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A NEW DETERMINANT FOR THE Q-ENUMERATION OF ALTERNATING

SIGN MATRICES

FLORIAN AIGNER

Abstract. Fischer provided a new type of binomial determinant for the number of alternat-
ing sign matrices involving the third root of unity. In this paper we prove that her formula,
when replacing the third root of unity by an indeterminate q, actually gives the (q−1 + 2 + q)-
enumeration of alternating sign matrices. By evaluating a generalisation of this determinant we
are able to reprove a conjecture of Mills, Robbins and Rumsey stating that the Q-enumeration
is a product of two polynomials in Q. Further we provide a closed product formula for the
generalised determinant in the 0-, 1-, 2- and 3-enumeration case, leading to new proofs of the
1-, 2- and 3-enumeration of alternating sign matrices, and a factorisation in the 4-enumeration
case. Finally we relate the 1-enumeration case of our generalised determinant to the determinant
evaluations of Ciucu, Eisenkölbl, Krattenthaler and Zare, which count weighted cyclically sym-
metric lozenge tilings of a hexagon with a triangular hole and are a generalisation of a famous
result by Andrews. As a result, we obtain alternative proofs of their determinantal evaluations
using the Desnanot-Jacobi identity (Dodgson condensation).

1. Introduction

An alternating sign matrix (ASM ) of size n is an n × n matrix with entries −1, 0 or 1 such
that all row and column sums are equal to 1 and the non-zero entries alternate in each row and
column, see Figure 1 (left). These matrices were introduced by Robbins and Rumsey [26] and
arose from generalising the determinant to the so-called λ-determinant. Together with Mills [22]
they conjectured that the number of ASMs of size n is

n−1
∏

i=0

(3i+ 1)!

(n+ i)!
.

This was remarkable since there already existed a different family of combinatorial objects,
descending plane partitions (or DPPs), which were proved by Andrews [1] to have the same enu-
meration formula, but which are of a very different nature. In [21] Mills, Robbins and Rumsey
conjectured this very enumeration formula for a third family of combinatorial objects, namely
totally symmetric self complementary plane partitions (or TSSCPPs), which was proved by An-
drews [3].

The first proof of the ASM Theorem was found by Zeilberger [27], who related a constant
term formula for ASMs to a constant term formula for TSSCPPs. Shortly thereafter, Kuper-
berg [18] presented a proof by using a different approach. He used the fact that there exists an
easy bijection between ASMs and configurations of the six-vertex model, a model in statistical
mechanics. This technique was later used as a standard method to prove enumeration formulas
of various symmetry classes and refinements of ASMs. In [23] Mills, Robbins and Rumsey also
proved a formula for the 2-enumeration and conjectured one for the 3-enumeration of ASMs,
where the Q-enumeration of ASMs is a weighted enumeration of ASMs with each ASM having
the weight of Q to the power of the number of its −1’s. Kuperberg [18] was able to prove with
his methods the 3-enumeration and also that the Q-enumeration of ASMs is a product of two
polynomials in Q which was also conjectured in [23, Conjecture 4].

Key words and phrases. Alternating sign matrices, Q-enumeration, determinantal formula, Andrews determi-
nant, determinantal evaluation, Desnanot-Jacobi, Condensation method.
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Figure 1. An ASM of size 5 and its corresponding monotone triangle.

Roughly a decade later, Fischer [9] provided a new proof of the ASM Theorem which was
independent of the first two methods. The proof is based on the bijection between ASMs and
monotone triangles as well as the operator formula [8, Theorem 1] which enumerates monotone
triangles. In 2016 Fischer [11] presented a concise version of her original proof which, except for
relying on the Lindström-Gessel-Viennot Theorem at one point, is self-contained.

A monotone triangle with n rows is a triangular array (ai,j)1≤j≤i≤n of integers of the following
form,

a1,1
a2,1 a2,2

. .
. · · · . . .

. .
.

. .
. . . .

. . .

an−1,1 an−1,2 · · · · · · an−1,n−1

an,1 an,2 an,3 · · · · · · an,n

such that the entries are weakly increasing along northeast and southeast diagonals, i.e., ai+1,j ≤
ai,j ≤ ai+1,j+1, and strictly increasing along rows. For an example see Figure 1 (right). Given
an ASM, the i-th row from the top of its corresponding monotone triangle records the columns
of the ASM with a positive partial column sum of the top i rows. It is easy to see that this
yields a bijection between ASMs of size n and monotone triangles with bottom row 1, 2, . . . , n.
We assign to a monotone triangle a weight QΣ where Σ is the number of entries ai,j of the
triangle such that ai+1,j < ai,j < ai+1,j+1. For ASMs this weight is exactly Q to the power of
the number of −1’s.

The core of this paper is the following theorem.

Theorem 1.1. Let k be an integer and n be a positive integer and define

dn,k(x, q) := det
1≤i,j≤n

((

x+ i+ j − 2

j − 1

)

1− (−q)j−i+k

1 + q

)

.

Then the (q−1 + 2 + q)-enumeration of alternating sign matrices is equal to dn,1(0, q).

The above determinant appeared first in [12, p. 559] for k = 1 and was shown by Fischer
to count the number of ASMs for x = 0, k = 1 and q being a primitive third root of unity.
By introducing the variable x, which was suggested in [12], and the integer parameter k in the
determinant, we are able to write dn,k(x, q) as a closed product formula for arbitrary k and q
being a primitive second root of unity (Theorem 4.1), primitive third root of unity (Theorem
4.2), primitive fourth root of unity (Theorem 4.4) or primitive sixth root of unity (Theorem 4.6),
which was conjectured for k = 1 in [12]. For q = 1 we provide in Theorem 4.8 a factorisation of
the determinant as a polynomial in x. Compared to other known determinantal formulas for the
Q-enumeration of ASMs for which the evaluation is rather complicated, the evaluation of the
determinant considered in this paper turns out to be very easy and thus leads immediately to the
known formulas for the 0-, 1-, 2- and 3-enumeration of alternating sign matrices by setting x = 0.

In Theorem 3.5 we prove a general factorisation result which states that the determinant
dn,k(x, q) factors for arbitrary q into a power of q, a polynomial pn,k(x) ∈ Q[x] which factorises
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into linear factors and a polynomial fn,k(x, q) ∈ Q[x, q] which is given recursively. For k = 1,
Theorem 3.5 implies that the determinant dn,k(x, q) can be written as a product of two Laurent
polynomials in q with coefficients in Q[x], which was conjectured in [12]. As a direct consequence
we obtain that the generating function of ASMs with respect to the number of −1’s is a product
of two polynomials in Q = q−1 + 2 + q.

