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Abstract

Is perfect error correction always worth the trouble? A framework is presented for

the analysis of error detection and correction in multi-level systems of communication

that takes into account degrees of freedom attended and ignored by different levels of

analysis. It follows from this analysis that for a multi-level coding system, skipped

or incomplete error correction at many levels can save energy and provide equally

good results to perfect correction. This has relevance to approximate computing, and

to questions of the robustness of machine learning applications. The finding also has

significance in natural systems, such as neuronal signaling, vision, and molecular ge-

netics, which are readily characterized as relying on multiple layers of inadequate error

correction.
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1 Introduction

In a multi-level system of communication or computation, perfect error correction may be

not be an efficient use of energy. This has implications for saving energy in computing,

where perfect error correction has long been the norm. It also has consequences for how

we understand communication in natural systems, that are expected to optimize for energy

efficiency in the long run.

Many, if not most, forms of communication can be construed as using multiple levels

of encoding and decoding. A note is typed into an email, encoded into a series of bytes,

organized into packets of bits, and sent as current fluctuations to some other computer.

On receipt the fluctuations become bits, then bytes, then letters on the recipient’s screen.

Not just email, but all computer communication is organized in this fashion, down to the

intra-machine variety, and much software, too. Neural networks are readily understood as

operating on a series of levels, with many inputs feeding a layer of nodes, whose outputs

feed the next layer, and so on. It is equally common to find such arrangments in natural

systems, since after all, software neural networks were modeled on the natural hardware.

For example, both phonological (Liberman and Prince, 1977; Goldsmith, 1979) and visual

(Marr, 1982) processing have long been understood to be arranged in tiers of functionally

similar syntactic operations feeding the processors of the next higher tier.

However, since Shannon’s establishment of communication theory (Shannon, 1948),

there has been little consideration of ensembles of levels, together.1 Obviously, many sys-

tems are composed of multiple levels of analysis, but information theorists typically take

advantage of the independence of different levels by considering them in isolation. Lower

levels of communication are considered features of the communication channel established

between a sender and a receiver, only of concern to the extent they are a source of noise

or uncertainty, but perhaps no further. Higher levels belong to a different analysis. This

assumption of independence has been fruitful, but considering multiple levels together has

value because in many cases their energy derives from the same source. They may run

off a single battery, or a single stomach. Energy saved at one level may increase the en-

ergy available for processing at another. It behooves engineers of such systems to consider

the ensemble in order to find opportunities for optimization. Students of natural systems

will find the results of interest because they show how communication between individual

organisms and individual cells should look in a world of energy constraints.

2 Development

We proceed by examining the flow of information through a complex network of indepen-

dently functioning agents, or “nodes,” paying particular attention to the implications of the

Markov property to an individual node. Using the framework introduced there, we develop

a method to compare the cost of error correction at different levels of analysis, and derive

an expression to minimize the total energy used by an ensemble of levels. It is possible to

draw conclusions about optimizing energy use under several different scenarios, despite not

having exact knowledge of the parameters. The goal is to demonstrate that a wide range

1There has been extensive examination of concatenated codes, where two encodings are combined into

one (Dumer, 1998). While related to the current topic, these investigations are generally concerned with the

combination of two distinct coding techniques to create a single encoding with enhanced properties. This is

distinct from considering two different processors serially executing different encoding or decoding techniques.
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of plausible assumptions about those parameters leads to similar results with significant

consequences.

2.1 Conditionality and the Markov property

Consider some set of symbols R = {r1,r2,r3 . . .} each of which may be translated into a

group of one or more symbols from Q = {q1,q2,q3 . . .} for transmission to some receiver.

On receipt, the original members of R are recreated from measurements of Q via a process

that reverses what came before. If R is a message made of r ∈R and Q a message of q ∈Q

then together they can be arranged in a Markov chain:

R → Q → channel → Q̂ → R̂

We banish the passive voice and consider two agents to accomplish the encoding and

decoding, respectively:

R → Agent 1 → Q → channel → Q̂ → Agent 2 → R̂

Agent 1 converts symbols of R to symbols of Q and sends them to Agent 2, who

converts the received symbols of Q back to symbols of R. Think of the agents as special

purpose devices, whose mechanism allows no discretion in how they operate. We will speak

of an agent “perceiving” some set of symbols or “measuring” information, but mean only

that its mechanism is designed to operate on those symbols, or that its (possibly imaginary)

designer might be doing the perceiving or measuring at its inputs or outputs.

Note that such an agent may perceive symbols when another observer does not. For ex-

ample, an agent might be a device built so that a set of eight voltage measurements consti-

tutes a “symbol” for the purposes of its internal mechanism. Voltage levels in unconnected

inputs to a circuit may float noisily, so depending on its design, it may perceive a series of

eight-bit symbols if only one or even none of its inputs is actually connected to anything.

An external observer may see it as disconnected from the world, but that may be irrelevant

to its operation. In other words, we may speak of the subjectivity of observation, even of a

primitive device.

Assume for the moment that Agent 1 encodes each symbol of R into a two-symbol

“word” composed of symbols of Q. Consider an input alphabet {A,B,C,D}, to be encoded

into two-symbol words from the alphabet {a,b}, as in Figure 1.

Because the positions of the two output letters are independently variable factors, each

two-symbol word can be represented as a point in a two-dimensional Hamming, or phase,

space. Three-letter words could similarly be described in three dimensions, four-letter

words with four dimensions, and so on. This is the usual presentation of a Hamming space

for a block code. Note that the dimensions of the code space can easily be construed to

represent generalized degrees of freedom, each of which might represent letter position, but

might also represent something else entirely, such as whether the symbol is printed in red

or transmitted on an independent channel.

As a way to understand the virtues of a code, the concept of a code space is widely

used. It is less often used to discuss transmission itself. But there are insights available in

the discussion to follow by considering the agents involved in a transmission as translating

a point in one multi-dimensional space to a point in some other multi-dimensional space.

