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A STEADY EULER FLOW WITH COMPACT SUPPORT

A. V. GAVRILOV

Abstract. A nontrivial smooth steady incompressible Euler flow in three
dimensions with compact support is constructed. Another uncommon property
of this solution is the dependence between the Bernoulli function and the
pressure.

1. Introduction

A steady flow of an ideal fluid in R
3 is a solution of the Euler equation

(u · ∇)u = −∇p, div u = 0.

At present, it is not known if smooth nonzero solutions of this equation with com-
pact support 0 6= u ∈ C∞

0 (R3) exist [8][9]. The problem is trivial in two dimensions
where there are obvious vortex-like solutions. In three dimensions, only a few results
are known, all on the negative side. It is known that such a flow cannot be Beltrami
[8][3], and it cannot be axisymmetric without swirl [6]. Recently, Nadirashvili and
Vladut found some other restrictions [9].

Apparently1, weak solutions with compact support may be constructed using
methods of [4]. Also, there is a considerable literature about vortex rings which
are solutions with compactly supported vorticity (e.g. [2]). Opinions have been
expressed that in three dimensions there are no smooth solutions with compact
support besides u = 0. The main goal of this paper is to show that it is not true.

Theorem There exists a nontrivial smooth steady Euler flow in R
3 with support

in an arbitrarily small neighbourhood of a circle.

We give below an explicit description of an axisymmetric flow with compact sup-
port. This solution has also other unusual properties discussed in the last section.

Acknowledgement. The author would like to thank the anonymous referee for
pointing out the interesting work of Khesin, Kuksin, and Peralta-Salas [7] as well
as some properties of the given solution.

2. Some differential equations

In this section we find solutions of some differential equations which will be used
later.

2.1. Ordinary differential equation.

Lemma 1

1The author is no expert in this area.
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The singular Cauchy problem

(1) 3xψ′′ + 6x(ψ′)3 − 4ψ(ψ′)2 − 3ψ′ = 0; ψ(0) = 1, ψ′(0) = −
3

4

has a unique analytic solution ψ(x) in a neighbourhood of x = 0.

Proof. The equation (1) becomes first order in variables t = xψ−2 and v = ψψ′,

t
dv

dt
= v

(
4

3
v + 1

)
+
tv2(2v + 9)

3(1− 2tv)
.

Denoting w = v + 3
4 we may write this equation as tdw

dt
= −w + f(t, w) where the

function f is analytic and f(0, 0) = ∂
∂w
f(0, 0) = 0. By [5, Theorem 11.1] there

is an unique analytic solution v(t) such that v(0) = − 3
4 . The Cauchy problem

dψ
dx

= 1
ψ
v
(
x
ψ2

)
, ψ(0) = 1 clearly has an unique solution. �

From now ψ always means the function defined by (1). The Taylor series of this
function is

ψ(x) = 1−
3

4
x+

9

128
x2 −

21

1024
x3 +

1035

131072
x4 −

1809

524288
x5 +O(x6).

Denote

F (x, α) = −2xψ(α) + 2x3, H(α) = 6α

(
1

ψ′(α)
+ 2ψ(α)

)
,

G(x, α) = 12x2α− F 2(x, α) −H(α).

Note that at (x, α) = (1, 0) we have F = G = 0 and

∂F

∂x
= 4,

∂F

∂α
=

3

2
,
∂G

∂x
= 0,

∂G

∂α
= 8.

We will also need the following fact

Lemma 2 The functions F,G satisfy

(2)
∂G

∂x
+ F

∂G

∂α
= 2G

∂F

∂α
,

(3) x
∂F

∂x
− F = 4x3.

Proof. The part (3) is trivial; (2) boils down to the formula

H ′(α) = 24αψ′(α) + 4ψ(α),

equivalent to (1). �
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2.2. Partial differential equations.

Lemma 3 The system2

(4)
∂

∂x
α = F (x, α),

(
∂
∂y
α
)2

= G(x, α),

has a unique analytic solution α(x, y) in a neighbourhood of the point (x, y) =
(1, 0) such that α(1, 0) = 0 and ∂

∂y
α 6≡ 0.

Proof. It is convenient to introduce an ad hoc variable s and to consider x and
α functions of (F, s), where G = s2 by definition. (This is possible because
∂(F,G)
∂(x,α) (1, 0) = 32 6= 0.) Consider a differential form

κ =
∂x

∂s
dF +

(
∂α

∂s
− F

∂x

∂s

)
ds

s
.

It is analytic near the origin of the (F, s) plane (because s−1 ∂
∂s

= 2 ∂
∂G

). We have
the relation (2) which in the new variables takes the form

F
∂x

∂F
+ s

∂x

∂s
=
∂α

∂F
.

It follows that

dκ =
1

s

∂

∂s

(
F
∂x

∂F
+ s

∂x

∂s
−
∂α

∂F

)
ds ∧ dF = 0.

By the Poincare lemma, there is a unique analytic function Φ(F, s) such that
Φ(0, 0) = 0 and κ = dΦ.