Surprisingly the determinant dn,k(x, q) is connected to the famous determinant by Andrews
[1] and its generalisation by Ciucu, Eisenkölbl, Krattenthaler and Zare [5] in the following way:

dn,3−k(x, q
2) = q−n det

1≤i,j≤n

((

x+ i+ j − 2

j − 1

)

+ qkδi,j

)

, (1)

where q is a primitive sixth root of unity. This fact was first conjectured for k = 2, 4 in [12]
and is remarkable because of two reasons. Firstly, for q being a primitive sixth root of unity
and k an integer the evaluations of the determinants have a closed product formula. This fact
is very easy to prove for the left hand side of (1) by using the Desnanot-Jacobi identity which
is also known as the Condensation method. For the right hand side this method is however
not applicable and the proof relies on the method of identification of factors. Secondly, the
determinant by Ciucu et al. is a weighted enumeration of cyclically symmetric lozenge tilings of
hexagons with a triangular hole, where q corresponds to the weight and x is the side length of the
hole. In [17] a bijection between these tilings and d-DPPs, “one parameter generalisations” of
DPPs introduced by Andrews [1, 2], was established. We prove (1) by connecting dn,k(x, q) to a
determinantal formula for the enumeration of column strict shifted plane partitions (CSSPPs),
which are in bijection with d-DPPs and using the determinantal formula det(MASM) for the
weighted enumeration of ASMs by Behrend, Di Francesco and Zinn-Justin [4, Proposition 1].
As a consequence we obtain an alternative proof of Theorem 1.1 which is based on the six-vertex
model approach as well as an alternative proof for the factorisation of the right hand side of (1)
by the Desnanot-Jacobi identity.

Very recently Fischer proved in [13] that this determinant also enumerates alternating sign
trapezoids, which are one parameter generalisations of ASTs. Hence the determinant dn,k(x, q)
suggests a one parameter refinement for ASMs and might be of help in finding one.

The paper is structured in the following way. In Section 2 we follow the steps of [12, 14]
and prove Theorem 1.1. Section 3 contains a description of the factorisation of the determinant
dn,k(x, q) for general q leading to a proof that the (q−1 + 2 + q)-enumeration of ASMs is a
product of two polynomials. In Section 4 we present product formulas for dn,k(x, q) for q being
a primitive second, third, fourth or sixth root of unity and present a factorisation for q = 1.
This leads to new proofs for the 1-, 2- and 3-enumeration of ASMs. Finally in Section 5 we
relate the determinant dn,k(x, q) to the weighted enumeration of CSSPPs. This allows us to
connect dn,k(x, q) with another determinantal formula for ASMs described in [4], the Andrews
determinant and its generalisation by Ciucu, Eisenkölbl, Krattenthaler and Zare. The paper
ends with an appendix containing a list of specialisations of dn,k(x, q) which turn out to be
known enumeration formulas.

2. A determinantal formula for the number of ASMs using the operator

formula

Let f be a function in one or n variables respectively. For the rest of this paper we fix the
following notations,

Ex(f)(x) :=f(x+ 1) shift operator,

∆ x :=Ex − Id forward difference,

∆ x := Id−E−1
x backward difference.
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We denote by ASx1,...,xnf(x1, . . . , xn) the antisymmetriser of f with respect to x1, . . . , xn which
is defined as

ASx1,...,xnf(x1, . . . , xn) =
∑

σ∈Sn

sgn(σ)f(xσ(1), . . . , xσ(n)).

The constant term of a function f with respect to the variables x1, . . . , xn is denoted by
CTx1,...,xn (f) and [xi]f(x) denotes the coefficient of xi in f(x). Further we are using at various
points the multi-index notation, i. e., a bold variable x refers to a vector x = (x1, . . . , xn) and
xa is defined as xa :=

∏n
i=1 x

ai
i .

In this section we deduce the determinantal expression for the Q-enumeration of ASMs. It is
based on results of [14] and generalises results in [12]. The starting point is a weighted version
of the operator formula for monotone triangles.

Theorem 2.1 ([10, Theorem 1]). The generating function of monotone triangles with bottom

row k = (k1, . . . , kn) with respect to the Q-weight is given by evaluating the polynomial

Mn(x1, . . . , xn) :=
∏

1≤i<j≤n

(Q Id+(Q− 1)∆ xi
+∆ xj

+∆ xi
∆ xj

)
∏

1≤i<j≤n

xj − xi
j − i

,

at x = k.

Following [14], we can rewrite the operator formula as a constant term expression. We want
to point out, that the original statement [14, Proposition 10.1] is obtained by replacing xi by
1 + zi and Q by X in the next proposition.

Proposition 2.2 ([14, Proposition 10.1]). The number of monotone triangles with bottom row

k = (k1, . . . , kn) with respect to the Q-weight is the constant term of

ASx1,...,xn





n
∏

i=1

(1 + xi)
ki

∏

1≤i<j≤n

(Q+ (Q− 1)xi + xj + xixj)





∏

1≤i<j≤n

(xj − xi)
−1.

The following theorem allows us to transfer the antisymmetriser in the above proposition into
a determinant; it is a variation by Fischer of Equation (D.3) in [15].

Theorem 2.3 ([12, Theorem 17]). Let f(x, y) = qx− q−1y and h(x, y) = x− y. Then

ASw1,...,wn

∏

1≤i<j≤n

f(wi, wj)

∏

1≤i≤j≤n

h(wj , yi)f(wi, yj)
=

det
1≤i,j≤n

(

1
f(wi,yj)h(wi,yj)

)

∏

1≤i<j≤n

h(yj , yi)
.

By setting wi =
xi+1+q−1

xi+1+q
, Q = q−1 + 2 + q and taking the limit of yi → 1 for all 1 ≤ i ≤ n,

Theorem 2.3 becomes

(−1)
n(n+1)

2

(q − q−1)
n(n+3)

2

ASx1,...,xn











∏

1≤i<j≤n

(Q+ (Q− 1)xi + xj + xixj)
n
∏

i=1
(xi + 1 + q)2

n
∏

i=1
(1 + xi)n+1−i











= qn lim
y1,...,yn→1

det
1≤i,j≤n





1
(

yj − xi+1+q−1

xi+1+q

)(

yj − q2 xi+1+q−1

xi+1+q

)





∏

1≤i<j≤n

(yj − yi)
−1.



A NEW DETERMINANT FOR THE Q-ENUMERATION OF ASMS 5

Hence, by Proposition 2.2 with ki = i for each i, the (q−1+2+ q)-enumeration of ASMs is given
by

CTx1,...,xn

(

(−1)
n(n+1)

2 qn(q − q−1)
n(n+3)

2

n
∏

i=1

(1 + xi)
n+1(xi + 1 + q)−2

× lim
y1,...,yn→1

det
1≤i,j≤n





1
(

yj − xi+1+q−1

xi+1+q

)(

yj − q2 xi+1+q−1

xi+1+q

)





∏

1≤i<j≤n

(xj − xi)
−1(yj − yi)

−1



 .

(2)

Using the partial fraction decomposition 1
(y−a)(y−b) = 1

a−b

(

1
y−a

− 1
y−b

)

we can rewrite the de-

terminant in (2) as

(1− q2)−n
n
∏

i=1

(xi + 1 + q)2(xi + 1 + q−1)−1

det
1≤i,j≤n

(

1

yj(xi + 1 + q)− (xi + 1 + q−1)
− 1

yj(xi + 1 + q)− q2(xi + 1 + q−1)

)

.

The following lemma allows us to evaluate the limit in (2).

Lemma 2.4 ([4, Eq. (43)–(47)]). Let f(x, y) =
∑

i,j≥0
ci,jx

iyj be a formal power series in x and

y. Then

lim
x1,...,xn→x
y1,...,yn→y

det
1≤i,j≤n

(f(xi, yj))
∏

1≤i<j≤n

(xj − xi)(yj − yi)
= det

0≤i,j≤n−1

(

[uivj ]f(x+ u, y + v)
)

.