For convenience, we classify agents into “aggregators” where the number of degrees of
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R → Q

~A → ~aa

~B→ ~ab

~C → ~ba

~D → ~bb

b

a b

a A C

B Dr r

rr

✻

❄

✛ ✲

Figure 1: An encoding can be depicted as points in a code space: (a) is an example of how

an alphabet of four symbols can be encoded in a two-symbol alphabet and (b) shows how

they can each be described as a point in an abstract code space.

freedom in the input space is greater than in the output and “distributors” where the input

degrees are fewer than the output.

Consider the information in a sequence R of ten three-letter words, received by an

Agent 1, who will send them to an Agent 2, as above.

tap tap tap apt apt tap apt apt tap apt

This is a more complex code space than shown in Figure 1. If we consider each letter posi-

tion to be independent, it has three dimensions, each of which seems to have two possible

values, though only two of the eight possible combinations of letters seem to be in use.

a t

a

p

t

p r

r

r

r

r

r

r

r

aap tap

apt tpt

app tpp

tataat

✻

❄

✛ ✲
❂✚
✚
✚
✚
✚
✚
✚
✚❃

Figure 2: A three-dimensional encoding. Only two of the possible eight code points, tap

and apt are used in the example.

Since each of those combinations appears with a probability of 1
2
, the information car-

ried by each word is H(r) = −∑r∈R
1
2

log 1
2
= 1 bit, and the total information in the se-

quence is H(R) = 10× 1 bits.2 Agent 1 translates these words into individual letters, and

notices that there are still 10 bits of information in its output, because the second and third

letter of each word are uniquely identified by the first. Agent 2 agrees. We write H(Q|ν) to

imply the per-symbol information content of a message taking the degrees of freedom into

account. If the letters of each word are indicated by q1q2q3, we have:

H(Q|ν)≡ H(q1)+H(q2|q1)+H(q3|q1q2) = 10+0+0 = 10 bits

2All logarithms in this article are assumed to be base 2.
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A diagram of the exchange would show a distributor node feeding three output degrees of

freedom to an aggregator expecting three inputs. Each perfectly agrees with its partner, as

in Figure 3.

R

րQ1 → channel → Q̂1 ց

→ Agent 1 →Q2 → channel → Q̂2 → Agent 2 →

ց
Q3 → channel → Q̂3

ր

R̂

Figure 3: Agent 1 implicitly asserts that its outputs are conditional on each other, and

Agent 2 implicitly agrees and simply reassembles what Agent 1 took apart.

Contrast that with another geometry, which accomplishes much the same thing, but over

a more complicated network involving intermediate agents, perhaps created to improve the

fidelity of transmission, as in Figure 4.

R

ր Q1 → channel → Agent 1a → Q̂1 ց

→ Agent 1 →Q2 → channel → Agent 1b → Q̂2 → Agent 2 →

ց
Q3 → channel → Agent 1c → Q̂3

ր

R̂

Figure 4: Agent 1 still asserts that its outputs are conditional on each other and Agent 2

asserts the same about its inputs, but the conditionality is irrelevant to Agent 1a in the

middle, and its friends.

The Markov assumption implies the agents in the middle of Figure 4 are free to treat

the input they receive as coming from a stochastic source of uncorrelated symbols, one at a

time. Agent 1a sees tttaataata and concludes there are only two symbols, t and a, with

one bit of information per symbol, giving ten bits total. An external observer can clearly

see the conditionality, but there is nothing intrinsic to the message that demands Agent 1a

care about it. Its two friends conclude the same about the sequences they observe. If H(Q)
is the sum of the three agents’ observations, then we have:

H(R) = H(Q|ν) = 10 bits but H(Q) = 30 bits (1)

The agents in the middle perceive more information than Agent 1 or Agent 2. This does not

depend on the mutual isolation of the agents in the middle, but only on agents designed to at-

tend or ignore conditionality. For example, one could consider the same example with only

an Agent 1a in the middle, receiving and sending all the letters from Agent 1 to Agent 2,

but not built to account for the conditionality of the letters:

R→ Agent 1 →Q → channel → Agent 1a → Q̂→ Agent 2 → R̂

Here again, Agent 1 and Agent 2 agree that the message contains 10 bits of information.

But Agent 1a, who knows nothing of the conditionality, sees a sequence of 30 symbols

consisting of 3 different shapes occurring with equal frequency and concludes that H(Q) =
30×1/3log 1/3 ≈ 15.8 bits.
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Conditionality decreases information: H(R|x)≤ H(R) for any message R and any vari-

able x. Thus, a communication node that ignores a conditioning variable x may perceive

more information in a message than one that does not. A distributor node may embody

an implicit assertion about the conditionality of its outputs that other agents in a network

are free to ignore because such an assertion is not actually a part of the message. In the

presence of such an implicit assertion, if the measurement of information is made by those

agents that ignore it, they will perceive more information than the distributor. Conversely,

an aggregator node’s operation may embody an assertion of conditionality among its inputs,

so will appear to decrease information, according to other nodes that ignore that assertion.

In a complex network of independent communicating nodes, no individual node is

forced to assume the perspective of any other node. Each may assume its inputs are un-

correlated stochastic sources, or it may assume correlations among them, or it may assume

they are all transmitting nonsense. This is what independence means in the context of the

Markov assumption.

Independent assumptions about conditionality are, of course, routine in practical com-

munication systems. An SMTP server does not differentiate among the emails it handles

according to the language they are written in, even though the letter frequencies are not the

same. However, the spam filters that process those emails (or the people who read them)

are specific to the language in use, and so incorporate the appropriate letter and word fre-

quencies. The spam filter’s estimation of the information content of any given email will

thus be less than the estimation given by the SMTP server. The SMTP server, in turn, is

probably communicating via ethernet, whose switches are completely ignorant of the in-

ternal structure of a MIME document. Thus the switches—or an observer assuming their

limited perspective—perceive even more information than the server.

In each of these examples, each agent’s operation is perfectly consistent, but the various

agents can disagree with one another about the quantity of information flowing through.

