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Abstract

The present work is dedicated to the global solutions to the incompressible Oldroyd-
B model without damping on the stress tensor in R"(n = 2,3). This result allows to
construct global solutions for a class of highly oscillating initial velocity. The proof uses
the special structure of the system. Moreover, our theorem extends the previous result
by Zhu [@] and covers the recent result by Chen and Hao [u].
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1. Introduction and the main result

In this paper, we mainly consider the incompressible Oldroyd-B model without

damping mechanism which has the following form:
T+ u-Vt+F(t,Vu) —KaD(u) =0,
ot +u - Vu — pAu + VII — Kydivt =0,

divu =0,

(1.1)

(4, T)|1=0 = (10, ),

where u = (uy,up,- - -, u,) denotes the velocity, IT is the scalar pressure of fluid. T = T j
is the non-Newtonian part of stress tensor which can be seen as a symmetric matrix here.

D(u) is the symmetric part of Vi,

D(u) = =(Vu+ (Vu)'),

N[ =

and F is a given bilinear form which can be chosen as
F(t,Vu) =1tQ(u) — Q(u)t + b(D(u)t 4+ tD(1)),
where b is a parameter in [—1,1], Q(u) is the skew-symmetric part of Vi, namely
Q(u) = %(Vu — (Vu)T).

The coefficients y, Ky, K» are assumed to be non-negative constants.
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In fact, the above system (L.T) is only the subsystem of the following full incompress-
ible Oldroyd-B model:

ur+u-Vu — uAu+ VII = Kidiv,
T+ u-VT—yAt+ Bt + F(1,Vu) = KD (u),

(1.2)
divu =0,

(4, T)|1=0 = (10, ),

in which 7 and p are two non-negative constants.

The Oldroyd-B model describes the motion of some viscoelastic flows, for example,
the system coupling fluids and polymers. It presents a typical constitutive law which
does not obey the Newtonian law (a linear relationship between stress and the gradient
of velocity in fluids). Such non-Newtonian property may arise from the memorability of
some fluids. Formulations about viscoelastic flows of Oldroyd-B type are first introduced
by Oldroyd [IE] and are extensively discussed in [H].

About the derivation of the system (1.2), the interested readers can refer to [IE], here
we omit it. As one of the most popular constitutive laws, Oldroyd-B model of viscoelastic
fluids has attracted many attentions and lots of excellent works have been done (see [3],

[u], [B], [B[Iﬂ], é], [@], [@], [IE], [IE], [IE]) and references therein. Guillopé
12], [13]

and Saut got the local well-posedness with large initial data and global well-
posedness provided that the coupling parameter and initial data are small enough. Lions
and Masmoudi [B] got the global existence of weak solutions in the corotational case
(b = 0). However, the case b # 0 is still not clear by now. In the framework of the
near critical Besov spaces, Chemin and Masmoudi B] first studied the local solutions
and global small solutions of system (I.2) when 4 > 0, K; > 0, K, > 0,7 =0, > 0.
Zi, Fang and Zhang [@] improved the result obtained by Chemin and Masmoudi in [H]
to the non-small coupling parameter case. Recently, Elgindi and Rousset [Iﬂ] proved the
global small solutions to (L.2) with u = 0, Ky, Ky, 7, B > 0 in Sobolev space H* (R?),s > 2.
Moreover, if neglect the effect of the quadratic form F(7, Vu) and let y = 0,K; > 0,K; €
R,7 > 0,8 > 0, they also got the global solutions without any smallness imposed on
the initial data in IR?. Later on, Elgindi and Liu [B] consider the global well-posedness of
system (L.2) in R3. When u=0,K >0,K€ R,y >0,—p >0, they obtained the global
small solutions in Sobolev spaces H*(IR%), s > 5/2. Let us emphasis that the results
obtained in [B], dﬂ], ], ], [@] always require > 0 in (L.2) (namely the system
with damping) at least for non-trivial initial data. Thus, it's an interesting problem to
study the global well-posedness when y > 0,7 =0, 8 =0, K; > 0, K; > 0in (L.2) in
R"(n = 2,3). Most recently, Zhu [@] obtained the global small solutions to the three-
dimensional incompressible Oldroyd-B model without damping on the stress tensor (i.e.

B = 0), more precisely, the author in dﬂ] proved the following theorem.



Theorem 1.1. (see [IE]) Let n =3, u, Ky, Ko > 0. Suppose that divug = 0, (70);j = (10);i and

initial data € such that system (L1 admits a unique global classical solution provided that

A7 w0l + 1A~ 0] e < &

1

where A = (—A)z.