By the above lemma (and since CTx1,...,xn is simply limx1,...,xn→0) we need to calculate the
coefficient of xiyj in

1

(y + 1)(x+ 1 + q)− (x+ 1 + q−1)
− 1

(y + 1)(x+ 1 + q)− q2(x+ 1 + q−1)
. (3)

Using the geometric series expansion in x and y of (3), we obtain for the coefficient of xiyj

(

j

i

)

(1 + q)−i−1(q − 1)−j−1(−1)jqj+1 −
i+j
∑

k=i

(−1)k
(

k

j

)(

j

i− k + j

)

(1 + q)k−i−j−1

(1− q)j+1
.

Putting the above together, it follows that the (q−1 + 2 + q)-enumeration of ASMs of size n is
given by

(1 + q)−n(−q)−(
n

2) det
0≤i,j≤n−1

(

(

j

i

)

(−1)jqj+1 +
n−1
∑

k=0

(

k + i

j

)(

j

k

)

(−1− q)k+i−j

)

.

Finally we use the following identity which is due to Fischer [12, p. 599] and can be proved
using basic properties of the binomial coefficient

(

j

i

)

(−1)jqj+1 +

n−1
∑

k=0

(

k + i

j

)(

j

k

)

(−1− q)k+i−j

=

n−1
∑

k=0

(−1)i
(

i

k

)(−k − 1

j

)

(qj+1(−1)k + qk(−1)j).
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Hence the (q−1 + 2 + q)-enumeration of ASMs is

det

(

((

i

j

)

(−1)i+j

)

0≤,i,j≤n−1

×
((

i+ j

j

)

1− (−q)j−i+1

1 + q

)

0≤i,j≤n−1

)

= det
1≤i,j≤n

((

i+ j − 2

j − 1

)

1− (−q)j−i+1

1 + q

)

, (4)

(where simple properties such as
(−k−1

j

)

= (−1)j
(

k+j
j

)

, and the fact that
(

(

i
j

)

(−1)i+j
)

0≤i,j≤n−1

is lower triangular with only 1’s on the diagonal, have been used), which proves Theorem 1.1.

3. A generalised (q−1 + 2 + q)-enumeration

We introduce to the determinant in (4) a variable x, as suggested in [12], and further a
parameter k ∈ Z. The determinant of our interest is then dn,k(x, q) := det (Dn,k(x, q)), where
Dn,k(x, q) is defined by

Dn,k(x, q) :=

((

x+ i+ j − 2

j − 1

)

1− (−q)j−i+k

1 + q

)

1≤i,j≤n

.

The evaluation of this determinant will generally follow two steps. The first step is to guess a
formula for dn,k(x, q) using a computer algebra system. The second step is to use induction and
the Desnanot-Jacobi Theorem, which is sometimes also called the condensation method.

Theorem 3.1 (Desnanot-Jacobi). Let n be a positive integer, A an n×n matrix and denote by

Ai1,··· ,ik
j1,··· ,jk the submatrix of A in which the i1, · · · , ik-th rows and j1, · · · , jk-th columns are omitted.

Then holds

detAdetA1,n
1,n = detA1

1 detA
n
n − detAn

1 detA
1
n.

Deleting the first and/or last row and the first and/or last column of the matrix Dn,k(x, q),
and taking determinants, gives the following expressions.

det(Dn,k(x, q)
1
1) = det(Dn−1,k(x+ 2, q))

(

x+ n

n− 1

)

, (5)

det(Dn,k(x, q)
n
n) = det(Dn−1,k(x, q)),

det(Dn,k(x, q)
1,n
1,n) = det(Dn−2,k(x+ 2, q))

(

x+ n− 1

n− 2

)

,

det(Dn,k(x, q)
1
n) = det(Dn−1,k−1(x+ 1, q)),

det(Dn,k(x, q)
n
1 ) = det(Dn−1,k+1(x+ 1, q))

(

x+ n− 1

n− 1

)

.

We will prove it in the case of Dn,k(x, q)
1
1. The other cases are proved analogously. By definition

we have

det(Dn,k(x, q)
1
1) = det

2≤i,j≤n

((

x+ i+ j − 2

j − 1

)

1− (−q)j−i+k

1 + q

)

= det
1≤i,j≤n−1

((

x+ i+ j

j

)

1− (−q)j−i+k

1 + q

)

.

Since the i-th row is divisible by (x+ i+ 1) we can factor it out for all 1 ≤ i ≤ n− 1. Further
we factor out j−1 from the j-th column for 1 ≤ j ≤ n− 1 and obtain

det(Dn,k(x, q)
1
1) =

n−1
∏

i=1

x+ i+ 1

i
det

1≤i,j≤n−1

((

x+ i+ j

j − 1

)

1− (−q)j−i+k

1 + q

)

=

(

x+ n

n− 1

)

det(Dn−1,k(x+ 2, q)).
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By applying (5) to Theorem 3.1 we obtain

(n− 1)dn,k(x, q)dn−2,k(x+ 2, q)

= (x+ n)dn−1,k(x, q)dn−1,k(x+ 2, q)− (x+ 1)dn−1,k+1(x+ 1, q)dn−1,k−1(x+ 1, q). (6)

We use at certain points of this section the −q analog [j]−q of an integer j ∈ Z, which is defined
by

[j]−q =
1− (−q)j

1 + q
=



























j−1
∑

i=0
(−q)i j > 0,

0 j = 0,

−
−1
∑

i=j

(−q)i j < 0.

(7)

The entries of the matrix Dn,k(x, q) are polynomials in x and Laurent polynomials in q and
hence the same is true for the determinant dn,k(x, q), i.e., dn,k(x, q) ∈ Q[q, q−1, x].

Lemma 3.2. Let n, k be positive integers. Then the determinant dn,k(x, q) is as an element in

Q[q, q−1, x] divisible by

⌊n−k−1
2 ⌋
∏

l=0

(x+ k + 2l + 1).

Proof. Let l be a non-negative integer. The (i, j)-th entry of Dn,k(x, q) is divisible by (x+ k +
2l+ 1) for i ≤ k+ 2l+ 1 ≤ i+ j − 2, because of the binomial coefficient, and for i = j + k since
[j + k − i]−q = [0]−q = 0. Now choose l with 0 ≤ l ≤

⌊

n−k−1
2

⌋

and set x = −k − 2l − 1. Then
the (i, j)-th entry of Dn,k(−k − 2l − 1, q) is equal to 0 for all k+ l+ 1 ≤ i ≤ k + 2l+ 1 ≤ n and
j ≥ l + 1. Therefore the (k + l + 1)-st up to the (k + 2l + 1)-st row are linearly dependent and
the determinant is henceforth equal to 0. �

Lemma 3.3. Let n, k be non-negative integers. Then the following identity holds

dn,−k(x, q) = (−1)n(k−1)q−nkdn,k(x, q).

Proof. Let σ ∈ Sn be a permutation. Then
n
∏

i=1

(

x+ i+ σ(i) − 2

σ(i)− 1

)

=

n
∏

i=1

(

x+ σ(i) + i− 2

i− 1

)

.

This implies that we can replace the binomial coefficient
(

x+i+j−2
j−1

)

in the determinant dn,k(x, q)

with
(

x+i+j−2
i−1

)

without changing the determinant. By using this fact and factoring out the

factor −(−q)j from the j-th column and (−q)−i−k from the i-th row for all rows and columns,
we obtain

dn,−k(x, q) = det
1≤i,j≤n

((

x+ i+ j − 2

j − 1

)

1− (−q)j−i−k

1 + q

)

=

n
∏

i=1

(−q)−i−k
n
∏

j=1

(−1)(−q)j det
1≤i,j≤n

((

x+ i+ j − 2

i− 1

)−(−q)i+k−j + 1

1 + q

)

= (−1)n(k−1)q−nk det
(

Dn,k(x, q)
T
)

= (−1)n(k−1)q−nkdn,k(x, q).