This form is odd with respect to the second variable, in the sense that σ∗κ = −κ
where σ : (F, s) 7→ (F,−s). If γ is a path connecting the origin (0, 0) to a given
point (F, s), then

Φ(F,−s) =

∫

σγ

κ =

∫

γ

σ∗κ = −

∫

γ

κ = −Φ(F, s).

We have Φ2(F, s) = Φ2(F,−s), hence the square Φ2 is a well defined analytic
function of F and G = s2. Now we can change the variables back and denote
f(x, α) = Φ2. We have f(1, 0) = 0 (essentially, by assumptions).

Near the origin Φ(F, s) =
(
1
4 +O(F )

)
s+O(s3), hence

∂Φ2

∂F
(0, 0) = 0,

∂Φ2

∂G
(0, 0) =

1

16
,

and
∂

∂α
f(1, 0) =

(
3

2

∂

∂F
+ 8

∂

∂G

)
Φ2(0, 0) =

1

2
.

By the implicit function theorem, in a neighbourhood of the origin there is a unique
analytic function of two variables α(x, y) such that α(1, 0) = 0 and

f(x, α(x, y)) = y2.

2Note that ∂
∂x

means ∂
∂x

|α when applied to F or G but ∂
∂x

|y when applied to α. To avoid a

(very common) inconsistency in notation we write this partial derivative as ∂f
∂x

for the former and
∂
∂x

f for the latter.
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From (2) and the definition of κ we have

sdΦ = dα− Fdx.

Now, in the variables (x, y) we have Φ2 = y2, hence dΦ2 = dy2 and3

(dα− F (x, α)dx)2 −G(x, α)dy2 = 0.

This equality implies (4) (and is essentially equivalent to it). �

Remark 1 In Lemma 3, the condition α(1, 0) = 0 is crucial. In this case we
cannot take the square root of the second equation, and solving the system is more
difficult then for α(1, 0) > 0. Unfortunately, in the latter case the function α would
have no extrema, and the Euler flow u in the following section could not be extended
to the whole space.

Remark 2 Note that α(x, y) = α(x,−y) pretty much by definition. An interest-
ing consequence is G(x, α(x, 0)) = 0. (Which follows from (4) and ∂

∂y
α(x, 0) = 0.)

Because of this, the function α(x, 0) is actually another analytic solution of (4).
Remark 3 In the given proof, the main technical difficulty is the absence of

an inverse map to (F, s) 7→ (x, α). We circumvent this obstacle by artificially
constructing a function Φ2(F, s) with a well defined “pullback”. One of the referees
pointed out that there is a more straightforward (although not unrelated) proof
using the Cartan - Kähler Theorem. We may consider a form ω = dα − pdx− qdy
on a manifold of dimension 3 defined by equations

p = F (x, α), q2 = G(x, α)

in variables x, y, α, p, q. This form satisfies the integrability condition ω ∧ dω = 0,
so we can use it to construct the function α(x, y). (An important detail is that ω/q
is analytic.)

Remark 4 The method of the proof is constructive and may be used to compute
the Taylor series

α(x, y) = 2(x− 1)2 + 2y2 + 3(x− 1)3 + 3(x− 1)y2 +O((|x − 1|+ |y|)4).

The first two terms are important, so it may be appropriate to include a direct
computation of them.

Lemma 4 The function α(x, y) has a strict local minimum at (x, y) = (1, 0).

Proof. The first derivatives at this point are zero by (4). We have

∂2

∂x2
α =

∂

∂x
F =

∂F

∂x
= 4,

∂2

∂x∂y
α =

∂

∂y
F =

(
∂F

∂α

)(
∂

∂y
α

)
= 0.

Finally, (at any point) we have the equality
(
∂G

∂α

)(
∂

∂y
α

)
=

∂

∂y
G = 2

(
∂

∂y
α

)(
∂2

∂y2
α

)
.

As the derivative ∂
∂y
α is not identically zero, it implies

∂2

∂y2
α =

1

2

∂G

∂α
.

3As customary, dy2 actually means dy ⊗ dy, a tensor square.
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At the point under consideration we have then ∂2

∂y2
α = 4. The second differential

d2α is positively definite, so this point is a strict minimum.
�

3. The flow

We use the standard cylindrical coordinates. For a velocity field with axial
symmetry the Euler equation (u · ∇)u = −∇p takes the form

(5)





uρ
∂
∂ρ
uρ + uz

∂
∂z
uρ −

1
ρ
u2ϕ = − ∂

∂ρ
p,

uρ
∂
∂ρ
uϕ + uz

∂
∂z
uϕ + 1

ρ
uρuϕ = 0,

uρ
∂
∂ρ
uz + uz

∂
∂z
uz = − ∂

∂z
p.

For R > 0, denote a = α
(
ρ
R
, z
R

)
. For the sake of convenience, we denote by C

the circle ρ = R, z = 0 where a = 0. Let

(6) p =
aR4

4
, b =

R3

4

√
H(a), u =

1

ρ

(
∂p

∂z
eρ −

∂p

∂ρ
ez + beϕ

)
.