However, the method used by Zhu in dﬂ] is not valid for n = 2. Recently, Chen and
Hao M] generalized the result by Zhu in dﬂ] to the critical Besov spaces. The aim of the
present paper is to establish the global solutions of (I.I) with a class of highly oscillating
initial velocity.

In all that follows, let u = K3 = K; = 1in (L), A def (—A)%, we shall denote the

projectorby P =7 — Q ¥ 7 — vA-ldiv.

Now, we can state the main theorem of the present paper:
Theorem 1.2. Let n = 2,3 and
2<p<min(4,2n/(n—2)) and,additionally, p #4 if n = 2.
Forany (uf, 7)) € Bzglfl(ﬂ{”), ull € BE/T(IR”), S B;’%’l(]R”) with divug = 0. If there exists
a positive constant cq such that,

14

i h h
[ (uo, )| 51 + ||”o||B%—1 + 7 HB% < ¢co, (1.3)

|
B, 5t pl

then the system (L) has a unique global solution (u, T) so that for any T > 0

ul € Cy([0,T); B, (R™) N LY([0, T); BE, ™ (R™),

€ G(0,T); B, (RY), (A 'Pdive)’ € LY([0, T); B, (R")),
L1 241

' € G ([0,T); B), (R)NLY([0,T];B), (R")),

€ G([0,T); B),(R"), (A 'Pdive)" € L'([0,T]; B), (R")).

Remark 1.3. By a similar arqument as Zhu in [Iﬁ], treating the nonlinear term to linear term,
we can also get the global small solutions for the incompressible viscoelastic system with Hookean

elasticity.

Remark 1.4. Most recently, Chen and Hao in [u] get the global well-posedness of (LI) in R"
with n > 2. Compared with Chen and Hao in [Q], the global solutions we constructed here allow

the highly oscillating initial velocity. A typical example is
X .
ug(x) = sm(?l)gb(x), $(x) € S(R"), p>n

which satisfies for any € > 0
4 h 11
Iluollegl-l + IIuollel_l < Cev,

here C is a constant independent of € (see [ [B], Proposition 2.9]).
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Remark 1.5. Compared with the result obtained by Chemin and Masmoudi in [B], we also obtain

the global small solutions, yet there is no damping mechanism.

Remark 1.6. Our methods can be used to other related models. Similar results for the compress-

ible Oldroyd-B model will be given in a forthcoming paper.

Scheme of the proof and organization of the paper. The main difficulty to the proof
of Theorem[[2]lies in the fact that there is no dissipation in stress tensor. Thus, we can not
get directly any integration for stress tensor T about time in the basic energy argument.
Indeed, we also can not get any integration about time of u. One can see more detail in
the derivation of (3.7) in the third section.

To exploit the dissipation of # and to find the partial dissipation hidden for 7, let us
first study the linear system of (L) (without loss of generality, set 4 = K1 = K, = 1).

Applying project operator IP on both hand side of the first two equation in (L) gives

oiu — Au — Pdivt = Gy,
(1.4)

0;Pdivt — Au = Gj.
At the linear level, to weaken the effect of Au appeared in the stress tensor equation,

we introduce ¢ L A-1Pdiv T with A & (—A)2, a simple computation from (4) gives

{ at¢ + Au = A_1G2/ (1 5)

ot — Au — Ap = Gy.

The above system is similar to the linear system of the compressible Navier-Stokes equa-
tions E]. In the following, we recall the analysis of the linearized system (L.5). Taking the

Fourier transform with respect to x, System (L.5) translates into

%<£>:A®<§>+<A/_§z> win 4@ (5 S8 ) 0o

e In the low frequency regime || < 2, A(¢) has two complex conjugated eigenvalues:

Ac(Q) E _%2 <1 SN ‘:2>

&2
which have real part — %2, exactly as for the heat equation with diffusion 3.

e In the high frequency regime |¢| > 2, there are two distinct real eigenvalues:

Ao (E) % _%2 <1i & _4> :

CZ

As 1+ ‘3;4 ~2and 1 — 4326;4 ~ g—z for & — +o0, we can deduce that A (&) ~

—&?and A_ (&) ~ —1- In other words, a parabolic and a damped mode coexist.



Optimal a priori estimates may be easily derived by computing the explicit solution of
(L.6) explicitly in the Fourier space.