From a global perspective, perhaps the disagreement is merely an illusion created by agents

ignoring important features of their input, but if one is pursuing insight into how best to en-

gineer independently functioning agents, one must consider the limited perspective imposed

by the Markov condition. In some respects, the situation is no different with thermodynamic

entropy, where the definition of the relevant macrostates can differ among observers, even

though they might be said to agree on the microstates (Jaynes, 1992). The motion of the

same air molecules is relevant to both a pressure sensor and a bank teller awaiting a delivery

via pneumatic tube, but they may not agree on which is the most relevant macrostate.

2.2 Energy use in error correction

We inquire into the energy use by nodes in some complex network. We first consider the

transmission of discrete symbols to a single node, in the presence of noise. Encoding and

decoding in this context is a well-studied subject. We do not examine the mechanics but

rather the energy cost of achieving whatever rate of transmission is made possible by the

channel capacity.

Decoding is often described as a single step, but there are three processes involved, and

we can abstract them to create a general framework within which to analyze energy use.

The first step for any agent in a network is to transform the input signal into a hypothesized

output signal, to transform a point in an input code space to a point in an output space.

This treatment has little to say about that step, which we take as given. The second step is

6



comparing the hypothesis with expectations in some fashion, in order to detect errors. Con-

ceptually, one can think of this as measuring the distance between a hypothesized point in

the output space and members of the set of potentially valid outputs, as might be done with

the distortion measure of rate-distortion theory. In practice, this step might involve com-

paring the output data with parity bits or Hamming data or data from some other forward

error-correction (FEC) scheme, or it might be comparing output symbols with symbols from

a dictionary available to the agent, or a template, or even some entirely different technique.

Having translated the symbols and found any errors, the third step is to do something

about them: to correct them if the message has adequate redundancy, or ask for a retrans-

mission if it does not. One might also signal an error, or simply give up if the errors cannot

be corrected. The three steps then, are transformation, error detection, and error correction.

Consider the detection and correction steps of the process where some message Q ex-

pressed in symbols from alphabet Q is translated into a message hypothesis R̂, expressed

in symbols of R, and then corrected to produce message R. How much energy is used to

convert R̂ into R?

We consider first the energy cost of checking a stream of symbols for errors.

Theorem 1. An efficient error-checking mechanism can do no better than an energy cost

proportional to the number of bits of the signal it checks.

Proof. We consider how the most efficient possible error-checking mechanism would be-

have.

1. In order to be more efficient than spending the same energy on each received symbol,

it must be able to exploit regularities in the signal to reduce the cost for some symbols.

This implies that where there are no regularities and the input is merely random, the

energy use would be maximized, and be proportional to the number of symbols.

2. One such regularity to be exploited might be when a subset of inputs A completely or

partially determines the outcomes of another subset B. The total energy used by an

efficient mechanism would be the energy to check errors in A plus an amount to check

B that depends on the degree of dependence on A. Complete dependence means no

energy need be expended checking B while complete independence means no energy

is saved compared to the case of checking B alone.

3. An efficient mechanism need expend no energy to check the result of zero-probability

events.

In their essentials, these are the three conditions for the uniqueness theorem of Khinchin,

who proved that a measure satisfying those conditions would always be proportional to the

entropy measure H = −∑s∈S ps log ps where ps is the probability of observing symbol s

in some alphabet S (Khinchin, 1957). The entropy calculated with the log base two is the

number of bits in the message.

Computation has thermodynamic consequences. Landauer (1961) showed that an irre-

versible process, such as the deletion of a bit, unavoidably costs some energy lost to heat.

Transmission errors are random; there is no way to take advantage of the energy change

during the instant some bit is accidentally flipped. Correction is thus an irreversible process

and requires work (Bennett, 2003). One could imagine a system that stored the erroneous

7



state to make the correction reversible, but ultimately that stored state is of no use and will

be deleted, an irreversible process. Such a system is thus a way to delay the energy loss,

not to avoid it. Practically speaking, the energy cost of correction could be as simple as the

energy needed to erase a bit or as expensive as a request for retransmission, depending on

context. We therefore model the correction step with another linear function, of the number

of errors that require attention: the product of the total number of bad bits and the efficacy

of identifying them.

(As an aside, we note that one need not take a position on the meaning of the analogy

between signal entropy and thermodynamic entropy (Jaynes, 1957; Samardzija, 2007) to

see that a reduction in signal entropy due to the correction of errors is accompanied by a

proportional increase in heat energy, just as is the case with a reduction in thermodynamic

entropy.)

Let KR be an estimate of the per-bit energy cost of assessing what the observations R

should be, the detection step. We define a noise level (proportion of symbols transmitted

incorrectly), 0 ≤ z < 1, an efficacy function (the proportion of errors actually found as a

function of the energy spent finding them), 0 ≤ ζ (KR) ≤ 1, and a per-bit cost of repair,

LR. Using these, we can write an expression for the minimum work done in detection and

correction during R̂ → R:

E ≥ KRH(R)+LRζ (KR)zH(R) (2)

If the error rate z is 10% and the efficacy of the error detection ζ (KR) is 80%, then 8%

of the symbols in R will need repair. Presumably, spending more energy per symbol in de-

tection will bring ζ closer to its maximum and therefore require more energy for correction.

We model the efficacy as a function of KR with range [0,C], where C is the maximum effi-

cacy permitted by the channel capacity, so 0<C ≤ 1. As an example, an inverse exponential

like ζ =C(1− e−K2
R) captures the intuition that there is a point of diminishing returns, be-

yond which it costs significant amounts of energy to detect an increasingly small increment

of errors, but we assume here only that the efficacy is a continuous and monotonic function

of KR.

2.2.1 Two levels of error correction

Consider now an arrangement of nodes where Q is transmitted via a noisy channel, and

accuracy demands implementation of some system of error-checking, but there are multiple

receivers in series.

Q → Agent 1 → R → Agent 2 → S → Agent 3 → . . .

Each agent may have multiple inputs and outputs; what is shown is the path through these

agents relevant for errors in the transmission of Q. Expanding the steps Q → R → S we

make a longer chain, where Q is translated to R̂, using the information that encoded it ARQν
,

or some approximation. Additional data εR, received through some correction channel, is

used to transform R̂, producing R through the error detection and correction steps. This data

could have arrived in the same channel as R, for example as parity bits, checksums, the extra

bits added for a Hamming code, or some more elaborate FEC system still uninvented. It

might also have been developed from other observations, experience, or prior arrangement.

