4. The
results of this lemma are not surprising but we were not able to find it in the literature. We
believe that this is a nice new result that can be applied for other models.

By using the uniform estimates obtained in Section 3 on the variable u*, a tightness argument
and some known results for periodic functions, see [I] (lemma 1. 3) the passage to the limit is
performed in distribution. We obtain a convergence in probability by using the fact that the
limit @ is deterministic.

The paper is organized as follows, Section 2 is dedicated to the introduction of the functional
setting and assumptions. In Section 3, system (1)) is analyzed for every e > 0. In particular
existence of strong solutions are established with their uniqueness and their uniform estimates
with respect to e. We introduce the cell problem in Section 4. The fast motion variable v*®
is analyzed in Section 5 where some known results are summarized with some references. In
this section, the important Lemma 5.4 is given and proven in details since this is a crucial tool
used to pass to the limit in the system. The passage to the limit is performed in Section 6.
Furthermore, the well posedness of the averaged equation is established.
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2. PRELIMINARIES AND ASSUMPTIONS

We make the following notations for spaces that will be used throughout the paper. For
any two Hilbert spaces X and Y, with norms denoted by || - ||x and || - ||y, C(X,Y) denotes
the space of continuous functions, and Cy(X,Y") the Banach space of bounded and continuous
functions ¢ : X — Y endowed with the supremum norm:

[¢llcyx.y) = sup [lo(z) ]y
zeX

For any ¢ € C"(X,Y), the subspace of uniformly continuous functions defined on X with

values in Y, we denote by [¢]cu(x vy : (0,00) — R, the modulus of uniform continuity of ¢:
[Plowxyy(r) = sup  |o(z) — o)y,
0<|jz—y|lx<r
with
}E}}]ch(x,y) (r)=0.

Lip(X,Y) denotes the space of Lipschitz functions defined on X with values in Y, for ¢ €
Lip(X,Y’) we denote by [¢]1ip(x,y) the Lipschitz constant of ¢:

[o(x) — ¢(y)lly
(0] Li = sup :
O Ty e ylx
We notice that for any ¢ € Lip(X,Y’) we have:

o) ly < llo(2)=¢0)lly +60)lly < [AlLipcx )zl x+[o(0)]ly < ([¢]Lip(X,Y)+||¢(0)||Y)((1+)||x”X)a
2.1

so the space will be naturally equipped with the norm

ol Lipx,yy = [[90)|ly + [@]Lip(x,v)- (2.2)

To simplify the notations, when there is no confusion we omit the use of subscripts from the
notations, and we simply write ||z||, ||¢], [¢](r), [¢]. Also if Y = R we omit it from the
notations, and the spaces are denoted by C'(X), Cy(X), C*(X), and Lip(X).

For Y = [0,1] the space Cx(Y) denotes the space of continuous functions on Y that are
Y -periodic and the space L%& (Y) denotes the closure of Cx(Y) in L*(Y).

We will denote by (-,-) the inner product in L*(D). If we identify L?(D) with its dual
(L*(D))" then we have the Gelfand triple H}(D) C L*(D) ¢ H~Y(D) with continuous injec-
tions. The dual pairing between H{ (D) and H~1(D) will be also denoted by (-, -).

We now give the assumptions for the system (LI]) .
The function « : Y x R — R satisfies the following conditions:
i) For any n € R the function «(-,7) is measurable.

ii) For almost every y € Y, the function a(y,-) is bounded and Lipschitz, uniformly with
respect to y.

We notice that the function @: R — R, a(n) = / a(y,n)dy is Lipschitz and bounded.
Y

The matrix A = (a;;),; j<3 € L®(Y;R3*3) is strictly positive and bounded uniformly in
y €Y, i. e. there exist 0 < m < M such that
mg? < A(y)eg < M¢?, (2.3)
for almost every y € Y and ¢ € R3.
Throughout the paper, we assume that f € L?(0,T; L?(D)) and u§,v5 € L*(D) and that

W (t) is an L?(D)-valued standard Brownian motion defined on a complete probability basis
(Q, F, Fi,P), where the filtration F; = o {W(s), s <t}.
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3. STUDY OF THE SYSTEM (L)

In this section we prove the existence and uniqueness of the solution of the system (1)) as
well as some uniform estimates.

3.1. Well-posedness of the system ([Il). For any ¢ > 0 we denote by A® the matrix
AT RP S R3, A%(z) = A (g) , (3.1)
and by o° the operator,
o : L3(D) = L¥(D), o (n)(2) = a(Z.n(a)). (3.2)

Let us show that of is a well defined operator. Given that « is bounded, we need only to
show the measurability in x of af(n) for any n € L?(D). For such a function, we consider
a sequence 17, € Cy(D) convergent to 7 pointwise in D. The function (y,z) — a(y,n.(x))

x
is a Carathéodory function, measurable in y and continuous in z, so r — « (—,nn(az)) is
€
measurable, and by the Lipschitz condition of « is pointwise convergent to a®(n), which shows
that a®(n) is measurable. Moreover we have the following existence and uniqueness result:

Theorem 3.1. Assume that u§ € L*(D) for every e > 0, then for each T > 0, with the

possibility of changing the probability space, there exists a unique JF; - measurable solution of the
system (L), v € L(Q; C(0,T); L(D)) N L2(0, T; HY(D))) and v € L2($% C([0, T]: L2(D)
in the following sense: P a. s.

/Due(t)qﬁdx /uoqbdzn—l—/ / AVus( ngd:nds-// E<;5dwds+/ / f(s)pdxds,

(3.3)
for every t € [0,T] and every ¢ € HE(D), and

1 t / t
Ve (t) = vie t° + / uf(s)e”=9)/5ds 4 Ve / e =9 qw (s). (3.4)
€Jo Ve Jo

Moreover, if the initial conditions u§ are uniformly bounded in L*(D), then the solutions u®
satisfies the estimates:

sup [l Lo ;22 (0,311 (D)) < O (3.5)
Sup 1w | oo (010,722 (D)) < O (3.6)
€
and e
sup Y < Cr. (3.7)
e>0 || Ot | oo 02200, (-1 (D))

Also, if the initial conditions v§ are uniformly bounded in L*(D) we also have the estimate for
v

supE sup [[v°(t)|22p) < Cr. (3.8)
e>0  t€[0,T)

Proof. We prove the existence of solutions through a Galerkin approximation procedure. We
consider (eg)r>1 a sequence of linearly independent elements in H} (D) N L°(D) such that
span{ey | k > 1} is dense in H}(D). We define the n-dimensional space H} (D), for every
n > 0 as span{ey | 1 <k < n} and we denote by II,, the projection operator from L?(D) onto
H(D).