In the second section, we shall collect some basic facts on Littlewood-Paley analysis

and various product laws in Besov spaces. In Section 3, we will use three subsections to
prove the main Theorem[1.2] we apply the Littlewood-Paley theory to get the basic energy
estimates for (#,7), and then by introducing a new quantity, we get the low frequency
and high frequency of the solutions of (a4,Pdiv 7) in the first subsection and the second
subsection, respectively. Finally in the last subsection, we present the proof to the global
well-posedness of Theorem[1.2]by standard continuous argument.
Notations : Let A, B be two operators, we denote [A, B] = AB — BA, the commutator
between A and B. For a < b, we mean that there is a uniform constant C, which may be
different on different lines, such that a < Cb. We shall denote by({a, b) the L?(IR") inner
product of a and b.

2. Preliminaries

The Littlewood-Paley decomposition plays a central role in our analysis. To define it,
fix some smooth radial non increasing function x supported in the ball B(0, 3) of R", and
with value 1 on, say, B(0, 3), then set ¢(¢) = X(%) — x(&). We have

3 8
Y 927 )=1in R"\ {0} and Suppg¢ C {CE]R”'— €] §—}
= 4~ 3
The homogeneous dyadic blocks A]- are defined on tempered distributions by
A 927Dy & F (p(27) Fu).
In order to ensure that
u=Y Au in S'(R"), (2.1)
jez
we restrict our attention to those tempered distributions u such that
lim ||Sk1/l||Loo =0, (22)
k——o0

where S;u stands for the low frequency cut-off defined by Syu def x27¥D)u.

Definition 2.1. Fors € R, 1 < p < oo, the homogeneous Besov space Bp1 & BS 1(IR™) is the
set of tempered distributions u satisfying (2.2) and

def

lullg;, Y 2| Ajulor < oo. 23

jez
Remark 2.2. Fors < % (which is the only case we are concerned with in this paper), B;/l is

a Banach space which coincides with the completion for || - || g _of the set So(R") of Schwartz
P

functions with Fourier transform supported away from the origin.
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In this paper, we frequently use the so-called ”“time-space” Besov spaces or Chemin-

Lerner space first introduced by Chemin and Lerner [1].
Definition 2.3. Let s € Rand 0 < T < +o0. We define
1
def js T q d 1
s gse ) Y 2 () NAu(o) ]t 4
P j€Z 0
for q, p € [1,00) and with the standard modification for p, g = oo.

By Minkowski’s inequality, we have the following inclusions between the Chemin-
Lerner space T‘%(B;,l) and the Bochner space L%(B;ll):
el < Mg, A< el 2 lulne,) $A=r

Restricting the above norms (2.3) and (2.4) to the low or high frequency parts of distri-
butions will be crucial in our approach. For example, let us fix some integer jo (the value

of which will follow from the proof of the main theorem) and set

def s i def S
1205, = X 2718zl and ||l = Y 2°Ajz]r, (2.5)
' i<jo ' j>jo—2
12 7w ey Y 27 Az and [|2"||zwp 2 Y 2F|Az] (2.6)
LF(B,1) — j<IILF (LP) L (Bs,) — iZllLe(Lr)- .
' i<jo ' j=jo—2

The following Bernstein’s lemma will be repeatedly used throughout this paper.

Lemma 2.4. Let B be a ball and C a ring of R". A constant C exists so that for any positive real
number A, any non-negative integer k, any smooth homogeneous function o of degree m, and any

couple of real numbers (p,q) with 1 < p < g < oo, there hold

Supp i C AB = sup ||0"ul|s < CkH1pkn( %)HMHLP,

|a| =k

Supp it C AC = CF1AK||u|| 1 < sup [|0%ul|r < CFFIAR|Jul| L,
|ae| =k

Supp il C AC = [[o(D)ul|ps < ComA™ "G~ 1] 11

Next we recall a few nonlinear estimates in Besov spaces which may be obtained by
means of paradifferential calculus. Here, we recall the decomposition in the homoge-

neous context:
uv = T,o + Tyu + R(u,v), (2.7)
where

. def ; ; . def e ~ def R
T,o = Z Siwuhp,  R(u,v) = ZAjuAjv, and Ajv = Z Ajo.
jez j€Z li—j'l=1

INote that for technical reasons, we need a small overlap between low and high frequency.



The paraproduct T and the remainder R operators satisfy the following continuous
properties.
Lemma 2.5 ([E|]). Foralls € R, 0 > 0,and 1 < p, p1, p2 < oo, the paraproduct T is a bilinear,
continuous operator from B, % x B;, ; to B} 1" with % = % + %. The remainder R is bilinear

. . sl . 52 . Sl+52 . l _ l i
continuous from Bpl,l X sz,l to B]g,1 with s1 + s, > 0, and 5 = + 55

Lemma 2.6. Let n = 2,3 and
2<p<min(4,2n/(n—2)) and,additionally, p # 4 if n = 2.
iq n
Forany (u,v) € B;”l N B;};,l (R™), there holds

vl g S (lull galloll g+ lull g N0l 5-0)- (2.8)

n
8-
Bz/l pl pl pl pl

Proof. According to Bony’s decomposition, we can write
uo = T,0+ Tyu + R(u,v).
By Lemmal[2.5] let % = % - %, we have

ITwo + R, o) 30 S llul ‘ﬁ(lnvngfl S Mullypollell s -
Similarly, one can get

\\Tvu\\3§1—1 S HUHBfl—lHqugl-

Thus, we complete the proof of this lemma. O

We also need the following omitted proofs product law and commutator’s estimates

in Besov spaces.