�

Corollary 3.4. Let n be an odd positive integer. Then dn,0(x, q) = 0.

With the above two lemmas at hand we can prove the following structural theorem.

Theorem 3.5. The determinant dn,k(x, q) has the form

dn,k(x, q) = qc(n,k)pn,k(x)fn,k(x, q), (8)
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with

pn,k(x) =
n−1
∏

i=1

⌊

i
2

⌋

!

i!

⌊

n−|k|−1
2

⌋

∏

i=0

(x+ |k|+ 2i+ 1),

c(n, k) =



















0 k > 0, n ≤ k,

n k k < 0, n ≤ −k,

−
n−k
∑

i=1

⌊

i
2

⌋

otherwise,

and fn,k(x, q) being a polynomial in x and q satisfying for positive k the recursions

fn,−k(x, q) = (−1)n(k+1)fn,k(x, q), (9)

f2n,0(x, q)f2n−2,0(x+ 2, q) = −f2n−1,1(x+ 1, q)2, (10)

f2n,0(x, q)f2n,0(x+ 2, q) = f2n,1(x+ 1, q)2, (11)

fn,k(x, q) =
1

fn−2,k(x+ 2, q)
(

n−1
2

)[n∈2N+1]

×
(

(x+ n)[n∈N\(2N+k+1)] (q(x+ n+ 1))[n∈2N+k+2] fn−1,k(x, q)fn−1,k(x+ 2, q)

− (x+ 1)fn−1,k−1(x+ 1, q)fn−1,k+1(x+ 1, q)
)

, (12)

where [statement] is the Iverson bracket which is defined as 1 if the statement is true and 0
otherwise, and where we use the convention 0 ∈ N.

Proof. Since dn,k(x, q) is a polynomial in x and a Laurent polynomial in q we can write dn,k(x, q)
as in (8) where fn,k(x, q) is a rational function in x and q. Lemma 3.2 and Lemma 3.3 imply

that
dn,k(x,q)
pn,k(x)

is a polynomial in x. Using the (−q)-analog of an integer, see (7) and the Leibniz

formula, we rewrite dn,k(x, q) as

dn,k(x, q) =
∑

σ∈Sn

n
∏

i=1

(

x+ i+ σ(i) − 2

σ(i)− 1

)

[k + σ(i)− i]−q. (13)

Let σ ∈ Sn. The exponent of the smallest power of q that appears in the summand associated
to σ in (13) is

∑

i:k+σ(i)−i<0

(k + σ(i)− i). (14)

It is an easy proof for the reader to show that the minimum of (14) for all σ ∈ Sn is exactly
c(n, k). Hence q−c(n,k)dn,k(x, q) is a polynomial in q, which implies that fn,k(x, q) is a polynomial
in x and q.

It remains to prove that fn,k satisfies the equations (9) – (12), where (9) is a direct consequence
of Lemma 3.3. Equation (10) and (11) follow from (6) by using Corollary 3.4 and (9). Now let
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k ≥ 1. Using the definition of pn,k(x), we can rewrite (6) as

dn,k(x, q)q
c(n−2,k)

n−3
∏

i=1

⌊

i
2

⌋

!

i!

⌊n−k−3
2 ⌋
∏

i=0

(x+ k + 2i+ 3)fn−2,k(x+ 2, q)

=
n−2
∏

i=1

(

⌊

i
2

⌋

!

i!

)2
1

(n − 1)

×






(x+ n)q2c(n−1,k)

⌊n−k−2
2 ⌋
∏

i=0

(x+ k + 2i+ 1)(x + k + 2i+ 3)fn−1,k(x, q)fn−1,k(x+ 2, q)

− (x+ 1)qc(n−1,k−1)+c(n−1,k+1)

⌊n−k−1
2 ⌋
∏

i=0

(x+ k + 2i+ 1)

×
⌊n−k−3

2 ⌋
∏

i=0

(x+ k + 2i+ 3)fn−1,k−1(x+ 1, q)fn−1,k+1(x+ 1, q)






.

After cancellation we obtain

dn,k(x, q)fn−2,k(x+ 2, q) =
qc(n,k)pn,k(x)
(

n−1
2

)[n∈2N+1]

×
(

(x+ n)[n∈N\(2N+k+1)](x+ n+ 1)[n∈2N+k+2]q[n∈2N+k+2]fn−1,k(x, q)fn−1,k(x+ 2, q)

− (x+ 1)fn−1,k−1(x+ 1, q)fn−1,k+1(x+ 1, q)) .

Replacing dn,k(x, q) by qc(n,k)pn,k(x)fn,k(x, q) and further cancellation implies the last recursion
(12). �

Computer experiments suggest that fn,k(x, q) is a polynomial with integer coefficients and

that the leading coefficient is either 1 or −1, where we order the monomials xaqb with respect to
the lexicographic order of (a, b). While we are not able to prove this, we provide the following
related statement.

Proposition 3.6. The leading coefficient of fn,1(x, q) is 1, where we order the monomials xaqb

with respect to the reverse lexicographic order of (a, b).

Proof. First, we calculate the leading coefficient of the highest power of q in dn,1(x, q). This is
a polynomial in x of which we calculate the leading coefficient. We will need the determinantal
evaluations

det
1≤i,j≤n

((

x+ i+ j − 2

a+ j − 1

))

=

n
∏

j=1

(j − 1)!

(a+ j − 1)!

a
∏

i=1

(x+ j − i),

det
1≤i,j≤n

(

(−1)i+j

(

x+ i+ j − 2

a+ j − 1

))

=

n
∏

j=1

(j − 1)!

(a+ j − 1)!

a
∏

i=1

(x+ j − i), (15)

which can be proved by factoring out common factors in rows and columns and using the
Vandermonde determinant evaluation. Using the (−q)-analog, the determinant dn,1(x, q) can be
written as

dn,1(x, q) =
∑

σ∈Sn

n
∏

i=1

(

x+ i+ σ(i) − 2

σ(i) − 1

)

[1 + σ(i)− i]−q. (16)
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Let σ ∈ Sn and i1, . . . , il be the rows such that σ(i) − i < 0. The exponent of the highest q
power that appears in the summand associated to σ in (16) is

−l+
∑

i:σ(i)−i>0

(σ(i)− i) = −l +

l
∑

j=1

(ij − σ(ij)) ≤ −l + l(n− l).

It is obvious that there exists a σ ∈ Sn such that the above inequality is sharp. The maximal
exponent is reached for l = n−1

2 if n ≡ 1 mod 2 or in the two cases l = n−2
2 or l = n

2 for n ≡ 0

mod 2. First, let n ≡ 1 mod 2 and hence l = n−1
2 . The maximal q power is reached for all

σ ∈ Sn with ij = n− j +1 and σ(ij) ≤ l for all 1 ≤ j ≤ l. Hence the coefficient of the maximal
q power in dn,1(x, q) can be written as

det
1≤i,j≤l

((

x+ n− l + i+ j − 2

j − 1

))

det
1≤i,j≤n−l

(

(−1)i+j+l

(

x+ i+ j + l − 2

l + j − 1

))

.