Let us denote by w®(t) the following process

we(t) = e t/55 + \/_/ ~t=9)/eqw (s) € L2(Q; C([0,T); L*(D)). (3.9)
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Now, in order to prove the existence of solutions, we define the Galerkin approximation
(up(t,w), 25, (t,w)) € Hy(D)n x Hy(D)y,

a. s. w € (), solution of the following system

M (1) peda + / ATVl (1) V b = / 0F (5 (£) -+ wF () i (B) bl + / F()bdz, (3.10)
p Ot D D D
for every ¢ € HY (D), 5 (0,w) = I us,
8sz _ 1 5 € € _
ﬁ(t) - _g(zn(t) un(t))v Zn(o) - 07 (311)
where
zo(t) = v (t) — w(t). (3.12)
Then, we pass to the limit on (), z5) when n — oo.

We write u,(w, t,x) = > p_; ai(w, t)ex(z) and 25 (w,t,2) = >, b5 (w, t)eg(x), and get the
following system for the coefficients a7 and b5 :

n 8ai n . T 8ek 861
Z o (w,t)/Dekeldx+kZ:lak(W,t)/Daw <g> %j&nid‘ﬁ -

k=1

Zn: / ar(w, t)o” <w€(w,t) + Zn:bi(w,t)ek> ereda = / f(t)eda,

k=170 =1 D

%(w,t) z—é(bi—ai),lgkgn
aj,(w,0) = /Dugekda:, 1<k<n
(@, 0) =0,1<k<n

(3.13)
for each 1 <1 < n. We make the following notations:

& Oe; Oe;
bi-:/eizne-xdx,cf»:/ a f—Z—Jaix, -s:/ s,x)e;i(x)dr,
= Jpeenain = | 523 (2) G gidn ()= [ Sls.a)ee)

and

n
(F2)ij(w, t,b1,...by) = /D of (wf(w,t) +) bkek> eiejd
k=1
and the system is written with these notations as:

" Oal n n
8—:bkl+;aicil_;ai(Fri)kl(biw-'vbi) = filt),

k=1
obs, 1
_k = —— (b5 — at 1<k<
at cOh—a), Tsksn g
az.(0) = / ugepdr, 1 <k <n
D

b2, (0) =0,1<k<n
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for each 1 < | < n. Given the linearly independence of the sequence (ej)r>1, the form
of the functions (F});; and the Lipschitz condition satisfied by «, the system has for every
T > 0 an unique F; - measurable solution (af)i<i<n, (b%)1<k<n € C([0,T]; L>(12)), with
(a5)1<k<n, (b5)1<k<n € WH2(0,T) a. s. w € Q. This means that uS, and z5 = v5 — w® is a. s.
a solution for:

[ Grods+ [ 4V 0ods— [ @Gin) +uf )00 / F(t)bdz,
dzs _ E(Z .
4;,(0) i
#00) L

(3.15)

for every ¢ € HY(D),,. We take ¢ = v, in (B.I5) to derive that a. e. w € Q :

0
altllZa () < IFOIIZa(m) + Cllus 32 () =

HUZH%Z(D) <e” (HfHL2(0,T;L2(D)) + ”UEHB(D)) )
SO
sup [upll Lo (0,0 02(0y) < Cr(1+ (gl L2(py)- (3.16)

We also obtain based on the positivity of A that
[ Iy + Oy < [ [ sOuianat s Juia, + [ Ol agpyds =

/0 m”VUiH%Z(DPdS < THfHLZ(o,T;LZ(D))”UZHLOO(O,T;LZ(D)) +Cr(1 + HUSHLZ(D))’

S0
sup lunll20,7:m3(py) < Cr(1 + llugllz2(p))- (3.17)
The estimates ([B.I6]) and ([BI7) imply using the first equation of the system (B.I3]) that
ou;,
sup || — < Cr(1 + |lugllz2(py)- (3.18)
n>0 L2(0,T5(Hg (D)n)")

This means that the sequence ui, is bounded in L%(0,T;H}(D)) N WL2(0,T; H-1(D))
which is compactly embedded in L?(0,T; L?(D)) (Theorem 2. 1, page 271 from [10]) and
in C([0,7], H~'(D)). Hence, there exists a subsequence uZ, that converges in distribution in
L?(0,T; L*(D))NC([0,T], H (D)) to some u® which is also a weak limit in L?(0,T; H: (D)) N
WL2(0,T; H-1(D)) and a weak* limit in L°°(0,T;L?(D)). So using Lemma 1. 2, page 260
from [I0] a. s. w € Q, u® € L*(0,T; H} (D)) N C([0,T); L*(D)) n W2(0,T; H~Y(D)).

We also have from (B.I3]) that

t
zo(t) = 1/ e~ =9/50E  (s)ds

€Jo
1 t
will converge in distribution to z°(t) = g/ e~ =9)/54f (s)ds in C([0,T]; L2(D)). Skorokhod
0
representation theorem gives us the existence of another probability space (Q ]: ]:t, ) with
expectation E, W( ) an L2(D)-valued standard Brownian motion on (£, F, ]:t, P) identically
distributed as W (t), a subsequence u;, and a sequence uf,» defined on Q with the same



8 H. BESSAIH, Y. EFENDIEV, AND R. F. MARIS

distribution in L?(0,T; L*(D)) N C([0,T], H~1(D)), in L*(0,T; H (D)) N W12(0,T; H~1 (D))
equipped with the weak topology and in L°°(0,7; L?(D)) equipped with the weak* topology
that converges pointwise to an element u¢ with the same distribution as u. We remark that
the sequence 4=, is F; - measurable in H~1(D) and that

t
ZAén//(t) = é/o 6_(t_s)/€7}n//(3)d3

is identically distributed as 25, (t) in C([0, T7; L?(D)) and converges pointwise and in distri-
- 1 [t -
bution to z°(t) = g/ e~ =9)/2 2 (s)ds. Also the process
0

@ (t) = e 05 + \/_/ ~t=9)/2aw (s) € L2 (9; C([0, T); L*(D)).

is identically distributed as w*®(t).

We now pass to the limit when n” — oo in the first equation of the system (B.I3]) in expected
value. We integrate over [0,¢] and get:

[ e [ 2
' // zon + we) u<;5dxds+/ / (2° + w®)u pdrds

when n” — oo which gives
~ t e " t e
E / / O s — / / O L dwds
o Jp Ot o Jp Ot 0
_ t N o t o
E‘—/ / aa(zen,,+w5)u€n/,¢da;ds+/ / af (28 + w®)uf pdxds
0o Jp 0o Jp

when n/ — oo.