Lemma?2.7. Let1 < p,q < 00,51 < %,Sz < nmin{%,%},andsl +5 > nmax{O,%—k%—l}.
For ¥(u,v) € B}, (R") x B}, (R"), we have

HMUHB;Hrg S H”HB?leHB?I

Lemma 2.8. ([B, Lemma 2.100]) Let 1 < p,q < 0o, —1 — nmin{%,l — %} <s<1+ %. For
any v € B |(R") and Vu € B;l (R™) with divu = 0, there holds

[V, Ajlo| Ly

S 42Vl g ol
Lemma 2.9. Let n = 2,3 and
2<p<min(4,2n/(n—2)) and,additionally, p #4 if n = 2.

L 2] L
For any o' € B3, 1(]R”), ol € B (R"), Vu € B;’/l(]R”) with divu = 0, there exists a

constant C such that

2 254y, u- Vol o <C[Vull 5 (Jo'l] 51 + 1"]] 5-0)- (29)

]SJO pl , pl




Proof. Using the notion of para-products, we can easily write
. def
[Aju-Vo = I+ 17+ 12,
with

]

]].1 d:ef Z [A], Sk—lu . V]Akv, 1-2 d:ef Z [A], Aku . V]Sk_lv,
[k—jl<2 [k—jl<2

Ij3 “ Y [Aj, Agu- V], Ap = Ny 4 A+ Ay
k>j—1

From the definition of Bony’s decomposition, one can write I ]-1 into

I]-lz Z [A]-,Sk_lum]amAkv

k=jl<2
=2 T [ (@) (Se vt (x — y) = S 11t (3))dn Ao (x — y)dy
k—jl<2 /R
. . 1 . .
=" Z / h(ZJy)</ y-VSk,lum(x—Ty)dT)BmAkv(x—y)dy
k—jl<2/R" 0

from which and the Holder inequality, we have

1< ¥ 27)VSqulli=| VA 2
k—jl<2
< Y VS u sl Al 2. (2.10)
k—jl<2

As there is a small overlap between low and high frequency in the definition of (2.5), we

can further deduce from ([2.10) that

Y 2<%*1>J’y|1}y|p <C||Vul| ||o] (2.11)

i<jo

noq.
32
B2,1

Let us turn to the second term I]-z. Using the fact that the support of A]-(Aku - VSk_10)

is restricted in an annulus, we can get similarly to I jl that

1212 S X 277IVSao]l 2 VA
[k—jl<2 Ly

S Y 270 Y 227 [|Apol| )|V A
k<2 K<ke2

S L @R
lk—j|<2

k.
o1 (27 || VAu||r),
By,

which give rise to

Y. 26V 2 <C| V|

i<jo

i
B/

{4
v HB;’Z;‘I' (2.12)



It is much more involved to handle the remainder term I ]3 We split it into two terms:

high frequency and low frequency

1]3 = Z [A], Aku : V]Akv

k>j—1
= Z [A], Aku : V]E;U + Z[A], Aku : V]E;U (213)
j—1<k<j k>j

Exact the same line as I ]-1, we can get

Y267V Y (A A VAl <C|[Va o o] 51
i<ho j-1<ks; K

(2.14)

Due to lack of quasi-orthogonality, we divide the second term on the right hand side of
(2.13) into two terms:

Z[A]‘, A - V]/Avkv = Z Aj(Aku . V/Avkv) + Z At - VA]‘/Avkv
k>j k>j j<k|k—j|<3
L2

To bound I]-S’l, we need to further write

1B = X 18Me+ X 157 (2.15)

J<k<jo J<jo<k

Using the condition div u = 0 and the Holder inequality gives

Y I e S X 1A Bkt - Aro)l 2

j<k<jo j<k<jo
<Y 2 Avu - Aol
J<k<jo
<Y 2N AVul| s || Ao 2
i<k<io
SIVulle Y 275 Aol 2,

j<k<jo
which implies

Y, 26722 <C|| V| |0 (2.16)
J<k<jo
Similarly, the second term in (2.15) can be estimated as follow:
Z 2(%71)]”1]?)1“[42 Z 2 )j“Ajam(Akum : /Avkv)HLz
i<jo<k J<jo<k
< Y 26D A - Aoz
j§j0<k
Y 26 VAU 5 Aol
i<jo<k Lr==
< Y 2067Digis Koy ”k||AkVuHLP||AkU||LP
J<Jo<k
SIvull g 12"y 217)
pl Pl