Equation (15) implies that the leading coefficient with respect to x in the previous expression
is equal to

n−l
∏

i=1

(i− 1)!

(l + i− 1)!
.

By simple manipulations and using l = n−1
2 this transforms to

n−1
∏

i=1

⌊

i
2

⌋

!

i!
,

which proves the claim for odd n.

Now let n = 2a. Then the maximal q power is obtained for l = a or l = a− 1. Analogously
to the above case we can write the coefficient of the highest power of q as

det
1≤i,j≤a

({

0 i = 1 and j = a,
(

x+a+i+j−2
j−1

)

otherwise,

)

det
1≤i,j≤a

(

(−1)i+j+a

(

x+ i+ j + a− 2

a+ j − 1

))

+ det
1≤i,j≤a−1

(

x+ a+ i+ j − 1

j − 1

)

det
1≤i,j≤a+1

({

0 i = a+ 1 and j = 1,

(−1)i+j+a−1
(

x+i+j+a−3
a+j−2

)

otherwise,

)

.

Using Laplace expansion, this becomes

det
1≤i,j≤a

(

x+ a+ i+ j − 2

j − 1

)

det
1≤i,j≤a

(

(−1)i+j+a

(

x+ i+ j + a− 2

a+ j − 1

))

+ (−1)a
(

x+ n− 1

a− 1

)

det
1≤i,j≤a−1

(

x+ a+ i+ j − 1

j − 1

)

det
1≤i,j≤a

(

(−1)i+j+a

(

x+ i+ j + a− 2

a+ j − 1

))

+ det
1≤i,j≤a−1

(

x+ a+ i+ j − 1

j − 1

)

det
1≤i,j≤a+1

(

(−1)i+j+a−1

(

x+ i+ j + a− 3

a+ j − 2

))

− (−1)a
(

x+ n− 1

a− 1

)

det
1≤i,j≤a−1

(

x+ a+ i+ j − 1

j − 1

)

det
1≤i,j≤a

(

(−1)i+j+a

(

x+ i+ j + a− 2

a+ j − 1

))

.

The second and fourth line cancel each other and the degree of x is by (15) in the first line a2

and for the third line a2 − 1. Hence the leading coefficient is

a
∏

i=1

(i− 1)!

(a+ i− 1)!
=

n−1
∏

i=1

⌊

i
2

⌋

!

i!
,

where the equality is an easy transformation. �

One could extend the above proof to the calculation of the leading coefficient of fn,k(x, q) for

arbitrary positive k where we order the monomials xaqb with respect to the reverse lexicographic
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order of (a, b). However the leading coefficient of fn,k(x, q) will not be equal to ±1 for k 6= 1.

It seems that the polynomial fn,k(x, q) is for general k irreducible over Q[x, q]. While this
appears to be difficult to prove, Theorem 3.5 implies that pn,k(x) is maximal in fn,k(x, q), i.e.,
there exists no non-trivial polynomial p′(x) ∈ Q[x] dividing fn,k(x, q). For small values of k on
the other side we could prove a factorisation of fn,k(x, q) which was already suggested to exist
in [12, pp. 559].

Proposition 3.7. The function fn,k(x, q) has in the special case for k = 0, 1 the form

fn,0(x, q) =

{

0 n odd,

(−1)
n
2 Fn

2
(x+ 1, q)2 n even,

fn,1(x, q) = F⌊n+1
2 ⌋(x, q)F⌊ n

2 ⌋(x+ 2, q),

where Fn(x, q) is a polynomial in x and q over Q.

Proof. Corollary 3.4 implies f2n+1,0(x, q) = 0. As a consequence of equation (10) and f2,0(x, q) =
−1, we can express (−1)nf2n,0(x, q) as Fn(x + 1, q)2, where Fn is a polynomial in x and q.
Together with (10) and (11) this implies the claim for fn,1(x, q). �

For k = 2 computer experiments still suggest a decomposition of fn,k(x, q) into two or three
factors, depending on the parity of n, whereas for k ≥ 3 the polynomial fn,k(x, q) seems to be
irreducible over Q[x, q]. In order to prove the factorisation for k = 2 one would need to show
that the rational function

q(x+ 2n + 1)(x+ 2n+ 2)Fn(x, q)Fn(x+ 4, q)− nFn+1(x, q)Fn−1(x+ 4, q)

Fn(x+ 2, q)
,

is a polynomial in x and q. Further if one could guess the resulting polynomial, one would obtain
a recursion for Fn(x, q).

The following corollary is a direct consequence of Theorem 3.5 and the above proposition.

Corollary 3.8. Set Q = q−1 + 2 + q and define p̃n(q) as the Laurent polynomial

p̃2n(q) := 2n−1q−(
n

2)
n−1
∏

i=1

i!

(2i)!
Fn(0, q),

p̃2n+1(q) := q−(
n

2)
n
∏

i=1

i!

(2i − 1)!
Fn(2, q),

Then the Q-enumeration of ASMs An(Q) is given by

A2n(Q) = 2p̃2n(q)p̃2n+1(q),

A2n+1(Q) = p̃2n+1(q)p̃2n+2(q).

It is an easy proof for the reader that the Laurent polynomials p̃n(q) are actually polynomials
in Q. The above corollary was actually conjectured in [23, Conjecture 4] and was first proved
in [18].

4. The 0-, 1-, 2-, 3- and 4-enumeration of ASMs

In this section, we provide factorisations of the determinant dn,k(x, q) where q is a primitive
first, second, third, fourth or sixth root of unity. As a consequence of these factorisations we
obtain the known formulas for the 1-, 2- and 3-enumeration of ASMs. The following table shows
the connection between the specialisation of q and the weighted enumeration of ASMs.
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0-enumeration: q = −1 (primitive second root of unity),

1-enumeration: q = −1
2 ±

√
3
2 i (primitive third root of unity),

2-enumeration: q = ±i (primitive fourth root of unity),

3-enumeration: q = 1
2 ±

√
3
2 i (primitive sixth root of unity),

4-enumeration: q = 1 (primitive first root of unity).

The factorisations in the following theorems can be proved (except for q = −1) by induction
on n together with (6), Corollary 3.4 and cancellation of terms. The case q = −1 however is
proved solely by using row manipulations.

Theorem 4.1. For q = −1 holds

dn,1(x,−1) =

(

2

⌊

n+ 1

2

⌋

− 1

)

!!

⌊n
2 ⌋
∏

i=1

(x+ 2i).

Proof. The limit of dn,1(x, q) for q → −1 is

lim
q→−1

dn,1(x, q) =

((

x+ i+ j − 2

j − 1

)

(j − i+ 1)

)

1≤i,j≤n

.

The following identity of matrices can be shown by using a variant of the Chu–Vandermonde
identity.

(

(−1)i+j

(

i− 1

j − 1

))

1≤i,j≤n

×
((

x+ i+ j − 2

j − 1

)

(j − i+ 1)

)

1≤i,j≤n

=

(

δi,j − δi,j+1

(

j

x+ j

)even(j)
)

1≤i,j≤n

×
((

x+ j − 1

j − i

)

j1−even(i) ((x+ j))even(i)
)

1≤i,j≤n

,

where even(n) is equal to 1 if n is even and 0 otherwise. The closed product formula of dn,1(x,−1)
is implied by taking the determinant on both sides. �

For the rest of the section it will be convenient to use the Pochhammer symbol, which is
defined as (x)j := x(x+ 1) · · · (x+ j − 1).
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Theorem 4.2. Let q be a primitive third root of unity. Then

dn,6k+1(x, q) =2⌊n
2 ⌋⌊n+1

2 ⌋
⌊n+1

2 ⌋
∏

i=1

(i− 1)!