€
du odxds| + E

AEVU ”Vqﬁdxds—/ / A*VutVodrds

— 0,

(3.19)

+E

t t
ASVUE YV pdads — / / A*VuEY pdxds
D 0 JD

— 0,

(3.20)

In (B20) we pass to the limit pointwise in w € Q using the convergences of the sequences

ErOuE toroous
li dxds = dxd
n”gnoo/o /D ot Qb ras /0 /D ot Qb ras

t t
lim / / ASV e,V odrds = / / VueVodads.
n"—oo Jo JpD 0o JD

and

Also
t

a (28 —I-ZAUE)&nuqbd:Eds—/ / of (25 + wé)uF pdz| <
0o Jp

t
//aa(;enu—l—fug)( wr — U ) pdxds| +
0 /D

1/2 t
0</ /(Jn —u~€)2d:1:ds> +0/ / |25 — 28| |uf||p|dzds <
0 JD 0 JD

T
Clluepr — v || r200,1;2(D)) + C/o 1250 — 2%\ 2oy 1€ | 2y [| 0[] oo (D

(28 4 wf) — of (2 + ’ZBE)) ufpdrds| <
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so we obtain that a. s.

t t
lim / / OF (28 4 W)Uy pdxds = / / of (25 + wf)uf pdxds.
0D 0o JD

n/’—o00

We use these convergences and (3.20) to obtain in the limit:

t ~ t N t o t
/ / Y gbd:nds—l—/ / AV uEV pdrds —/ / af (28 + we)uf pdxds :/ fodxds,
o Jp Ot 0 JD 0o Jp 0,JD
dz® ! ¢

2¢(0) =0,

(3.21)
pointwise in & € € for every ¢ € H}(D),, so by density it is true for any ¢ € H(D). Now,
let v¢ := 2% 4 w?, then we deduce that (uf,v%) is a solution for our initial system in the sense
given by B3) and [B4). The solution (uf,v¢) is Fi - measurable as the limit of the Galerkin
approximation (qlvanu, UNEnu) which is ft - measurable by construction. Furthermore, given the

uniform estimates for u§ it is easy to obtain from (B.I6)—(B.I8) the estimates B.0)-([B.7) and
(3.8)) follows from the uniform bounds for v§.

Now, we prove the uniqueness. Let us assume that we have two solutions {uj,vj} and
{u§,v5} for the system. Then,

t t
/D (WS (1) — v (1)) ddar + /0 /D A (Vi — Vil )V dads = /0 /D (05 (W5 S — o (v° ) ) pdards,

and

v5(t) —vi(t) = 1/0 (u5(s) — us (S))E_(t_s)/ads,

€

we take ¢ = u5 — uf and we get:

t

/ (W5 (8) — s (1)) 2dz + / / A (Vi — Vi 2dads —
D 0 D
t t
| [ as)us —wiydods+ [ [ (@%(e3) - o)) a5 — uf)dods <
0 D 0 D
t t

o [ s = uilaoyds e [ [ 105 = uilluilu; —uildeds <

0 0 D

t t
C/O |us — Uﬂ\%Z(D)dS + C/O o (v3) — o (Vi) 2y Uil Loy lug — willLapyds <

t ) t , , 1/2 t , 1/2
e [ 108~ il o ([ 105 = B Buoyds) ([ 18- uiunyds) <

t t t
m
e [ s =i ey - [ 105 =il Vi By + 5 [ 1905 = Vs pypds <

t t t
m
e [ s =i s+ [ 105 = 15l | Vi e+ 5 [ 1905 = Tui s,
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where we used Holder’s inequality, the imbedding of H{(D) into L*(D) and the Lipschitz
condition of a.

t
() — 5 (1) 22 ) < € /O s (s) — S (3)][2 pye 202

< T sup |Jus(s) — Ui(S)H%?(D)’
s€[0,t]

so we obtain:
t
sup [u5(6) = ui (Ol xpy < ¢ [ sup [u50) = i 1) o) (1905 6) oo + 1) .
s€[0,t] 0 re€l0,s]

We use Gronwall’s lemma for the function sup,ep g [[u5(t) — uj (t)H%Q(D) to obtain that:

t
c/ 1+HVU§H2L2(D)3 ds
sup 1650) w0y < 10500)~ O o ( )"
se|0,

which gives the uniqueness and this completes the proof. ]

Theorem 3.2. Assume that the initial conditions u§ are uniformly bounded in H}(D). Then
the solution u® € L>®(; L*(0,T; H*(D)))NL>(Q; C([0,T); HE(D))) and satisfies the improved
uniform estimates:

Sl>110> HUEHLoo(Q;C([O,T];H&(p))) <Cr, (3.22)
€
and
€
sup ou < Cr. (3.23)
e>0 || Ot Lo (Q;L2(0,T;L2 (D))

Proof. To show these estimates we go back to the Galerkin approximation used to show the
€

0
existence. In the system (B.I5]) we take ¢ = ;t " (t) and get

J

We integrate on [0,t] and use the estimates already obtained for u5, to get:

ous,
ot (t)

€
ous,

ot (t)

2
dw + / ATVE (H)V
D

ous
n <
pr (t)dx < C‘

(LF )Nl 2y + llus, ()l 2(py) -
L%(D)

¢ au% ? £ 2 & 2 ! au%
(526 dssmIVa Ol < MIVEOIRe +© [ |F2E]
12(D) 0 L2(D)
and from here
H oug 2
sup sup/ L (s) ds < Cr,
e>0n>0Jo || O L2(D)

and

2
Supsup sup Hvui(t)HLZ(D) <Cr,
>0 n>0te[0,T

which will give us by passing to the limit on the subsequence v, (3.23) and
sup ||t || oo (0; Lo (0,1513 (D)) < O
e>0

We use now the first equation from (I.I]) and the regularity theorem for the stationary Stokes
equation from [I0] to obtain u® € L>(Q; L?(0,T; H%(D))). We get (3.22]) by using Lemma 1.
2, Section 1. 4 from [10]. O
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4. THE CELL PROBLEM

In this section we introduce y : Y — R? the solution of the cell problem that corresponds
to the system (LII):

div (A(y) (I +V =0 in',
{ (A(y) ( x(y)); N eriodic (4.1)

as well as the solution of the adjoint equation x™*:
{ div (A*(y) (I + Vx*(y))) =0 inY, (4.2)