In virtue of the embedding relation B; {(R") — L®(R"), we get from (2.16) and 2.17)
that

L 26D s SOVl 1975+ 0 @18)
J<jo By
Thanks to Lemma [2-4] we have
) 2(%71)j||1]?)/2”L2 <) 2(2-Dj Y. A VAAD| 2
<o i<jo j<k|k—jl<3
S Y207 Y 2KV A ||| A Aol 2
J<jo lk—j|<3
(2.19)
2,1
Together with 2.14), 2.18), 2.19), we get from (2.13) that
L 28l <CITaly (171 52+ o (220)
J<jo
Thus, the estimate (2.9) can be obtained from the combinations of m, 2.12), 2.20).
Consequently, we complete the proof of the lemma. O

Corollary 2.10. Under the assumption of Lemma[2.9] let A(D) be a zero-order Fourier multiplier,
by the same processes as the proof of Lemma(2.9} we can get the following two estimates hold:

Y 24 W4 AD), - V1) <Vl (o'l g0+ 1)
i<jo Bya
3 267 [[Aj,u- VIA(D)O) |, <C|[ V], o (]of 1+th\ gt
i<jo By Bya

Lemma 2.11. ( [B Lemma 6.1]) Let A( ) be a zero-order Fourier multiplz'er. Letjo e Z,5 < 1,
ceR, 1< py, pp < ooand % = = + — Then there exists a constant C depending only on jo
and on the regqularity parameters such that

“[SIOA(D)/TM]Z)“B;IS < CHV”HB;I}IHUHBZZJ

and, fors =1,
“[SjoA(D)/Tl:]U|’Bg;1 < ClVulnllvlg -

3. The proof of the Theorem 1.2

According to the local well-posedness obtained by [B], [u], we can deduce similarly
that there exists a positive time T so that the system (L)) has a uniqueness local solution
(u,T) on [0, T*) such that for any T < T*

u’ € Gy([0,T); Bf, '(R") n LN ([0, T); Bf, (R™)),

e ([0, T ),35;1(111")), (A""PdivT)’ € L'([0, T); B, (R")),

W € G0, 18], (R") N LN ([0, T); B) 1 (RY)),

' € G([0,T); B (R"), (A "Pdivr)" € L1 ([0, T]; B] , (R")). (3.1)
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We denote T* to be the largest possible time such that there holds (31). Then, the proof
of Theorem [[.2is reduced to show that T* = co under the assumption of (I.3). In order

to do so, we need to make a priori estimates for the smooth solution of system (L.T).

3.1. The low frequency estimates of the solutions
Applying A]-IP to the second equation in (L.I) and using a standard commutator’s

process give
atA]'I/l +u- VA]u - AA]u - AJIPleT = [I/l -V, A]lP]u (32)
Similarly, from the first equation in (L), we have
atA]'T +u- VA]T + A]'P(T, Vu) — A]D(I/l) = [I/l -V, A]]T (33)
Taking L? inner product with Aju on both hand side of (3.2) and using the fact that (u
VAju, Aju) = 0 give
1d
24t
Similarly, taking L? inner product with A]-T on both hand side of (3.3) and using the fact
that (u - VA-T, A]'T> = 0, we can get
1d |
24dt
It’s not difficult to check

[Aju|72 4+ a1 || VAull7, = (APdiv T, Aju) + ([u - V, APlu, Aju). (3.4)

|Aj |3, = = (A;D(u), AjT) + ([u- V,Aj]t, Ajt) — (A;F(T,Vu), AT). (3.5)

<A]1Pd1V T, A]M> -+ <A]D(M),A]T> =0.

Thus, summing up (3.4), 3.5) and using the above fact we have

14, . _—
5 77 (18l + 1ATIE2) + a2 ]| A7

t
5 |<[M . V, A]‘]P]M, A]M>| + ‘([I/l . V, A]‘]T, A]TH + ‘(A]F(T, VM),A]TH (36)

in which we have used the following Bernstein’s inequality: there exists a positive con-
stant ¢ so that

= AAju - Ajudx > c122j||Aju||%2

Due to lack of full dissipation for stress tensor 7 in (LI), thus, we have to give up the
dissipation for u also at present. In the following, we will get back the full dissipation of
velocity and the partial dissipation of stress tensor by introducing a new quantity.