(n− i)!

∏

i≥0

(x

2
+ 3i+ 1

)

⌊n−4i
2 ⌋

(x

2
+ 3i+ 3

)

⌊n−4i−3
2 ⌋

×
∏

i≥0

(

x

2
+ n− i+

1

2

)

⌊n−4i−1
2 ⌋

(

x

2
+ n− i− 1

2

)

⌊n−4i−2
2 ⌋

,

dn,6k+2(x, q) =2⌊n
2 ⌋⌊n+1

2 ⌋3−⌊n
2 ⌋(1− q)n

⌊n+1
2 ⌋
∏

i=1

(i− 1)!

(n− i)!

×
∏

i≥0

(x

2
+ n− i

)

⌊n−4i
2 ⌋

(x

2
+ n− i

)

⌊n−4i−3
2 ⌋

×
∏

i≥0

(

x

2
+ 3i+

3

2

)

⌊n−4i−1
2 ⌋

(

x

2
+ 3i+

5

2

)

⌊n−4i−2
2 ⌋

,

dn,6k+3(x, q) =(−q)n2⌊n+1
2 ⌋⌊n+2

2 ⌋−⌊n
2 ⌋

⌊n+1
2 ⌋
∏

i=1

(i− 1)!

(n− i)!

×
∏

i≥0

(x

2
+ 3i+ 2

)

⌊n−4i−1
2 ⌋

(x

2
+ 3i+ 2

)

⌊n−4i−2
2 ⌋

×
∏

i≥0

(

x

2
+ 2

⌊n

2

⌋

− i+
1

2

)

⌊n−4i
2 ⌋

(

x

2
+ 2

⌊

n− 1

2

⌋

− i+
3

2

)

⌊n−4i−3
2 ⌋

,

dn,6k+4(x, q) =q−
n
2 dn,6k+2(x, q),

dn,6k+5(x, q) =q−n dn,6k+1(x, q),

d2n+1,6k(x, q) =0,

d2n,6k(x, q) =q
n
2 2n

2
n
∏

i=1

(i− 1)!

(2n− i)!

×
∏

i≥0

(

x

2
+ 3i+

1

2

)

n−2i

(

x

2
+ 3i+

7

2

)

n−2(i+1)

(x

2
+ 2n− i

)2

n−2i−1
.

Corollary 4.3. The number An of ASMs of size n is given by

An =

n−1
∏

i=0

(3i + 1)!

(n + i)!
.

Proof. Reorder the terms of the product formula of dn,1(0, q), where q is a primitive third root
of unity. �
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Theorem 4.4. Let q be a primitive fourth root of unity. Then the following holds

d2n+1,4k(x, q) = 0,

d2n,4k(x, q) = (2q)n
2n−1
∏

i=1

4⌊ i
2⌋ ⌊ i

2

⌋

!

i!

⌊n
2 ⌋
∏

i=1

(

x

2
+ 2i+

1

2

)

2n−4i+1

⌊n−1
2 ⌋
∏

i=0

(

x

2
+ 2i+

1

2

)

2n−4i−1

,

dn,4k+1(x, q) = 2⌊n
2 ⌋

n−1
∏

i=1

4⌊ i
2⌋ ⌊ i

2

⌋

!

i!

⌊n
2 ⌋
∏

i=1

(x

2
+ i
)

n−2i+1
,

dn,4k+2(x, q) =
n−1
∏

i=1

4⌊ i
2⌋ ⌊ i

2

⌋

!

i!
(2q−1)

n
2

⌊n
2 ⌋
∏

i=1

(

x

2
+ i+

1

2

)

i

⌊n−1
2 ⌋
∏

i=1

(

x

2
+ i+

1

2

)

i

,

dn,4k+3(x, q) = (−q)ndn,4k+1(x, q).

Corollary 4.5. The 2-enumeration An(2) of ASMs of size n is given by

An(2) = 2(
n

2).

Proof. Reorder the terms of the product formula of dn,1(0, q), where q is a primitive fourth root
of unity. �

Theorem 4.6. Let q be a primitive sixth root of unity and k an integer. Then the following

holds

d2n+1,3k(x, q) = 0,

d2n,3k(x, q) = q2nc(2n)

n−1
∏

i=0

(x+ 1 + 3i)

n−1
∏

i=1

(x+ 3i)2(n−i),

dn,3k+1(x, q) = c(n)

⌊n−2
2 ⌋
∏

i=0

(x+ 2 + 3i)n−1−2i,

dn,3k+2(x, q) = q−ndn,3k+1(x, q),

with

c(n) =















3
(n−2)n

4

n−1
∏

i=0

⌊ i
2⌋!
i! n is even,

3
(n−1)2

4

n−1
∏

i=0

⌊ i
2⌋!
i! otherwise.

Corollary 4.7. The 3-enumeration An(3) of ASMs of size n is given by

A2n+1(3) = 3n(n+1)
n
∏

i=1

(3i− 1)!2

(n+ i)!2
,

A2n+2(3) = 3n(n+2) n!

(3n+ 2)!

n+1
∏

i=1

(3i − 1)!2

(n+ i)!2
.

Proof. Reorder the terms of the product formula of dn,1(0, q), where q is a primitive sixth root
of unity. �
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Theorem 4.8. For q = 1

dn,2k+1(x, 1) =

⌊n
2 ⌋
∏

i=2

(2i− 1)−(n+1−2i)

⌊n
2 ⌋
∏

i=1

(x+ 2i)pn(x)pn−1(x),

d2n,2k(x, 1) = (−1)n
n
∏

i=2

(2i− 1)−(2n+1−2i)
n
∏

i=1

(x+ 2i− 1)p2n(x− 1)2,

d2n+1,2k(x, 1) = 0,

where pn(x) is a polynomial in x satisfying the following recursion

p1(x) = 1,

p3(x) = 2x+ 5,

p2n(x) = p2n−1(x+ 2),

p2n+1(x) =
(x+ 2n + 1)(x+ 2n+ 2)p2n−1(x)p2n−1(x+ 4)− (x+ 1)(x+ 2)p2n−1(x+ 2)2

2np2n−3(x+ 4)
.

Computer experiments suggest that the polynomials pn(x) are irreducible over Q.

5. Connections to further determinants

The aim of this section is to connect the determinant dn,k(x, q) to further known determinants
enumerating ASMs or certain classes of plane partitions. In particular we establish a link to
determinantal enumeration formulas for column strict shifted plane partitions, the determinant
det(MASM) in [4, Eq. (28)] as well as to the generalised Andrews determinant in [5]. We also
present in Section 5.1 an alternative proof of Theorem 1.1 using results of [4] which is based
on the six vertex model approach. Further related determinantal formulas can be found for
example in [4, Eq. (29), (65), (66), Theorem 1], [20, Theorem 3.1], [23, p. 346] as well as in
[1, 6, 13, 19, 25].

5.1. Column strict shifted plane partitions and an alternative proof of Theorem 1.1.

Let k be a non-negative integer. A column strict shifted plane partition π of class x, or short
CSSPP of class x, is an array of positive integers of the form

π1,1 · · · · · · · · · π1,λ1

π2,2 · · · · · · · · · π2,λ2

. . . . .
.