The steps look like Figure 5.

8



Q → R̂ → R → Ŝ → S

↑ ↑ ↑ ↑
ARQν

εR AS Rν
εS

Figure 5: Transmission of Q is transformed to R̂ using ARQν
, which corresponds to the

dictionary or procedure originally used to encode R into Q. Information from the correction

channel εR is then used to correct errors and turn R̂ into R. The detection step does not

change the symbols, so is not represented.

For the moment we assume the only noise is in the transmission of Q, and our interest

is in detecting and correcting the errors introduced there.

Consider the energy consumption of the two error detection and correction steps R̂ → R

and Ŝ → S. For some error in the transmission of a symbol q, the error might be found

and corrected at the first step, as it becomes a contribution to some r, or the second, as that

r contributes to some s. We assume the system achieves the full channel capacity and all

possible errors are corrected at one level or the other: ζ (KR) of the errors are fixed at R,

and C− ζ (KR) are corrected at S so that C of the errors are corrected. We also assume for

the moment that the transmission from R to S introduces no new errors. We can add to

equation 2 and write an equation for the work done in error correction at the two levels, as

a function of the energy invested in error correction at R:

E ≥ KRH(R)+ zLRH(R)ζ (KR)+KSH(S)+ zLSH(S)(C−ζ (KR)) (3)

Agent 2 is independent of Agent 1. Since assumptions of conditionality can differ, the

information as measured from the S perspective H(S) need not be the same as H(R). We

define a ratio α ≡ H(S)/H(R) to compare the number of bits of information perceived by

the two agents. Simplifying:

E

H(R)
≥ KR + zLRζ (KR)+KSα + zLSα(C−ζ (KR)). (4)

This is an equation relating the energy used in error correction between two different

levels of analysis, and can be used to explore the design space of energy trade-offs between

one level and another by assuming different relations between KR, KS, LR, LS, and ζ (KR).
For example, we can differentiate with respect to KR and set the derivative to zero to mini-

mize the energy spent at R:

0 = 1+ z(LR −αLS)
dζ

dKR

+α
dKS

dKR

. (5)

Corollary 1. For LR/LS > α and KS independent of KR, there is no solution to equation 4.

Proof. Since ζ is monotonic increasing, and αLS < LR, the second term on the right side

of equation 5 is positive. With KS is independent of KR, the third term is zero, and thus the

right side of the equation is positive and there is no value of KR to solve equation 4, and

therefore no positive value of KR that will cost less energy than KR = 0.
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This combination of parameters might correspond to two aggregator nodes in a row

where the cost of error correction at the second level is comparable to the first. For these

cases, it will always save energy to skip error correction at R in favor of S.

Corollary 2. For LR/LS < α , any solution to equation 4 will occur at imperfect efficacy.

Proof. Note that dζ/dKR approaches or equals zero at high levels of efficacy, by the as-

sumption of monotonicity. A solution to equation 4 thus occurs where dζ/dKR = 1/z(αLS−
LR). Unless αLS ≫ LR, dζ/dKR is not close to zero at the solution and thus ζ is not close

to 1.

If the agent at S perceives much more information than the one at R (α very large) or it

is much more expensive to correct at S then at R, then it might be efficient to do complete

error correction at R. Otherwise, so long as KS is independent of KR, it is likely that a

solution will occur with Agent 1 operating at efficacy levels substantially lower than the

maximum. Optimizing energy use would thus require what in isolation will appear to be

sloppy error correction at the first level.

It is plausible that KS might not be independent of KR, in which case there may be a

non-zero solution to equation 4. Perhaps a certain amount of energy spent checking for

errors at R would mean spending less at S to achieve the same result. We model KS as the

sum of bS, a component independent of KR, and another component that is a function of KR.

This function starts at some level kS(0), the energy spent if no correction is done at R, and

declines to reach or approach zero for large values of KR:

KS = bS + kS(KR). (6)

If the kS(KR) decreases from kS(0) to zero, then for some or all of its domain, its deriva-

tive must be negative. Substituting into equation 5 and moving to the other side of the

equation, the bS term will disappear in the differentiation, leaving:

−α
dkS

dKR

= 1+ z(LR −αLS)
dζ

dKR

. (7)

There are too many unknowns in this equation to say much about it, but some observa-

tions are possible. For example, for values of α close to one, there may be a solution if the

derivative of kS is close to minus one, indicating that it might not matter whether correction

happens at R or S, which is intuitively sensible. Further, if the cost of repair is substantially

higher at S than R (LR/LS < α), there may be a substantial range of KR values in which to

find a minimum.

For values of α much smaller than one, if the value of kS declines abruptly at any point

as KR increases, the left side of equation 7 will be large and make it more likely that a

plausible selection of parameters would provide a solution to the equation, where a non-

zero value for KR would minimize energy use. For example, this could be the case if noise

above a certain level precluded efficient decoding at S entirely and required a request for

retransmission. Alternatively, if kS has only a gentle dependence on KR, a solution would

be less likely for α < 1.

Corollary 3. When LR/LS > α , and there is dependence between KS and KR, any solution

to equation 4 will occur at imperfect efficacy.

10



Proof. Assume a non-zero solution to equation 4 when LR/LS > α . The condition of per-

fect error correction at R would imply that no further increase in energy spent on correction

at that level would reduce the cost of checking errors at S, thus that dkS/dKR must be at or

approaching zero. But we have already observed that at perfect efficacy, the derivative of

ζ (KR) will approach zero, so at the solution:

−
dkS

dKR

>
1

α
.

Where there is a solution to equation 4, the correction by Agent 1 would be considered

imperfect in isolation, even under the assumption of maximum error correction at S.