Employing the Holder inequality to (3.6), integrating the resultant inequality from 0
to t, and multiplying by 2/(2-1), we can get by summing up about j < jo that

1005 5, S0 g+ T 25 9, 85Dl
0

+ 3 28 -, Al g +/ |(F(r, V) [y s, 37)

j<Jo >t
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It follows from Lemma 2.9] that

Y- 206 V| fu -V, APTu 2

J<jo

N/ IIWII ; IIuéll Wl+||uh|| p1)ds

pl
¢ h l
N/ (Il o 1) Ul g+ Tl g) ds
2 P 2

1 1 pl
and
Y 25Vl ¥, Al ey
J<jo
l h
N/wanmru4+uww>
pl
< ¢ h ¢ h ds.
S NCINee L g3 (1l g+ 110 s

(3.8)

(3.9)

In order to estimate the last term in (3.7), we first use the Bony decomposition to write

Sj0+1 (TVM) = S]‘0+1 (TTVM + R(T, Vu)) -+ Tvl,SjOJrlT + [Sj0+1, Tvu]’f.
By virtue of Lemma [2.5] we obtain

1TvuSipiall 31 S IIWIILwIIT‘ZII §oi NIIT‘ZII ; 1||W||
21 pl

1
and for o=

==

1
2

1jp41(Te Vit + R(T, Vi) ) || 5+ S I
2,1

STl g 1Vl

Bp 1 P 1 Pl Pl
By Lemma 2.1T] we have

11Sjo+1, ToulTll 5+ IIVZMII geallTll g SHTl a1Vl g

21 p*l pl pl p,l

Combining with 3.I0)—(@3.13) implies

t
AHG@VWWhlﬁwaWMHN#Hm+HWI)

2 pl

l h ¢
N/ (=, . T ) (el 2+1+HH I 51) ds.
P

1 pl

Taking estimates (3.9) and (3.14) into (3.7) gives

[
| (uf, T )||~ (37—1) S ||(“0/T0)||Bz’§1—1

+/ (G g0 Mg+ I 0 )l g+ ]y ) s,
21

pl pl 21 pl
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In the above low frequency arguments, we do not get any integration in time for u, 7.
Next, we shall use the special structure of (L) to obtain the smoothing effect of u and
partial smoothing effect of 7.

Applying project operator IP on both hand side of the first two equation in (L.I)) gives

o +P(u-Vu) — Au—Pdivt =0,
{ 3iPdiv T + Pdiv (u - V) — Au + Pdiv (F(t, Vu)) = 0. (316
Define
¢=A'"Pdivt and w=A¢—u,
we can get by a simple computation from (3.16) that
op+u-Vo+Au=f,
oru+u-Vu—Au—Ap =g, (3.17)

atw+uvw—|—A(P: G/
in which
f def —[ATPdiv, u - V]t — A"'Pdiv (F(T, Vu)),

¢ _Pu-Viu, GC¥_[Au-Vip+Af—g.

As discussed in the first section, we will set our energy estimates about (3.17) in low
frequency and high frequency respectively. Applying A]- to the first equation in (3.17)

gives
atA]‘(P +u- VAJQD + A]'AM = — [Aj, u- V]gb + A]f (3.18)
Taking L? inner product of A;¢ with (3.I8) and using integrating by parts, we obtain
EEHAJQDHiz + /IR" AjAg - Ajudx = — /]R" [Aj,u -V]¢ - Ajpdx + /]R" Ajf - Ajpdx. (3.19)

Similarly, we have

1d . . - ) .
— [ A:ul|?, + 27| A;ul/? —/ A:AG - Audx
deH ] HL2 H i HLZ R j ¢ j

= — Aiu-Vu-Audx + Aig-Audx, (3.20)

j j j8 " Bj
R” R”

1d . . . . .
——|lA:wl?, + |A:Ap|? —/ A:AQ - Audx
s gllbiwlt + 18A915~ [ AiAg- A,

—— [ [Aju Vo dwdx+ [ AG-Awdx,  (321)
n R‘l‘l
in which we have used the following fact:
/]Rn A]A(P . A]w dx = /IR“ A]Agb : (A]Aqb - A]M) dx
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Let 0 < 17 < 1 be a small constant which will be determined later on. Summing up

(B.19)-B.21) and using the Holder inequality and Berntein’s lemma, we have

(1891172 + (1 = | Aullf> + yllAjwlZ2) + (1= )27 [|Ajullf + 727 | Agll7
S Al (114w - Viglliz + 1A flli2) + 1Al 2 (1[4, - Vulz + [14;8]]12)
HlIAjwl 2 (1A, u - Viw]z + [|4;Gll2). (322)