πl,l · · · πl,λl

such that

• λ1 ≥ . . . ≥ λl,
• the rows are weakly decreasing and the columns are strictly decreasing,
• the first entry in each row exceeds the number of entries in its row by x.

For an example of a CSSPP of class 2, see Figure 2 (left). Column strict shifted plane partitions
were first defined in [24]; the above definition was taken from [13]. CSSPPs of class x are in
bijection with (2− x)-DPPs, a generalisation of DPPs defined by Andrews [1, 2].

We will consider two refinements of CSSPPs. Given a CSSPP π of class x, define ρ(π) as the
number of rows of π and µ(π) as the number of entries πi,j such that πi,j ≤ x + j − i. For the
CSSPP π in Figure 2 the statistics are ρ(π) = 2 and µ(π) = 2.

Lemma 5.1. The weighted enumeration of CSSPPs of class x with respect to the two statistics

ρ, µ is given by the determinant

∑

π

tρ(π)Qµ(π) = Mn(x, t,Q) := det
0≤i,j≤n−1



δi,j + t
∑

l≥0

(

i

l

)(

j + x

l + x

)

Qj−l



 , (17)
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6 6 5 3

4 1

6
6

5

3
4

1

Figure 2. A CSSPP π of class 2 with ρ(π) = 2, µ(π) = 2 (left), its represen-
tation as non-intersecting lattice paths (middle) and its corresponding cyclically
symmetric lozenge tiling of a cored hexagon (right).

where the sum is over all CSSPPs π of class x for which the length of the first row is at most n.

Similar determinantal formulas can be found among others in [1], [4, Eq. (29),(65)], [5, Eq.
(1.5)] and [13, Eq. (7.1)].

Proof. We use a variation of the well-known Lindström-Gessel-Viennot Theorem, which can be
found for example in the proof of Lemma 3.1 in [6]. Let s1, . . . , sn be starting points, e1, . . . , en
end points and denote by P (i, j) the (weighted) count of lattice paths from si to ej . The
(weighted) enumeration of non-intersecting lattice paths from si1 , . . . , sik to ei1 , . . . , eik , where
we consider all subsets {i1, . . . , ik} of [n] := {1, . . . , n}, is given by

det
1≤i,j≤n

(δi,j + P (i, j)) . (18)

Indeed, by using the Leibniz formula and partially expanding the product, we obtain

det
1≤i,j≤n

(δi,j + P (i, j)) =
∑

σ∈Sn

sgnσ

n
∏

i=1

(

δi,σ(i) + P (i, σ(i))
)

=
∑

σ∈Sn

sgnσ
∑

Iσ

∏

i∈[n]\Iσ
P (i, σ(i)),

where Iσ is the subset of the fixed points of σ for which we have chosen δi,σ(i) in the product.
By exchanging the sums, the above becomes

∑

I⊆[n]

∑

σ∈S[n]\I

sgn(σ)
∏

i∈[n]\I
P (i, σ(i)) =

∑

I⊆[n]

det
i,j∈I

(P (i, j)) ,

which is by the Lindström-Gessel-Viennot Theorem equal to our claim.

We interpret a CSSPP π of class x as a family of ρ(π) many non-intersecting lattice paths.
The i-th row of π corresponds thereby to the path from (1, πi,i) to (λi− i+1, 1) with horizontal
steps at height (y-coordinate) πi,i+1, . . . , πi,λi

. For an example see Figure 2. The starting points
si and end points ej are then given by si = (1, x+i) and ej = (j, 1). The contribution of a row of
π to the µ(π) statistic corresponds to the number of horizontal steps within the last j + x steps
of the corresponding lattice path, with starting point si and endpoint ej . Hence the weighted
count P (i, j) is equal to

t
∑

l≥0

(

i

j − l

)(

j + x

l

)

Ql = t
∑

l≥0

(

i

l

)(

j + x

l + x

)

Qj−l,

which proves the claim. �

It was shown in [4, Proposition 1] that (1+q)−nMn(0, q, q
−1+2+q) is equal to the (q−1+2+q)-

enumeration of ASMs, with the parameter ω appearing in [4, Eq. (28)] equal to ω = q/(1 + q).
Theorem 1.1 then follows by the next lemma by setting t = q, x = 0 and multiplying by (1+q)−n.
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Lemma 5.2. Let n be a positive integer. Then

Mn(x, t, q
−1 + 2 + q) = det

0≤i,j≤n−1

((

i+ j + x

j

)

(1 + t(−q)j−i)

)

.

Proof. The proof consists of a sequence of matrix manipulations using the family of lower tri-
angular matrices defined by

Ln,x(a, b) :=

((

i+ x

j + x

)

ai+xbj+x

)

0≤i,j≤n−1

.

It is easy to prove, by using the binomial theorem as well as the identity
(

i+x
l+x

)(

l+x
j+x

)

=
(

i+x
j+x

)(

i−j
l−j

)

,

that these matrices satisfy

Ln,0(a1, b1)Ln,x(a2, b2)
T =





∑

l≥0

(

i

l

)(

j + x

l + x

)

ai1a
j+x
2 bl1b

l+x
2





0≤i,j≤n−1

, (19)

det (Ln,x(a, b)) = (ab)(
n

2)+nx , (20)

Ln,x(a1, b1)Ln,x(a2, b2) = Ln,x

(

a1(1 + a2b1),
a2b1b2
1 + a2b1

)

, (21)

where AT denotes the transpose of a matrix A. Set γ = q
1
2 +q−

1
2 . We multiply the i-th row of the

matrix in the determinant Mn(x, t, γ
2) by γi and the j-th column by γ−j for all 0 ≤ i, j ≤ n− 1

and obtain

Mn(x, t, γ
2) = det

0≤i,j≤n−1



δi,j + t
∑

l≥0

(

i

l

)(

j + x

l + x

)

γi+j−2l



 .

By (19), this can be rewritten as

det
0≤i,j≤n−1

(Idn+tLn,0( γ, γ
−1 )Ln,x( γ, γ

−1
)

T
)

.

Multiplying the matrix in the above determinant from the left by Ln,0(1,−q−
1
2 ) and from the

right by Ln,x(1,−q
1
2 )T and using (20) and (21), the previous expression becomes

(−1)nxq−
nx
2 det

(

Ln,0(1,−q−
1
2 )Ln,x(1,−q

1
2 )T + tLn,0(−q−1, q

1
2 )Ln,x(−q, q−

1
2 )T
)

Finally, using (19) and the Chu-Vandermonde identity proves the claim. �

By setting x = 0 and t = q, Lemma 5.2 implies Mn(0, q, q
−1 +2+ q) = (1+ q)ndn,1(0, q). The

determinant Mn(0, t,Q) is the weighted count of CSSPPs of class 0 with the first row having at
most n entries which are in bijection with cyclically symmetric plane partitions in an n× n× n
cube; for a detailed account of this bijection see [22, p. 76]. Hence we obtain a connection
between weighted cyclically symmetric plane partitions and weighted ASMs. In particular, we
have

∑

A

1 = ζ−n
6

∑

π

ζ
ρ(π)
3 , (22)

∑

A

2µ(A) = (
√
2ζ8)

−n
∑

π

ζ
ρ(π)
4 2µ(π), (23)

∑

A

3µ(A) = (
√
3ζ12)

−n
∑

π

ζ
ρ(π)
6 3µ(π), (24)

∑

A

4µ(A) = 2−n
∑

π

4µ(π), (25)

where the left sum is over all ASMs A of size n and µ(A) denotes the number of −1’s of A, the
right sum is over all CSSPPs π of class 0 and entries at most n and ζl denotes the l-th primitive

root of unity ζl = e
2πi
l . It would be of interest to have “bijective” proofs for these identities,

i.e., a usual bijection for (25) and probabilistic bijections for (22)–(24).
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Figure 3. The cyclically symmetric lozenge tiling of a cored hexagon of Figure
2 together with its representation as non-intersecting lattice paths (red) and the
construction of the involution τ using non-intersecting lattice paths (blue).