*

x* —Yperiodic,
where A* is the adjoint of A, A* = (ajj)1§i7j§3, aj; = aj for 1 <i4,5 < 3. It follows that

X°(y) = x <Q) is the solution for the equation:
€

div (A°(y) (I +eVx“(y))) =0 in €Y, (4.3)
x° —eYperiodic, ’
We define now the homogenized operator A as
A= [ AG) (0 +x) du (1.4

5. THE FAST MOTION EQUATION

In this section, we present some facts for the invariant measure associated with (5.I). We
consider the following problem for fixed & € L?(D):

dvé = —(v& = €)dt + /QdW, (5.1)
v8(0) =m. ’
This equation admits a unique mild solution v¢(t) € L*(Q; C([0,T]; L*(D))) given by:
t
vi(t) =ne 4+ E(1—e ) + / e~ =3 /Qdw. (5.2)
0

When needed to specify the dependence with respect to the initial condition the solution will
be denoted by v&7(t). The following estimate can be derived for v&7(t).

Lemma 5.1.
El[057(0) 320, < 2 (Inl3aqpe ™ + 1€132(0) + TrQ). (5.3
Proof. Tt is enough to use the It6 formula for |]v§’77(t)H%2(D). O
5.1. The asymptotic behavior of the fast motion equation. Let us define the transition
semigroup Pf associated to the equation (G.1])
Ff@(n) = E®(uH(1)), (5.4)

for every ® € By(L%(D)) and every n € L?(D). It is easy to verify that Pf is a Feller semigroup
because P a. s.

) 2|2 -2 2
[ — w872y < el = n2l72(p)- (5.5)
We also denote by ¢ the associated invariant measure on L?(D). We recall that it is invariant
for the semigroup Pf if

[ Po@dte) = [ e@ade),
L2(D) L%(D)
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for every ® € By(L?(D)). It is obvious that v¢ is a stationary gaussian process. The equation
(51) admits a unique ergodic invariant measure pé that is strongly mixing and gaussian with
mean £ and covariance operator . All these results can be found in [6] or [3].

As a consequence of (5.5]) we also have:

< c[@]e™ (1 + [1nll 2oy + 1€l L2 (0)): (5.6)

Fae) — [ e

for any Lipschitz function ® defined on L?(D), where [®] is the Lipschitz constant of ®. This
can be shown as it follows:

raw [ eemie) = [
— / (E@(uf’"(t)) - E@(vf’z(t))> dpt(z)
L*(D)

(Pro(m) - Pro(2)) dut ()
2(D)

< [ @[ - o)
L2(D)

Japy ) (5.7)

< / [Ble™E 1 — 2l 1o A€ (2)
L2(D)

< [®)e” (”77HL2(D) +/ 121l L2 (p) d/ﬁ(z)) :
L2(D)

Now (B.0]) follows as a result of the following lemma:

Lemma 5.2.

Lo el i) < e (14 Ielaqoy) - (5.8)
12(D)
Proof.
/ lell oy i (2) = / PE el 2 0y i (2)
L2(D) L?(D)
- / EJ[v&* ()] 220y di (2) (5.9)
12(D)
< / e(1+ [IEl 2oy + €12l 2oy (2).
L2(D)
We fix now t > 0 and get the result. O

Remark 5.3. For &, € L2(Q, Fi,, L?(D)), let v57" be the solution of the following system,
the equivalent of the system (B.1I) but with random initial conditions 1 and random parameter

&:

dvsm = — (V51 — &)dt + /QdW, (5.10)
v (tg) = 1. '
The mild solution for (GIQ) v&"(t) € L2(; C([to, T); L*(D))) ewists and is given by:
(t—to)
vg’"(t) = ne_(t_to) +£(1— e_(t_to)) + / e~ (t=to—s) \/@dW (5.11)
0

The estimates provided by (53) and (B.0) remains valid also in the case when £ and n are
random. So for any &,n € L*(Q, Fi,, L*(D)), and a.e. w € Q we have:

E (Il 0320 Feo ) < 2 (InllEeoye™2 ) + €]320) + TrQ) (5.12)
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and

“

a. e. w € Q, for any Lipschitz function ® defined on L*(D).

PE B w) - / B(2)dus

()| |7 ) < ef@le™ 0 (1 n(@) 20+ 1) 200
L*(D)

(5.13)

The equation (G5.13]) implies the following Lemma:

Lemma 5.4. Let ® € C*([0,T]; L>=(Q; Lip(L*(D)))) be an F; - measurable process on Lip(L?(D)),
and let 0 < tg < tg+0 < T. For&,n € L?(Q, Fyy, L*(D)), let v&" be the solution of the system

(EI0). We have:
1 to+0
E||= ®(s,v5"(s))ds — D(s, z)dus (= ]:to> <
< 6/ é H ‘ (5.14)

to L2(D)
e 1+ Iz + I€lacoy) (4 + IRTEID)).

where [®] is the modulus of uniform continuity of ®.

Proof. We first notice that ® : [tg, g + 6] x Q x L?(D) is a Carathéodory function, so the left
hand side is a F;, -measurable function on 2. We can also consider that ®(s,w,0) = 0 for all
s € [to, to + 0] and a.e. w € 2 so we have:

(t,w,m) — 2(t,w,m2) < 1®lllm — m2llz2(py» (5.15)

q>(t1’w’77) - (I)(t2vwv77) < [(I)](|t1 - 752|)||77HL2(D)' (5'16)

to+d 2

E (/ @(S,’L)S’W(S))ds—/L2(D)(I)(s,-)d’u5 ‘]:to) -
to+6 2

E ((/ (S))ds—/Lz(D)CI)(s,-)dug) ‘}‘t) _

A A A e I EO
- ( t”‘s < Ve (s)) — /L2(D) (I)(s,.)dlﬁ) /:0+5 <¢>(r, v*(r)) — /L2(D) o(r, ')d;ﬁ) drds‘fto)

(5.17)

But, for a. e. w e Q and all s € [0,T7:

B (s, 05"(s)) — /L2(D) D(s, 2)dus (=

<cu<1>u/ [vr6) ~ 2]
<dpl [, (Hﬁ"

13
iyl ) )
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so after using (5.12)

2
E <<<I>(s,v§’"(8)) - /L2(D) (s, ')dlﬁ) ]:to) < cll @l (L + llEl® + [lm]1%). (5.18)

for every s € [to, to + J] a. e. w € Q. Now, using (B.10):