14
2

For any j < jo, we can find an # > 0 small enough such that

1Al 7= + (1 = m) | Ajullza + | Ajewll7. > (||A1<P|| 72 + 1 Ajull72). (3.23)

- C
From (8.22), one can deduce that

E—t(llA PlI72 + [1Ajull2) + 27 (1| A;¢l72 + 1 Ajull72)
S Al (114, - Viglli2 + 1A flli2) + 1Al 2 (1[4, - Vul2 + [14;8]]12)
+IAwll 2 (1A, u - Vw2 + [14;G]12)- (3.24)

By the definition of the Besov space, we can further get
10,9 o+ [ 0l g
21
S lub, 40)] 21+/chg Hg
B21

2

[ 2B 0 Vgl + Ay Tlule + 185, VIAgl ) ds
J<jo
< (b 96) ||B§11+ / (£ N3+ 1 g+ A 1) 1) s
[T 2B Vgl + Ay Flulz + 18- VIAgl .2 ds. 325)

j<Jo
Next, we give the estimates to the terms in the righthand side of the above inequality.

A simple computation implies
Aj([AT'Pdiv, u - V]T) =A;(A7'Pdiv (- VT) — Aj(u- VA ' Pdiv T)

=[AjA""Pdiv,u - V]t — [Aj,u- V]AT'PdivT. (3.26)

As the Fourier multiplier A~'Pdiv is of degree 0, thus, from (3.26) and Corollary 2.10]

we have
I([A™'Pdiv, u- V]7)"|| i
2

¢ h
S (Ul ~1+HT g0l Vull g

Pl p,l
< (I 771+||Th|| )l 7+1+||M I g)- (3.27)
21 pl 21 pl

14



The term ||(F(t, Vu))* HBg,l can be dealt with the same method as (3.14), as a result, we
can get o

L5 SO+ 11" f)(||u€||32+1+||u 150 (3.28)
21 B3 ,,1

Thanks to Corollary 2.10] we obtain

g IIBZ-WII(UP u-Viu)* ||.f-1N ]l f-lllull gl

S 51t +HuhH 7—1)(HM€H 7+1+HM Ig)- (3.29)

21 p1 p1

We get by a similar derivation of (3.10)-(3.13) that

(A - V1) N3 SH(Aw- V)| g

2
2,1 21

SUS g+ 1" g YNl g + 1] o). (3.30)
B2,1 BPrl B

B3, pl
By using Lemma 2.8 we can get
/ 3 26 V([ - VIllz + N[y, - Vullie + |14, - VIAP]|12) ds
j<Jo
N/ (ol 5 -+ le"l f)(HMéll g+ aa)ds
B3 B3 Bpl

+/(HM6H.-1+ +HuhH 0l 7+1+H "Il gea) ds. (3.31)
0 By, B’

Pl p1

Inserting (3.28), 3.29), (3:30) and (3.31) into (3:25) gives

I s+ ) 1640 s

Nm%ﬂmw4

B 21

t
+/O (I, )] g71+l|uhH ~1+HThH )l 7+1+HM I )ds. (3.32)
2

Pl Pl pl

Combining with (3.15) and (3.32), we can get

I g, 12+ [ Tt [ (A Py
(321 ) t 2 21 B2,1

S s, )5
2
+/ R L W La ﬂ)(llu”ll gaa il pa)ds. (333)
By pl B3y B,y
3.2. The high frequency estimates of the solutions

In the following, we are concerned with the estimates for the high frequency part of
the solution. We shall find the damping effect of ¢ and smoothing effect of u in the high

frequency part.

15



LetT = u — A~1¢, we can get by a simple computation from (3.I7) that

3.34
O —AT =T+ A'p—P(u-Vu) — A Y u-V¢) - ALf. 434

Applying A; to the first equation in (8.34) and taking L? inner product with [A;¢[P—2A;¢,
using integrating by part and the Holder inequality, we thus get for all t > 0,
. t .
18,960+ [ 1Al ds

. t . . .
< I8goller+ [ (Ndy - Digllor + 185 + IA/(AD ) ds— (3.39)

from which and the definition of Besovs spaces that

njo
941 gt 190 5 Sl g+ T2 Ay 0 V1l
t 1

pl ) p pl i=Jo

+ {1 o1 31 (3.36)

L)) T

Similarly, we get the high frequency of I that

I g, 170y 50

Sl + e, oy HIOTO

0P Tu) oo + IO 1A VO
S L e e T e

IO V)l o+ 170y o DA @V s @37

L}(Bp, p ) Li(B)y )