We have assumed no noise in the R → S step. Were we to reverse that assumption,

the correction system at S would still have to check all the bits, though it would be more

expensive to correct the larger number of incorrect bits. In other words, noise would simply

add a term to the right side of equation 3 proportional to H(S). This quantity would have no

dependence on KR and so the term would disappear in the differentiation step. Noise may

also reduce the value of α , making it less likely to be worth doing error correction at R. In

the case of noisy transmission where KS is dependent on KR, noise will appear to reduce the

efficacy of the correction at R, leading to a lower dz/dKR, and making it more likely that

there is a non-zero solution to equation 7.

2.2.2 Energy use and sparsity

We digress briefly to consider KR. In the case of two aggregators in a row, in Q → R → S, it

is possible to express R and S using the symbols of Q. This is the case, for example, when

letters are assembled into words and then sentences, or sounds assembled into phonemes

and then words. In such a case, the code space of R has NQ
νR code points, and the code

space of S has NQ
νR×νS points. Thus the number of possible code points increases while

the information content in the message—the number of valid code points—decreases. This

creates a sparser code space with a lower density of valid points.

We assume that the energy cost of comparing two values is proportional to the number

of bits of information that must be compared. In a computer’s circuitry, a comparison is

typically done by adding two bits with a zero result indicating equality. Since the equality

condition does not include the bit values (which are destroyed in the process) a comparison

of two bits is generally an irreversible operation and the energy cost is therefore a straight-

forward consequence of Landauer’s principle (Landauer, 1961; Bennett, 2003). There is

ongoing research on reversible comparators, that function by recording the inputs so the

operation can be rewound and thus presumably avoid the thermodynamic implications of

irreversibility (e.g. Harith and Vasanthanayaki, 2017). However, though these approaches

create energy savings, they are still not free and retain a dependency on the number of bits

compared. As with error correction above, the state saved in order to create reversibility is

of questionable value. The method may only be a way to delay the heat loss, not prevent it.

Proposition 1. For some arbitrary code space of N points, containing both valid and in-

valid points, the maximum number of bits necessary to uniquely specify a distance between

any two points is given by logN.
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The least efficient method for locating points in space is simply to enumerate them,

which requires logN bits to specify. One might also think of it as arranging them in a

one-dimensional code space. A coordinate space of dimension greater than one will allow a

more efficient method. One can also observe that the maximum Hamming distance between

two code points can be expressed with log logN bits, quite a bit smaller. For many codes,

this will be the important distance measure.

This is of interest because the task of finding a correspondence between a hypothesis

point in code space and one of the valid code points is that of comparing all the distances

between the hypothesis and the set of valid code points, to find the smallest. It is challenging

to generalize over all possible physical manifestations of the abstractions of a code space,

but given all these assumptions, we assert the following proposition.

Proposition 2. The energy spent detecting errors is positively related to the density of valid

code points.

For a space with a minimum code distance d, one seeks the valid point whose distance

from the hypothesized point is smaller than d, so one need only compare the highest-order

bits. For some alphabet of symbols r ∈ R, there will be hypothesized symbols r̂ from a

decoding, and valid symbols r. Given a probability distribution P(r̂) for the hypothesized

points and a “true” probability distribution P(r) for the symbols of message R, the Kullback-

Leibler divergence can be construed as indicating the reduction in number of bits necessary

to identify a point using the wrong probability distribution. In parallel fashion for this case,

it can be used as a measure of the reduction in number of bits necessary to be compared

to find the valid point less than d from the hypothesis. Let Ncomp be the number of bits

necessary to compare to find the distance less than d:

Ncomp ≤ ∑
r∈R

P(r̂) log P(r̂)−P(r) log
P(r)

P(r̂)
(8)

= H(R̂)−DKL(R ‖ R̂). (9)

The divergence between the distribution of symbols P(r) and the distribution of hy-

potheses P(r̂) can also be regarded as a measure of the effective sparsity of code points.

Since some of the r̂ will be symbols whose probability is zero, in effect it is measuring spar-

sity by estimating the likelihood that a hypothesis hits a valid point. Thus as the sparsity

increases, the number of bits that must be compared decreases, providing a demonstration

of Proposition 2.

One might also suggest that the difficulty of finding a minimum distance is related to the

probability that any given r̂ is ambiguous: equidistant, or nearly so, from two valid points.

But the ambiguous points exist close to the midpoint between valid code points, at or near

a hypersurface squeezed between hyperspheres of radius greater than d, by the definition

of d. Thus the number of ambiguous points will be proportional to dN−1, the “area” of a

hypersurface, while the unambiguous points will be in the interior of those hyperspheres,

and be of a number proportional to dN . An increase in d means the proportion of ambiguous

points will decline, and thus the average number of bits that must be compared to find a

minimum will also decline.

Proposition 2 implies that when considering errors in the transmission Q → R → S for

aggregators R and S, not only are there fewer bits to check in S than in R, but it is likely

to be less expensive to detect the problems. Stated in terms of equation 4, if S is a sparser
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code space then R, then not only do we have α < 1 but also KS < KR, making a non-zero

minimum even less likely.

2.2.3 Multiple levels

The findings for a two-level system can easily be extended to an arbitrary number of levels

using an inductive argument. Consider the sequence Q → R → S → T . We can regard S and

T as a single level while considering whether to do error correction at R or at that second

level. Once decided, we can use the same procedure to decide how much energy to invest

in S or T .

2.2.4 Continuous systems

Continuous valued systems may also have systems of error correction. Indeed, this is the

definition of servo control. Such continuous systems can be layered, like a discrete system.

For example, the autopilot on a ship might have a servo that controls the position of the

rudder, and another servo “above” that one, using the rudder position to control the ship’s

heading. Just as one might ask about the necessity of error correction in the discrete case,

one might ask whether one can trade off precision in error correction at one level or another

and still reach the destination. (One also does not want to capsize or run aground along the

way, but these are separate considerations, to be put aside for this discussion of energy.)