7”[)57 T)) — T, 62 37}67 T)) — S, - 3
0000~ [ @t = 000~ [ @,

+ ®(r,057(r)) — B(s,057(r)) +/

L2(D)

s,-)dus + [®](r — s) <HU£’7](T)HL2(D) + /LZ(D) 121l 2(pydpt (2 ))

a. e. w € N to get after using (5.I7) and (BIS) :
2
t0+5 to+0
E / B(s, )dus / O (r, v>"(r)) —/ O(r,-)dut dr‘}"to ds <
12(D) " 12(D)
t0+5 to+0
/ D(s,-)dus / B (s, v5"(r)) —/ B(s,-)dut dr‘}"to ds+
12(D) " 12(D)

E
+0

O R
12(D)

< @5, 050~ [

L*(D)

to+0
/ B (s, v5"(s))ds — / D(s,-)dus
L*(D)

to 2 /
c2l(#)) 1+ el + 1) 2 ([ B ((1+ leliaw) + 150 o) 1fto>dr>”§

to+5 rois
s. )dub s. 05 (1)) — s il | drds t
’ << /L2<D>@( S ) / (CI)( e /sz)q’( )dp > drd ‘fo> +

052H<I>H JO) A+ IEllF2(py + 11l Z2p))-
(5.19)

But:

E((@(avﬁv"(s))— / Z(D)ﬂs,-)duﬁ) /W <<1> /L o du>\fm>
(i)l L))

t0+5
E <<<I>(s,v§”7(s)) — /L2(D) (s, )dp > drE

9 1/2
t0+5
cl[ @ + €l L2y + [1nllz2(p)) (E< drE <<P§ JB(s,057(s)) _/Lz(mq)('s’ .)d,ﬁ> |]~'s)) ]—‘to)

and using (5.I3]) we have that a. e. w € Q and all s € [tg, o + I]:

o

PE (s, 057(s)) — / B (s, 2)dps ()

L2(D)

a) < e 0| (14 Igl 2oy + 1057620 )
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so we get that

to+o
5,05 (s)) — s, 2)dus (2 r 5,08 (r)) — 5, 2)dps (2 to | =
E<<q><, (O T )du()>/s d <q><, (ORY T )du()> \fo><

to+90 2 1/2
AR+ €l + nlzzcon) ([ dre =) 1018 (14 el + 16576 ) 7)<

C||(I)H2(1 + HgHL?(D) + ||77HL2(D))2 <1 _ e—(to+5—s)> ]
The equation (5.19]) becomes now

1 to+4 2
E —/ @(s,vg’"(s))ds—/ D(s, z)dus(2) ‘]:to <
0 to L2(D)
) 1 to+4d ) )
cll@I[®)(0) (X + [IEll 2o + 1Ml L2 ()" + 53 t [@17(X + (1€l 2y + [InllL2(p))"ds <
0

1
cl|®@[[[®](6)(L + [|€ll L2 (p) + ”77HL2(D))2 + 05”(1’\\2(1 + 1€l z2(py + H77|’L2(D))27
(5.20)
which proves the Lemma. ]

6. PASSAGE TO THE LIMIT

The main goal of this section is to pass to the limit in the system (LI when ¢ — 0. We
introduce the following averaged operators:

aF  L3(D) — L¥(D), (€)= /L ) (6.1)
o L? > al(é) = aly, z £(2). .
o) > 120), w0 = [ (Lot 2a) i) (6:2)

We remark that o as an operator from L?(D) to L?(D) is Lipschitz and L?(D) is separable,
so Pettis Theorem implies that o : L?(D) — L?(D) is measurable. The boundedness of af
implies the integrability with respect to the probability measure u€, so of is well defined (see
Chapter 5, Sections 4 and 5 from [I1] for details). The same considerations hold also for the

operators z € L?(D) — a(z) = / a(y,z)dy € L™(D), so @ is also well defined. Our main
Y

result is given by the next theorem.

Theorem 6.1. Assume the sequence ug is uniformly bounded in H&(D)) and strongly con-

vergent in L?(D) to some function ug, and v§ is uniformly bounded in L*(D). Then, there

exists u € L*(0,T; H}(D))) N C([0,T); L3(D)) such that u® converges in probability to u in

w-L*(0,T; HY(D)))NC([0,T]; L?(D)) and u is the solution of the following deterministic equa-

tion:

T i (AVa) +a(@u+ f in D,
o (6.3)
u =0 on 0D, :
u(0) =g m D.

Let us explain the main ideas involved in the proof of this convergence. The uniform bounds
for u® provided by Theorem imply that the sequence is tight in w-L?(0,T; H(D)) N
C([0,T); L*(D)), so there exists a limit % in distribution. We apply after that Skorokhod
theorem to get another sequence u# defined on some probability space ﬁ, with same distribution
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as uf that converges for a. e. @ € Q to some U in w-L2(0,T; H}(D))) N C([0,T]; L2(D)). We
show that @ is deterministic and get an equation for it by passing to the limit in expected
value in the variational formulation. More precisely, we prove first that:

Iim E

e—0

T
/0 /D (" (v (1)u" (t) — a(u(t))u(t)) 6=y (t)dwdt| =0, (6.4)

for a particular sequence ¢° € H} (D) and any ¢ € C[0,7]. We rewrite it as:

T
| ooy o —atateae) ovuordt = 5+ 55+ 5,
where

T
S5 = /0 /D (@5(v°(8)) — @ (u (1)) w (£) 7 (t) dardt, (6.5)

T
S5 = /0 /D (a8 (uf (1))us () — o (@(t))u(t)) o= () dadt,
and
T
%= /0 /D (% (m(t))a(t) — a(@(t))a(t)) ¢ (t)dadt.

This convergence requires two steps. The first step is performed in Subsection where we
prove the convergence to 0 for S§. This is done by proving the more general result (6.5]) where
the equation satisfied by u® is not important. The idea is to approximate u® and ¢¢ by step
functions in time and use Lemma [5.4] on each piece. In Subsection we do the second step,
the convergence to 0 of S5. In Subsection we show the convergence to 0 of S5, which is
showed in Lemma

The sequence u¢ given by Skorokhod theorem converges a. s. to U weakly in L2(0,T; HJ (D))
and strongly in C([0,T]; L?(D)) so

T T
lim / / (»[Ze(t) - U(t)) o= (t)dadt — / / (Afv{[s - va) Vqﬁl/z(t)da;dt‘ =0, as.
e=01Jo Jp o Jp
N (6.6)
The equations (6.4) and (6.6) imply that u satisfies almost surely the variational formulation
associated with (G3]), so w and T are deterministic and as a consequence the convergence of
the sequence u® to w will be in probability. Before proceeding with the proof of Theorem [6.1]

let us first study system (G.3)).