(Note that b is not smooth on C.) Obviously, div u = 0 outside C.
The fields (u, p) given by (6) satisfy (5) in a neighbourhood of C (but not on the

curve itself).

Proof. The second equation of (5) is obvious. The last one is equivalent to

x

(
∂

∂x
α

)
∂2

∂x∂y
α+

(
∂

∂y
α

)(
∂

∂x
α+ 4x3 − x

∂2

∂x2
α

)
= 0,

where x = ρ
R
, y = z

R
and α = α(x, y). After multiplication by ∂

∂y
α, using (4) and

∂G

∂x
+ F

∂G

∂α
=

∂

∂x

(
∂

∂y
α

)2

= 2

(
∂

∂y
α

)
∂2

∂x∂y
α

we have

1

2
xF

(
∂G

∂x
+ F

∂G

∂α

)
+G

(
F + 4x3 − x

(
∂F

∂x
+ F

∂F

∂α

))
= 0,

which follows from (2), (3).
Finally, the first equation is

x

(
∂

∂x
α

)
∂2

∂y2
α− x

(
∂

∂y
α

)
∂2

∂x∂y
α+

(
∂

∂y
α

)2

− 4x3
∂

∂x
α+H(α) = 0,

or
1

2
xF

∂G

∂α
−

1

2
x

(
∂G

∂x
+ F

∂G

∂α

)
+G− 4x3F +H(α) = 0,

which is again a consequence of (2), (3). �

As introduced, this Euler flow is only defined in a vicinity of the circle C. How-
ever, this flow satisfies an additional condition u · ∇p = 0 which is very useful for
our purposes. Consider another field ũ = ω(p)u where ω is a smooth function. Due
to the above condition we have

div ũ = ω(p) div u+ ω′(p)(u · ∇p) = 0

and
(ũ · ∇)ũ = ω2(p)(u · ∇)u+ ω(p)ω′(p)(u · ∇p)u = −ω2(p)∇p.
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So, regardless of a choice of the function ω, the field ũ is also an Euler flow, with
the corresponding pressure determined by dp̃ = ω2(p) dp.

Due to Lemma 4, we may assume that ω = ω(p) in a vicinity of the circle C
and ω = 0 outside this domain. If supp(ω) ⊂ [ε, 2ε] (as a function of p) with
ε > 0 sufficiently small, then we have ũ ∈ C∞(R3). The new flow is supported in a
toroidal domain which can be made arbitrarily close to the circle. This completes
the proof of Theorem 1.

Remark 5 The poloidal stream function Ψ = a is a solution4 of the Grad-
Shafranov equation in the following form (R = 1)

(∂ρρ + ∂zz −
1

ρ
∂ρ)Ψ = 10ρ2 −

1

2
H ′(Ψ).

4. Generalized Beltrami flows

The condition u · ∇p = 0 mentioned above means that the pressure is constant
along a streamline. This is very uncommon, and the only other nontrivial example
known to the author is a flow on the 3-sphere constructed in [7]. (The trivial
examples are vortices (rotational flows) and their variations.) By the Bernoulli
theorem |u|2 must also be a first integral; indeed, from (6), (4) and the definition
of G we have

|u|2 =
1

ρ2

[(
∂p

∂z

)2

+

(
∂p

∂ρ

)2

+ b2

]
= 3p.

For the modified flow ũ the formula is different but |ũ|2 is still a function of the
pressure p̃.

Recall that for a Beltrami flow u the Bernoulli function B = p+ 1
2 |u|

2 is constant.
The case when the Bernoulli function depends on the pressure may be considered
a generalization, and constructed flows belongs to this category (B = 5

2p for the
original flow). As was pointed out by Arnold [1][II.1.B], for a non-constant B both
the streamlines and the vortex lines lie on the surfaces B = const; in our situation
these are the same as p = const. It makes a difference because in this case the flow
sheets become independent in a sense, so the flow may be “modulated” (a trick we
used in the previous section).

One of the referees pointed out to the author that a generalized Beltrami flow
(with an extremum of pressure at some point) has a peculiar restriction on the
behaviour of the pressure. Let (u, p) be such a flow, and assume that |u|2 = 3p as
before (we can do this without loss of generality). By the same recipe as above we
may then construct another flow (ũ, p̃). If it has compact support then (e.g. [3])

∫

R3

(|ũ|2 + 3p̃) dx = 0.

To make sense of this it is convenient to introduce a function V (c) = V ol({x ∈ R
3 :

p(x) ≤ c}). The equality then becomes
∫

R3

(pω2(p) + p̃) dx =

∫
ω2(p)(p dV (p)− V (p) dp) = 0.

It must be frue for any function ω which means V (p) = p · const.

4This is probably what an expert would expect in this situation, but the author does not know
an appropriate reference to make it a meaningful discussion.
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