As with the discrete case, error correction for a continuous signal consists of two steps:

measuring the error and doing something about it. A continuous signal X can be measured

with differential entropy integrated over its support, h(X) = −
∫

X p(x) log p(x)dx, where

p(x) is the probability density function of the signal. Like discrete entropy, there is a

uniqueness theorem for differential entropy, so by a parallel argument to Theorem 1, the

energy spent in error measurement can be no less than proportional to the information in

the signal (Kotz, 1966, pp10-11) because a measurement that could do better would itself

be another, different, measurement of entropy and thus violate the uniqueness of the infor-

mation measure.

For a continuous signal transmitted through a channel with a Gaussian source of noise,

an elementary theorem of information theory shows that the differential entropy in the re-

sulting signal R̂ is the sum of the mutual information between the output R̂ and the source

R and the entropy contributed by the noise Z (Cover and Thomas, 2006, chapter 9):

I(R; R̂)+h(Z) = h(R̂). (10)

We can therefore represent noise as a proportion of h(R): z ≡ h(Z)/h(R̂).
Beneath the abstractions of information theory, the quantities are representations of

physical quantities and effects. The signals in question might be mechanical or electrical in

nature, or even something else, but they are representations of real physical processes. The

process of acquiring and removing errors in some quantity can be usefully compared to the

process of isothermally re-compressing a gas that was allowed to expand freely (Bennett,

2003, especially the discussion related to figure 1). Because no energy was stored from the

acquisition of the errors, there is none available to compress them away. Thus, by the same

arguments made by Landauer and Bennett (Landauer, 1961), the process of error correction

in a continuous system is irreversible, and therefore requires work to accomplish.

Like the detection step, one can go a step further, and use the uniqueness theorem to

say that the work required can be no less than proportional to the differential information.
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Again, were it otherwise, one could use the process of correction to create a different en-

tropy measure, and thus violate the uniqueness theorem.

Thus for a continuous process being measured at some node R, we can write an equa-

tion for the energy used to correct errors exactly analogous to equation 2, using analogous

definitions of per-bit energy cost KR and efficacy as a function of the energy spent finding

errors ζ (KR):
E ≥ KRh(R)+LRζ (KR)zh(R). (11)

For a two-stage system like the autopilot, with measurements at nodes R and S, we

can write a two-level equation virtually identical to equation 4. It can be used to optimize

energy use in the same way as the discrete case, with the same conclusions.

2.2.5 Conclusion

To summarize:

• For α < 1, if KR and KS are independent and LR and LS of comparable size, it will

save energy if Agent 1 does no error correction at all, so long as Agent 2 can function

at the resulting error rate.

• For two aggregators in a row, the code space becomes larger as the information in a

message decreases. Not only is there less information to correct α < 1, but the errors

become less expensive to detect: KS < KR.

• Where it is possible to do so, error correction in a series of aggregators should be

delayed to the end.

• If KS is dependent on KR and monotonically increasing, then investing energy at R is

efficient only if the decline in the energy necessary at S is steep.

• Even when it is efficient to put energy into correction at R, such as when α > 1, it is

unlikely to be worth correcting 100%.

• A system that is not energy-constrained can still benefit from these results. Error

correction is not instantaneous, so skimping can save time.

Obviously, factors such as accuracy and reliability are important to a communication

system, so it may not always be feasible to seek the least possible use of energy for some

system. However, these are the directions that energy efficiency would suggest.

3 Discussion

The claim in Section 2.1 that assumptions of conditionality can affect the measure of in-

formation across a complex communication network tugs at connections to the very heart

of probability theory. If one agent in a network can choose to ignore conditionality that

another relies on, what does a probability estimate mean? How reliable can it be?

The question of whether probabilities are objective measures of the world or subjective

evaluations of experience is one that cannot be settled here. However, for the designer

of some device, the important question is not philosophical; it is about what he or she

can anticipate happening at the inputs of that device. A designer of an ethernet port, a
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device through which many different kinds of data may pass, is well justified in assuming

that all byte values are equally likely. The designer of translation software to process data

that arrives via that ethernet port is equally well justified in making a completely different

evaluation of the likelihood of different byte values. A molecule of DNA might encode

any number of different peptide chains, but the enzymes awaiting the output of a particular

segment to assemble it into some protein need not be so inclusive in their expectations.

Non-conservation of information is not a novel concept. After all, rate distortion the-

ory, part of Shannon’s original paper, is meant to address exactly the case where information

is not preserved across some transformation. More recently, the original statement of the

“Information Bottleneck” by Tishby et al. extends the classical rate distortion formula-

tion to use a third source to choose a distortion measure (Tishby et al., 2000). The authors

couch the information change as “lossy compression” but the theory’s subsequent applica-

tion to neural networks supports viewing such networks as a way to reduce information,

as a collection of aggregators would do (Shwartz-Ziv and Tishby, 2017). The goals of that

work—clarifying the internal mechanics of a neural network—are more or less orthogonal

to the concerns of energy use here. The approaches are broadly compatible, though the

information bottleneck theory is constrained to use aggregator nodes in an orderly enough

arrangement that an entire layer of such nodes can be considered to be a single functional

unit.

Concern with the internal mechanics of a complex network is important in a way that

has not yet been addressed. After all, the discussion in Section 2.2 is merely a claim that one

might trade off error correction between levels, which differs significantly from showing

that such trade-offs might be possible given demands for accuracy and reliability. The

approach of Section 2.1 provides some direction.

As we have seen, one can regard a node in some communication network as transform-

ing points from one multi-dimensional input message space to a different multi-dimensional

output message space. One can regard a collection of nodes as acting in a similar fashion

on a collection of inputs, and thus the question of feasibility can be addressed topologi-

cally. The claim that some system of communication is resilient to errors is merely a claim

that the input point that produces some output is surrounded in input space by a region of

points that produce the same result. A large and convex region of input space corresponding

to some point (or small region) of output space will indicate that error correction may be

unimportant. Conversely, if a point in output space corresponds to a collection of small,

disjoint, or non-convex regions in the input space, then perfect error correction may be vital

to its correct function.

This is not a trivial point, of course. To consider one class of complex system, the shape

of the input space to some neural network is notoriously opaque. Szegedy et al. observed

that neural networks can show remarkable sensitivity to what appear to be insignificant

changes in their input (Szegedy et al., 2014), precisely the issue under consideration here.