6.1. Well-possedness for the averaged equation (6.3]).

Theorem 6.2. Assume f € L*(0,T;L*(D)) and @ € Lipy(R). Then, for any ug € L*(D)
P

the system (63) admits a unique solution uw € C([0,T]; L*(D)) N L*(0,T; H}(D))) with gu

L2(0,T; HY(D)) in the following sense:

ot
/D u(t)pdx — /D uopdzs + /0 t /D AVu(s)Vpdrds = /0 t /D a(u)ugdzds + /0 t /D f(s)¢dxds,
(6.7)

for everyt € [0,T] and every ¢ € HY(D). Moreover, if the initial condition ug € Hg(D), then
has the improved reqularity, w € L(0,T; H*(D))NL>(0,T; H} (D)) and % € L?(0,T; L*(D)).

€
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Proof. The proof of existence of solutions is similar to the proof of system (LIl), using a
Galerkin approximation procedure. The finite dimensional approximation u,, defined as in
Theorem B.1] will solve

o, PN
A n = n)Un ) .
S (t qux—l—/ Vi, (t)Vodr = /Da(u Ju ¢dm—|—/Df(t)¢d:E (6.8)
for every ¢ € C([0,T], H}(D)),,), and %, (0) = I,up. We take ¢ = %, (t), and get:
o,

[ty dm—l—/mHVun 1 d:z:<c/ @ (1 |dm+/f () da =

8 _
5T Ol (0) < I @)Lz + ellTa®lIZ2(0) =

() By < €+ ¢ /0 [ (5) 22 15

We use Gronwall’s lemma and get:

Slilg [@nllcqo,r;22(p) < Cr, (6.9)
and from here we also obtain
Sli% IVl r2(0,7:12(D)2) < Cr, (6.10)
and 3
sup O < Cr. (6.11)
n>0 | Ot ||p20.1m-1(D)

So there exists a subsequence %, and a function w € L>(0,T; L*(D)) N L?(0,T; H} (D)) such
that 1, converges weakly star in L°°(0,T; L?(D)) and weakly to L?(0,T; H}(D)) to @ and

/ 9]
also ut converges to 8—1: weakly in L2(0,T; H-'(D)). We apply again now Theorem 2.

1, page 271 and Lemma 1. 2 page 260 from [I0] to obtain that @, converges strongly in
L?(0,T; L*(D)) and in C([0,T); L*(D)) to w. We then pass to the limit and obtain that % is
a weak solution for (6.3]).

Now, to show uniqueness we assume to have two solutions @; and Uy in C([0,T]; L*(D)) N
L*(0,T; H}(D)) and substract the variational formulations. We get:

/D (Ua(t) — i (t))pdx + /O /D A(Vy — Vi, )Vodrds = /0 /D (@(ug)uy — @(uy)uy ) pdads.
We take ¢ = 1o — w; and write
(@(@)u — a(@)m) (@ — u1) = a(@2) (@2 - w)* + w(@(@2) - al@m)) (@ - m)
< C(uy —m)? + Clu|[a(uz) — @(wr)|[uz — w].
We get

t
[7at) =T Ol ey + [ MV = Vil ppds
t t
SC/O Hﬂz—UlH%z(p)derC/o @1l ooy ll@(@a) — @(@)|| 2 (pyl[T2 — || a(pyds
t t t
< C [t = mayds + CE) [ 1010y 3() = @) o s +2 [ 172 =Ty

t t t
< C [t =l nyds + CE) [ 190 a0y 2 = s gy +< [ 195 = Vi lagops.
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after using Holder’s inequality and Sobolev imbedding theorem. We obtain for a convenient
choice of ¢

t
T2t — 1 (1) 32y < e(e) /0 [7(s) = T (3) 32 (1+ IV 20 ) -

We get uniqueness from here by applying Gronwall’s lemma.
Let us now assume that the initial condition ug € H}(D). We use the equation (6.8) with
oy,

qb:_

ot -’
o, .\ SO, I N O,
LC§@>“féﬂwwvawm_LMWWW@EﬁW%LﬂwﬁwM
(6.12)
we integrate it over [0, 7], and use Holder’s inequality:
oy, ||? ou
It + VD) oy — MIVEO) o < € | G ,
‘ ot L2(0,T;L2(D)) Loy FHe ot L2(0,T;L*(D))

which will imply that % € L?(0,T; L*(D)) uniformly bounded and Vu,, € L>(0,T; L*(D)?)
uniformly bounded. Regularity theorem for the stationary Stokes equation implies that Aw,, €
L?(0,T; L?(D)) and is uniformly bounded and %,, € L?(0,T; H?(D)) and is uniformly bounded.
We deduce by passing to the limit that w € L2(0,7; H?(D)), % € L*0,T;L?*(D)) and
7 € C(0, T): Hi(D)).

O

6.2. Convergence of S7.

Lemma 6.3. Assume that u® is a sequence of F; - measurable processes in L*(D), uniformly
bounded in L>=(Q,WhH2(0,T; L*(D))), ¢° a sequence of F; - measurable processes in L?(D),
such that ¢° € L°°(Q; C*([0,T); L*(D))) uniformly bounded and equiuniform continuous with
respect to € > 0 and w € Q). Let the sequence v¢ satisfy the equation

dve (t,x) = —é(va(t,:n) —uf(t,z))dt + \/gdW(t,x) in [0,T] x D, (6.13)
v¥(0,2) =vf(x) in D,

with the sequence vy uniformly bounded in L?(D). Then we have that:

T
lim E / / (a®(v°(t)) —a (u(t))) gbe(t)dxdt‘ = 0. (6.14)
e—0 0 D
Proof. Fix n® a positive integer and let 6° = et We define u° as the piecewise constant
function:
ut(t) = u(ko®) for t € [ko®, (k + 1)0%). (6.15)

We define also the sequence v° as the solution of:

(%@@—m@@w+¢gwmw)h1MHXD (6.16)

0,2) =vj(z) in D.