For x = 0, t = 1 and q = ζ3, Lemma 5.2 implies that the number of cyclically symmetric plane
partitions inside a box with side length n is given by ζn6 dn,3(0, ζ3). Together with Theorem 4.2
this gives another proof of the weak Macdonald conjecture, which was first proved by Andrews
[1].

5.2. Connections to the Andrews determinant. In [12] Fischer conjectured that dn,1(x, q)
is connected to the determinant

det
1≤i,j≤n

((

x+ i+ j − 2

j − 1

)

+ qδi,j

)

. (26)

It was shown by Andrews [1, Theorem 3′] that for q = 1 the above determinant has a closed
product formula and counts the number of (2 − x)-DPPs with parts less than n, i.e., CSSPPs
of class x where the first row has at most n entries. In [5] and [6, Lemma 3.1], it was shown
by Ciucu et al. that the above determinant is equal to the weighted enumeration of CSSPPs
of class x, where the first row is at most of length n. Further they proved that the evaluation
of the determinant can be expressed by a closed product formula if q is a sixth root of unity.
Comparing the factorisations of dn,k(x, q) and of the above determinant implies

dn,3−k(x, q
2) = q−n det

1≤i,j≤n

((

x+ i+ j − 2

j − 1

)

+ qkδi,j

)

, (27)

where q is a primitive sixth root of unity. Alternatively, this can be deduced as follows.

First, we note that CSSPPs of class x for which the first row has at most n entries are
in bijection with cyclically symmetric lozenge tilings of a cored hexagon with side lengths n +
x, n, n+x, n, n+x, n where an equilateral triangle with side length x is removed from the centre.
This was first described by Krattenthaler in [17]. The non-intersecting lattice path description
for a CSSPP corresponds thereby to the configuration of lozenges in a fundamental region of
the cyclically symmetric lozenge tiling, which is bound by thick black lines in Figure 2 (right).
For better readability, we do not distinguish between a CSSPP and its corresponding lozenge
tiling. Using the lozenge tiling interpretation, we define an involution τ on CSSPPs of class x
and with at most n entries in the first row, by reflecting a lozenge tiling along the horizontal
axis. This axis is depictured in Figure 3 by a dotted horizontal line. The involution τ was first
considered for the case x = 2 in [23] and for arbitrary x in [24, p. 54] and [17, p. 1145]. It has
the properties

µ(π) = µ(τ(π)), ρ(π) = n− ρ(τ(π)). (28)

Indeed, the non-intersecting lattice path of the lozenge tiling (drawn in red in Figure 3) is
mapped under τ to the lattice path in blue of the same figure. By the definition of µ, the statistic
µ(π) is exactly the number of horizontal lozenges within the trapezoidal region (bounded by the
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thick black lines in Figure 3) and therefore invariant under reflection along the horizontal axis.
This implies the first equation in (28). The second equation follows by the fact, that there
are exactly n lozenges within the trapezoidal region touching the top boundary. Each of these
lozenges is either passed by a red path— there are ρ(π) many— or the starting point of a blue
path— there are ρ(τ(π)) many.

As a consequence of (28) we obtain the identity

Mn(x, t,Q) = tnMn(x, t
−1, Q). (29)

Equation (27) follows from Lemma 5.2 and (29) by setting t = ζk6 and q = ζ3.

The identity (27) implies that all factorisations of the determinant in (26) are covered by the
determinant dn,k(x, q), where q is a third root of unity. This is in particular interesting since the
determinant dn,k(x, q) can be evaluated by using the Desnanot-Jacobi identity (Condensation
method) which is “easier” than the previously known method for proving the factorisations of
the determinant in (26), see [5].

Very recently it was shown by Fischer [13] that for q = 1 the determinant in (26) also enu-
merates (n, x)-alternating sign trapezoids, which generalise alternating sign triangles (ASTs).
This complements the equinumerousity of DPPs and ASTs (and hence ASMs) by the equinu-
merousity of a “one parameter generalisation” of DPPs and ASTs. An interpretation of x in
dn,k(x, q), e.g. in the form of a one parameter generalisation of ASMs, would therefore be very
interesting and could give important insight into the nature of the equinumerousity between
ASMs, DPPs and ASTs.
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Appendix A. An overview of enumeration formulas connected to dn,k(x, q)

It turns out that some specialisations of x, q, k in dn,k(x, q) are known enumeration formulas.
In the following we list those specialisations we found. In particular there is always a combina-
torial interpretation for dn,k(0, q) where k is an integer and q is a sixth root of unity but not
equal to −1. All formulas can be proved by using induction on n. We denote by ζl the l-th root

of unity ζl = e
2πi
l and further use the notation A

(1)
QT (4n, x) of [19].

ζ−n
6 d2n,0(0, ζ3) =

(

A
(1)
QT (4n, 1)

)2
= (#(ASMs of size n))4 , (30)

ζ−n
4 d2n,0(0, ζ4) =

(

A
(1)
QT (4n, 2)

)2
, (31)

ζ−n
3 d2n,0(0, ζ6) =

(

A
(1)
QT (4n, 3)

)2
= 3n(n−1) (#(ASMs of size n))2 , (32)

dn,1(0,−1) = (0-enumeration of ASMs of order n) = n!, (33)

dn,1(0, ζ3) = ζn−1
6 dn−1,3(2, ζ3) = #(ASMs of size n), (34)

dn,1(0, ζ4) = (2-enumeration of ASMs of order n)

= #(perfect matchings of an order n Atzec diamond)

= #(Gelfand-Tsetlin patterns with bottom row 1, 2, . . . , n) = 2(
n

2), (35)

dn,1(0, ζ6) = (3-enumeration of ASMs of size n), (36)
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ζn12dn,2(0, ζ3) =
√
3
[n≡1 mod 2]

(#(half turn symmetric ASMs of size n))2 , (37)

ζn4 (1− ζ4)
ndn,2(0, ζ4) =Total dimension of the homology of a free

2-step nilpotent Lie algebra of rank n1, (38)

ζn6 dn,3(0, ζ3) = #(cyclic symmetric plane partitions in an n− cube)

= #(half turn symmetric ASMs of size 2n)/#(ASMs of size n), (39)

ζn−1
6 d2(n−1),2(1, ζ3) =

ζn+1
6√
−3

d2n−1,2(−1, ζ3) = #(ASMs with two U-turn sides of size 4n), (40)

ζn+1
6√
−3

d2n−1,2(−2, ζ3) = #(quarter turn symmetric ASMs of size 4n), (41)

ζn4 d2n,2(1, ζ4) =
ζ2n+1
8√
2

d2n+1,2(−1, ζ4) = 4n
2
, (42)

ζ2n−1
8√
2

d2n−1,2(1, ζ4) = 4n(n+1). (43)
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