This has resulted in a substantial body of research into generating adversarial examples to

test the robustness of neural networks and to inform approaches to learning via “generative

adversarial networks” (GANs) (Goodfellow et al., 2015; Warde-Farley and Goodfellow, 2016;

Sharif et al., 2019). Some of this research has a topological cast. Dube has presented ways

to characterize the topology of the input spaces as a source of insight into how adversarial

examples are enabled (Dube, 2018). Gilmer et al. argue that the shape may be determined

by the data itself and the high dimensionality of vision datasets (Gilmer et al., 2018). At

least one line of research into GANs seems to have had promising results by explicitly re-
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garding the input vector as being composed of signal and noise and seeking to shape the

spaces “perceived” by the hidden layers accordingly, though the approach there is not ex-

plicitly topological (Chen et al., 2016). It is possible that the topological simplicity of the

input space may be not only an indication of resilience to error, but to a more general sense

of reliability in the presence of novel inputs, too (Dube, 2018). Generating adversarial ex-

amples could be used to characterize the topology of neural networks for just this purpose.

3.1 Energy use in computing

Energy use in computing has become an increasingly important issue, powered by two con-

verging but independent forces: the advent of tremendously effective, but tremendously

compute-intensive machine learning applications and the advancing demands for both per-

formance and battery life in mobile devices. In an architecture of multiple levels of com-

munication, it is clear from the analysis presented here that it is often inefficient to insist on

complete error correction at any individual level.

As we have seen, this has implications for machine learning since nodes in a neural

network are aggregators, producing a single output from multiple inputs. Such networks

consist of many layers of such nodes, so one might predict that error correction—and thus

precision of calculation—in neural networks may not be important, pace the adversarial re-

search described above. Google’s experience with implementation of its TensorFlow com-

puting software and hardware confirms the point. In that case, the ever-increasing electricity

usage of their translation software led Google to use quantization and low-precision libraries

in the implementation of the software (Abadi et al., 2015) and to develop approximate hard-

ware Tensor Processing Units (Jouppi et al., 2017). By shortchanging the error checking in

the aggregator nodes of the network, energy savings and performance enhancement resulted

with no loss of accuracy in the ultimate results.

More generally, advances in approximate computing are ongoing, though remain with-

out a comprehensive theoretical basis (Xu et al., 2016; Mittal, 2016). Including Google’s

work, several promising avenues of inquiry in the field lead down the path indicated by the

analysis developed here. Leem et al. provide a framework for approximate computing that

distinguishes between the accuracy needed for execution control and the lower degree of

accuracy needed for calculations in certain classes of algorithms, such as K-means cluster-

ing, loopy belief propagation, and Bayesian inference networks (Leem et al., 2010). Each

of the specific algorithms considered, just like neural networks, consist of multiple appli-

cations of aggregator nodes and thus yields to the analysis offered here. Similarly, Samadi

et al. proposed Paraprox, software that encompasses a method of finding patterns in ap-

plication programs that lend themselves to an approximate approach and then instructing a

compiler accordingly (Samadi et al., 2014). Four of the six patterns it can identify (there

named Reduction, Scan, Stencil, and Partition) are arrangements of aggregator nodes and

the other two (Map and Scatter/Gather) could be, depending on the structure of the function

being mapped or gathered. Even more aptly, Shanbhag et al. present a framework for ap-

proximate computing directly inspired by information theoretic concepts (Shanbhag et al.,

2019). The architecture creates “fusion blocks” in a variety of geometries to reconcile

results from low-accuracy processors with shadow results from high-accuracy (but low-

precision) processors. Essentially, the authors have created artificial aggregator nodes atop

their approximate processors, and show that indeed the error correction can be delayed until

the fusion block and that the resulting system is more efficient when it is. In a discussion of
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loosening synchronization requirements in parallel computing, Rinard suggests that com-

putations that “combine multiple contributions to a composite result” that another phase of

computation consumers—aggregator nodes again—would be most resilient to the resulting

errors (Rinard, 2012). All of these examples are confirmation of the points made here.

3.2 Communication in natural systems

In addition to the consequences for approximate computing, one might frame the results

here to say that adding an ad hoc layer of analysis may save energy over an investment in

better error correction.

Resource constraints are an important source of evolutionary selection pressures. Brains,

for example, are expensive organs to support (Robin, 1973; Aiello and Wheeler, 1995),

so strategies to minimize this energy use are important to an organism’s fitness. As a

consequence, it is unsurprising to find natural systems using multiple levels of analysis

and apparently inadequate error correction. There is empirical support for both. Clark

(2013) reviews a great deal of support for multiple levels in cognition, and there is also

evidence for the inadequacy of error correction in natural systems where such systems have

been identified. For example, the behavior of retinal cells is often not adequate to dis-

ambiguate luminance values (Purves et al., 2004) and memory cues can aid phonological

segmentation, but may still not be adequate to eliminate uncertainty (Gow and Zoll, 2002).

Reproduction of DNA is a similar case, where one finds multiple levels of repair imple-

mented in a cell (Fleck and Nielsen, 2004; Fijalkowska et al., 2012; Ganai and Johansson,

2016). However, the error correction in some levels can be artificially improved, imply-

ing that the natural state at those levels could be considered inadequate in isolation (e.g.

Sivaramakrishnan et al., 2017; Ye et al., 2018).

If a multi-layer system of communication can save energy by delaying error correction,

it follows that for a system plastic enough, it may cost less energy to create a new layer than

to get the error correction right. To reduce uncertainty in detection, evolution might equally

well lead to higher resolution retinas or higher levels of processing (Sgouros, 2005a). Such

effects might be ontogenetic as well as phylogenetic. For example, learned pattern recog-

nition can be a way to introduce a new level to some analysis, thereby reducing the energy

or time needed for processing. Indeed, pattern matching ability is associated with improv-

ing facility in reading (Blank et al., 1968), in arithmetic (Koontz and Berch, 1996), and in

musical sight-reading (Waters et al., 1997).