STOCHASTIC HOMOGENIZATION FOR A DIFFUSION-REACTION MODEL 19

A simple calculation shows that the sequence u® is Holder continuous, uniformly in ¢ and w:

t Out
€ € _
ut(t) — u°(s) T (r)dr =
1 TNl ous 2 : 1
w®) ~ Oy < -9 [ |G| ar) <ok
0 L*(D)
This implies that:
JHm [4% — u®[| o 0,722 (D)) = 0, (6.17)
to_ —s
uniformly in € and w. From (6.13]) and (G.16]) we get that v°(t)—v°(t) = % / e~ (u(s) —u(s))ds,
0

so we also have that

—
&
—_
09]

~—

(};m [0 — v%|| oo (0,7522(D)) = O

uniformly in € and w.

T T
| [ @) - a @ on @i - [ [ @@ ©) - o @) o @dst -
0 D 0 D
T T
| [ s0@w o) - oyt [ [ 5o @@ o) -a o) d,
0 D 0 D

But
T
/ /¢E(t)(0f(v5(t) o (v°(t))) dadt <
o JbD

T 1/2
16° | oo (010,77 L2(D /0 </ laf (v 5(175(t)]2dx> <

T . \V?
T Pp———. /0 —F ) da:> <

CT|¢°|| oo (:0(j0,11:22(D))) Oé]||v —v ||Loo(0TL2(D))

and similarly

/ [ #70) @ @)~ 1) dot <
CT16% [l (o, ;20 L2y [ [0 — u¥l[ Lo (0,7:22(D))»
which will imply based on (6.I7) and (G.I8]) that

lim E
6¢—0

T
@ (4 (1)) ¢° (t)dadt — /0 /D (o (7 (1)) — 0° (3 (1)) ¢° (t)ddt| = 0,
(6.19)

uniformly in €.

T
Let us study now the term /0 /D (a®(v°(t)) —a(u(t))) ¢° (t)dxdt.

/OT/D(aE(TF(t o (T (1)) ¢° (t)dadt = nz_:l/kkﬂ / @ @ (1)) 6 (H)dudt.

(6.20)
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The process defined by
Fi(s,) = [ o) (e5) da (6.21)
D

belongs to C*([0,T/¢]; Lip(L*(D))), with

|F2(s,0) < |el[9°leqo,m);2 (D)) s

[F=(s, )] < [ed 1%l o,y 02(py) »
SO

1E= ()| Lip(r2(py) < (Il + [eD % [leoqo,ry;2 ()
and
[FE](r) < (Ja| + [a])[6"]cu(o,m1;22(Dy) (€T),
so we can apply Lemma [5.4 on the interval [kd. /e, (k+1)d. /e] for & = u®(kd®) and n = v°(kd°)
to the sequence F*¢:
‘-FME) <

“

6 (k+1)5€/€ g ) »E (3 g (3
E/ Fe(s,’l)u (ko%),v¢ (ké )(s))ds _/ Fs(S,Z)d/Lu (ko )(Z)
k

0% /e L*(D)
e (14 17 0oy + I () z2) (L + T/ ) < (6:22)
€ (U+ T ()20 + 10657 ) (LN + VTG0 )

But by a change of variables v (et) is a solution for the equation (5.I0) on the interval
(k0% /e, (k + 1)0% /e] with & = u®(ké®) and n = v°(kd®), so

Uus(kés),ﬁs(kés)(s) =7 (68) ]
Also using formula (5.12):
E (15 (6 + 1)09) 32y | Fise ) < (157 (007 2272 /% 4 (k6 3 ) + 1) =

5% ((k + 1)) 1720, 12(py) <¢ <“778(k56)”2L2(Q,L2(D))e_265/8 + w1 Z20,000,7:22(0y) + 1) ;

and we obtain by induction that:
k

\\776(k5€)|’2L2(Q,L2(D)) < Ck€_2k5€/€|’5€(0|’2L2(Q,L2(D))+ (Z Cie_mg/s) (HUE”2L2(Q,C([0,T];L2(D))) + 1) J
i=1

so for £/6° small enough we get the estimate:

”55("”56)”%2(9,L2(D)) <C <||u€||%2(Q,C([0,T];L2(D))> + 1) , Vk > 0. (6.23)

The equation ([6.22]) now becomes:

€ (k+1)65/5 € €
E —8/ Fe (s,0° (ES))dS—/ Fe (s,2) dp" ) (2)| =
5 k55/€ L2(D)
(k+1)6°
Bl [ FCTE@M - [ ) < (6.24)
0% Jree € L2y €

¢ (14 I Beaeqomuon) (YIel + VIFTHIE).
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If we sum over all 0 < k <n® — 1 and go back to the equation (6.20) we obtain that

@ (1) ¢ (0ot

<C (14 Illoqomumoom) (L + VIFTFIE).

If we choose now n® = T'/\/e use the equiuniform continuity of ¢* and the convergences given
by (G.I9) we obtain that

(6.25)

lim E

e—0

—a(u°(t))) ¢€(t)d$dt' =
which proves the Lemma. ]

The convergence to 0 of S} is an imediate consequence:

Lemma 6.4. If ¢° is a sequence uniformly bounded in H} (D) and ¢ € C[0,T] then:

lim E

e—0

£(t)) — o (uS (1)) ue(t)qﬁew(t)dxdt‘ =0. (6.26)

Proof. As uf is uniformly bounded in L*°(Q, C([0,T]; H} (D)))NL>®(Q, W12(0,T; L*(D))) and
U € C0,T], then the sequence u®¢*? is uniformly bounded and equiuniformly continuous in
C([0,T); L>(; L3(D))), so we can apply the previous Lemma. O

6.3. Convergence of S5.

Lemma 6.5. Assume u® is a sequence uniformly bounded in L>= (2, C([0,T], H}(D))) that con-
verges in distribution to w in C([0,T], L2(D))). Then, for any sequence ¢° uniformly bounded
in Hi(D) and ¢ € C[0,T] we have:

lim E

e—0

[ @) - T <>>¢€w<t>dxdt\ —0. (6.27)

Proof. We compute:
(aF (u (t))us (t) — o= (u(t))u(t)) ¢ h(t) =a (u (1)) (us () — u(t))d ()

@ W) - F@ONFOE, )

SO

T
D(?(ue(t))us(t) - ?(U(t))ﬂ(t))cbew(t)dwdt‘ <

; (6.29)
CE /0 u(t) — w(t) || 2 ot

based on the uniform Lipschitz condition of af and the imbedding of H}(D) into L?(D). The
uniform bounds for u® now give (6.27)). O