Combining with (3.36) and (3.37), one can deduce from u = I + A~ !¢ that

h h
[ ”z«»(gv + o IIZOQ b + [l IILI @h + [l e
S lusl 1+||<P0|| +||th| " + Y2 [ VIl
B Bt %o
: n_ o (u- noy . 3.38
(P Vu))! ”% 1)+||< LCRA L0 S (338)

With the aid of Lemmas[2.7]and we have

t
71 . 71 )
I HLlB,, N/o 1A ]Pdlv,u.V]THBflJrHA Ple(F(T'VM))HBEIdS

t

S J) el 19l
pl
© Oy 140 YO g+ ) 550
21 p1
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Similarly,

Z2WAM4WMUUN/HWM llglp d

J=Jo

N/ (Il g +HThll Rl 7+1+Hu I 5+1) ds,

Pl p1
u-vu k n_ <L/ ul|| n_ ul|| »ds
(P (- V) ||L}(B;11)N o | ||1L.3;11||C ||B,g’1

t
5/0 (HMKHBngJrHuhH )l 7+1+HM I 5-1)ds. (3.40)
21 p

1 pl

By Lemma[2.7] one has

H(A1(u-V(P))hHL1(Bg11)N/ | A" div (ug)| ds</ Il 91,5
t p,

N/er-HWW7+wH%>
By, By,
14 h 2
< u ul| ng+ ~ g+ n ) ds
/HH g+ 10019 0+ 11 )
N/H#HH@+WWBJW#HMHWuHMO%
pl 21 pl
l h 12
_14n n 1 »)ds. (3.41
+Aﬂh@$7+wu%xwu%ﬂ+wu%>s< )
Plugging (3.39)-(3.41) into (3.38) implies
h h
u n_ u
I s, 00 g+ 190 o+ T

Loo BP Ll BP ) t(Bf:—I)
S HuoH at H%H

/ IITgll i +||Th|| ; )(||4> I, +1+||4> I f)

+/ (I, T 771+||uh|| R i W )(Ilu"ll gt g ds. (342)

21 B, " B} B, 1
From the first equation in (L.I), we can get similarly to (3.36) that

"I,

70 ﬂmnn+/nw|ﬂﬁ+/nwmnwnn% (3.43)

f pl) pl

Together with (3.42) and (3.43), one has

"l a + | hH~ " +[[(AT'PdivT)"|| "
Iel ) L2(8]) LI(B)) SIETA
S HuoH s+ [l 5
Pl p

/ h y4 h
+/ (I H.—Hg 1T YU gon + 9" 0 ) ds
B, B;y B,

+/ (G g+ g+ 171 )(Iluéll gt ] y)ds. (344
2

2
pl le p1
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3.3. Complete the proof of our main Theorem

Now, we can complete the proof of our main Theorem [[.2 by the continuous argu-

ments. Denote

def .
X(t) =|(u, T)H~ + [u [H B3 +[[(A™"Pdiv 7)’ |

1 ST
s ) ) Li(B3 )

h h -1 : h h
) g+l ||Zw ) H NPy D

t( pl ) t( pl t p,l) t( pl )

Combining with (3:33) and (3.44), we can get

l -1 . l
1,7 g, 1T g+ APV T
h h -1 . h h
+ . nq + 2 +||[(AT'PdivT n
I g, 17 g1+ Pyt + 190, g0

£
S g, ) %—1+H gl ——1+HT0H
2

pl

+ [, e 11Pdwr> g+ (A7 Pdive)"]] g ) ds

B3y pl

+/O(H(M’Z/Té g1+HuhH REA AW )(HM’ZH +1+Hu |ga)ds. (3.45)
2

pl pl

From (3.49) and the Gronwall inequality, we have

X(t) < CeX W (|| (ug, )|, 55 1+H”0H L 15 ) (3.46)

2 P 1
Now let é be a positive constant, which will be determined later on. For any T e [0,T%),
we define

T+ dQfsup{t e[0,T°): X(t) < 5}.

From (3.46), we have for any t € [0, T**) there holds

X(t) < Clecl‘s(ll(ungg)llBﬂ 1+ ||”o|| 51t ||To|| )- (3.47)

2
2,1 pl pl

Choosing 6 < 4171 fixed and then letting

1
!|(M5/T§)\\Bg—1 + HMoH s+ 7 H
21 pl
we can get from (3.47) that
0
X(t) < > Vit e [0, T,

this contradicts with the definition of T**, thus we conclude that T** = T*. Consequently,

we complete the proof of Theorem[I.2lby standard continuation argument. O
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