The information with which some mechanism transforms received information at the

point of decoding—the ARQν
and AS Rν

in Figure 5, representing the dictionaries and the

instructions for using them—is also a source of interest, as important to the quality of trans-

mission as the message itself. Computer communication is carefully regulated by several

different standards committees3 to make sure receivers understand exactly how to decode

the messages senders present. The mechanism by which this compatibility is created in

natural systems remains the subject of research. It is clear, for example, that proper decod-

ing of DNA requires compatible concentrations and varieties of non-coding RNA present

in a cell (Collins et al., 2011) as well as reconcilible methylation patterns (Zemach et al.,

2010), but the mechanisms of creating compatibility remain cloudy. Without the oversight

of standards committees, a propensity to create new layers through experience will eventu-

3e.g. Ethernet is controlled by the IEEE standards committee, TCP by the Internet Engineering Task Force

(IETF), USB by the International Electrotechnical Commission (IEC), and so on.
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ally create mismatch between any two communicating natural systems, even if they derive

from identical sources, because experiences differ. Furthermore, if the error correction in-

formation does not travel with the message, it may also vary between sender and receiver

(Sgouros, 2005b), such as when a message arrives before a newly reissued code book. As

a consequence, perfect transmission of a message from one natural system to another may

never happen.

A node in a communication network with significant convex regions of its input space

corresponding to points or regions in a sparse output space is not only one that is resilient

to transmission noise, but is also likely to be able to assign an output to a novel input

with confidence. Exploration of the energy demands of hypothesis formation under these

conditions is ongoing, but the fundamental point is that a system with forgiving input and

output topologies can receive most messages, even if the results are not quite what the

sender intended. Fortunately, imperfect transmission is often good enough, and there is an

added benefit.

It has long been thought that creativity requires some kind of randomness (e.g. Hofstadter,

1996; Marshall, 2002). In her writing about the possibility of creativity in artificial intel-

ligence, Boden (2004) developed a sophisticated taxonomy of randomness, differentiating

between truly random (“A-random”), random relative to expectations (“E-random”) and

random relative to a specific observer’s expectations (“R-random”), and made the point that

a convincing model of creativity need only fulfill the last. Consider an imperfect trans-

mission. If a sender sends a message unanticipated by some receiver and that receiver

interprets it in a manner impossible for the sender, then together they have created some-

thing that neither one could have made alone. In information theoretic terms, though there

may be a substantial amount of mutual information in utterance and interpretation there is

also a good deal besides. Both parties have contributed information to a result that neither

controls. By failing to achieve perfect transmission of meaning, they have achieved Boden’s

R-randomness without random numbers, quantum fluctuations, or magic.

Ultimately the creativity that most needs explanation is not the well of inspiration for

artists but the creativity of a bird building a nest from unfamiliar materials, a cell growing

in a changing environment, or just of a person walking down a busy street. The important

mystery is the everyday creativity required to make one’s way in a complex world and to use

language in the face of what Moravcsik (1998) called a “constant barrage of small semantic

emergencies.” The mathematics of energy efficiency and error correction holds true at every

level, from the interaction between two people down to the communication between two

neurons, or from a mother cell to its children. Creativity born of miscommunication may

be a source for the variation on which natural selection acts, and opens up for consideration

the ways in which it may not be strictly random.

The findings also allow us to see that the absence of creativity in machines is more about

engineering precedent and high functioning standards committees than fundamental princi-

ple. Re-engineering computers to accommodate less-than-perfect transmission of messages

could not only be a way to save energy and create more robust computing, but in the long

term, could open the door to truly creative machines.
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Cell, 62(5):745–755.

Gilmer, J., Metz, L., Faghri, F., Schoenholz, S. S., Raghu, M., Wattenberg, M., and Good-

fellow, I. J. (2018). Adversarial spheres. CoRR, abs/1801.02774.

Goldsmith, J. A. (1979). Autosegmental Phonology. Outstanding Dissertations in Linguis-

tics. Garland Publishing, New York.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversar-

ial examples. In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-

ence Track Proceedings.

Gow, D. W. and Zoll, C. (2002). The role of feature parsing in speech processing and

phonology. In Csirmaz, A., editor, Phonological Answers and Their Corresponding

Questions, volume 42 of MIT Working Papers on Linguistics, pages 55–68. MIT, Cam-

bridge, MA.

Harith, M. and Vasanthanayaki, C. (2017). Implementation and study of reversible binary

comparators. International Journal of Advanced Research in Computer Engineering

& Technology, 6(6):890–896.

Hofstadter, D. R. (1996). Fluid Concepts and Creative Analogies: Computer Models of the

Fundamental Mechanisms of Thought. Basic Books, New York.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev., 106:620–

630.

Jaynes, E. T. (1992). The gibbs paradox. In Smith, C. R., Erickson, G. J., and Neudor-

fer, P. O., editors, Maximum Entropy and Bayesian Methods, pages 1–21. Springer

Netherlands, Dordrecht.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,

S., Boden, N., Borchers, A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J.,

Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland,

W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey,

A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy,

S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G.,

Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix,

K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A.,

Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg, D., Swing,

A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R.,

Wang, W., Wilcox, E., and Yoon, D. H. (2017). In-datacenter performance analysis of

a Tensor Processing Unit. In ISCA ’17: Proceedings of the 44th Annual International

Symposium on Computer Architecture, pages 1–12, New York, NY, USA. ACM.

Khinchin, A. I. (1957). Mathematical foundations of information theory. Dover Publica-

tions, New York. Translated by R.A. Silverman and M.D. Friedman.

20



Koontz, K. L. and Berch, D. B. (1996). Identifying simple numerical stimuli: Process-

ing inefficiencies exhibited by arithmetic learning disabled children. Mathematical

Cognition, 2(1):1–24.

Kotz, S. (1966). Recent results in information theory. Journal of Applied Probability,

3(1):1–93.

Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM

Journal of Research and Development, 5(3):183–191.

Leem, L., Cho, H., Bau, J., Jacobson, Q. A., and Mitra, S. (2010). ERSA: Error resilient

system architecture for probabilistic applications. In Design, Automation and Test in
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