6.4. Convergence of S5.
Lemma 6.6. For fized u € L>(Q;C([0,T); L*(D))), ¢ € HI(D) uniformly bounded and
T
U € C[0,T] let us define by S5 the integral / / (af(u(t))u(t) —a(u(t))u(t)) ¢ (t)dzdt.
o Jp
Then:
. _
lim E[S5] =0. (6.30)
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Proof. For any t € [0,T] consider the sequence of functions Ff : L?(D) — L*(D),

@ = (o (220) - [ alnata)) o)

We show now that for any z € L?(D), for every ¢t € [0,T] and a. e. w € Q, Ff(z) converges
in L?(D) to 0. We we fix w and t and let 2, and w, two sequences of continuous functions
converging in L?(D) to z and u(t). We use Lemma 1. 3 from [I] and obtain that the sequence

Fi(z) = <a (g, zn(:n)) - / a(y, zn(x))> wy(x) converges when ¢ — 0 to 0 in L?(D).
Y
But
|F () = Ff (2)(2)] < clwn(z) — ult, )] + clzn(z) — 2(2)],
based on the Lipschitz condition and boundedness for . We deduce that Fy(z) converges in
L?(D) to 0. The sequence being also uniformly bounded by 1C| oo (sc(j0,17;22(DY))» Vitali’s

convergence theorem implies that the sequence of the integrals with respect to the probability
measure on L?(D), u®® also converge to 0 in L?(D):

lim Ff(2)dp™dz = 0 in L*(D),
e—0 LZ(D)
which can be rewritten as

lim of (w(t))a(t) — a(@(t))a(t) = 0 in L*(D).

e—0
This implies that P a. s. and for every ¢ € [0, 7]
lim [ (af(u(t))u(t) — a(u(t))u(t) ¢¢'(t)de =0,
e—0 D

with the sequence being also uniformly bounded. We apply the bounded convergence theorem
and integrate over 2 x [0, 7] to get the result. O

6.5. Proof of Theorem

Proof. The uniform bounds ([3:22]) and ([3.23]) hold for u*. So the sequence is a. e. w € Q
contained in a compact set K of C’([O T1; L?(D)) so the sequence is tight in C([0, T]; L?(D)).
Then, there exists a subsequence uf and a random element @ € C([0, T]; L?(D)) such that u
converges in distribution to @ in C([0,T]; L?(D)). Skorokhod theorem gives us the existence

of a subsequence v and another sequence uf” with the same distribution as v’ defined
on another probability space 2 that converges point-wise to some @, a random element of

C([0,T]; L*(D)) with the same distribution as %. Since u® and we” have the same distribution,
then s is also bounded in L>°(, L2(0,T; HZ(D)). Hence, (up to another subsequence) and
as. us” converges to u weakly in L2(0,T; Hg(D)). Tt follows from here that a.s., 7 belongs to
K so @ e L™(Q, L2(0, T; HY (D)) and @ € L®(2, L2(0, T; H} (D)).

In order to get the macroscopic equation for U we use the oscillating test function method

of Tartar..., we use in the variational formulation (33)) for u¢ a test function ¢ of the form
¢+ "V - x*" where ¢ € C$°(D), multiply it with ¢/ where ¢ € C3(0,T) to get:

/ / dmdt—/ /uo o= P dmdt—/ /Aa Vi )V W (t)dadt
/ / us (£)¢ p(t)dwdt = / / F()¢% p(t)dadt.

(6.31)
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‘We notice that

lim E s (t) — a(a(t))a(t)) ¢E”¢(t>d$dt' = 0. (6.32)

e”—0

We write:

T
/0\ /D a€// (U€H (t))u€// (t)¢€//¢(t)d$dt _ Si// + SSH + Sgll’
where
T Ty " 2 1"
s7" = /0 /D (0" " (1) = a7 (" (1)) ) w ()" (1) dat, (6.33)
1" T 1" 1" Ty 1"
- (as”(uE ()" () —ae”(a(t))a(t)) o= (t)ddt, (6.34)
0 D
and
1 T 1
55" = (ae”(@(t))u(t) —a(@(t))@(t)) o=y (t)dzdt. (6.35)
0 D

Lemmas [6.4] [65] and [6.6] give that limOE\Sf"] = limOE\Sgll] = limOE\S?f"] = 0 so we have
ell— el — el —
([632) which together with ([G.31]) gives

Iim E

e"—0

t)dxdt — / /uoqb?/) t)dadt — / ' / ATV (VT Y (t)dwdt+

/ / ¢ (t)dadt + / / f(&)pu(t)dzdt| =
t)dadt — / / o (t)ddt — / / AT ()Y (1) ddi+
/ / (t)o(t da:dt+/ /f Yo(t dwdt‘ =0.

We make now several calculations under the integral in the above equation and then pass to
the limit pointswise in w € Q:

lim E

e"—0

(6.36)

T —
/ / AT (64 €V ) () dadt =
0 D
T —
/ / A7V (Vg + VYo + & Vovx) b(t)dudt =
0 D
. B B —
/ / ATV gih(t) + € AT VU YV X p(t) + " AT VuE VoV T T (t)dwdt =
0 D

. B N .
/ / ATV Vg (t) + " AT VU TV o () + £ AT VX Ve V() dadt.
0 D
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From the equation ([@3) satisfied by x¢" we have that
/ A (I n a”vxa”> v (J?’w) dr = 0 =
D
/ (47" V" Vo + " A7OX VUV ) do = - / A" 0" VY d — / & AT\ u VY g,
D D D
so we get that
T 7 Y 7
/ / A% Vue"V (qb +€e"Ve-x* > Y(t)dxdt =
o Jp

T — — —~
/ / (E”AE”V'LLE”VV¢X*€//1/}(t) . Aa//uenvv(bw(t) o E//Aal/vxallueﬂvvgbw(t)) dxdt _
0 D

T N —
/ / (5”A5//Vu5"VV¢X*€ W(t) — A <I+E”Vx€ )ua”vww(t)) dedt,
o Jp
and will converge pointwise in Q (see [I] Lemma 1. 3) to

/0 ! /D — AUV ¢ (t)dxdt = /0 ' /D AVUN gap(t)dzdt.

The sequence given in (B.36) above converges in L!(€) to 0 but also pointwise in Q to

T
/0 /D (690! (1) — wod' (t) = AVAVGU(L) + [ (Dot (1) + (@) a(t)ou(t) ) ddt,

which means that 7 is pointwise the weak solution of the deterministic equation (B3] which,
according to Theorem has a unique solution, so % and T are deterministic. Then, the whole
sequence ut" converges to u in distribution, and since % is deterministic then the convergence
is also in probability see [8] Theorem 18.3. O
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